next up previous
Next: About this document

MATH 3251, Midterm 1, Fall 1996, Solutions of problems

October 17, 1996.

1. We have tex2html_wrap_inline57 ,

displaymath59

Since tex2html_wrap_inline61 , and tex2html_wrap_inline63 are coplanar, tex2html_wrap_inline65 .

2(a). We have tex2html_wrap_inline67 which implies

displaymath69

(b). The area of triangle tex2html_wrap_inline71 ,

displaymath73

(c). The distance from A to the line passing through B and C,

displaymath81

3. A linear equation tex2html_wrap_inline83 of the plane passing through the points
tex2html_wrap_inline85 , can be found from the property that, for P(x,y,z) on the plane, the vectors tex2html_wrap_inline89 , tex2html_wrap_inline91 , and tex2html_wrap_inline93 are coplanar. This gives

displaymath95

The distance from D to the plane is

displaymath99

4. Since tex2html_wrap_inline101 , the vector tex2html_wrap_inline103
is parallel to both tex2html_wrap_inline105 and tex2html_wrap_inline107 , so we can take tex2html_wrap_inline109 . Further, we can take an arbitrary point tex2html_wrap_inline111 , say tex2html_wrap_inline113 , so we obtain

displaymath115





Nicolai V. Krylov
Thu Nov 21 10:19:32 CST 1996