
RIESZ-MARKOV-KAKUTANI THEOREM

Theorem 0.1. Let X be a compact Polish space and C be the set of real-
valued continuous functions on X provided with uniform norm. Let L be a
linear continuous functional on C such that Lf ≥ 0 if f ≥ 0. Then there
exists a nonnegative finite measure µ on Borel subsets of X such that

Lf =
∫
X
f(x)µ(dx). (0.1)

We need a few auxiliary results for the proof. For F ⊂ X define

ν(F ) = inf{Lf : f ∈ C, f ≥ IF }.
Obviously, for any A,B ⊂ X,

ν(A ∪B) ≤ ν(A) + ν(B),

and ν(A) ≤ ν(B) if A ⊂ B. We write F ∈ B0 if ν(∂F ) = 0.

Lemma 0.2. The collection B0 is an algebra and the set-function ν is an
additive function of B0.

Proof. Observe that ν(∂F ) = ν(∂(F c)) and

ν(∂(A ∪B)) ≤ ν((∂A) ∪ ∂B) ≤ ν(∂A) + ν(∂B)

implying that B0 is an algebra.
To prove the additivity of ν on B0 take A,B ∈ B0 such that AB = ∅.

Then

ĀB̄ = (∂A ∪A)(∂B ∪B) = [(∂A)∂B] ∪ [(∂A)B] ∪ [A∂B] ⊂ (∂A) ∪ ∂B,

ν(ĀB̄) = 0.
Hence, for any ε > 0 one can find f, φ ∈ C such that

f ≥ IA∪B, 1 ≥ φ ≥ IĀB̄, Lf ≤ ν(A ∪B) + ε, Lφ ≤ ε.
Define

f1(x) = 1 for x ∈ Ā, f1(x) = φ(x) for x ∈ B̄,
and extend f1 as a continuous function on X such that

0 ≤ f1(x) ≤ f(x) + φ(x)

(take any continuous extension g ≥ 0 and to satisfy the above inequality
consider min(g, f +φ)). Also set f2 = f +φ− f1. Then f2 ∈ C, f2 ≥ 0, and
f2 = f ≥ 1 on B. Hence,

ν(A) + ν(B) ≤ Lf1 + Lf2 = Lf + Lφ ≤ ν(A ∪B) + 2ε.

This finishes the proof of the lemma.
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Remark 0.1. If ĀB̄ = ∅, one can take φ ≡ 0 and in that case even for
A,B 6∈ B0 we have

ν(A ∪B) = ν(A) + ν(B).

Lemma 0.3. The set-function ν is regular on B0, that is, for any A ∈ B0

and ε > 0 there exists a closed set Γ ⊂ A and an open set G ⊃ A such that
Γ, G ∈ B0 and ν(G)− ε ≤ ν(A) ≤ ν(Γ) + ε.

Proof. Since B0 is an algebra, it suffices to concentrate on open G ⊃ A.
Observe that for any f ∈ C we have

ν({x : f(x) = λ}) = 0

for all λ apart perhaps from countably many of them. This follows from
Remark 0.1 since the sets {x : f(x) = λ} are closed and disjoint for different
λ so that for different λi∑

i

ν({x : f(x) = λi}) = ν
(
∪i {x : f(x) = λi}

)
≤ ν(X) <∞.

It follows that open sets {x : f(x) > λ} belong to B0 for all λ apart
perhaps from countably many of them.

Now take a nonnegative f ∈ C such that f ≥ IA and

Lf ≤ ν(A) + ε/2.

Take a λ ∈ (0, 1) such that the open set G := {x : f(x) > λ} ∈ B0. Observe
that G ⊃ A. Also

ν(G) ≤ L(f/λ) ≤ ν(A)/λ+ ε/(2λ) = ν(A) +
1− λ
λ

ν(A) + ε/(2λ),

and it only remains to take λ so close to 1 that what we add to ν(A) above
is less than ε. The lemma is proved.

Lemma 0.4. The additive set-function ν on B0 has a σ-additive extension
as a measure on σ(B0).

Proof. It suffices to show that for any decreasing sequence of sets An ∈ B0

such that ∩nAn = ∅, we have ν(An)→ 0 as n→∞.
We argue by contradiction and assume that there exists an ε > 0 and a

decreasing sequence of sets An ∈ B0 such that ∩nAn = ∅ but ν(An) ≥ ε.
Then we take closed Γn ∈ B0 such that Γn ⊂ An and ν(Γn) ≥ ν(An) −
ε/2n+1.

The closed sets Bn = ∩k≤nΓk are nested and their intersection is empty.
Then Bn is empty for an n (X is a compact set). However,

An \Bn =
( ⋂
k≤n

Ak
)
\
⋂
k≤n

Γk ⊂
⋃
k≤n

(Ak \ Γk),

ν(An \Bn) ≤ ε
∑
k

2−k−1 = ε/2, µ(Bn) ≥ ν(An)− ε/2 ≥ ε/2.

and this is the desired contradiction.
We call µ the extended ν.
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The end of proof of the theorem. The only things which remain to
be proved are that σ(B0) contains the Borel σ-field and that (0.1) holds.
Observe that ρ(x, x0) is a continuous function of x for any x0. By what was
said above, Br(x0) ∈ B0 ⊂ σ(B0) for almost all r > 0. Since σ(B0) is a
σ-field we conclude that Br(x0) ∈ σ(B0) for all r > 0 and all Borel sets are
also in σ(B0).

To prove (0.1) take f ∈ C such that 0 ≤ f ≤ 1. Let c0 < 0 < c1 < ... <
cn−1 < 1 < cn be such that {x : f(x) < ci} ∈ B0. Then for any ε > 0 one
can find φi ∈ C such that

φi ≥ IEi , Lφi ≤ ν(Ei) + ε/n = µ(Ei) + ε/n,

where Ei = {x : ci ≤ f(x) < ci+1}. Then

f ≤
n−1∑
i=0

ck+1φk, Lf ≤
n−1∑
i=0

ck+1Lφk ≤
n−1∑
i=0

ck+1µ(Ei) + ε

≤
∫
X
f(x)µ(dx) + ε+ max(ck+1 − ck).

Since what we add can be made arbitrarily small

Lf ≤
∫
X
f(x)µ(dx), L(1− f) ≤

∫
X

(1− f(x))µ(dx)

and the theorem is proved because L1 = ν(X) = µ(X).

Something like Section 19.3

Theorem 0.5 (Bachelier). For every t ∈ (0, 1] we have maxs≤tws ∼ |wt|,
which is to say that for every x ≥ 0

P{max
s≤t

ws ≤ x} =
2√
2πt

∫ x

0
e−y

2/(2t) dy.

Proof. Take independent identically distributed random variables ηk so
that P (ηk = 1) = P (ηk = −1) = 1/2, and define ξnt by

ξnt := S[nt]/
√
n+ (nt− [nt])η[nt]+1/

√
n,

where Sk := η1 + ...+ ηk. First we want to find the distribution of

ζn = max
[0,1]

ξnt = n−1/2 max
k≤n

Sk.

Observe that, for each n, the sequence (S1, ..., Sn) takes its every particu-
lar value with the same probability 2−n. In addition, for each integer i > 0,
the number of sequences favorable for the events

{max
k≤n

Sk ≥ i, Sn < i} and {max
k≤n

Sk ≥ i, Sn > i} (0.2)
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is the same. One proves this by using the reflection principle; that is, one
takes each sequence favorable for the first event, keeps it until the moment
when it reaches the level i for the last time before n and then reflects its
remaining part about this level. This implies equality of the probabilities
of the events in (0.2). Furthermore, due to the fact that i is an integer, we
have

{ζn ≥ in−1/2, ξn1 < in−1/2} = {max
k≤n

Sk ≥ i, Sn < i}

and

{ζn ≥ in−1/2, ξn1 > in−1/2} = {max
k≤n

Sk ≥ i, Sn > i}.

Hence,

P{ζn ≥ in−1/2, ξn1 < in−1/2} = P{ζn ≥ in−1/2, ξn1 > in−1/2}.

Moreover, obviously,

P{ζn ≥ in−1/2, ξn1 > in−1/2} = P{ξn1 > in−1/2},

P{ζn ≥ in−1/2} = P{ζn ≥ in−1/2, ξn1 > in−1/2}

+ P{ζn ≥ in−1/2, ξn1 < in−1/2}+ P{ξn1 = in−1/2}.
It follows that

P{ζn ≥ in−1/2} = 2P{ξn1 > in−1/2}+ P{ξn1 = in−1/2} (0.3)

for every integer i > 0. The last equality also obviously holds for i = 0. We
see that for numbers a of type in−1/2, where i is a nonnegative integer, we
have

P{ζn ≥ a} = 2P{ξn1 > a}+ P{ξn1 = a}. (0.4)

Certainly, the last probability goes to zero as n → ∞ since ξn1 is asymp-
totically normal with parameters (0, 1). Also, keeping in mind Donsker’s
theorem, it is natural to think that

P{max
s≤1

ξns ≥ a} → P{max
s≤1

ws ≥ a}, 2P{ξn1 > a} → 2P{w1 > a}.

Therefore, (0.4) naturally leads to the conclusion that

P{max
s≤1

ws ≥ a} = 2P{w1 > a} = P{|w1| > a} ∀a ≥ 0,

and this is our statement for t = 1.
To justify the above argument, notice that (0.3) implies that
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P{ζn = in−1/2} = P{ζn ≥ in−1/2} − P{ζn ≥ (i+ 1)n−1/2}

= 2P{ξn1 = (i+ 1)n−1/2}+ P{ξn1 = in−1/2} − P{ξn1 = (i+ 1)n−1/2}

= P{ξn1 = (i+ 1)n−1/2}+ P{ξn1 = in−1/2}, i ≥ 0.

Now for every bounded continuous function f(x) which vanishes for x < 0
we get

Ef(ζn) =
∞∑
i=0

f(in−1/2)P{ζn = in−1/2} = Ef(ξn1 − n−1/2 ) + Ef(ξn1 ).

By Donsker’s theorem and by the continuity of the function x· → max[0,1] xt
we have

Ef(max
[0,1]

wt) = 2Ef(w1) = Ef(|w1|).

We have proved our statement for t = 1. For other values of t one uses that
cws/c2 is a Wiener process if c > 0. The theorem is proved.

Theorem 0.6. Let u be a bounded continuous and continuously differen-
tiable function on R such that u′ is piece-wise differentiable and its deriv-
ative is bounded. Let c be a bounded Borel function on R such that c > δ,
where δ > 0 is a constant. Denote

f = cu− (1/2)u′′.

Then

u(0) = E

∫ ∞
0

e−φtf(wt) dt.

where

φt =
∫ t

0
c(ws) ds.

Comment on u(x) for x 6= 0.

Example 0.1. Denote
mt = max

s≤t
ws.

Then for λ, µ > 0

E

∫ ∞
0

e−µmt−λt dt = E

∫ ∞
0

e−µ|wt|−λt dt

is the value at 0 of the solution of the following equation

(1/2)u′′ − λu = −e−µ|x|.
Assuming that µ2 6= 2λ on finds that

u(x) =
2µ√

2λ(µ2 − 2λ)
e−|x|

√
2λ − 2

µ2 − 2λ
e−µ|x|,
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u(0) =
2

µ
√

2λ+ 2λ
.

Example 0.2. Let a > 0. Introduce Ta(s) as the time spent by wt inside
(−a, a) during the time period [0, s]:

Ta(s) =
∫ s

0
I(−a,a)(ws) ds.

Then for λ, µ > 0

Ia(µ, λ) := E

∫ ∞
0

e−µTa(t)−λt dt

is the value at 0 of the solution of

(1/2)u′′ − (λ+ µI(−a,a))u = −1.

We find that u is an even function and

u(x) =
1
λ

+ c1e
−|x|
√

2λ for |x| ≥ a,

u(x) =
1

λ+ µ
+ c2 cosh(x

√
2(λ+ µ)) for |x| ≤ a,

where c1 and c2 are found from the conditions that u(a+) = u(a−) and
u′(a+) = u′(a−):

c1 = −c2e
a
√

2λ
√

(λ+ µ)λ−1 sinh(a
√

2(λ+ µ)),

c2 =
µ

λ(λ+ µ)
[

cosh(a
√

2(λ+ µ)) +
√

(λ+ µ)λ−1 sinh(a
√

2(λ+ µ))
]−1

,

so that
Ia(µ, λ) =

1
λ+ µ

+ c2.

Take µ = (2a)−1ν and let a ↓ 0. We will find the distribution of the so-called
local time of wt at the origine.

One finds that
1

λ+ µ
+ c2 →

2
ν
√

2λ+ 2λ
,

which as we know is the Laplace transform of

Ee−νmt .

Hence, the Laplace transforms of

Ee−ν(2a)−1Ta(t)

converge and by the general theory for t > ε > 0

lim
a↓0

Ee−ν(2a)−1Ta(t) ≤ ε−1 lim
a↓0

∫ t

t−ε
Ee−ν(2a)−1Ta(s) ds = ε−1

∫ t

t−ε
Ee−νms ds,

which for ε ↓ 0 along with a similar estimate from below yields that

lim
a↓0

Ee−ν(2a)−1Ta(t) = Ee−νmt .
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This by the general theory implies that the distributions of (2a)−1Ta(t)
converge weakly to that of mt or |wt|. It turns out that the distribution of
the limit of (2a)−1Ta(t) in C is the same as that of mt!

Example 0.3. We are going to find the distribution of the time spent by wt
on the positive half-line on the time interval [0, s]:

T+(s) =
∫ s

0
I(0,∞)(wt) dt.

We know that for λ, µ > 0

E

∫ ∞
0

e−µT+(t)−λt dt

is the value at 0 of the solution of

(1/2)u′′ − (λ+ µI(0,∞))u = −1.

We have
u(x) =

1
λ+ µ

+ c1e
−x
√

2(λ+µ) for x ≥ 0,

u(x) =
1
λ

+ c2e
x
√

2λ for x ≤ 0,

where c1 and c2 are found from the conditions that u(0+) = u(0−) and
u′(0+) = u′(0−):

c1 = c2 +
1
λ
− 1
λ+ µ

= c2 +
µ

λ(λ+ µ)
,

c2

√
2(λ+ µ) +

µ
√

2(λ+ µ)
λ(λ+ µ)

= −c2

√
2λ,

c2

√
λ+ µ+

µ

λ
√
λ+ µ

= −c2

√
λ,

c2 = − µ

λ
√
λ+ µ(

√
λ+ µ+

√
λ)

= −
√
λ+ µ−

√
λ

λ
√
λ+ µ

,

u(0) =
1
λ

+ c2 =
1√

λ
√
λ+ µ

.

Observe that 1/
√
λ is the Laplace transform of a constant times t−1/2 and

1/
√
λ+ µ, as a function of λ, is the Laplace transform of a constant (inde-

pendent of µ) times t−1/2e−µt. Hence, u(0), as a function of λ is the La[lace
trnsform of the convolutions of the above two functions, that is equal to a
constant (independent of µ) times∫ t

0

1√
t− s

1√
s
e−µs ds.

It follows that

Ee−µT+(t) = α

∫ t

0

1√
t− s

1√
s
e−µs ds,
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where α is a constant, the distribution of T+(t) has a density

α
1√
t− s

1√
s

and for r ∈ (0, t)

P (T+(t) ≤ r) = α

∫ r

0

1√
t− s

1√
s
ds = 2α arcsin

√
r/t,

implying that 2α = 2/π.


