RIESZ-MARKOV-KAKUTANI THEOREM

Theorem 0.1. Let X be a compact Polish space and C' be the set of real-
valued continuous functions on X provided with uniform norm. Let L be a
linear continuous functional on C' such that Lf > 0 if f > 0. Then there
exists a nonnegative finite measure p on Borel subsets of X such that

Lf= /X f(z) p(da). (0.1)

We need a few auxiliary results for the proof. For F' C X define
v(F)=inf{Lf: feC, f>Ir}.
Obviously, for any A, B C X,
v(AUB) <v(A)+v(B),
and v(A) <v(B) if A C B. We write F' € B if v(0F) = 0.

Lemma 0.2. The collection By is an algebra and the set-function v is an
additive function of Bg.

Proof. Observe that v(0F) = v(9(F°)) and
v(0(AUB)) <v((0A)U0dB) <v(0A) 4+ v(0B)

implying that B¢ is an algebra.
To prove the additivity of v on B, take A, B € By such that AB = 0.
Then

AB = (0AU A)(OBUB) = [(0A)0B] U [(0A)B] U [A0B] C (0A) U OB,
v(AB) = 0.
Hence, for any € > 0 one can find f, ¢ € C such that
f>Iaup, 1>¢>1;55, Lf<v(AUB)+e, L¢<e.
Define
filz) =1 for zeA, fi(z)=¢(x) for wzeB,
and extend f; as a continuous function on X such that
0< fi(z) < f(z) + o(x)

(take any continuous extension g > 0 and to satisfy the above inequality

consider min(g, f + ¢)). Also set fo = f+ ¢ — fi. Then fo € C, fo > 0, and
fo=f>1on B. Hence,

V(A)+v(B) < Lfi+ Lfy = Lf + Lé < v(AUB) + 2.

This finishes the proof of the lemma.
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Remark 0.1. If AB = (), one can take ¢ = 0 and in that case even for
A, B & By we have
v(AUB) =v(A) +v(B).

Lemma 0.3. The set-function v is reqular on By, that is, for any A € By
and € > 0 there exists a closed set I' C A and an open set G O A such that
I''G € By and v(G) —e <v(A) <v() +e.

Proof. Since By is an algebra, it suffices to concentrate on open G O A.
Observe that for any f € C we have

v({z: f(z) =A}) =0
for all A apart perhaps from countably many of them. This follows from
Remark 0.1 since the sets {z : f(x) = A} are closed and disjoint for different
A so that for different A;

Zl/({x Cf(@) =N} =v(Ui{z: f(z) = N}) <v(X) < .

7

It follows that open sets {z : f(z) > A} belong to By for all A\ apart
perhaps from countably many of them.
Now take a nonnegative f € C' such that f > I4 and

Lf <v(A)+¢e/2.
Take a A € (0,1) such that the open set G := {z : f(z) > A} € By. Observe
that G D A. Also

v(G) < L(f/N) < v(A)/A+ 2/ (2) = w(A) + -2

v(A) +¢e/(2N),

and it only remains to take A so close to 1 that what we add to v(A) above
is less than €. The lemma is proved.

Lemma 0.4. The additive set-function v on Bg has a o-additive extension
as a measure on o(By).

Proof. It suffices to show that for any decreasing sequence of sets A,, € By
such that N, A4, = 0, we have v(A4,,) — 0 as n — oo.

We argue by contradiction and assume that there exists an € > 0 and a
decreasing sequence of sets A, € B( such that N, A4, = 0 but v(4,) > .
Then we take closed I',, € B¢ such that I',, C A, and v(I'y) > v(4,) —
€ /2n+1 .

The closed sets B,, = Ny<, 'y are nested and their intersection is empty.
Then B, is empty for an n (X is a compact set). However,

A\ Bo = ([ A\ [Tk € | (AR \Tw),

k<n k<n k<n
V(A \B,) <€) 275 =¢/2, u(Bn) > v(An) —£/2>¢/2.
k

and this is the desired contradiction.
We call p the extended v.
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The end of proof of the theorem. The only things which remain to
be proved are that o(Bp) contains the Borel o-field and that (0.1) holds.
Observe that p(z,x() is a continuous function of x for any xy. By what was
said above, By(z9) € By C 0(Bp) for almost all » > 0. Since o(By) is a
o-field we conclude that B, (zg) € 0(Bp) for all » > 0 and all Borel sets are
also in o(By).

To prove (0.1) take f € C such that 0 < f < 1. Let ¢ <0< ¢1 < ... <
cn—1 < 1 < ¢, be such that {z : f(z) < ¢;} € Bp. Then for any € > 0 one
can find ¢; € C such that

¢i > Ig,, Lo; <v(E;)+e/n=pu(E;)+¢/n,

where F; = {z : ¢; < f(z) < ¢i+1}. Then

f< ch+1¢k7 Lf< ch+1L¢k < ZCkHM

/ f(z) p(dx) + € + max(ckr1 — ck).
Since what we add can be made arbitrarily small
Lf < [ f@utn), 10-1) < [ (0= f@) o)
and the theorem is proved because L1 = v(X) = u(X).

Something like Section 19.3

Theorem 0.5 (Bachelier). For every t € (0,1] we have maxs<; ws ~ |wy/,
which is to say that for every x > 0

P <z}=
g = o

2
eV /() qy.
V27t Jo 4

Proof. Take independent identically distributed random variables 7 so
that P(np = 1) = P(mq, = —1) = 1/2, and define & by

&' = Sty /v + (nt — [nt]) Ny 1/ vV,

where S :=n1 + ... + n. First we want to find the distribution of

~1/2
= el =

Observe that, for each n, the sequence (571, ..., Sy,) takes its every particu-
lar value with the same probability 27". In addition, for each integer ¢ > 0,
the number of sequences favorable for the events

S . S ‘ .
{II?SaT)L( Sk >1,8, <i} and {II?SaT)L( Sk > 1,5, > i} (0.2)
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is the same. One proves this by using the reflection principle; that is, one
takes each sequence favorable for the first event, keeps it until the moment
when it reaches the level i for the last time before n and then refilects its
remaining part about this level. This implies equality of the probabilities
of the events in (0.2). Furthermore, due to the fact that 7 is an integer, we
have

{¢" 2 in™ 12, € <in™'?} = {max S > i, Sy < i}
and

{¢" > in™12, € > in"V?} = {max S >, 5 > i}
Hence,

P{¢" > in~ /2, &< in_l/z} = P{(" > in~1/2, &> in_l/z}.
Moreover, obviously,
P{C" > in7 12, & > in Y = P{¢T > inT 7Y,
P{¢" > in 2} = P{CM > in Y2, € > inm Y2

+ P{" > in V2 & < inTV2) 4 P{e? = in~ Y2}
It follows that

P(C" > in '} = 2P > in )+ P{EF =in ) (03)

for every integer ¢ > 0. The last equality also obviously holds for i = 0. We
see that for numbers a of type in~1/2, where i is a nonnegative integer, we
have

P{¢" > a} = 2P{} > a} + P{¢] = a}. (0.4)

Certainly, the last probability goes to zero as n — oo since &' is asymp-
totically normal with parameters (0,1). Also, keeping in mind Donsker’s
theorem, it is natural to think that

P{m<af<§;‘ >a} — P{m<alx ws > a}, 2P{{ > a} — 2P{w; > a}.
s< S

Therefore, (0.4) naturally leads to the conclusion that

P{nr1<ai><ws >a} =2P{w; > a} = P{lwi| > a} Va >0,
S

and this is our statement for ¢ = 1.
To justify the above argument, notice that (0.3) implies that



P{C" = in”'?} = PC" > in™'?} = P{C" > (i + 1)~ 1%}
= 2P{&}' = (i+ D~ 2p 4 P{g = in~ 2} = P{g = (i+ 1)~ /%)

= P{ =(i+Dn 2+ P& =in"/?}, i>0.

Now for every bounded continuous function f(z) which vanishes for z < 0
we get

Ef(¢") =Y f(in VA P{C" =in" Py = Ef(& —n7'?) + EF(E]).

i=0
By Donsker’s theorem and by the continuity of the function z. — max[g 1} z:

we have

Ef (mageuwy) = 2Bf (1) = Ef ().

)

We have proved our statement for ¢ = 1. For other values of ¢ one uses that
cw, 2 1s a Wiener process if ¢ > 0. The theorem is proved.

Theorem 0.6. Let u be a bounded continuous and continuously differen-
tiable function on R such that u' is piece-wise differentiable and its deriv-
ative is bounded. Let ¢ be a bounded Borel function on R such that ¢ > ¢,
where § > 0 is a constant. Denote

[ =cu—(1/2)u".
Then

where

w(0) = B /0 e f () dt.

Ot = / c(ws) ds.
0
Comment on u(z) for x # 0.

Example 0.1. Denote
my = mMax ws.
s<t

Then for A\, >0
[e.9] o0
E / e A gt = B / e el =A g
0 0

is the value at 0 of the solution of the following equation
(1/2)u" — A = —e Mo,
Assuming that p? # 2) on finds that

M VR 2 ull,
V2A(u? — 2)) W —2X

u(z) =
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CouV2A 22X
Ezample 0.2. Let a > 0. Introduce T,(s) as the time spent by w; inside
(—a,a) during the time period [0, s]:

Ta(s):/o I(_qq)(ws) ds.

u(0)

Then for A\, >0

L(j,\) == E / e H TN gy
is the value at 0 of the solution of '

(1/2)u" = (A + pl (g 0))u = —1.
We find that u is an even function and

1
u(zx) = X +ere [TV for |z| > a,

1
u(gj) = m 4+ co COSh(.’L’ 2()\ + M)) for |$‘ < a,

where ¢; and c¢g are found from the conditions that u(a+) = u(a—) and
u'(a+) = v/ (a—):

01 = —coe™2Ay (A + p)A~Lsinh(av/2(\ + p)),
ﬁ [cosh(av/2(A + 1)) + /(A + p)A~Lsinh(a/2(A + )] -

Cy) =

so that .

I (p,A) = —— .
Take = (2a)~'v and let a | 0. We will find the distribution of the so-called
local time of w; at the origine.

One finds that ) 5
—t g ———,
T N T )

which as we know is the Laplace transform of
Ee™v™,
Hence, the Laplace transforms of
Ee—y(2a)_1Ta ()

converge and by the general theory for t > ¢ > 0

t t

im Be V207 Tall) < o~ [ Ee (207 Tals) g5 — o1 / Ee™"™s ds,
al0 B al0 Ji_¢ P

which for € | 0 along with a similar estimate from below yields that

lim Be (20 ' Ta() — pe—vme,
al0
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This by the general theory implies that the distributions of (2a)~'T,(t)
converge weakly to that of m; or |w|. It turns out that the distribution of
the limit of (2a)~!7,(t) in C is the same as that of m;!

Ezample 0.3. We are going to find the distribution of the time spent by w;
on the positive half-line on the time interval [0, s]:

T(s) = [ ooy (o) dt
We know that for A\, up >0

E /OO e HT+(t)=At 1y
0

is the value at 0 of the solution of
(1/2)u" — (A + pl (o 00))u = —1.
We have
u(x) = )\—1F,u + e1e” V2 for x>0,
u(z) = % + o™ for z < 0,

where ¢; and cg are found from the conditions that u(0+) = w(0—) and
u'(04+) = v/ (0—):

61262—1-3—#:624-#,
A A+u )\(/\+M)
2N+
C2 2()\+M)+W :—CQ\/Q)\,
C2 )\+M+ﬁ:—02\/&

. I VAT —VA
2 = — = - ’

MAF L(VAF 4+ V) MWA+

1 1
O=xTes AT

Observe that 1/v/X is the Laplace transform of a constant times ¢~/? and

1/v/A =+ u, as a function of J, is the Laplace transform of a constant (inde-
pendent of 1) times t~1/2e=#*. Hence, u(0), as a function of A is the La[lace
trnsform of the convolutions of the above two functions, that is equal to a
constant (independent of ;1) times

/t 1 s
—e .

0o Vt—s \/g

It follows that

C B |
Fe () — 04/ ———e " ds,
0 Vi—s+S
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where « is a constant, the distribution of 7' (¢) has a density

1 1
“ t—s%
and for r € (0,t)
| 1

ds = 2acarcsin \/r/t,

P(T+(t)§7°):a/o NV

implying that 2o = 2/7.



