Pre-class quiz solutions

Math 5447, Mathematical Neuroscience, Fall 2008

1. Solve the equation $d x / d t=1-x$ with initial condition $x(0)=3$.

$$
\begin{gathered}
t=\int \frac{d x}{1-x}=-\log 1-x+C_{1} \\
1-x=C e^{-t} \\
x(t)=1-C e^{-t} \\
3=x(0)=1-C \Rightarrow C=-2 \\
x(t)=1+2 e^{-t}
\end{gathered}
$$

2. Given the system of equations $d x / d t=-x-y / 2+c$ and $d y / d t=x-y$, solve for the steady state as a function of c.
Find steady states:

$$
x+y / 2=c \text { and } x=y \Rightarrow 3 x / 2=c \Rightarrow x=y=2 c / 3
$$

Steady state is $(x, y)=(2 c / 3,2 c / 3)$.
For stability, find eigenvalues of

$$
A=\left[\begin{array}{cc}
-1 & -1 / 2 \\
1 & -1
\end{array}\right]
$$

They are $\lambda_{ \pm}=-1 \pm i \frac{\sqrt{2}}{2}$.
Since the real part of both eigenvalues is negative, the steady state is asymptotically stable.
3. Given the system of equations $d x / d t=-x+10 /(1+4 y)$ and $d y / d t=x-y$, find all equilibria and determine their stability.
Find steady states (equilibria):
$x=10 /(1+4 y)$ and $x=y \Rightarrow x(1+4 x)=10 \Rightarrow 4 x^{2}+x-10=0 \Rightarrow x=\frac{-1 \pm \sqrt{161}}{8}$
Steady states are $\left(x_{1}, y_{1}\right)=(-1+\sqrt{161},-1+\sqrt{161}) / 8$ and $\left(x_{2}, y_{2}\right)=(-1-\sqrt{161},-1-\sqrt{161}) / 8$.
Jacobian matrix is

$$
J=\left[\begin{array}{cc}
-1 & \frac{-40}{(1+4 y)^{2}} \\
1 & -1
\end{array}\right]
$$

Plug in first steady state and calculate eigenvalues get $\lambda_{ \pm} \approx-1 \pm 0.9241 i$, so steady state is asymptotically stable.
Plug in second steady state and calculate eigenvalues get $\lambda_{ \pm} \approx-1 \pm 1.0822 i$, so steady state is asymptotically stable.

