Study guide for the second midterm

Math 5485, Fall 2008

- 1. Basic ideas (Chapter 1)
 - (a) Order of convergence
 - (b) Floating point numbers systems, arithmetic and roundoff error
 - (c) Well-conditioned versus ill-conditioned
- 2. Rootfinding of scalar equations (Chapter 2)
 - (a) Basic ideas
 - Multiplicity of roots
 - (b) Bisection method, False position, Newton's method, Secant Method
 - i. Requirements to guarantee convergence
 - ii. Order of convergence (including requirements to achieve this)
 - iii. Compute a few iterations and check convergence
 - iv. Given word problem, formulate root problem and find root to tolerance
 - (c) Fixed point iteration in general
 - i. Requirements for existence of fixed point
 - ii. Requirements to guarantee convergence fixed point iteration scheme
 - iii. Conditions that determine order of convergence
 - iv. Compute a few iterations and check convergence
 - v. Appropriate stopping conditions
 - (d) Accelerating convergence
 - i. Aitken's Δ^2 -Method and Steffensen's Method
 - A. When they apply
 - B. How well they accelerate
 - ii. Restoring quadratic convergence to Newton's method
 - (e) Roots of polynomial
 - i. Polynomial deflation
 - ii. Laguerre's method
- 3. Systems of equations (Chapter 3)
 - (a) Basic linear algebra (such as in section 3.0)
 - (b) Gaussian elimination
 - i. Row operations
 - ii. Operation count (and why better than Gauss-Jordan or multiplying by inverse)

- iii. Partial pivoting and scaled partial pivoting
- (c) LU decomposition
 - i. Via Gaussian elimination
 - ii. Via direct factorization
 - Note that we did not cover how to do pivoting here, but in general, it is necessary.
 - iii. Know what special matrices don't require pivoting strategies.
 - iv. Cholesky decomposition
 - Special case of direct factorization for symmetric positive definite matrices
 - v. Factorization of tridiagonal matrices
- (d) Norms, error estimates, and condition numbers
 - i. Understand and be able to calculate l_2 and l_{∞} vector and matrix norms.
 - ii. Predict error estimates from condition number.
- (e) Iterative methods
 - i. Condition on iteration matrix for convergence.
 - ii. Understand when iterative methods may outperform direct methods.
 - iii. Basic ideas of Jacobi, Gauss-Seidel, and SOR method
 - Don't worry about their convergence properties.
- (f) Newton's method for nonlinear systems of equations
 - i. How to use it
 - ii. Why it's slow
- 4. Eigenvalues and eigenvectors
 - (a) Gerschgorin Circle Theorem
 - (b) Power method
 - i. Why it works in general
 - ii. How to calculate it (nonsymmetric and symmetric)
 - iii. Don't worry about detailed conditions for which it works
 - (c) Inverse power method
 - i. How it follows from power method
 - ii. Use it with Gerschgorin Circle Theorem or to find smallest eigenvalue.
 - (d) Deflation
 - i. How to transform matrix to remove eigenvalue
 - Effect of this transformation on eigenvectors and other eigenvalues
 - ii. Wielandt Deflation and Hotelling Deflation
 - iii. Problems with using deflation to compute all eigenvalues.