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Abstract.
We explore a computationally efficient method of simulating realistic networks of neurons introduced by

Knight, Manin, and Sirovich (1996) in which integrate-and-fire neurons are grouped into large populations
of similar neurons. For each population, we form a probability density which represents the distribution
of neurons over all possible states. The populations are coupled via stochastic synapses in which the
conductance of a neuron is modulated according to the firing rates of its presynaptic populations. The
evolution equation for each of these probability densities is a partial differential-integral equation which
we solve numerically. Results obtained for several example networks are tested against conventional
computations for groups of individual neurons.

We apply this approach to modeling orientation tuning in the visual cortex. Our population density
model is based on the recurrent feedback model of a hypercolumn in cat visual cortex of Somers et al.
(1995). We simulate the response to oriented flashed bars. As in the Somers model, a weak orientation
bias provided by feed-forward lateral geniculate input is transformed by intracortical circuitry into sharper
orientation tuning which is independent of stimulus contrast.

The population density approach appears to be a viable method for simulating large neural networks. Its
computational efficiency overcomes some of the restrictions imposed by computation time in individual
neuron simulations, allowing one to build more complex networks and more easily explore parameter
space. The method produces smooth rate functions with one pass of the stimulus and does not require
signal averaging. At the same time, this model captures the dynamics of single neuron activity that are
missed in simple firing rate models.
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1. Introduction

The ability to model realistic networks of neurons
on the computer is severely restricted by the com-
puter time required. Even a simple model of a
small part of the brain could contain tens of thou-
sands of neurons and hundreds of thousands of
synapses. Although computers are rapidly grow-
ing faster, these simple models are still being con-
strained by available computational time; one is
forced to cut corners by reducing the numbers of
neurons and synapses. Ideally, one would like to
enlarge these models in order to more closely ap-
proximate the networks in the brain. At least
presently, this is not feasible since these compu-
tations would require unrealistic amounts of com-
puter time.

The population density approach addresses this
issue in two ways. First, it is a computationally
efficient method for simulating large networks of
neurons. Second, it is a method where one does
not need to cut corners in the numbers of neu-
rons and synapses simulated. One can simulate
networks which are, in effect, of unlimited size.

Our approach is based on ideas and methods in-
troduced by Knight, Manin, and Sirovich (1996)
and further developed in Omurtag et al. (1999).
Although theories based on the notion of a proba-
bility density function have a long history in the-
oretical neuroscience (Wilbur and Rinzel, 1983;
Kuramoto, 1991; Abbott and van Vreeswijk, 1993;
Gerstner, 1995), the particular way of applying
this theory to model interactions of large popu-
lations of sparsely connected neurons introduced
by Knight and colleagues (Knight et al., 1996;
Omurtag et al., 1999; Sirovich et al., 1999; Knight,
1999) appears to be novel. A similar approach has
been taken recently by Brunel and Hakim (1999).

In the population density approach, integrate-
and-fire neurons are grouped into large popula-
tions of similar neurons. For each population, we
form a probability density which represents the
distribution of neurons over all possible states. In
the simple version of this model presented here,
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the state of a neuron is completely described by
its voltage.

We derive partial differential-integral equations
for the evolution of population density functions
of coupled populations and corresponding popu-
lation firing rates. We also develop a reduction
of the equations to a diffusion equation that pro-
duces similar results over a wide range of param-
eters.

We compare the results of a simple network
of population densities with a similarly organized
network of many individual integrate-and-fire neu-
rons. We find that the firing rates of population
density simulations closely match the average fir-
ing rates of individual neuron populations when
the individual neuron populations contain suffi-
cient numbers of neurons. The population den-
sity results were obtained in a fraction of the time
required for the individual neuron simulations.

As a demonstration of the population density
approach, we apply the method to modeling orien-
tation tuning in visual cortex neurons. Our pop-
ulation density model is based on the recurrent
feedback model of a hypercolumn in cat visual
cortex of Somers et al. (1995). We simulate the re-
sponse to flashed oriented bars. As in the Somers
model, a weak orientation bias provided by feed-
forward LGN input is transformed by intracorti-
cal circuitry into sharper orientation tuning which
is independent of stimulus contrast. We demon-
strate the speed at which the simulation runs and
the similarity of the population density results to
those of an equivalent individual neuron network.

In section 2 we outline the integrate-and-fire
point neuron model that underlies our population
density formulation. In section 3 we introduce the
population density approach and derive the pop-
ulation density evolution equations. We present
in sections 4 and 5 the results of single popula-
tion simulations and simple population network
simulations, respectively. We demonstrate a pop-
ulation density model of orientation tuning in sec-
tion 6. We discuss the results in section 7. Details
on our diffusion approximation, numerical meth-
ods, and parameters are presented in the appen-
dices.
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2. The integrate-and-fire neuron

Our implementation of the population density ap-
proach is based on an integrate-and-fire point (sin-
gle compartment) neuron. Although the approach
could be generalized to other neuron models, (see
Omurtag et al., 1999; Knight, 1999), the popula-
tion density based on an integrate-and-fire neuron
is low-dimensional and thus can be computed ef-
ficiently. In this presentation, we make a further
simplification that the synaptic time courses are
fast, which will allow us to form a one-dimensional
population density.

2.1. General model of an integrate-and-fire neu-
ron

The integrate-and-fire point neuron, schematized
by its equivalent circuit diagram in figure 1, con-
tains three conductances: a fixed resting conduc-
tance gr, a time varying excitatory conductance
ge(t), and a time varying inhibitory conductance
gi(t). When the conductances are non-zero, they
draw the transmembrane voltage V (t) of the neu-
ron toward their respective equilibrium potentials
(Er, Ee, and Ei, where Ei < Er < Ee).

The evolution of V in time t is specified by the
equation:

τ
dV

dt
+(V −Er)+Ge(t)(V −Ee)+Gi(t)(V −Ei) = 0,

(1)
where τ = C/gr is the membrane time constant,
C is the membrane capacitance, and Ge/i(t) =
ge/i(t)/gr. Equation (1) holds as long as V (t) <
vth, where vth is a fixed threshold voltage, and
Er < vth < Ee.

When the voltage of a neuron reaches vth, the
neuron is said to fire a spike. The output of the
neuron is the set of times at which the neuron
spikes. After each spike, the voltage of the neuron
is reset to the reset voltage vreset , Ei < vreset <
vth. In this way, the voltage remains in the range
Ei < V (t) < vth, provided it starts in that range.

2.2. Synaptic Input

The inputs to an integrate-and-fire neuron are the
times of excitatory and inhibitory synaptic inputs,

C1/gr1/gi(t)1/ge(t)

Vout

Vin

Ee Ei Er

Fig. 1. The equivalent circuit of an integrate-and-fire
point neuron. The transmembrane voltage of the neuron
is V (t) = vin − vout, where vin is the voltage inside the
neuron and vout is the voltage outside the neuron. C is
the capacitance of the neuron’s membrane. The neuron
has three ion channels modeled as a resistor and battery
in series. The resting conductance gr is fixed, while the
excitatory and inhibitory conductances, ge(t) and gi(t) are
time varying functions of the neuron’s input. Er , Ee, and
Ei are the resting, excitatory, and inhibitory equilibrium
potentials, respectively, with Ei < Er < Ee.

which determine the synaptic conductances, ge(t)
and gi(t). When a neuron is at rest, the synap-
tic conductances are zero. An excitatory or in-
hibitory synaptic input transiently increases the
corresponding synaptic conductance.

In order to simplify the population density
equations, we assume that the synaptic time
courses are fast, i.e. much shorter than the mem-
brane time constant τ . We can then replace the
conductance change caused by a single synaptic
input with a delta function of magnitude equal to
the integral of the original conductance change.
Using normalized conductances as in (1), an exci-
tatory/inhibitory synaptic input at time T k

e/i will
produce a conductance change similar to a delta
function of magnitude Ak

e/i given by

Ak
e/i =

∫
Ĝk

e/i(t)dt, (2)

where Ĝk
e/i(t) is the change in Ge/i(t) due to the

synaptic input at time T k
e/i.

With this approximation, the voltage jumps
when a neuron receives synaptic input. Solv-
ing equation (1) for the time interval from im-
mediately preceding to immediately following the
synaptic input (T k−

e/i , T
k+
e/i ), we calculate that the
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jump size ∆v = V (T k+
e/i ) − V (T k−

e/i ) is:

∆v =
(
1 − e−Γk

e/i

) [
Ee/i − V (T k−

e/i )
]
, (3)

where Γk
e/i = Ak

e/i/τ . The size of the voltage jump
is proportional to

Γ∗k
e/i = 1 − exp(−Γk

e/i), (4)

which depends on the size of the conductance
change. Note that in the limit of a very large
synaptic conductance change Γk

e/i → ∞ and
Γ∗k

e/i → 1. In this limit, V (T k+
e/i ) → Ee/i.

An example of the evolution of an integrate-
and-fire neuron with delta function conductance
change is shown in figure 2. An important conse-
quence of our delta function approximation is that
the state of a neuron is completely determined by
its voltage V (t), Ei < V (t) < vth. We do not need
to track the state of its synaptic conductances.

2.3. Two sources of randomness

We introduce two sources of randomness in our
model: the arrival times of synaptic inputs and
the size of synaptic conductance changes.

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

10

Time (ms)

V
ol

ta
ge

 (
m

V
)

Fig. 2. The evolution of the voltage of an integrate-and-
fire neuron with delta function unitary synaptic conduc-
tances. Between synaptic inputs, the voltage decays toward
Er (dot-dash line). The voltage jumps upward or downward
upon receiving excitatory or inhibitory synaptic input, re-
spectively. When the voltage reaches vth (dashed line), the
neuron is said to have fired a spike and its voltage is reset to
vreset (horizontal dotted line). The dotted vertical lines are
shown just to illustrate these spike times. The arrival times
of the synaptic input and the size of the resulting voltage
jumps are random. The jump sizes are shown atypically
large for illustration. Parameters used were Ei = −70 mV,
Er = −65 mV, Ee = 0 mV, vreset = −67 mV, vth = −55
mV, and τ = 20 ms.

In this model, only the synaptic input rates,
which we denote νe(t) and νi(t) are specified. In
general, these rates are determined by the firing
rates of presynaptic neurons. The precise arrival
times of the synaptic inputs, T k

e/i, are assumed
to be given by a modulated Poisson process with
mean rate νe/i(t).

We let the size of the synaptic conductance
changes, Γk

e/i be random numbers with some given
distribution. Thus the Γ∗k

e/i are also random num-
bers with a distribution function determined by
that of Γe/i. We define the complementary cumu-
lative distribution function for Γ∗

e/i,

F̃Γ∗
e/i

(x) = Pr(Γ∗
e/i > x), (5)

which is some given function of x that depends on
the chosen distribution of Γk

e/i. The derivation of
the model is independent of the choice of F̃Γ∗

e/i
(x).

The choice of F̃Γ∗
e/i

(x) for our simulations is given
in appendix D.

With these sources of randomness, a neuron
will respond differently to multiple presentations
of the same input rates. If one repeated the pre-
sentation of the same input many times and an-
alyzed the neuron’s response, one could map out
the relative frequency that a neuron is in a small
neighborhood of a given voltage at each time. The
relative frequency per unit voltage given by this
procedure would be an estimate of the probability
density function of the neuron. Figure 3 illustrates
the relationship between the individual responses
of an integrate-and-fire neuron and its probability
density function.

3. The population density approach

The direct calculation of the probability density
function forms the basis of the population density
approach. We ignore the trajectories of individ-
ual neurons and instead model the evolution of a
probability density which is defined by1:

ρ(v, t)dv = Pr(V (t) ∈ (v, v + dv)), Ei ≤ v ≤ vth.
(6)

The key to modeling large neural networks with
this approach is the observation that for a popu-
lation of many similar neurons, this probability
density can be interpreted as a population density
(Knight et al., 1996; Omurtag et al., 1999; Ku-
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Fig. 3. Illustration of the relationship between the individual responses of an integrate-and-fire neuron and its probability
density. For this example, we let the excitatory input rate (in arrivals/second) be νe(t) = 2000(1 + sin(2πft)) and the
inhibitory input rate be νi(t) = 1000(1 + sin(2πft)), f = 10 Hz. (a) An example of the random responses of a neuron to
four presentations of the same input rate. Note that the range of voltages is broader at a high firing rate (around t = 20
ms) than at a low firing rate (around t = 80 ms). (b) A grayscale plot of the evolution of the neuron’s probability density
function for the same input rates. A dark shade indicates a low probability; a light shade indicates high probability. The
probability density function can be viewed as the limit of a large number of responses as in panel (a). S1 and S2 indicate
locations of the snapshots for panels (c) and (d). The excitatory (solid line) and inhibitory (dashed line) input rates are
plotted in gray using the righthand scale. (c) A snapshot of the probability density function during a time of high firing
rate. The high probability near vreset is due to the reset of the voltage of neurons that have fired. (d) A snapshot of the
probability density function during a time of low firing rate. Parameters used were Ei = −70 mV, Er = −65 mV, Ee = 0
mV, vreset = −65 mV, vth = −55 mV, and τ = 20 ms.

ramoto, 1991; Abbott and van Vreeswijk, 1993;
Gerstner, 1995):

ρ(v, t)dv = Fraction with V (t) ∈ (v, v + dv) (7)

Thus, for a fixed time t, the population den-
sity ρ(v, t) describes the distribution of neurons
over all possible states. We emphasize that, since
the state of our model neuron is completely deter-
mined by its voltage, this distribution is described
by the one dimension of voltage.

3.1. The assumptions of the population density
approach

The population density interpretation assumes
that there are a large number of similar neu-

rons in each population. These neurons have the
same biophysical properties, which in the current
model, means the same capacitance, resting con-
ductance, and distribution of synaptic conduc-
tances. This assumption is more restrictive than
the more general view presented in Omurtag et al.
(1999), where the population density is based ex-
plicitly on the notion of an ensemble average (of
replica systems).

In addition, we assume that each neuron in
the population receives excitatory and inhibitory
synaptic input with the same average rate (which
we denote νe(t) and νi(t), respectively). We as-
sume that the arrival times of synaptic events are
random variables given by a modulated Poisson
process (Knight et al., 1996). These assumptions
are analyzed further in the discussion.
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3.2. Derivation of the evolution equations for a
single population

We first derive the evolution equation for the prob-
ability density function for a single population
when the synaptic input rates, νe(t) and νi(t), are
given functions of time. This development is sim-
ilar to that in a number of previous papers (see
discussion).

The evolution equation for ρ(v, t) is based on
conservation of probability. We first look at the
evolution of the probability contained in an inter-
val (a, b):

Pr{V (t) ∈ (a, b)} =
∫ b

a

ρ(v′, t)dv′. (8)

The probability contained in that interval can
change only through the flux of probability across
the endpoints of the interval. Probability flux
is a signed quantity. By convention, a posi-
tive/negative flux at a point v is interpreted as
the probability per unit time of crossing v from
below/above. If we let J(v, t) = flux of probabil-
ity across v at time t, then

J(a, t) − J(b, t) =
∂

∂t
Pr{V (t) ∈ (a, b)}

=
∂

∂t

∫ b

a

ρ(v′, t)dv′. (9)

Letting b = v, and differentiating (9) by v, we
have

∂ρ

∂t
(v, t) = −∂J

∂v
(v, t), Ei < v < vth. (10)

We modify (10) to account for the firing and
subsequent resetting of the voltage in integrate-
and-fire neurons. Integrate-and-fire neurons that
cross vth fire a spike. In the probability model,
movement of a neuron across a voltage corre-
sponds to flux across that voltage. Thus, the pop-
ulation firing rate is the flux across threshold:

r(t) = J(vth, t). (11)

The population firing rate is not a temporal av-
erage, but is an average across all neurons in the
population.

When an integrate-and-fire neuron fires, its
voltage is reset to vreset . This reset of neurons
produces a source of probability at vreset . To re-

flect this source, (10) is modified to2:

∂ρ

∂t
= −∂J

∂v
+δ(v−vreset)J(vth, t), Ei < v < vth.

(12)
To include a refractory period of length τref , we

can modify (12) to:

∂ρ

∂t
= −∂J

∂v
+ δ(v − vreset)J(vth, t − τref ). (13)

What remains is to calculate an expression for
the flux J(v, t). In the rest of this section, we
derive the following equations for J(v, t).

J(v, t) = Jl(v, t) + Je(v, t) + Ji(v, t)

Jl(v, t) = −1
τ
(v − Er)ρ(v, t)

Je(v, t) = νe(t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
ρ(v′, t)dv′

Ji(v, t) = −νi(t)
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
ρ(v′, t)dv′

3.2.1. Components of the flux We calculate the
flux of probability J(v, t) based on (1), the sub-
threshold equation for V (t). We break the flux
into three components, corresponding to the three
conductances of the integrate-and-fire neuron:

J(v, t) = Jl(v, t) + Je(v, t) + Ji(v, t). (14)

Jl(v, t) is the leakage flux toward Er due to the
resting conductance; Je(v, t) is the excitation flux
toward Ee due to the excitatory conductance; and
Ji(v, t) is the inhibition flux toward Ei due to the
inhibitory conductance.

We calculate the equation for each component
of the flux separately.

3.2.2. Leakage flux For an integrate-and-fire
neuron, the voltage evolution due to leakage alone
is (1) with Ge/i = 0:

dV

dt
= −1

τ
(V − Er). (15)

The voltage decays exponentially toward the rest-
ing potential, Er.

This movement of the neuron’s state gives a
leakage flux of probability in the population den-
sity model, as illustrated in figure 4. For V (t) ∈
(Ei, Er), V (t) increases, creating a positive leak-
age flux across all v ∈ (Ei, Er). Similarly, the de-
creasing voltage will create a negative leakage flux
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across all v ∈ (Er, vth). For simplicity, this deriva-
tion of the leakage flux will focus on the positive
flux regime, v ∈ (Ei, Er).

Since for v ∈ (Ei, Er), the only movement of
neurons across v is upward, the leakage flux at
v is the probability per unit time that a neuron
crosses v from below. We calculate this by first
looking at the probability that a neuron will cross
v in some short time ∆t, as schematized in figure
4b.

The voltage of a neuron will cross v in the time
interval (t, t + ∆t) if V (t) ∈ (v − ∆v, v), where

∆v =
dV

dt
∆t + O(∆t2). (16)

The probability that a neuron is in that interval
is:

ρ(v, t)∆v = ρ(v, t)
dV

dt
∆t + O(∆t2). (17)

Therefore, the leakage flux, the probability per
unit time that a neuron crosses v, is:

Jl(v, t) =
ρ(v, t)∆v

∆t
+ O(∆t)

= ρ(v, t)
dV

dt
+ O(∆t) (18)

Letting ∆t → 0 and substituting the value for
dV
dt from (15), we obtain the following expression
for the leakage flux:

(a)

ErEi vth

positive flux negative flux

(b)

ErEi vv ��v

�(v; t)�v

Fig. 4. Diagram of the source of leakage flux. (a) Neu-
rons with V (t) < Er move upward due to leakage, creating
positive flux of probability. Neurons with V (t) > Er move
downward due to leakage, creating negative flux of prob-
ability. (b) In the positive flux region from (a), neurons
cross a fixed voltage v from below. A sample ρ(v, t) is plot-
ted. The shaded region indicates the probability of crossing
v in the time interval ∆t.

Jl(v, t) = −1
τ
(v − Er)ρ(v, t) (19)

3.2.3. Excitation flux Since the conductance
change due to synaptic input is modeled as a delta
function, the voltage of a neuron will jump up-
ward upon excitatory input. This jump will cre-
ate a positive flux of probability across the jumped
voltages, which we call the excitation flux.

To calculate the excitation flux across a fixed
voltage v, we first calculate the probability that a
neuron with voltage V (t) = v′, v′ < v, will cross
v, given that the neuron received an excitatory
synaptic input (see figure 5a).

Upon receiving an excitatory synaptic input,
the neuron with initial voltage V (t) = v′ will jump
to the voltage ṽ, where

ṽ = v′ + Γ∗
e(Ee − v′), (20)

(see equation (3)).
If ṽ > v, the excitatory input will cause the

neuron to cross the voltage v, creating positive
flux at v. This condition is equivalent, by (20), to

Γ∗
e >

v − v′

Ee − v′
. (21)

Since Γ∗
e is a random variable, it has the following

probability of meeting condition (21):

F̃Γ∗
e

(
v − v′

Ee − v′

)
, (22)

(a)

v
0

v
~v

positive flux

(b)

vEi

v
0 2 (Ei; v)

Fig. 5. Diagram of the source of excitation flux. (a) If a
neuron receives an excitatory input that causes its voltage
to jump over v, it will create a positive flux of probability
across v. (b) Neurons could potentially cross v from any
voltage v′ ∈ (Ei, v), if they received an excitatory input
with a large enough conductance change.
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where F̃Γ∗
e
(x) = Pr(Γ∗

e > x), as in equation (5).
Expression (22) is thus the probability that a

neuron with voltage V (t) = v′, v′ < v, will cross
v, given that the neuron received an excitatory
synaptic input. The rest of the calculation of the
excitation flux follows quickly from (22) as follows.

The excitatory synaptic input rate, νe(t), is the
probability per unit time that a neuron will receive
excitatory input. Note that this probability is in-
dependent of past history by the Poisson assump-
tion (section 3.1).3 Since the random input times
are given by a modulated Poisson process and are
independent of Γ∗

e, the probability per unit time
that a neuron with voltage v′ will cross v is simply
the product of νe(t) and (22):

νe(t) F̃Γ∗
e

(
v − v′

Ee − v′

)
(23)

In order for a neuron to cross v from v′, the
neuron must start with the voltage V (t) = v′. The
probability of V (t) ∈ (v′, v′+dv′) is ρ(v′, t)dv. The
total flux of probability from V (t) ∈ (v′, v′ + dv′)
across v is therefore:

νe(t) F̃Γ∗
e

(
v − v′

Ee − v′

)
ρ(v′, t)dv′ (24)

A neuron with voltage V (t) anywhere in the in-
terval (Ei, v) could contribute to the flux across v
if it received a large enough excitatory synaptic
input (figure 5b). The total excitation flux at v is
thus given by summing (24) over all infinitesimal
intervals from Ei to v:

Je(v, t) = νe(t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
ρ(v′, t)dv′.

(25)

3.2.4. Inhibition flux The inhibition flux is de-
termined in the same way as the excitation flux,
with two important differences (see figure 6).

vth

negative flux

v

v
0
2 (v; vth)

Fig. 6. Diagram of source of inhibition flux. A neuron
could possibly cross v from any voltage v′ ∈ (v, vth) if it
received an inhibitory input with large enough conductance
change. The downward movement would create a negative
flux of probability across v.

First, a neuron can cross the voltage v only if its
voltage V (t) is in the interval (v, vth). Second,
since neurons cross v by moving to lower volt-
ages, they contribute negative flux to the inhibi-
tion flux. Thus, the total inhibition flux is:

Ji(v, t) = −νi(t)
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
ρ(v′, t)dv′

(26)
where F̃Γ∗

i
(x) = Pr(Γ∗

i > x).

3.3. Derivation of network equations

Up to this point, we have looked only at a single
population density, which represents neurons that
are all similar. Furthermore, the input rate to
the single population was a given function. Our
primary interest, though, is modeling networks of
neurons.

Deriving network equations involves only two
more steps. First, we group neurons into many
populations and create a population density for
each group. Second we connect the populations
together via their firing rates to form networks of
population densities.

3.3.1. Grouping neurons into populations To
simulate a network of neurons, the first step is to
group the neurons into populations. The groups
must be chosen to satisfy the assumptions in sec-
tion 3.1. The neurons must be similar so that
they can be described by one population density.
In addition, the populations must be large enough
so that the population density interpretation (7)
is applicable. More details on the restriction of
these assumptions are given in the discussion.

We form a population density for each group of
neurons: ρk(v, t), k = 1, 2, . . . , N , where N is the
number of populations. As outlined in the single
population case, each population has a firing rate,
rk(t). Each population evolves according to the
population density model equations (12, 14, 19,
25, and 26).

The difference between network equations and
the single population equations is that the synap-
tic input rates for each population in the network,
νk

e (t) and νk
i (t), are not given functions. Instead,

the input rates are determined by the firing rates
of the presynaptic populations as well as any ex-
ternal input rate. The calculation of these input
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rates thus depends on the connectivity of the net-
work.

3.3.2. The coupling of populations We denote
the connectivity of the network by Wjk, j, k =
1, 2, . . . , N . Wjk is the number of presynaptic neu-
rons from population j that project to each post-
synaptic neuron in population k.

Each population, with density ρk(v, t), k =
1, 2, . . . , N, is either excitatory or inhibitory. We
denote the set of excitatory indices by ΛE and the
set of inhibitory indices by ΛI , i.e., {ρk(v, t) | k ∈
ΛE/I} is the set of excitatory/inhibitory popula-
tions.

If the excitatory and inhibitory external input
rates to population k are νk

e,o(t) and νk
i,o(t), then

the total input rates to population k are

νk
e/i(t) = νk

e/i,o(t)+
∑

j∈ΛE/I

Wjk

∫ ∞

0

αjk(t′)rj(t−t′)dt′

(27)
where αjk(t′) is the distribution of latencies of
synapses from population j to population k. The
choice of αjk(t′) used in our simulations is given
in appendix D.

With synaptic coupling, the input is a combina-
tion of outputs from other neurons. Since the out-
put of a single neuron is certainly not guaranteed
to be Poisson distributed, the assumption that the
input is Poisson distributed (see section 3.1) needs
justification. This justification is given in the dis-
cussion.

3.4. Summary of population density model equa-
tions

Combining our equations for the flux (19, 25, 26)
with the probability conservation equation (12),
we have a partial differential-integral equation for
the evolution of a population with synaptic input
rates νe(t) and νi(t). In a network with popula-
tions ρk(v, t), these input rates are given by (27).
The firing rates of each population are given by
(11).

The following summarizes the equations of the
population density approach with populations k =
1 . . .N .

∂ρk

∂t
(v, t) = −∂Jk

∂v
(v, t) + δ(v − vreset)Jk(vth, t)

(28)

Jk(v, t) = Jk
l (v, t) + Jk

e (v, t) + Jk
i (v, t) (29)

Jk
l (v, t) = −1

τ
(v − Er)ρk(v, t) (30)

Jk
e (v, t) = νk

e (t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
ρk(v′, t)dv′

(31)

Jk
i (v, t) = −νk

i (t)
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
ρk(v′, t)dv′

(32)

rk(t) = Jk(vth, t) (33)

νk
e/i(t) = νk

e/i,o(t)+
∑

j∈ΛE/I

Wjk

∫ ∞

0

αjk(t′)rj(t−t′)dt′

(34)
The boundary conditions for these partial

differential-integral equations are that ρk(Ei, t) =
ρk(vth, t) = 0.

In general, the parameters Ee/i/r, vth/reset , and
τ , as well as the functions F̃Γ∗

e/i
, could depend on

k.

3.5. Diffusion approximation to the model equa-
tions

The above partial differential-integral equations
for the population density model can be solved
efficiently on a computer. Even so, one can make
a rigorous approximation to each equation that
turns it into a diffusion equation which can be
solved even more quickly.

The diffusion approximation is based on an as-
sumption that the synaptic conductance changes
Γe/i are small. The voltage then makes many
small jumps due to synaptic input, leading to
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movement of probability that is similar to diffu-
sion. However, as shown in section 4.3, the diffu-
sion approximation gives good results even with
voltage jumps of moderate size.

The condition that the Γe/i are small is equiva-
lent to the condition that F̃Γ∗

e/i
(γ) � 1 except for

small γ. Under this condition, we obtain the fol-
lowing diffusion approximation (see appendix A)
for (28) – (33):

∂ρ

∂t
=

∂

∂v

[(
v − Er

τ
− νe(t)c1e(v) + νi(t)c1i(v)

)
ρ

]

+
∂

∂v

[(
νe(t)c2e(v) + νi(t)c2i(v)

)
∂ρ

∂v

]

+ δ(v − vreset)r(t) (35)

r(t) = −νe(t)c2e(vth)
∂ρ

∂v
(vth, t) (36)

where the c1e/2e and c1i/2i are given in appendix
A. Here, we have dropped the dependence on k.
To obtain the final form of the diffusion equation,
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Fig. 7. Complementary cumulative distribution functions
for Γ∗

e/i
and diffusion coefficients for excitatory population

parameters given in appendix D. (a) F̃Γ∗
e
(γ) is plotted with

a black line and F̃Γ∗
i
(γ) is plotted with a gray line. Already

for γ near 0.1, both functions are nearly zero. For γ >
0.1 (not shown), both functions are practically zero. (b)
Coefficients for the diffusion equation (35). For c1e and c1i,
the scale is in mV. For c2e and c2i, the scale is in mV2.

we used the fact that ρ(vth, t) = 0 and c2i(vth) =
0. For the excitatory population parameters given
in appendix D, the values of F̃Γ∗

e/i
, c1e/2e and c1i/2i

are plotted in figure 7.

4. Single Population Results

In this section, we demonstrate simulations of a
single, uncoupled population density. This popu-
lation represents uncoupled neurons receiving in-
put from an external source. The population fir-
ing rate and distribution of neurons over voltage
are compared to corresponding estimates obtained
from various numbers of individual neurons.

The population density equations are solved nu-
merically using the method given in appendix B,
using a delta function modification specific for the
case where vreset = Er. The parameters we used
are given in appendix D. For each simulation, we
show the results after the populations have set-
tled into their periodic states, so the results do
not depend on initial conditions.

The computation times listed are from simula-
tions run on a Silicon Graphics Octane computer
with 1 195 MHz MIPS R10000 processor.

4.1. A single population density

We simulated the response of a single population
to the following excitatory and inhibitory synaptic
input rates:

νe/i(t) = ν̄e/i(1 + sin(2πft)), (37)

where the mean excitatory input rate ν̄e = 2000
arrivals/second, the mean inhibitory input rate
ν̄i = 1000 arrivals/second, and f = 10 Hz. Us-
ing the parameters given in appendix D, the aver-
age voltage jump due to excitatory and inhibitory
input was about 0.5 mV and − 1

3 mV, respectively.
Figure 8 shows the response of the population

density model to these synaptic input rates. The
population density, which is the distribution of
neurons over voltage states, is plotted in figure 8a,
and the resulting population firing rate is plotted
in figure 8b along with the input rates (37).

The high peak in the population density around
t = 80 ms corresponds to a time of low firing rate;
most of the neurons have voltages near Er = −65
mV. During periods of high firing rate (such as
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around t = 20 ms), many of the neurons are closer
to vth = −55 mV. Additionally, since the neurons
that have crossed threshold and fired are reset to
vreset , there is a sharp peak of probability at vreset

during this period.

(a)

−70
−65

−60
−55 0

50

1000

0.1

0.2

0.3

0.4

Time (m
s)

Voltage (mV)

P
ro

ba
bi

lit
y 

D
en

si
ty

(b)

0 50 100
0

50

100

Time (ms)

F
iri

ng
 R

at
e 

(s
pi

ke
s/

se
c)

0 50 100
0

2000

4000

In
pu

t R
at

e 
(a

rr
iv

al
s/

se
c)Firing Rateν

e
      

ν
i
      

Fig. 8. The evolution of the population density and its
corresponding firing rate in response to sinusoidally mod-
ulated input rates. (a) Distribution of neurons over volt-
age states as a function of time. Note that the periods of
high firing rate (see panel (b)) correspond to periods with
many neurons near threshold (−55 mV). The high peak
near t = 80 ms corresponds to a low firing period when
most of the neurons are near Er = −65 mV. Snapshots of
similar high and low firing rate distributions were shown
in figure 3c,d. Neurons that are in the refractory state are
not shown. (b) Resulting firing rate of the population are
plotted using the lefthand scale; the synaptic input rates
(νe(t) and νi(t)) are plotted using the righthand scale. Pa-
rameters used were Ei = −70 mV, Er = −65 mV, Ee = 0
mV, vreset = −65 mV, vth = −55 mV, τ = 20 ms, and
τref = 3 ms.

4.2. Comparison with population of individual
neurons

The population density represents the fraction
of neurons per unit voltage in the mathemati-
cal limit of an infinite number of neurons. Since
such numbers aren’t encountered in practice, the
usefulness of the population density depends on
its ability to represent accurately the behavior of
populations of a finite number of individual neu-
rons. We thus created populations of various num-
bers of integrate-and-fire neurons to compare with
the population density. Details of how we com-
puted the activity of the individual neurons are
described in appendix C.

Figure 9 compares the population density with
individual neuron populations of 10, 100, 1,000,
and 10,000 neurons. Each neuron received synap-
tic input that was a modulated Poisson process
with the rates given in (37). The left column com-
pares snapshots of the probability density at time
t = 20 ms, and the right column compares the fir-
ing rates during the whole period. The results are
obtained from one pass of the stimulus.

The distribution across voltages for 10 neurons
(figure 9a) is too sparse to compare well to the
population density model, but already with 100
neurons (figure 9c), the distributions are pretty
similar. The firing rates, too, are already close
to each other when the individual neuron popula-
tion has 100 neurons (figure 9d). Both the distri-
bution of neurons and the firing rate have almost
converged with a population of 1,000 neurons (fig-
ure 9e,f).

We made no attempt to smooth the results of
the individual neuron populations. We used his-
tograms with fixed bin sizes (1/4 mV for the dis-
tribution across voltages, 2 ms for the firing rates).
The small population results would have appeared
even closer with smoothing.

This comparison serves as a verification of the
population density method since all our assump-
tions, including the Poisson assumption, are sat-
isfied in this simulation. This setup corresponds
to the situation where the number of neurons in
a population is vast, but one is observing only a
limited number of them. Thus, figure 9 allows us
to determine how many individual neurons must
be followed computationally in order to estimate
the population results at a given level of accuracy.
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Fig. 9. Comparison of the population density model with populations of individual neurons. The response to a single pass
of the synaptic input rates from figure 8 is shown. The population density results (from figure 8) are shown by the solid line.
The individual neuron results are shown by the histograms. Both a snapshot of the probability density at t = 20 ms (left
column) and the firing rates (right column) are shown. The comparisons are with four population sizes for the individual
neurons: (a,b) 10 neurons, (c,d) 100 neurons, (e,f) 1,000 neurons, and (g,h) 10,000 neurons. In the snapshots, neurons
in the refractory state are not shown. Parameters are the same as in figure 8.
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In addition, the comparison enables us to
benchmark the computational efficiency of the
population density approach. With a single pop-
ulation, all the times are small, but they shed
light on relative differences. A simulation of 2
periods with the population density method took
0.1 seconds of computational time with a time
step of 1 ms. The individual neuron simulation
took 1.1 seconds with 100 neurons per popula-
tion and 11 seconds with 1000 neurons per popu-
lation. The individual neuron results begin to give
a smooth estimate around 100 neurons per popu-
lation. Thus, even without synaptic interactions,
the population density approach is between 10 and
100 times faster than the individual neuron sim-
ulations. Further savings of computational time
can be achieved with the diffusion approximation
of the population density equations.
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Fig. 10. Comparison of the full partial differential-
integral equation model with its diffusion approximations
under same input and parameters as figure 8. (a) A snap-
shot of the distribution of neurons over voltage states at
time t = 20 ms. The full model snapshot is the t = 20
ms cross section of figure 8a. The diffusion approximation
includes the peak of probability at −65 mV because the
equations are not completely diffusion (see text). (b) The
resulting firing rates of the populations. The full model
firing rate is the same as figure 8b.

4.3. Comparison with diffusion approximation

The diffusion approximation speeds up the popu-
lation density simulations at the expense of minor
differences in the firing rate and distribution of
neurons.

A comparison between the diffusion approxima-
tion results and full model results is illustrated in
figure 10. Snapshots of the distribution of neurons
over voltages at t = 20 ms are shown in figure 10a.
The firing rates over the whole stimulus period are
shown in figure 10b.

The population density snapshots of figure 10a
show that the versions are similar. The diffusion
approximation contains a peak at vreset = −65
mV because the equations are not completely dif-
fusion equations. As explained in appendix B, we
calculate separately the evolution of a delta func-
tion component of ρ(v, t) at vreset .

The resulting population firing rates shown in
figure 10b are also similar. The diffusion approx-
imation tends to overshoot the peaks in the firing
rate. The root mean squared error of the diffusion
approximation rate is less than 5%.

Figure 11 shows how the error in firing rates in-
creases as the strengths of the synapses, and thus
the synaptic voltage jumps, are increased. Al-
though the evolution of the voltage may not be
similar to diffusion for excitatory voltage jumps
as large as 2 mV, the diffusion approximation is
still close to the full solution. We thus view the
diffusion approximation as mathematical tool to
speed the computation rather than a claim that
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Fig. 11. Root mean squared errors of the diffusion
approximation rates compared with the full partial
differential-integral equation rates. The error is plotted
vs. the average voltage jump due to an excitatory synap-
tic input with a starting voltage halfway between Er and
vth. Average inhibitory jumps were approximately half the
excitatory jumps. The first data point is from figure 10.
For each subsequent data point, the synaptic conductance
changes were doubled and the input rates halved.
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the evolution of the voltage is physically similar
to diffusion. For excitatory voltage jumps of 4
mV, the accuracy of the diffusion approximation
begins to break down.

The diffusion approximation leads to a further
increase in computational efficiency. For the pa-
rameters used in figure 10, a population density
simulation of 2 periods was reduced from 0.1 sec-
onds with the full model to 0.03 seconds with
the diffusion approximation. With larger synaptic
conductance changes, the difference between the
diffusion and full model speeds becomes greater,
although the diffusion approximation becomes less
accurate.

5. Network Results

5.1. A simple network

To illustrate the performance of the population
density approach, we constructed a simple net-
work of two populations. A schematic of the net-
work is shown in figure 12. The network contained
one excitatory (E) and one inhibitory (I) popula-
tion. Each element of the connectivity matrix,
Wjk, j, k = E, I, gives the number of synapses
made by population j onto each individual neu-
ron in population k (see section 3.3.2). W was
chosen so that all connections were equal, except
that the excitatory-excitatory weight was half the
others:

W = W̄

(
0.5 1
1 1

)
, (38)

where the parameter W̄ determines the overall
strength of the synaptic connections.

WEI

WIE

WEE WII

E I

νo(t)

Fig. 12. Schematic of the network architecture used in the
simulations. The network contained one excitatory popu-
lation (E) and one inhibitory population (I). The synaptic
connection weights were WEE = W̄/2, WEI = WIE =
WII = W̄ . The external excitatory input rate to the exci-
tatory population (E) was νo(t) = ν̄o(1+sin(2πft)), f = 10
Hz.

In addition to the synaptic connections be-
tween the populations, the excitatory population
received an external excitatory synaptic input at
the rate

νe,o(t) = νo(t) = ν̄o(1 + sin(2πft)), (39)

where f = 10 Hz and ν̄o is a parameter determin-
ing the overall strength of the external input. The
inhibitory population received no external input,
νe,o(t) = 0.

With this network structure, we solved equa-
tions (28) – (34) to obtain the output of the net-
work for various values of W̄ and ν̄o.

5.2. Individual neuron network for comparison

The simple network can be used to test how well
the population density approach models the in-
teractions of finite populations. The Poisson as-
sumption may not be completely satisfied with fi-
nite populations, and thus the population density
results may not match finite population results.

To test the accuracy of the population density
network, we implemented an individual neuron
simulation of the network in figure 12. We cre-
ated one population of Me excitatory neurons and
one population of Mi inhibitory neurons. We con-
nected the neurons randomly so that the number
of connections a neuron received from a particu-
lar population was given by the same matrix, W ,
from equation (38). The synaptic delays between
each pair of neurons were chosen randomly from
the same distribution of latencies αjk(t) used for
the population density simulations (see appendix
D).

The excitatory population received external ex-
citatory input that was a modulated Poisson pro-
cess with rate νo(t) from equation (39). The
other synaptic input that neurons received was not
forced to be Poisson; a neuron received a synap-
tic conductance change some delay after one of its
presynaptic neurons fired. Importantly, inhibitory
neurons received no input with an imposed Pois-
son distribution. In this way, a comparison be-
tween the population density and the individual
neuron implementation serves as a test of the Pois-
son assumption.
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Fig. 13. Comparison of the inhibitory firing rates for population density and individual neuron implementations of the
network in figure 12. The firing rates of the population density are shown by solid lines. Average firing rates of the individual
neurons are shown by the histograms. (a) A sparse network with M = 100, W̄ = 30 and ν̄o = 700 arrivals/second. (b) A
non-sparse network with M = 100, W̄ = 70, and ν̄0 = 500 arrivals/second. (c) A sparse network with M = 100, W̄ = 10,
and ν̄0 = 1000 arrivals/second. (d) The same network as in (c) but with random numbers of synapses.

5.3. Comparison of results

We compared the firing rates of the population
density and individual neuron implementation of
the simple network. We looked at two sizes of
individual neuron populations. In both cases
Me = Mi = M . In one case M = 100 neu-
rons/population, and in the other M = 1000 neu-
rons/population.

To determine precisely how well the results
matched, we averaged over many periods of νo(t)
(500 when M = 100, 50 when M = 1000) for
the individual neurons. The errors given below
are root mean square errors between the individ-
ual neuron histograms and the corresponding ar-
eas under the population density curve.

Figure 13 compares the firing rates given by the
inhibitory population density with the firing rates
given by a single realization of an individual neu-

ron network for two sets of parameters. We focus
on the inhibitory population since the inhibitory
population received no external input. The match
between the excitatory populations (not shown)
was always as good as the match between the in-
hibitory populations. We show the results from
individual neuron networks with M = 100. In-
creasing M to 1000 only improved the match (not
shown).

Figure 13a shows the results with W̄ = 30 and
ν̄o = 700 arrivals/second. The average individ-
ual neuron firing rates are close to the popula-
tion density firing rates with an error of less than
15%. For the excitatory populations, the firing
rates were within 10% of each other (not shown).
The same simulation with M = 1000 produced
similar results (not shown). The close fit of the
two models demonstrates that, at least for this set
of parameters, the Poisson assumption is satisfied
well enough.
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The population density approach assumes
sparse coupling since it represents an infinite num-
ber of neurons with a finite number of synapses per
neuron. This sparse coupling allowed us to argue
that the inputs to each neuron are conditionally
independent as required when we approximate the
input to each neuron as a modulated Poisson pro-
cess (see discussion). Thus, one might expect that
in an individual neuron network where the cou-
pling was not sparse, the results would begin to
diverge from that of the population density simu-
lation.

An example where the coupling is not sparse is
shown in figure 13b. In this figure, W̄ = 70 and
ν̄0 = 500 arrivals/second. Since the number of
neurons/population M = 100, the coupling is not
sparse and the error has increased to almost 40%.
Increasing M to 1000 restores the sparseness and
the error drops below 20% (not shown).

The Poisson assumption also requires a suffi-
cient number of converging synapses. For the pa-
rameters W̄ = 10 and ν̄0 = 1000 arrivals/second,
W̄ is not large enough and the error exceeds 40%
for both M = 100 (figure 13c) and M = 1000 (not
shown). However, in realistic networks, the num-
ber of converging synapses is likely to be larger.
Moreover, these results change significantly with
randomization in the number of synapses that
each neuron receives.

5.4. A random number of synapses

In the derivation of the population density equa-
tions, we required that each neuron in a popula-
tion k received exactly Wjk synapses from neurons
in population j. This requirement was met in the
simulations above. However, this requirement is
unrealistic since one would expect the number of
synapses to vary among neurons in each popula-
tion.

We tested the importance of this restriction by
creating individual neuron networks with random
numbers of synapses and comparing the results to
the population density network. In the random
network, Wjk is interpreted as the expected num-
ber of synapses from neurons in population j onto
each neuron in population k. For each neuron in
population k, the precise number of synapses from
population j was chosen from a binomial distribu-

tion with parameters p = 1/Mk and n = WjkMk

(thus, the mean = Wjk).
To our surprise, we found that the introduc-

tion of this type of randomness did not hurt and
sometimes improved the match between the firing
rates of the individual neuron and the population
density networks. The improvement was dramatic
when W̄ was very small, as shown in figures 13c-d.
In this case, the error dropped from over 40% to
below 10%. The drop in error was noticable but
less dramatic for almost all the other examples
mentioned. For example, with W̄ = 30, the er-
ror dropped from almost 15% to almost 10% (not
shown). However, for the non-sparse network of
W̄ = 70 and M = 100, the error changed very
little.

Clearly, an equal number of synapses for each
neuron in a population is not crucial for the valid-
ity of the population density results. Although we
don’t have a completely satisfactory explanation
for the almost universal improvement of the error
with randomness, we propose an explanation for
the improvement with very low connectivity (e.g.,
W̄ = 10) in the discussion.

In our subsequent individual neuron networks,
we use a random number of synapses. Not
only does this test the population density model
against a more realistic network, it also allows us
to implement individual neuron networks where
Wjk is not an integer, such as in the following ori-
entation tuning example.

6. Orientation Tuning in the Visual Cor-
tex

As a further test and as a demonstration of the
computational efficiency of the population density
approach, we implemented a population density
model of one hypercolumn of visual cortex. Our
network model is based loosely on the model of
orientation tuning in cat visual cortex by Somers
et al. (1995), which we paraphrased and recast in
the population density framework.

6.1. Overview of orientation tuning

Figure 14 is a schematic illustration of the re-
sponse of a typical cortical neuron to the pre-
sentation of an oriented dark bar on a uniform
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background. This hypothetical neuron is said to
have a vertical preferred orientation because it re-
sponds most strongly to vertically oriented stim-
uli. The neuron displays sharp orientation tuning,
i.e., the response falls off quickly as the orienta-
tion changes from vertical. A salient feature of
orientation tuning in visual cortex (not shown) is
that the sharpness of tuning is almost indepen-
dent of stimulus contrast. The origin of this sharp,
contrast-independent orientation tuning is a con-
troversial subject (cf. review by Shapley and Som-
polinsky, 1997). Our focus in the present paper is
to illustrate the population density method and
test its accuracy with various practice problems
rather than to address underlying neural mech-
anisms. In the Somers model, and thus in ours,
this contrast-independent orientation selectivity is
a result of sharpening by the cortical network.
Similar mechanisms underlie the models of others
(Ben-Yishai et al., 1995; Hansel and Sompolinsky,
1996; Carandini and Ringach, 1997).

6.2. A population version of Somers et al. model

The structure of our network is very similar to the
network of Somers et al. (1995). We made some
modifications to a neuron’s response to synaptic
input and the number of synaptic connections.
In this section, we describe the details of the
model, including variations from the Somers et al.
model. More details on parameters are given in
appendix D.

We modeled one hypercolumn of layer IV neu-
rons in cat primary visual cortex. The neurons
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Fig. 14. Illustration of the orientation tuning of a cortical
neuron. This neuron fires most rapidly in response to a
vertical bar. (Adapted from Somers et al., 1995.)
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Fig. 15. Schematic of our model network of one hyper-
column of visual cortex. Layer IV excitatory (E) and
inhibitory (I) neurons of cat primary visual cortex are
grouped into populations of neurons with similar orienta-
tion preference (denoted by oriented bars). The cortex
receives feed-forward input from the LGN with weak ori-
entation bias. Cortical interaction strength depends on the
difference in preferred orientation. Inhibitory interactions
are longer range than excitatory interactions. Typical in-
teractions are shown by the arrows.

in the hypercolumn received input from the same
part of visual space but had different preferred
orientations that span the full set of 180◦. In
this model cortical neurons have broad orienta-
tion tuning even in the absence of cortical-cortical
interactions as a consequence of anisotropic pro-
jection from the lateral geniculate nucleus (LGN)
to each cortical column.

We grouped the neurons into populations with
similar preferred orientation, dividing the orien-
tation space into a set of discrete orientations,
θj, j = 1, 2, . . .N , as schematized in figure 15.
We made an arbitrary choice of N = 18, while
Somers et al. took N to be 11. At each pre-
ferred orientation, θj , we formed one excitatory
(E) and one inhibitory (I) population density func-
tion, ρE/I(v, t, θj), and corresponding firing rates,
rE/I(t, θj). Somers et al. (1995) estimated that
there are 2,500–4500 neurons in layer IV of one
hypercolumn. According to this estimate, each of
our columns in reality would contain ∼ 200 exci-
tatory and ∼ 50 inhibitory neurons.

As in the Somers et al. model, cortical inter-
action strength depended on differences in pre-
ferred orientation. The synaptic connectivity was
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Fig. 16. (a) Normalized synaptic connectivity functions.
WE and WI were used for excitatory and inhibitory con-
nections, respectively. (b) The rectangular center-off sub-
field flanked by center-on subfields of the LGN→cortex
weighting function.

a gaussian function of the preferred orientation
difference, with the maximum connectivity being
within the same population. Inhibitory interac-
tions were longer range than excitatory interac-
tions, σI = 60◦, σE = 7.5◦. The gaussian func-
tions were clipped at 60◦. The synaptic connec-
tivity functions are shown in figure 16a.

In our model, the total number of excitatory
synapses onto each excitatory and inhibitory neu-
ron was 72 and 112, respectively, and the total
number of inhibitory synapses onto each excita-
tory and inhibitory neuron was 48 and 16, respec-
tively. Each excitatory neuron received 48 exci-
tatory synaptic inputs from the LGN and each
inhibitory neuron received 32. These numbers are
twice those used in the Somers et al. model. The
number of synapses they used is a vast underes-
timate of the actual number of synapses. In re-
ality, each excitatory neuron receives 3000–6000
synapses, though only some fraction of these come
from other layer IV cells and the LGN. Somers
et al. chose few synapses for sake of computational
ease and compensated to some extent by also

choosing large unitary postsynaptic conductance
magnitudes. In the population density framework,
a larger number of synapses from one population
to another has no effect on computational com-
plexity. Therefore, we easily doubled the num-
ber of synapses Somers et al. used and reduced
the size of the unitary postsynaptic conductance
magnitudes by half.

Synaptic delays between cortical populations
were gamma distributed with a mean of 3 ms and
a standard deviation of 1 ms. This is similar to
Somers et al. zero-bounded gaussian function.

The integrate-and-fire point neuron model un-
derlying our population density equations is less
elaborate than that of Somers et al. In particu-
lar, we omitted the elevation and decay of spike
threshold following a spike and omitted the activa-
tion of the after-hyperpolarizing conductance fol-
lowing a spike. Instead we simply reset the voltage
to vreset, which we took to be equal to the resting
voltage Er.

In the model of Somers et al., the time courses of
the unitary postsynaptic conductances were fast
on the time scale of the membrane time con-
stant for both inhibitory and excitatory neurons.
Therefore, our approximation of the conductance
waveforms by delta functions (see section 2.2) was
justified.4 In an effort to be realistic, we made the
unitary postsynaptic conductances in our model
random with a coefficient of variation of 0.5 (see
appendix D). The average size of the jumps in
voltage due to each type of synaptic input was
similar to half the size of the postsynaptic po-
tentials in the model of Somers et al. Starting
from halfway between Er and vth, our average ex-
citatory postsynaptic potentials in excitatory and
inhibitory neurons were 0.5 and 1.2 mV, respec-
tively. Average inhibitory postsynaptic potentials
were −0.3 and −0.7 mV in excitatory and in-
hibitory neurons, respectively.

The weak orientation bias in cortical input from
the LGN was produced, as in the model of Somers
et al., by an elongated rectangular center-off sub-
field flanked by two identical center-on subfields.
In our model each cortical neuron received input
from every LGN neuron in the three subfields. In
the model of Somers et al., the field lengths along
the major axis were random with a mean ratio
of major to minor subfield length of 2:1, and the
LGN→cortex connections were random. The vari-
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ous preferred orientations of the inputs to the var-
ious cortical columns were obtained by simply ro-
tating the LGN→cortex weighting function shown
in figure 16b. Using the weighting function in this
way, we transformed the spatial structure of the
stimulus (as reflected in the LGN response) to a
bias in the orientation coordinates of our cortical
model.
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Fig. 17. Responses of populations of excitatory neurons
with different preferred orientations to a flashed bar at 0◦.
The bar is flashed for 250 ms, beginning at 100 ms, as
shown by the horizontal line. After the initial transient,
neurons with preferred orientation ≥ 20◦ from zero are
silent.
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Fig. 18. A 3D view of the same excitatory responses
shown in figure 17, demonstrating the orientation tuning
of the neurons. Firing rate across preferred orientations is
plotted vs. time. The initial transient reflects the orien-
tation bias of the input from the LGN (not shown). Sub-
sequently, the tuning sharpens dramatically. The stimulus
onset is at 100 ms, as in figure 17. The arrow indicates the
time of the snapshot in figure 19.

In our model, as in the model of Somers et al.,
an individual LGN neuron simply mirrored its in-
put from a single retinal neuron. We generated
the firing rate of an LGN neuron/retinal ganglion
cell by first convolving a spatiotemporal separable
impulse response function with the stimulus and
then multiplying by a contrast dependent scale
factor. Then this computed signal was half-wave
rectified (giving only the positive part) to give the
rate. The spatial part of the spatiotemporal im-
pulse response function was the same difference of
gaussians as that used by Somers et al. The tem-
poral part was not the simple exponential func-
tion of Somers et al. Instead, we used the model
of Victor (1987) for the dynamics of the center
mechanism of a cat retinal ganglion cell.

6.3. Population equations

As described above, our model of one hypercol-
umn has 2N probability densities, ρE/I(v, t, θj),
and corresponding firing rates, rE/I(t, θj), j =
1 . . .N . For each population density, we have one
set of equations (28–34).

The external input to our network is the ex-
citatory input from the LGN to excitatory and
inhibitory populations. Denote the corresponding
input rates to excitatory and inhibitory popula-
tions with preferred orientation θj by νE

e,o(t; θj)
and νI

e,o(t; θj), respectively. There is no external

inhibitory input (νE/I
i,o = 0).

In this notation, equation (34) for the excitatory
input rate to the inhibitory population at θj , for
example, becomes:

νI
e (t; θj) = νI

e,o(t; θj)

+
∑

k

WEI(θj − θk)
∫ ∞

0

α(τ)rE (t − τ ; θk)dτ,

(40)
where WEI(θj − θk) is the number of synapses
from the excitatory neurons at θk onto inhibitory
neurons at θj. The distribution of synaptic delays,
α(τ), is given in appendix D.

We numerically solve this system of equations
under various stimulus conditions, where the ex-
ternal input ν

E/I
e,o (t; θj) is generated from the re-

sponse of the LGN to the stimulus.
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Fig. 19. Snapshot of the distribution of excitatory neu-
rons over voltage. The probability density across voltage
is plotted vs. preferred orientation. This snapshot is from
t = 300 ms in figure 18. Neurons with preferred orientation
near 0◦ are distributed closer to vth, as they are the only
ones firing.

6.4. Orientation tuning network results

Figures 17 and 18 show the firing rates of the exci-
tatory population to the presentation of a flashed
dark bar oriented at 0◦. The bar was flashed
for 250 ms beginning at t = 100 ms with 100%
contrast. The initial transient of the response is
broadly tuned across the preferred orientations.
This response reflects the weak orientation bias of
the input from the LGN (not shown). However,
the later response is much more sharply tuned;
only neurons within 20◦ of zero fire significantly.

The full set of excitatory probability densities
for t = 300 ms is plotted in figure 19. At that time,
the firing rate response in figure 18 was sharply
tuned around 0◦. Correspondingly, the probabil-
ity densities near 0◦ in figure 19 are closer to vth

(−55 mV) than the other probability densities.
The excitation of these neurons across vth created
the tuning of the firing rate seen in figure 18.

Further details of the orientation tuning pro-
duced by the cortical network are shown in fig-
ure 20. For different contrasts of the flashed
bar, the mean firing rate remains sharply tuned
around 0◦ (symbols). Note that the tuning width
is roughly independent of stimulus contrast. The
tuning is much sharper than the orientation bias
of the input from the LGN (gray line).

6.5. Comparison with network of individual neu-
rons

We implemented an individual neuron network of
this model of a hypercolumn of visual cortex in
the same way we implemented an individual neu-
ron version of the simple network in section 5.1.
The parameters and network structure of the indi-
vidual neuron network were the same as the pop-
ulation density network given in section 6.2. Exci-
tatory and inhibitory neurons were each grouped
into 18 populations with identical orientation pref-
erence. Each excitatory/inhibitory neuron with a
preferred orientation of θj received excitatory ex-
ternal input that was an independent modulated
Poisson process with the mean rate ν

E/I
e,o (t; θj),

above.
For all simulations, we let each population con-

tain the same number of neurons, which we de-
noted M , giving a total of 36M neurons. We cre-
ated a single realization of the individual network
with M = 100 and a second with M = 1000,
both with a random number of synapses as in sec-
tion 5.4. We compared the average firing rates
of each individual neuron population with the fir-
ing rate of the corresponding population density.
To obtain the firing rates for individual popula-
tions, we averaged over 20 passes of the stimu-
lus for M = 100 and 2 passes of the stimulus
for M = 1000. Additional passes would have im-
proved the match between the population density
and individual neuron firing rates. However, since
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Fig. 20. Orientation tuning as measured by the mean fir-
ing rate during the 250 ms that the flashed bar is visible.
Cortical excitatory population response (symbols) is plot-
ted vs. preferred orientation for contrasts ranging from
10% to 100%. The orientation bias of the input from the
LGN (gray line) is plotted on an arbitrary scale.
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Fig. 21. Comparison of excitatory neuron responses for the population density and individual neuron networks of a
hypercolumn of visual cortex. Population density results are shown by solid lines; average individual neurons results are
shown by the histograms. (a) Probability density snapshot at t = 300 ms of excitatory neurons with 0◦. The population
density line is the 0◦ cross section of figure 19. The individual neuron network contained M = 100 neurons at each
orientation. (b) Firing rates of the same networks in (a). The population density line is the 0◦ cross section of figure 18.
(c,d) Same as panels (a) and (b), but at 90◦. (e) Same as panel (b) but with M = 1000. (f) Same as panel (b), except
that individual neuron results are averaged over 10 realization of the network.
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we were interested in comparing running times,
we did not wish to slow the individual neurons
simulations down to improve the results.

The comparison of populations with 0◦ and 90◦

orientation preference is shown in figures 21a–d.
The individual neuron results are from the net-
work with M = 100. For both orientation prefer-
ences, the probability density snapshots at t = 300
ms for the two networks match well (panels a and
c). The individual neuron firing rate matches most
of the qualitative features of the population den-
sity firing rate (panels b and d). Much of the
time, the results match quantitatively, as well.
However, for 0◦, the individual neuron simulation
overshoots the initial transient and undershoots
the following maximum firing rate. For 90◦, the
firing rates are so low that the individual neu-
rons haven’t fired enough spikes to obtain a good
estimate of the firing rate. Nonetheless, the re-
sults match well, except for undershooting around
t = 200 ms.

Increasing the size of the individual populations
to M = 1000 improves the match with the popu-
lation density. As shown in figure 21e, the initial
transient for the 0◦ population is reproduced well,
and all other discrepancies are smaller than for
M = 100. For the 90◦ population (not shown),
the results differ little from the M = 100 case.

The 0◦ and 90◦ populations were representa-
tive of the other populations. Since the individual
neuron results were based on one realization of
the network, there was some variation due to the
random connections. To test which differences for
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Fig. 22. Comparison with the diffusion approximation.
The firing rates of the excitatory population density with
a 0◦ orientation preference are shown for the full model,
the diffusion approximation. After the initial transient, the
diffusion approximation fires more slowly than full model.

M = 100 were due to the random connectivity, we
ran an individual neuron simulation with M = 100
and averaged over 10 passes of the stimulus for
each of 10 realizations of the network. As seen
in the comparison with the population density in
figure 21f, there still are systematic difference be-
tween the population density network and the in-
dividual neuron network with M = 100. This
difference is significantly reduced, but not elim-
inated, for M = 1000 (not shown).

The population density simulations with 36
populations took 30 seconds for a 500 ms run and
0.5 ms time step. The equivalent individual neu-
ron simulation took 530 seconds for 20 passes and
M = 100; for 2 passes and M = 1000, it required
1090 seconds. Thus the individual neurons simu-
lations took 17 and 35 times longer than the popu-
lation density. The diffusion approximation sped
the population density simulations to 5 seconds
at the cost of the differences shown in figure 22.
Thus, the diffusion approximation was over 100
times faster than the individual neuron simula-
tion with M = 100 and over 200 times faster than
the simulation with M = 1000.

7. Discussion

We have explored a novel population density
method for modeling large groups of interacting
neurons that was introduced by Knight, Manin,
and Sirovich (1996). A similar approach has re-
cently been taken by Brunel and Hakim (1999).
Two salient differences of Brunel and Hakim’s ap-
proach are that they based their work on neu-
rons that were driven by current rather than
conductance changes, and they used a Fokker-
Planck (diffusion) approximation for the partial
differential-integral equation. The method of
Knight and colleagues is further elaborated in
Omurtag et al. (1999), Sirovich et al. (1999), and
Knight (1999).

Our emphasis in the present paper was on test-
ing the population density method against direct
individual neuron computations for various net-
works. We also presented conservative, second-
order-accurate schemes for solving the partial
differential-integral equations and associated, ap-
proximate diffusion-like equations in appendices A
and B.



A Population Density Approach to Modeling Neural Networks 41

7.1. Previous population models

Population density theory has a rich history in
theoretical neuroscience. We mention below only
a few examples and do not attempt to present a
comprehensive review of the field.

Until the early nineties the population density
function had been applied, in large part, to an-
alyzing the statistics of spike trains in individual
neurons with prescribed synaptic input (cf. review
in Tuckwell, 1988). However, the ideas behind
modeling large populations of neurons go back
to the early seventies (e.g. Wilson and Cowan,
1972, 1973; Knight, 1972a,b; Amari, 1974). The
seminal work of Wilson and Cowan (1972; 1973)
was based on statistical mechanical-like reason-
ing and dealt explicitly with important nonlineari-
ties in the dynamical behavior of neural networks.
Knight (1972a,b) related the activity of a single
integrate-and-fire neuron to that of a population
of such neurons and investigated the nonlinear be-
havior intrinsic to such neurons.

In the early nineties, investigators began ap-
plying population density theory to populations
of neurons which were coupled in an all-to-all
manner. These studies were concerned with sta-
bility of the steady state, synchronous vs. asyn-
chronous firing activity, and collective oscillations
(Kuramoto, 1991; Strogatz and Mirollo, 1991;
Abbott and van Vreeswijk, 1993; Treves, 1993).
An early application of the population density
function to modeling the responses of interact-
ing populations of sensory neurons is the study of
Chawanya et al. (1993). They presented a model
for feature linking through collective oscillations
of neurons in the orientation columns of primary
visual cortex. In this study, any pair of coupled
populations was coupled in an all-to-all manner.

A novel integral equation method for modeling
population activity has been analyzed by Gerst-
ner and colleagues (Gerstner and van Hemmen,
1994; Gerstner, 1995, Gerstner 1999). Gerstner’s
integral equation is a generalization of the inte-
gral equation of Wilson and Cowan; it assumes
all-to-all coupling and is applicable for certain
kinds of noise when synaptic input is modeled
as current injection. Very recently Pham et al.
(1998) analyzed activity in a sparsely connected
excitatory network by a probability approach in

which states and time were discretized. Tanabe
et al. (1998) used a Fokker-Planck approximation
to analyze information transfer by a population
of leaky integrate-and-fire neurons. Barna et al.
(1998) simulated rhythmic activity in a hippocam-
pal CA3 slice using probability density functions
that described the states of both neurons and
propagating spikes; this probability density ap-
proach was subsequently used by Adorján et al.
(1999) to model orientation selectivity in the pri-
mary visual cortex. Finally, the paper of Brunel
and Hakim (1999) concerns itself with global os-
cillations in a sparsely connected population of
integrate-and-fire neurons.

The methods of Knight and colleagues (Knight
et al., 1996; Omurtag et al., 1999; Sirovich et al.,
1999; Knight, 1999) and Brunel and Hakim (1999)
are unusual in the way the interacting popula-
tions are coupled. The coupling mechanism pro-
vides a natural, intrinsic source of noise that gives
asynchronous behavior over a wide range of condi-
tions. Thus, the model has no external, indepen-
dent source of noise. However, other noise sources
could easily be accommodated.

7.2. Analysis of assumptions

We have demonstrated that, when the assump-
tions underlying the population density method
(section 3.1) are met, the method of Knight et al.
gives the same results as direct individual neu-
ron computations in a fraction of the time. Fur-
thermore, our sample computations show that the
population density results remain valid over a
larger range of conditions than implied by these
assumptions. Some assumptions, however, are
fundamental to the current approach, and devi-
ations from the assumptions would require mod-
ifications of the population density equations to
guarantee good agreement between the population
density and individual neuron behavior.

The derivation of the population density equa-
tions was based on four assumptions. First, each
population contained a large number of iden-
tical integrate-and-fire point neurons. Second,
each neuron in the population received excitatory
and inhibitory input with the same average rate.
Third, the arrival times of the synaptic events
were conditionally independent random variables
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given by a modulated Poisson process. As ex-
plained below, this assumption implies that the
networks are sparsely coupled. Fourth, we used
a simple single compartment neuron model where
the synapses were fast compared to the membrane
time constant.

7.2.1. A large number of identical neurons We
have shown a close similarity between population
density results and direct individual neuron re-
sults when we performed computations on only
one realization of the random individual neuron
network with as few as 100 neurons per popula-
tion. It thus appears that the population density
method provides a good approximation to the be-
havior of networks even when the number of neu-
rons in each group is not vast.

7.2.2. Identical input rates In the Knight et al.
population framework, each member of a target
population is assumed to receive synaptic inputs
from neurons in a source population at a rate
which is proportional to the population firing rate
of the source. The constant of proportionality is
the number of synapses made by the source pop-
ulation on a single target neuron. The input rate,
and thus the number of synapses, for each neuron
in a given population is assumed to be identical.

However, our individual neuron computations
have shown that this assumption is not necessary.
The match between the firing rates of the popu-
lation density and individual neuron simulations
is not harmed by the introduction of randomness
in the number of synaptic connections. In most
of our test cases, the introduction of randomness
improved the match. This result is puzzling be-
cause the assumption of a common input rate for
each neuron in a given population can be regarded
as a mean-field approximation for synaptic input
rates. We would expect that this mean-field ap-
proximation would introduce additional errors.

We do not have a completely satisfactory expla-
nation for the almost universal improvement of the
error with randomness. For networks with very
low connectivity (e.g. W̄ = 10 in (38)), we posit
the following explanation. The error with very
low connectivity is due to insufficient numbers of
converging inputs to achieve a modulated Pois-
son process. With random numbers of synapses,
some neurons receive a larger number of synpases.

These additional converging inputs would cause
the input to these neurons to be closer to Poisson.
If the additional inputs were excitatory, these neu-
rons would fire faster and contribute more to the
population firing rate than other neurons, helping
the firing rate be closer to that of the population
density. It is unclear why this positive effect would
be stronger than the adverse effect of neurons fir-
ing faster due to a decreased number of inhibitory
inputs. By the above reasoning, those neurons
should have input that is further from Poisson.
Nonetheless, this argument does explain why the
largest improvement is observed in networks with
very low connectivity.

7.2.3. The Poisson assumption Despite the
common synaptic input rate, neurons in a target
population receive inputs that differ in detail. The
arrival times of excitatory/inhibitory synaptic in-
puts are assumed to be governed by a modulated
Poisson process at a rate which is the net rate of
excitatory/inhibitory inputs. This net rate is ob-
tained by summing over source populations. In
this method, the input Poisson processes for all
neurons in a given population are assumed to be
conditionally independent, i.e., independent given
the average rate. This conditional independence
can only be satisfied exactly if target neurons in
each population do not share inputs from any indi-
vidual source neurons. Hence, sparse connectivity
is an implicit assumption in the model. A similar
argument was used by Brunel and Hakim (1999).

Sparse connectivity is implicit for another rea-
son as well. In the model, the postsynaptic con-
ductance amplitudes are chosen to give postsy-
naptic potential amplitudes in the physiological
regime. This choice of conductance amplitudes is
incompatible with dense or all-to-all coupling be-
cause the population density represents the limit
of an infinite number of neurons. A dense coupling
would imply that, in the limit, each neuron would
receive an infinite number of synaptic connections
and thus would receive input at an infinite rate.
This limit cannot give a sensible limiting evolu-
tion equation for the population density function
unless the unitary postsynaptic conductances ap-
proach zero in such a way that the product of the
input rate and the unitary postsynaptic conduc-
tance remains order 1.
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Sparse connectivity is a feature of our imple-
mentation of the population density approach be-
cause we have used the resulting Poisson dis-
tributed input as the major source of noise in
our networks. In many of the models mentioned
above, other local noise sources were added to
all-to-all coupled models. The addition of other
noise sources to our model may improve the match
with direct individual neuron simulations when
the connectivity is not sparse.

The assumption of Poisson input to each neuron
may seem troubling at first glance because there
is no guarantee that each neuron fires action po-
tentials in a Poisson manner. However, a limit
theorem of point processes (Çinlar, 1972) says
that a composite point process formed by super-
posing a number of uniformly sparse, condition-
ally independent non-Poisson point processes ap-
proaches a Poisson process as the number of com-
ponents approaches infinity. Thus, if each neuron
receives enough conditionally independent synap-
tic inputs, the overall input point process should
be close to Poisson. The fact that a typical neuron
has thousands of synaptic inputs argues in favor
of the validity of the Poisson assumption.

The good match between population density re-
sults and individual neuron results for several neu-
ral networks presented in this paper suggests that
the Poisson approximation is good even for a mod-
est number of synaptic inputs from sources with
some overlap. However, the assumptions of the
model do not allow one to model faithfully a net-
work composed of small subpopulations in which
neurons in any subpopulation share a substantial
fraction of their synaptic inputs.

7.2.4. Simple neuron model Our implementa-
tion of the population density theory in the
present paper employed a very simple model
for the individual neurons in the populations.
The individual neuron, which is in reality spa-
tially extended with extensively branched den-
dritic tree and axonal arbor, was collapsed into
a single isopotential compartment (point neuron).
The complex time- and voltage-dependent con-
ductances which underlie the action potential were
modeled crudely by a simple conductance-driven
integrate-and-fire mechanism.

Furthermore, the unitary postsynaptic conduc-
tance waveform was modeled as a delta function
with random magnitude. We have only shown so
far that the population density method is much
faster than the point neuron method for integrate-
and-fire neurons with instantaneous postsynaptic
conductance waveforms. The approximation of in-
stantaneous postsynaptic conductances is not al-
ways appropriate. For example, the time course of
conductances governed by class B γ-aminobutyric
acid (GABAB) receptors can be quite slow (Howe
et al., 1987). Accurate modeling of neurons con-
taining such conductances by the population den-
sity method would require introducing at least
one additional argument into the population den-
sity function. If the inhibitory conductance is as-
sumed to jump up instantaneously upon arrival of
a single synaptic input and then to decay expo-
nentially, the state of the neuron would be com-
pletely described by its voltage and the value of
its inhibitory conductance.

It is presently unclear how computation time for
the population density method will compare with
that of the point neuron method for more compli-
cated underlying models for the individual neuron,
such as the one above. The dimension of the pop-
ulation density increases with the number of vari-
ables used to describe the neuron. Thus, the com-
putation time required for the population density
simulations increases rapidly as the complexity of
the neuron model increases. For more complex
neurons, additional techniques, such as the prin-
cipal components analysis method by Knight and
colleagues (see section 7.4), may be required for
the population density method to retain its speed
advantages.

7.3. A comparison to rate models

The population density approach captures dy-
namics of neurons that cannot be contained in
equations involving only the mean rate of each
population. For example, firing rates in the pop-
ulation density model can be dramatically altered
by changes that leave the expected synaptic input
unchanged and thus would not affect firing rate
equations. When the unitary postsynaptic con-
ductances and input rates are scaled in inverse
proportion such that the expected synaptic in-
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put remains unchanged, the population density
changes its behavior. The effect of such a scale
change can be seen very clearly in the diffusion
approximation for the partial differential-integral
equation in which the diffusion coefficient is scaled
by the synaptic conductance scale factor.

Another difference between the population den-
sity model and firing rate models is that firing rate
models give only mean firing rate, while the popu-
lation density model also contains information on
fluctuations. The population density model allows
one to compute any moment of the spike count in
any time interval.

A simple example is provided by specializing to
the steady state for the model considered in this
paper. In this case, spike firing is a renewal pro-
cess in which all moments of the random number
of events (spike count in this case) in any time
interval are completely determined by the prob-
ability density function for the inter-event inter-
val (interspike interval in this case). The proba-
bility density function for the interspike interval
can be computed as follows. First one solves for
the steady state firing rates. Then, using those
steady input rates and starting with a delta func-
tion probability density function at vreset , one
solves the partial differential-integral equation for
a given population without reseting neurons after
they fire. Neurons that fire are simply removed
from the population. The flux across threshold
gives the probability per unit time that a neuron
crosses threshold (fires a spike), and, in this case,
every neuron that fires a spike is firing for the first
time since reset. Thus, the flux across threshold
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Fig. 23. The transient response of the population firing
rate to a rapid change in input. Beginning at t = 50, the
excitatory input rate to the a single population of uncou-
pled neurons is stepped up from 1000 Hz to 2000 Hz (shown
by black bar). The firing rate transiently jumps up before
returning to a new steady state response.

can be interpreted as the probability density func-
tion for the interspike interval.

Specifically, the population density method cap-
tures dynamics, such as rapid transients, that are
missed by the classical Wilson-Cowan-like differ-
ential equation (Wilson and Cowan, 1972, 1973)
for firing rate of each population:

τr
drk(t)

dt
+rk(t) = g


∫ ∞

0

N∑
j=0

Cjk(s)rj(t − s)ds




(41)
for k = 1 . . .N , N = the number of populations.
Here r0(t) is the firing rate of external sources,
and rk(t) for k ≥ 1 is the firing rate of the kth

population. Input from population j to popula-
tion k is filtered through the kernel Cjk(s); g(·) is
the transfer function of the population, and τr is
the time constant at which the firing rate evolves.

The limitations of equation (41) have been dis-
cussed by others (Wilson and Cowan, 1972; Ab-
bott and van Vreeswijk, 1993; Gerstner, 1995,
1999). Gerstner (1999) demonstrated that the
transient response of the population changes at
the time scale of the postsynaptic conductances
while the longer-time average response evolves
more slowly. An equation of the form of (41)
cannot capture those two time scales. A demon-
stration of a single population to a step in input
rate is shown in figure 23 (designed after Gerstner,
1999, figure 5). Since in our model, the postsynap-
tic conductance time course is modeled as a delta
function, the firing rate changes instantaneously
with the synaptic input before settling to a new
steady state. This instantaneous dependence re-
sults from the fact that the population firing rate
is equal to the excitation flux evaluated at the
threshold voltage and the fact that this flux (31)
depends instantaneously on the excitatory synap-
tic input rate νe(t).

7.4. Computational speed

The population density method was dramati-
cally faster than the individual neuron method
even when we solved the exact system of partial
differential-integral equations. A further reduc-
tion in computation time was achieved by a nu-
merical method giving a diffusion-like approxima-
tion. Furthermore, these savings in computation
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time were obtained without any attempt to find a
fast algorithm for solving the population density
equations. Knight and colleagues (Knight, 1999)
have found that computation time can be sub-
stantially reduced even further by using principal
component analysis to approximate the popula-
tion density function by a superposition of compo-
nents in a function space of low dimension (∼ 10).

The speed of the Knight et al. population den-
sity approach will facilitate modeling more com-
plex neural networks than one could realistically
simulate with direct individual neuron models.
Provided that a neural network can be grouped
into populations with hundreds of similar, sparsely
coupled neurons, the population density imple-
mentation of the network can quickly produce ac-
curate population firing rates and distributions of
neurons across voltage. Thus, the population den-
sity approach may be an important tool in the
implementation of truly large-scale models of the
networks in the brain.
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Appendix A

Derivation of Diffusion Approximation

The diffusion approximation is based on the as-
sumption that synaptic inputs are small, and thus
the voltage jumps due to synaptic inputs are
small. Correspondingly, in the synaptic flux equa-
tions (31, 32), the integrals at a voltage v are de-
termined mainly by the values of ρ(v′, t) with v′−v
small. These integrals can thus be replaced with
expressions involving the derivatives of ρ(v, t), giv-
ing a diffusion equation for the evolution equation
for ρ(v, t).

The diffusion approximation assumes that ρ is
sufficiently smooth so that we can approximate
the value of ρ(v′, t) with the first two terms of a

Taylor series centered around v:

ρ(v′, t) = ρ(v, t) + (v′ − v)
∂ρ

∂v
(v, t)

+
(v′ − v)2

2
∂2ρ

∂v2
(ξ, t), (A1)

where ξ is between v′ and v.
The error that we make by neglecting the third

term will be less than

M(v′ − v)2, (A2)

where

M =
1
2

max
v,t

∣∣∣∣∂
2ρ

∂v2
(v, t)

∣∣∣∣ . (A3)

To calculate the approximation for the excita-
tion flux, we substitute the first two terms of the
Taylor series for ρ(v′, t) (A1) into the flux equation
(31) to obtain:

Je(v, t) = νe(t)
[
c1e(v)ρ(v, t) − c2e(v)

∂ρ

∂v
(v, t)

]
,

(A4)
where

c1e(v) =
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
dv′, (A5)

and

c2e(v) =
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
(v − v′)dv′. (A6)

The error in this approximation is less than (see
(A2))

νe(t)M
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
(v′ − v)2dv′. (A7)

The error term can be simplified by changing vari-
ables in the integral to γ = v−v′

Ee−v′ , giving

νe(t)M(Ee − v)3
∫ v−Ei

Ee−Ei

0

F̃Γ∗
e
(γ)

γ2dγ

(1 − γ)4

< νe(t)M(Ee − Ei)3
∫ 1

0

F̃Γ∗
e
(γ)

γ2dγ

(1 − γ)4
,

(A8)
since Ei < v < Ee.

The integral on the right in (A8), which we de-
note by I, can be simplified through integration
by parts:

I =
∫ 1

0

F̃Γ∗
e
(γ)

γ2dγ

(1 − γ)4
(A9)
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= −1
3

+
∫ 1

0

fΓ∗
e
(γ)

(1 − γ)3 + γ3

3(1 − γ)3
dγ

=
∫ 1

0

fΓ∗
e
(γ)

[
(1 − γ)3 + γ3

3(1 − γ)3
− 1

3

]
dγ

=
∫ 1

0

fΓ∗
e
(γ)

γ3dγ

3(1 − γ)3
, (A10)

where
fΓ∗

e
(γ) = − ∂

∂γ
F̃Γ∗

e
(γ) (A11)

is the probability density function for Γ∗
e. Note

that ∫ 1

0

fΓ∗
e
(γ)dγ = 1 (A12)

since 0 < Γ∗
e < 1. Also, implicit in the calculation

of the boundary term is the fact that

F̃Γ∗
e
(0) = 1 (A13)

and the assumption that

lim
γ→1−

F̃Γ∗
e
(γ)

(1 − γ)3
= 0. (A14)

Substituting the value of the integral I from
(A10) into expression (A8) for the error, we find
that the error in the diffusion approximation is
less than

νe(t)
M

3
(Ee − Ei)3

∫ 1

0

fΓ∗
e
(γ)

γ3dγ

(1 − γ)3
. (A15)

If the excitatory synaptic conductances are
small, then fΓ∗

e
(γ) is almost zero except for small

γ, and the value of the integral in the error bound
(A15) is the third moment of Γ∗

e to smallest order
in γ. Thus, the error is proportional to the third
moment of Γ∗

e, which is small when the excitatory
synaptic conductances are small.

In the same way, the full diffusion approxima-
tion for the inhibition flux is

Ji(v, t) = −νi(t)
[
c1i(v)ρ(v, t) + c2i(v)

∂ρ

∂v
(v, t)

]
,

(A16)
where

c1i(v) =
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
dv′, (A17)

and

c2i(v) =
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
(v′ − v)dv′. (A18)

The error bound for the inhibition flux is

νi(t)
M

3
(vth − Ei)3

∫ 1

0

fΓ∗
i
(γ)

γ3dγ

(1 − γ)3
, (A19)

where fΓ∗
i
(γ) is the probability density function

for Γ∗
i .

Combining equations (A4) and (A16) with
equations (28 – 30), we obtain a diffusion equa-
tion for the evolution of ρ(v, t) (35). This diffusion
equation can be solved numerically more quickly
than the full partial differential-integral equation.

Appendix B

Numerical method for solving partial
differential-integral equation

To solve equations (28 – 32) numerically, we dis-
cretized ∂J

∂v in voltage and solved the resulting set
of ODEs using the trapezoid rule. For the dif-
fusion approximation, this resulted in the Crank-
Nicolson method (Crank and Nicolson, 1947). We
used the second order in voltage discretization de-
scribed below for the partial differential-integral
equation.

B.1. Discretization of the flux

We divided (Ei, vth) into K intervals so that Ei,
Er, and vth were half grid points. With interval
lengths ∆v = (vth − Ei)/K, the grid points were
numbered vk = Ei + (k − 1

2 )∆v, for k = 1 . . .K.
We let ρk = ρ(vk, t).

We discretized ∂Jl

∂v , ∂Je

∂v , and ∂Ji

∂v separately.

B.1.1. Discretization of the leakage flux

For v < Er, the leakage moves probability upward
and for v > Er, the leakage moves probability
downward. To ensure stability, we used a down-
ward second order approximation for the deriva-
tive for v < Er and a upward approximation for
v > Er.

For vk < Er, we let

∂Jl

∂v
(vk, t) = [−(vk−2 − Er)ρk−2

+4(vk−1 − Er)ρk−1 − 3(vk − Er)ρk]/(2τ∆v),

(B1)
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and for vk > Er, we let

∂Jl

∂v
(vk, t) = [3(vk − Er)ρk

−4(vk+1 − Er)ρk+1 + (vk+2 − Er)ρk+2]/(2τ∆v).

(B2)

B.1.2. Discretization of excitation flux

To obtain a second order scheme, we used a cen-
tered difference on the half grid points to discretize
the spatial derivatives of Je at the grid points:

∂Je

∂v
(vk, t) =

Je(vk+ 1
2
, t) − Je(vk− 1

2
, t)

∆v
. (B3)

In order to complete our second order scheme,
we needed a third order approximation to the in-
tegral Je(v, t), since it would be divided by ∆v in
the derivative approximation. To obtain this, we
changed variables to

γ =
v − v′

Ee − v
.

To compute the resulting ρ(v−γEe

1−γ ) that appears
in the integral, we interpolated ρ from the known
values at neighboring grid points with a quadratic
polynomial. This procedure gave a third order ap-
proximation of ρ. The resulting integral was inde-
pendent of ρ, and we computed it using a midpoint
rule in γ, decreasing the discretization interval in
γ until we achieved a relative error of less than
10−5.

B.1.3. Discretization of inhibition flux

We discretized the inhibition flux in the same way
as the excitation flux. We used a centered dif-
ference with the half grid points to discretize the
spatial derivatives, and computed the integrals us-
ing the change of variables:

γ =
v − v′

Ei − v′
.

ρ was interpolated with quadratic polynomials
from the known values at grid points, and the
resulting integrals, which were independent of ρ,
were computed to a relative error of 10−5.

B.2. Delta function modification

When vreset = Er, the flux reset to vreset does not
advect away. Thus the delta function source in
equation (28) builds up, forming a delta function
component of ρ at vreset . Convergence estimates
of our numerical methods depend on existence of
derivatives of ρ, which clearly wouldn’t exist at
vreset .

To improve our numerical method so that it can
handle this situation, we divide ρ into two compo-
nents, a smooth component ρs and a delta func-
tion at vreset with weight ρδ:

ρ(v, t) = ρs(v, t) + δ(v − vreset)ρδ(t). (B4)

ρs should then have sufficient derivatives in v, al-
lowing our methods to converge well.

The evolution of ρs(v, t) is determined by the
components of ∂J

∂v that are smooth. The evolution
of ρδ(t) is determined by the explicit delta func-
tion δ(v − vreset )J(vth, t) as well as delta function
components of ∂J

∂v . In this section, we derive these
modified evolution equations.

Since the delta function sits at Er, it is not af-
fected by the leakage. Thus the equation for the
leakage flux (30) contains only a smooth compo-
nent:

Jl(v, t) = −1
τ
(v − Er)ρs(v, t). (B5)

Combining the new expression for ρ (B4) with
the excitation flux (31), we obtain a new expres-
sion for the excitation flux:

Je(v, t) = Je,s(v, t) +H(v − vreset)Je,δ(v, t) (B6)

where

Je,s(v, t) = νe(t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
ρs(v′, t)dv′,

(B7)

Je,δ(v, t) = νe(t)F̃Γ∗
e

(
v − vreset

Ee − vreset

)
ρδ(t), (B8)

and H(y) is the Heaviside unit step function:

H(y) =
{

1 if y > 0
0 otherwise. (B9)

Similarly, the new expression for the inhibition
flux is:

Ji(v, t) = Ji,s(v, t)+H(vreset − v)Ji,δ(v, t) (B10)
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where

Ji,s(v, t) = −νi(t)
∫ vth

v

F̃Γ∗
i

(
v − v′

Ei − v′

)
ρs(v′, t)dv′

(B11)
and

Ji,δ(v, t) = −νi(t)F̃Γ∗
i

(
v − vreset

Ei − vreset

)
ρδ(t). (B12)

Plugging these modified flux expressions (B5,
B6, B10) into the original evolution equation (28)
will result in both smooth and delta function com-
ponents on the right hand side. (Some of the
delta function components arise from the fact that
dH
dv (v) = δ(v).) Using equation (B4) and separat-
ing the smooth components and the coefficients of
δ(v−vreset ) into two equations gives the following
evolution equations:

∂ρs

∂t
= − ∂

∂v
(Jl + Je,s + Ji,s)

−H(v − vreset)
∂Je,δ

∂v
−H(vreset − v)

∂Ji,δ

∂v
,

(B13)
dρδ

dt
= −[νe(t) + νi(t)]ρδ + r(t) (B14)

where

r(t) = J(vth, t) = Je,δ(vth, t)+Je,s(vth, t). (B15)

In deriving these equations, we used the fact that
F̃Γ∗

e/i
(0) = 0 and J(vth, t) = Je(vth, t).

The numerical method above can be easily mod-
ified for the new equations.

B.3. Accuracy of numerical method

To determine the accuracy of the numerical
method, we first verified that our method was in-
deed second order accurate in both voltage and
time. Through this verification process, we also
determined how small we needed to make the dis-
cretizations in order to be in the second order ac-
curate regime. We determined that we already
achieved second order accuracy in time with a
time step of ∆t = 1 ms and achieved second order
accuracy in voltage with a voltage discretization
of ∆v = 0.25 mV (K = 60).

With a voltage discretization of ∆v = 0.25 mV
(K = 60), the maximum error in the population
firing rate was a few spikes/second. We decided
to use K = 60 for all our population density sim-

ulations, including those from section 5 where we
were focusing on accuracy.

We chose a time step ∆t so that additional er-
ror introduced by the time discretization was less
than the error from the voltage discretization. We
used ∆t = 0.5 ms for all orientation tuning sim-
ulations as well as single population simulations.
For section 5, since the focus of the section was
accuracy and not speed, we used a smaller time
step of ∆t = 0.25 ms just to ensure that our er-
ror percentages were accurate. The error percent-
ages changed by about 1% when we moved from
∆t = 0.5 ms to ∆t = 0.25 ms.

Appendix C

Event-driven simulation for solving individ-
ual neuron networks

Since we have reduced the unitary synaptic con-
ductances to delta functions (see section 2.2), the
evolution equation for the voltage of an integrate-
and-fire neuron (1) can be easily solved analyti-
cally. Ge/i(t) = 0 between synaptic events, and
the voltage decays exponentially to Er until the
neuron receives synaptic input, when the voltage
jumps the amount in equation (3). We thus need
to update each neuron’s voltage only when it re-
ceives a synaptic event. This procedure is much
faster than a time stepping algorithm and gives an
exact solution, up to limits imposed by machine
precision.

When a neuron fires, we schedule synaptic
events for each of its postsynaptic neurons at a
time offset by the delay for each synapse. These
events are added to the queue of upcoming events.
Since the delays are random, the order of the
events differs from the order in which the events
were created. An important task is determining
which event is next. Thus, the implementation
of a priority queue is central to the event-driven
simulation.

A priority queue is a queue in which the first
item in the queue is always the one with the
highest priority, which in this case is the earli-
est time. We implemented our priority queue us-
ing a heap, which obtains the earliest event in
O(n log n) steps, where n is the number of events
in the queue.
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To run the event-driven simulation, we kept
track of the time of each neuron’s last synaptic
input and the voltage of the neuron after that in-
put. Each step consisted of taking the next event
off the priority queue and acting on that event.
Each event included the time of the event, the
neuron affected, and whether the event was exci-
tatory or inhibitory. Based on that neuron’s pre-
vious state and the information from the event,
we could update the neuron’s voltage.

For example, if the next event was an excitatory
input for neuron j at time t, and neuron j had a
voltage of vo at its previous input at time to, we
would update its voltage to:

v = Ee + e−Γe

[
Er + (vo − Er)e−(t−to)/τ − Ee

]
.

(C1)
If v > vth, we would then record a spike, reset v
to vreset , and schedule events for the postsynaptic
neurons of neuron j.

Appendix D

Parameters

For all simulations, we used a gamma distribution
for the distribution of sizes of unitary synaptic
conductances:

fΓe/i
(x) =

exp(−x/ae/i)
ae/i(ne/i − 1)!

(
x

ae/i

)ne/i−1

, (D1)

where fΓe/i
(x) is the probability distribution func-

tion of Γe/i. Since Γ∗
e/i = 1 − exp(−Γe/i), the

probability distribution function of Γ∗
e/i is

fΓ∗
e/i

(x) =
fΓe/i

(− log(1 − x))
1 − x

.

Therefore, the complementary cumulative distri-
bution function for Γ∗

e/i is

F̃Γ∗
e/i

(x) =
∫ 1

x

fΓe/i
(− log(1 − y))

1 − y
dy (D2)

= e−u(x)

ne/i−1∑
l=0

u(x)l

l!
, (D3)

where u(x) = − log(1 − x)/ae/i.
The average values of Γe/i corresponded to post-

synaptic potentials that were half those used in
the model by Somers et al. (1995). We used the
following average values: µΓe = 0.008, µΓi =

0.027 for excitatory neurons, and µΓe = 0.020,
µΓi = 0.066 for inhibitory neurons. We chose a
coefficient of variation of 0.5 for all Γs. This de-
termined the values of ae/i and ne/i for both ex-
citatory and inhibitory neurons.

We used the following parameters for both ex-
citatory and inhibitory neurons: Ei = −70 mV,
Er = vreset = −65 mV, vth = −55 mV, and
Ee = 0 mV. For excitatory neurons, τ = 20 ms
and τref = 3 ms. For inhibitory neurons, τ = 10
ms and τref = 1 ms.

For simulations involving a single population,
we used the parameters for excitatory neurons.

The distribution of synaptic latencies α(t) were
chosen so that the mean latency was 3 ms and the
standard deviation was 1 ms, approximately. We
used a gamma distribution of order 9 with mean
3 ms, which we truncated for t > 7.5 ms.

α(t) =


 ᾱ

exp(−t/τα)
τα(nα − 1)!

(
t

τα

)nα−1

0 ≤ t ≤ 7.5 ms

0 otherwise
(D4)

where nα = 9, τα = 1/3 ms, and ᾱ is a constant
so that α(t) integrates to one. We used the same
α(t) for each type of connection.

Notes

1. Throughout this paper, we use an upper case V to
denote the random, fluctuating, voltage of a single
integrate-and-fire neuron and a lower case v to denote
fixed voltages.

2. This modification is equivalent to subtracting

J(vth, t)H(v − vreset )

from J(v, t), reflecting the negative flux of neurons mov-
ing from vth to vreset . Here H(x) is the Heaviside step
function, H(x) = 1 for x ≥ 1, H(x) = 0 otherwise.
Without modification, (10) does not conserve probabil-
ity for v ∈ (Ei, vth), since, in general, J(vth, t) 6= 0.

3. The Poisson nature of the random synaptic input times
is required because we ignore past history when calcu-
lating the probability of an input at time t. Implicit in
this calculation is the assumption that the probability
of an input in non-overlapping intervals is independent,
i.e., the assumption that the inputs are a modulated
Poisson process. If one wanted to assume a more com-
plicated distribution of inputs, one would have to track
the probabilities of past input sequences. For example,
for another renewal process, one could add an extra di-
mension to the population density, (say ρ(v, s, t), where
s = the time since the last input), and calculate a more
complicated expression for the excitation flux.
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4. In reality this may not be a good assumption for in-
hibitory synapses. See discussion.
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