
COMPUTING π(x)π(x): THE MEISSEL-LEHMER METHOD

J. C. Lagarias
AT&T Bell Laboratories
Murray Hill, New Jersey

V. S. Miller
IBM Watson Research Center
Yorktown Heights, New York

A. M. Odlyzko
AT&T Bell Laboratories
Murray Hill, New Jersey

ABSTRACT

E. D. F. Meissel, a German astronomer, found in the 1870’s a method for computing
individual values of π(x), the counting function for the number of primes ≤ x. His
method was based on recurrences for partial sieving functions, and he used it to compute
π(109). D. H. Lehmer simplified and extended Meissel’s method. We present further
refinements of the Meissel-Lehmer method which incorporate some new sieving
techniques. We give an asymptotic running time analysis of the resulting algorithm,
showing that for every ε > 0 it computes π(x) using at most O(x 2/3 + ε) arithmetic
operations and using at most O(x 1/3 + ε) storage locations on a Random Access Machine
(RAM) using words of length [log 2 x] + 1 bits. The algorithm can be further speeded
up using parallel processors. We show that there is an algorithm which, when given M
RAM parallel processors, computes π(x) in time at most O(M − 1 x 2/3 + ε) using at most
O(x 1/3 + ε) storage locations on each parallel processor, provided M ≤ x 1/3 . A variant of
the algorithm was implemented and used to compute π(4×1016).

COMPUTING π(x)π(x): THE MEISSEL-LEHMER METHOD

J. C. Lagarias
AT&T Bell Laboratories
Murray Hill, New Jersey

V. S. Miller
IBM Watson Research Center
Yorktown Heights, New York

A. M. Odlyzko
AT&T Bell Laboratories
Murray Hill, New Jersey

1. Introduction

The problem of computing π(x), the number of primes p ≤ x, has been studied for a

long time. The ancient Greeks had a method for locating all the prime numbers below a

given bound, the sieve of Eratosthenes. Legendre (see [4]) was the first to suggest a

method of calculating π(x) without locating all the primes less than x. He observed that

the principle of inclusion-exclusion implied that

π(x) − π(x 1/2) + 1 = [x] − Σ [
p i

x_ __] + Σ [
p i p j

x_ ____] − Σ [
p i p j p k

x_ ______] + ... (1.1)

where [z] denotes the greatest integer ≤ z and the p i run over all primes ≤ x
1⁄2 , and

p i < p j in the second sum, p i < p j < p k in the third sum, and so on. This formula is

not of immediate utility in computing π(x) because it involves computing about

6π− 2 (1 − log 2) x nonzero terms. Actual calculations of π(x) by Gauss and others were

based on factor tables made using sieve methods. The first efficient algorithm for

computing π(x) which does not involve locating all the primes below x is due to the

astronomer E. D. F. Meissel ([11]-[14]). His method is economical of space, and can be

viewed as reducing the number of terms in ‘‘Legendre’s sum’’ (1.1). Using his methods

- 2 -

he calculated π(108) = 5 , 761 , 455 in 1871, and then after an enormous calculation

announced in 1885 that π(109) was 50,847,478. (His value of π(109) was subsequently

shown to be too small by 56, see [9].) Modifications of Meissel’s method were

subsequently suggested by several authors (see [4], pp. 429-434) who did not, during the

era of hand computation, attempt to explicitly compute larger values of π(x). With the

advent of digital computers, the problem of computing π(x) was reconsidered by

D. H. Lehmer [9], who extended and simplified Meissel’s method. Lehmer used an IBM

701 to calculate π(1010) = 455 , 052 , 512 (a value later shown [3] to be too large by 1).

Following this, other authors ([3],[10]) calculated π(x) for larger values of x using

variants of the Meissel-Lehmer method, the current record being the calculation of

π(1013) by Bohman [3] in 1972. Bohman’s value for π(1013) turns out to be too small

by 941, see Section 6.

In this paper we propose new algorithms of Meissel-Lehmer type for computing π(x)

and analyze their asymptotic computational complexity. Our interest in the asymptotic

complexity of computing π(x) was stimulated by a paper of H. S. Wilf [15], which cited

π(x) as an example of a function whose individual values are hard to compute. Indeed in

this connection it appears that the existing methods for computing π(x), which are based

on variants of the Meissel-Lehmer method, have asymptotic running times at least

c ε x 1 − ε for any ε > 0 and some c ε > 0. (It is hard to estimate the asymptotic

computational complexity of Meissel’s original method [11], since it is presented as a

collection of rules to be applied according to the human calculator’s judgment.) We

analyze asymptotic running times using as a model of computation a Random Access

Machine (RAM), which is a relatively realistic model of the addressible core storage area

- 3 -

of a digital computer. (The RAM model is described in detail in Aho, Hopcroft and

Ullman [1], Chapter 1.) An essential feature of the RAM model relevant to the

complexity analysis is that on a RAM it is possible to jump between any two storage

locations in a single operation. This feature is needed to quickly implement algorithms

which use sieve methods. We prove the following result.

Theorem A. The Extended Meissel-Lehmer algorithm computes π(x) on a Random

Access Machine using at most O(x 2/3 + ε) arithmetic operations and at most O(x 1/3 + ε)

storage locations, for any fixed ε > 0. All integers used in the course of the computation

have at most [log 2 x] + 1 bits in their binary expansions.

By arithmetic operations we mean additions, subtractions, multiplications and

divisions. Since any such operation on k bit integers takes O(k 2) bit operations using the

usul algorithms, the difference between counting arithmetic operations and bit operations

is a multiplicative factor of O((log x)2). Consequently Theorem A implies that the

Extended Meissel-Lehmer method computes π(x) in O(x 2/3 + ε) bit operations using

O(x 1/3 + ε) bit locations of storage.

The constants implied by the O-symbols in Theorem A depend on ε > 0. The O(x ε)

terms in Theorem A can be replaced by lower order terms by a more detailed running

time analysis than we give; for example, it can be shown that the algorithm described in

Section 3 halts after at most O(x 2/3 (log x)4) bit operations using at most

O(x 1/3 (log x)2) bit locations of space. At the end of Section 3 we explain why we are

unable to improve the exponent of the running time bound below 2/3 for an algorithm of

Meissel-Lehmer type, even if more space locations are available. On the other hand, one

- 4 -

can find variants of the Extended Meissel-Lehmer algorithm which use less space,

provided a running time of more than O(x 2/3) is allowed.

In addition, one can further speed up the computation of π(x) using parallel

processing. We consider a model of parallel processing in which simultaneous transfers

of information are allowed. We assume that we have M processors, which are arranged

as the first M leaves of a complete balanced binary tree having 2k leaves, where

2k − 1 < M ≤ 2k , and that the nonleaf nodes are occupied by switches. In a single time

unit, a bit of information can be transmitted over any of the edges in the tree together

with its destination (which will consist of  log 2 M  bits). This model allows many

messages to be transmitted simultaneously between different processors, provided the

message paths do not intersect. We propose an algorithm called the Extended Parallel

Meissel-Lehmer method, and prove in Section 4 the following result.

Theorem B. For any M with 1 ≤ M ≤ x 1/3 the Extended Parallel Meissel-Lehmer

algorithm computes π(x) using M Random Access Machine parallel processors using at

most O(M − 1 x 2/3 + ε) arithmetic operations, and at most O(x 1/3 + ε) storage locations for

each parallel processor, i.e. O(Mx 1/3 + ε) storage locations in all, for any ε > 0. All

integers used in the course of the computation have length at most [log 2 x] + 1 bits in

their binary expansions.

The constants implied by the O-symbols in Theorem B depend on ε > 0 and not on M in

the range 1 ≤ M ≤ x 1/3 . The O(x ε) terms in Theorem B can be replaced by lower order

terms like O((log x)4) by a more detailed running time analysis of the algorithm

described in the text.

- 5 -

Theorem B logically includes Theorem A. We prove Theorem A separately because

a somewhat simplified algorithm and running time analysis is possible in this case.

The algorithms described in Sections 3 and 4 were designed to facilitate their

asymptotic running time analysis, and have inefficiences from the viewpoint of practical

computation. In Section 5 we describe modifications of the Extended Meissel-Lehmer

method which improve its performance in practice. The second author implemented a

version of the algorithm described in Section 5 on an IBM 3081, and used it to compute

various values of π(x), the largest being x = 4×1016 . These results are described in

Section 6.

Several authors [5], [9] have noted that algorithms of the Meissel-Lehmer type can be

developed to compute the function π(x;k ,l) which counts the number of primes p ≤ x in

the arithmetic progression k(mod l), as well as summatory functions of other

multiplicative integer-valued functions. The ideas underlying the Extended Meissel-

Lehmer algorithm also carry over to these situations.

The first and third authors [7] have found an entirely different algorithm for

computing π(x) which runs in O(x 3/5 + ε) time and uses O(x ε) space, which can also be

speeded up using parallel processors. It is based on ideas from analytic number theory

related to the "explicit formulae" for π(x). The algorithm of [7] seems considerably

more difficult to program than the Extended Parallel Meissel-Lehmer method, and the

constants implied by the O-symbols in [7] are probably rather large. Consequently,

despite its asymptotic superiority, the algorithm of [7] is very likely not competitive with

the Extended Parallel Meissel-Lehmer method for computing π(x) for x ≤ 1017 .

- 6 -

Some of the results of this paper are sketched in the announcement [6], which

describes a simpler variant of the Extended Meissel-Lehmer algorithm which requires

O(x 2/3 + ε) storage space.

2. Algorithms of Meissel-Lehmer Type

We first describe the basic structure of algorithms of Meissel-Lehmer type, following

the treatment of Lehmer [9]. Let p 1 ,p 2 ,p 3 , ... denote the primes 2 , 3 , 5 , ... numbered in

increasing order, and for a ≥ 1 let

φ(x ,a) =  { n≤x: p n = > p > p a } ,

denote the partial sieve function which counts numbers ≤ x with no prime factor less

than or equal to p a , and let

P k (x ,a) =  { n≤x: n =
j = 1
Π

k
p m j

, m j > a for 1 ≤ j ≤ k }

denote the k-th partial sieve function, which counts numbers ≤ x with exactly k prime

factors, none smaller than or equal to p a . We set P 0 (x ,a) = 1. We then have the

identity

φ(x ,a) = P 0 (a ,x) + P 1 (x ,a) + P 2 (x ,a) + ... , (2.1)

where the sum on the right has only finitely many nonzero terms. Now

P 1 (x ,a) = π(x) − a , (2.2)

so that if one can compute φ(x ,a), P 2 (x ,a), P 3 (x ,a), etc., one can obtain π(x).

Meissel-Lehmer methods split the computation of π(x) into two parts, which are the

computation of the P i (x ,a) and that of φ(x ,a).

- 7 -

The computation of the P i (x ,a) is the simpler of the two parts. In the Extended

Meissel-Lehmer method, we will take a = π(x 1/3) in which case

P 3 (x ,a) = P 4 (x ,a) = ... = 0, so we need only consider the computation of P 2 (x ,a)

here. The computation of P 2 (x ,a) is based on the formula

P 2 (x ,a) =  { n: n≤x , n = p b p c with a < b ≤ c }

=
j = a + 1
Σ

π(x 1/2)
 { n: n≤x , n = p j p k with j ≤ k ≤ π(

p j

x_ __) }

=
j = a + 1
Σ

π(x 1/2)
(π(

p j

x_ __) − j + 1)

= (2
a) − (2

π(x 1/2)) +
j = a + 1
Σ

π(x 1/2)
π(

p j

x_ __) , (2.3)

which is valid whenever a ≤ π(x 1/2). The sum on the right side of (2.3) is evaluated by

completely sieving the interval [1 , [
p a + 1

x_____]] to compute all the π(
p j

x_ __). For

a = π(x 1/3) this interval is a subinterval of [1 ,N], where N = [x 2/3] and so the

evaluation of P 2 (x ,a) can be done in O(x 2/3 + ε) arithmetic operations. There are more

complicated identities for those P k (x ,a) with k ≥ 3 which are derived in a way similar

to (2.3), see [9].

We now consider the computation of the term φ(x ,a). Meissel-Lehmer methods

accomplish this by repeated use of the recurrence

φ(x ,a) = φ(x ,a − 1) − φ(
p a

x_ __ ,a − 1) . (2.4)

One may think of the process of applying (2.4) repeatedly as creating a rooted binary tree

(Figure 1) starting from the root node φ(x ,a). Each application of the rule (2.4) splits a

- 8 -

φ(x ,a)

φ(x ,a − 1) − φ(
p a

x_ __ ,a − 1)

φ(x ,a − 2) − φ(
p a − 1

x_____ ,a − 2) − φ(
p a

x_ __ ,a − 2) φ(
p a p a − 1

x_ _______ ,a − 2)

Figure 1. Binary tree for the computation of φ(x ,a).

node into two leaves corresponding to the terms on the right side of (2.4) (See Figure 1).

At all times in this process φ(x ,a) is equal to the sum (with the signs indicated) of the

terms associated with the leaves of the rooted tree. At some point a truncation rule is

applied to terminate the growth of the tree, and the contributions of the leaves are added

up to compute φ(x ,a). Variants of the Meissel-Lehmer algorithm are obtained by using

different truncation rules and different methods to evaluate the contributions of the

leaves. We note that the nodes of the binary tree are uniquely identified by ordered pairs

(n ,b) where

n = p a 1
... p a r

with a ≥ a 1 > ... > a r ≥ b + 1 . (2.5)

The node (n ,b) has the associated term (− 1) r φ(
n
x_ _ ,b). In practice it is not necessary to

construct the tree explicitly; all that is needed is a way to evaluate the contribution of the

leaves.

- 9 -

As an example, Lehmer [9] uses the following truncation rule.

Truncation Rule L. Do not split a node labelled ± φ(
n
x_ _ ,b) if either of the following

holds.

(i)
n
x_ _ < p b .

(ii) b = c(x), where c(x) is a very slowly growing function of x.

Lehmer chose c(x) equal to the constant 5 for his computation. He computed the

contribution of the leaves using the formula

φ(y ,b) = 1 if y < p b , (2.6)

for leaves of type (i) and the formula

φ(y ,c) = [
Q
y_ __] φ(Q) + φ(y − [

Q
y_ __] Q ,c) , (2.7)

for leaves of type (ii), where c = c(x), Q =
i≤c(x)
Π p i and a precomputed table of

{φ(y ,b) : 1 ≤ y ≤ Q } is available.

The defect of previous variants of the Meissel-Lehmer method that we have

examined is that they have too many leaves. For example, in Lehmer’s algorithm

a = π(x 1/4), and the tree has nodes corresponding to φ(
n
x_ _ ,s − 1) for all n = p s p t p u p v

where 6 ≤ s < t < u < v ≤ a, and there are roughly
24
1_ __ a 4 = Ω(

(log x)4

x_ _______) of them.

The novel features of the Extended Meissel-Lehmer method are the use of a new

truncation rule and a new method for evaluating the contribution of the leaves to compute

- 10 -

φ(x ,a) where a = π(x 1/3). The truncation rule is as follows.

Truncation Rule T. Do not split a node labelled ± φ(
n
x_ _ ,b) if either of the following

holds.

(i) b = 0 and n ≤ x 1/3 .

(ii) n > x 1/3 .

We call leaves of type (i) ordinary leaves and leaves of type (ii) special leaves. The

resulting binary tree does not have very many leaves, as we now show.

Lemma 2.1. The rooted binary tree resulting from applying Truncation Rule T to φ(x ,a)

with a = π(x 1/3) has at most x 1/3 ordinary leaves and at most x 2/3 special leaves.

Proof. The first thing to observe is that no two leaves (n ,b) have the same value of n.

Indeed if (n ,d) and (n ,b) are nodes with d ≥ b, then there is a descending path through

the tree with nodes (n ,d − 1) , ... , (n ,b + 1) , (n ,b) so that (n ,d) cannot be a leaf. It

follows that there are at most x 1/3 ordinary leaves.

To bound the number of special leaves, we use the fact that a special leaf (n ,b) has

the father node (n * ,b + 1) where

n = n * p b + 1 . (2.8)

Furthermore

n > x 1/3 ≥ n * (2.9)

because (n * ,b + 1) is not a special leaf. Now (2.9) implies that there are at most x 1/3

- 11 -

choices for n *, and there are at most a = π(x 1/3) choices for p b + 1 in (2.8). Hence there

are at most x 2/3 choices for n in (2.8), and thus at most x 2/3 special leaves.

The Extended Meissel-Lehmer Method computes the contributions of the leaves

resulting from Truncation Rule T by a partial sieving process applied to the interval

[1 ,N] where N = [x 2/3]. The sieving is done on successive subintervals of length x 1/3

to reduce the storage requirements of the algorithm. A special data structure (the array

{(a(i , j) } given by (3.9) below) is used to allow fast storage and retrieval of the

intermediate partial sieving results as they are produced.

We now describe the Extended Meissel-Lehmer algorithm in detail and analyze its

asymptotic running time.

3. The Extended Meissel-Lehmer Algorithm

The Extended Meissel-Lehmer algorithm computes π(x) using the formula (2.1) with

a = π(x 1/3), so that

π(x) = a − P 2 (x ,a) + φ(x ,a) . (3.1)

The algorithm splits into two parts, one to compute P 2 (x ,a), the other to compute

φ(x ,a). We first describe the algorithm to compute P 2 (x ,a).

Algorithm P 2P 2

This algorithm computes P 2 (x ,π(x 1/3)) using the formula

P 2 (x ,π(x 1/3)) = (2
π(x 1/3)) − (2

π(x 1/2)) +
x 1/3 < p≤x 1/2

Σ π(
p
x_ _) . (3.2)

The main difficulty is the computation of the sum on the right side of (3.2). To compute

- 12 -

this sum we will sieve the interval [1 ,x 2/3] and use the result to determine all the values

of π(
p
x_ _) in the sum. To keep down the space requirements of the algorithm we divide

the interval [1 ,x 2/3] into at most x 1/3 + 1 blocks of length N = [x 1/3], and sieve these

blocks sequentially, keeping exactly one block in storage at a time. The jth block is

B j = [(j − 1) N + 1 , j N], except that the last block is a possibly short block with largest

element [x 2/3].

In what follows we use the phrase to completely sieve an interval [x , y] to mean

sieving out from the interval all proper multiples of all primes p ≤ y 1/2 , so that the

sieved interval contains exactly the primes in [x , y].

In an initial precomputation we completely sieve the first block and create an ordered

list P of all primes p ≤ x 1/3 , for use in subsequent sieving. We also determine π(x 1/3).

We now process the blocks B j sequentially. During the jth pass we are given as input

π((j − 1) N) saved from the last pass. We sieve out from the block B j all proper

multiples of all primes from our list P, which completely sieves B j because it contains

only integers ≤ x 2/3 . We now use the sieved list and π((j − 1) N) to compute the list

{π(y) : (j − 1) N + 1 ≤ y ≤ j N }. We determine π(x 1/2) when the appropriate block B j

for which (j − 1) N + 1 ≤ x 1/2 < j N + 1 is being processed. Our next step is to locate all

primes p with x 1/3 < p ≤ x 1/2 such that

(j − 1) N + 1 ≤
p
x_ _ < j N + 1 .

This will occur if and only if p is a prime lying in the half-open interval

- 13 -

I j = (
j N + 1

x_ _____ ,
(j − 1) N + 1

x_ __________] ∩ (x 1/3 ,x 1/2] .

Our next step is to sieve out from the interval I j all proper multiples of all primes ≤ x 1/4 ,

which completely sieves it because I j contains no elements > x 1/2 . Also note at this

point that all the intervals I j are disjoint. Now we have located all the primes { p: p ∈ I j }.

Next we compute the set { y = [
p
x_ _] : p ∈ I j }, and evaluate the sum

∆ j =
p ∈ I j

Σ π(
p
x_ _)

in one pass through the list {π(y) : (j − 1) N + 1 ≤ y ≤ j N }. Then we add ∆ j to an

accumulator

S j = S j − 1 + ∆j =
i = 1
Σ
j

∆ i .

Finally we empty storage of everything except the list P of primes ≤ x 1/3 , π(x 1/3),

π(j N), S j and π(x 1/2) (if known), and proceed on to process block B j + 1 .

At the end of this process the accumulator contains

S =
x 1/3 < p≤x 1/2

Σ π(
p
x_ _)

and we also know π(x 1/3) and π(x 1/2). We then compute P 2 (x ,π(x 1/3)) using (3.2).

Lemma 3.1. Algorithm P 2 computes P 2 (x ,π(x 1/3)) using at most O(x 2/3 + ε) arithmetic

operations and at most O(x 1/3 + ε) storage locations on a RAM. All integers stored have

at most [log 2 x] + 1 bits in their binary expansions.

Proof. It is clear that Algorithm P 2 correctly computes P 2 (x ,π(x 1/3)), and that the

- 14 -

integers stored during the course of the computation are of length at most [log 2 x] + 1

bits in binary.

To bound the running time, we observe that the main contribution to it is the sieving

of the intervals B j , which requires O(x 2/3 + ε) arithmetic operations. The auxiliary

sieving of the intervals I j requires only O(x 7/12 + ε) arithmetic operations, since all the

intervals I j are disjoint and lie in [1 ,x 1/2], and each is sieved by primes up to x 1/4 only.

It is easily checked that the remainder of the algorithm requires at most O(x 2/3 + ε)

arithmetic operations.

To bound the space requirements, we note that the lists P and

{π(y) : (j − 1) N + 1 ≤ y ≤ j N } require at most O(x 1/3) storage locations. Also at most

one block B j and one block I j are in storage at any time, and each of these uses at most

O(x 1/3 + ε) storage locations. To see this for I j , note that we must have
j N + 1

x_ _____ < x 1/2

for I j to be nonempty, so that j N + 1 > x 1/2 . Hence I j contains at most

(j − 1) N + 1
x_ __________ −

j N + 1
x_ _____ + 1 ≤

((j − 1) N + 1)2

Nx_ _____________ + 1 ≤ 2x 1/3

integers. The remaining space requirements are asymptotically negligible.

Remark. It is easy to extend the method of Algorithm P 2 to compute P 2 (x ,π(x α)) in

O(x 1 − α + ε) arithmetic operations using O(x 2
1 − α_____ + ε

) storage locations. To do so one

sieves the interval [1 ,x 1 − α] broken up into blocks of length x 2
1 − α_____

.

Now we describe an algorithm to compute φ(x ,π(x 1/3)).

- 15 -

Algorithm φ φ

This algorithm computes φ(x ,π(x 1/3)) using the formula derived from (2.4) using

Truncation Rule T. This is

φ(x ,π(x 1/3)) =

ordinary leaf
(n , 0) an

Σ µ(n) φ(
n
x_ _ , 0)

+

special leaf
(n ,b) a
Σ µ(n) φ(

n
x_ _ ,b) , (3.3)

where µ(n) is the Mo
. .
bius function, which is given by

µ(n) =





î 0

(− 1) ω(n)

otherwise .

prime factors of n .

if n is squarefree , and ω(n) is the number of
(3.4)

Here:

(1) (n , 0) is an ordinary leaf exactly when n is squarefree and n ≤ x 1/3 .

(2) (n ,b) is a special leaf exactly when n = p a 1
... p a r

, where

π(x 1/3) ≥ a 1 > a 2 > ... > a r = b + 1, and

n > x 1/3 ≥
p b + 1

n_____ .

Let S 1 and S 2 denote the sums in (3.3) over the ordinary and special leaves respectively.

As a first step Algorithm φ constructs an ordered list of all primes p ≤ x 1/3 , which is

stored and used throughout the remainder of the algorithm.

The contribution S 1 of the ordinary leaves is easy to compute. We obtain a list of all

- 16 -

squarefree integers n in the interval [1 , [x 1/3]] along with µ(n) by a simple sieving

procedure. We start with each cell containing a 1. We sieve by all primes p < x,

multiplying each element sieved by − 1. Then we sieve by squares of primes p 2 for all

p < x 1/6 , and put a zero in each cell thus sieved. After this sieving the content of cell n

is just µ(n). Then

S 1 =
n = 1
Σ

[x 1/3]
µ(n) φ(

n
x_ _ , 0) .

We compute φ(
n
x_ _ , 0) using the formula

φ(
n
x_ _ , 0) = [

n
x_ _]

and add up the terms µ(n) φ(
n
x_ _ , 0) successively in an accumulator to compute S 1 .

The computation of the contribution S 2 of the special leaves is the most complicated

part of Algorithm φ. We first note that special leaves (n ,b) have the form

n = n * p b + 1 (3.5)

where (n * ,b + 1) is the father node of (n ,b) in the binary tree, and that

n * = p a 1
... p a j

with a ≥ a 1 > ... > a j > b + 1 (3.6)

and necessarily

n > x 1/3 ≥ n * .

In an initial preprocessing step, we prepare an ordered array

F = {(m , f (m) ,µ(m)) : 1 ≤ m ≤ [x 1/3] } (3.7)

- 17 -

where f (m) is the least prime factor of m and µ(m) is given by (3.4). The array F is

constructed by first sieving the interval [1 ,x 1/3] by all primes less than x 1/3 in increasing

order, setting f (m) = p the first times m is sieved out by same prime p, and computing

the values of µ(m) by the sieving process described earlier.

The main computation of the contribution S 2 is performed via a partial sieving of the

interval [1 ,x 2/3] by all primes p ≤ x 1/3 . To reduce the space requirements of the

algorithm, this interval is divided up into at most N + 2 blocks of length N = [x 1/3],

which are sieved in order one at a time. The k-th block B k is given by

B k = [(k − 1) N + 1 ,kN]

and the last block may be short.

We now describe the sieving of the k-th block B k . The algorithm has available from

the sieving of the previous blocks the table

{φ((k − 1) N , j) : 1 ≤ j ≤ a } . (3.8)

We sieve the block successively by the primes p 1 ,p 2 , ... ,p a , where a = π(x 1/3). To

keep track of the intermediate results after sieving by all primes up to a given prime p b ,

we employ an array

{ a(i , j) : 0 ≤ i ≤ [log 2 N] and 1 ≤ j ≤ [
2i

N_ __] + 1} (3.9)

where a(i , j) counts the number of currently unsieved elements in the subinterval

I i , j = [(k − 1) N + (j − 1) 2i + 1 , (k − 1) N + j2i] ,

where the subintervals corresponding to j = [
2i

N_ __] + 1 may be shorter. In particular

- 18 -

a(0 , j) =





î 1

0

if (k − 1) N + j is currently unsieved .

if (k − 1) N + j is currently sieved out ,

To update this array when we are sieving by the prime p k and we have just sieved out

the element (k − 1) N + l for the first time, we decrement by 1 the array elements a(0 ,l),

a(1 , [
2

l + 1_ ____]), a(2 , [
4

l + 3_ ____]) , ... whose associated intervals contain (k − 1) N + l.

Now suppose we have finished sieving the block B k by the prime p b , having already

sieved B k by p 1 , ... ,p b − 1 . Given an integer y = (k − 1) N + l in the interval B k , we can

easily compute the value φ(y ,b) using the formula

φ(y ,b) = φ((k − 1) N ,b) +
r = 1
Σ
m

a(e r , 1 +
s < r
Σ 2e s − e r) , (3.10)

where the e 1 > e 2 > ... > e m ≥ 0 are the exponents in the binary expansion of l, i.e.

l =
r = 1
Σ
m

2e r ,

and φ((k − 1) N ,b) is available in the table (3.8). We now calculate the contribution to

the sum S 2 of all special leaves (n ,b) for which

(k − 1) N + 1 ≤
n
x_ _ < kN + 1 , (3.11)

as follows. We have n = n * p b + 1 using (3.5), and we note that (3.11) implies that n *

satisfies

(kN + 1) p b + 1

x_ ____________ < n * ≤
((k − 1) N + 1) p b + 1

x_ _________________ (3.12)

- 19 -

Conversely, any n * ≤ x 1/3 which satisfies (3.6) corresponds to a unique special leaf

(n * p b + 1 ,b). Consequently we are looking for exactly those n * which lie in the interval

J k ,b = (
(kN + 1) p b + 1

x_ ____________ ,
((k − 1) N + 1) p b + 1

x_ _________________] ∩ [1 ,N] . (3.13)

We locate the least integer L and the largest integer U in the interval J k ,b and then

examine the array F of all m for which L ≤ m ≤ U. Those elements m in this interval

with

f (m) > p b + 1 and µ(m) ≠ 0

are exactly those n * for which (n ,b) is a special leaf with n = n * p b + 1 satisfying (3.11).

For each such m we compute

y =


 mp b + 1

x_ ______




= (k − 1) N + l

where by (3.10), 1 ≤ l ≤ N. We then calculate

µ(n) φ(
n
x_ _ ,b) = − µ(m) φ(y ,b) (3.14)

using (3.10), and add it to the accumulator computing S 2 . In this way we calculate the

contribution of all the special leaves (n ,b) with [
n
x_ _] in B k . At this point we compute

φ(kN ,b) using (3.10), and use it to update the table (3.8). We now proceed to the prime

p b + 1 . After all the primes up to x 1/3 have been processed, the table (3.8) is completely

updated and we proceed to block B k + 1 .

After all the blocks B k are sieved, the accumulator contains the value of S 2 .

- 20 -

Algorithm φadds S 1 and S 2 and halts.

Lemma 3.2. Algorithm φ computes φ(x ,π(x 1/3)) using at most O(x 2/3 + ε) arithmetic

operations and using at most O(x 1/3 + ε) storage locations. All integers stored during

the computation are of length at most [log 2 x] + 1 bits.

Proof. The correctness of Algorithm φ is easy to check, as is the length of integers stored

during the computation.

To obtain the time and space bounds, we observe first that the evaluation of the sum

S 1 over the ordinary leaves requires at most O(x 1/3 + ε) arithmetic operations and uses at

most O(x 1/3 + ε) storage locations. Also the evaluation of the sum S 2 over the special

leaves uses at most O(x 1/3 + ε) storage locations, since at most one block B k is in storage

at any time, along with the table (3.8), the array (3.9), the list of primes p ≤ x 1/3 and the

list F of (3.7). To obtain the time bound O(x 2/3 + ε) we examine the procedure of sieving

by blocks. The sieving operations for a given block B k require at most O(x 1/3 log log x)

arithmetic operations, and the number of updating operations of the array { a(i , j) } in

(3.9) during each block B k takes O(x 1/3 log x) arithmetic operations. This adds up to

O(x 2/3 + ε) arithmetic operations when summed over all blocks. Also it takes O(x ε) bit

operations to compute each value µ(n)φ(
n
x_ _ ,b) using (3.10) and (3.14) and since there

are at most x 2/3 special leaves by Lemma 2.1, this takes at most O(x 2/3 + ε) arithmetic

operations in all. Finally, we must bound the number of operations involved in

determining the sets

- 21 -

V k ,b = { n *: (n * p b + 1 ,b) is a special leaf and


 n * p b + 1

x_ _______




is in the interval B k } ,

which is done just after the block B k has been sieved by p 1 , ... ,p b . The sets V k ,b are

determined by checking all m in the interval J k ,b given by (3.13) against the array F

given by (3.7), and this takes O( J k ,b  x ε) arithmetic operations, where  J k ,b  denotes

the number of integers in J k ,b . Consequently it will suffice to show that

T =
b = 1
Σ

a − 1

k = 1
Σ

N + 1
 J k ,b  ≤ 12x 2/3 . (3.15)

To do this, we first note that for k = 1 the sets J 1 ,b are all empty since B 1 = [1 ,N]

where N = [x 1/3], while all special leaves (n ,b) have
n
x_ _ ≥ N + 1. (Indeed the largest n

in a special leaf has n ≤ N(N − 2) and then
n
x_ _ ≥ N + 1.) So it suffices to treat the sum in

(3.15) when k ≥ 2. If k ≥ 2, then (3.12) gives

 J k ,b  ≤ 1 +
k(k − 1) Np b + 1

x_ _____________ ≤
k(k − 1) b

2x 2/3
_ ________ + 1 ,

while

 J k ,b  ≤ x 1/3 .

by (3.13). Combining these inequalities, we have

T ≤
b = 1
Σ

[2x 1/3]

k = 2
Σ
∞

min


î
x 1/3 ,

k(k − 1) b
2x 2/3

_ ________




+ x 2/3 . (3.16)

Now

- 22 -

k = 2
Σ
∞

min


î
x 1/3 ,

k(k − 1) b
2x 2/3

_ ________




≤ 2x 1/3


î b 1/2

x 1/6
_ ____





+
b

2x 2/3
_ _____

k = [x 6
1_ __

b
−

2
1_ __

] + 1

Σ
∞

k(k − 1)
1_ _______

≤ 6
b 1/2

x 1/2
_ ____ . (3.17)

Substituting (3.17) in (3.16) yields

T ≤ 6x 1/2


î b = 1

Σ
[2x 1/3]

b 1/2

1_ ____




+ x 2/3 ≤ 20x 2/3

the desired result.

Proof of Theorem A. This follows from Lemma 3.1 and Lemma 3.2, using the formula

(3.1).

We do not see how to reduce the exponent of the running time bound in Theorem A

below 2/3. This conclusion is explained by the following heuristic argument. Suppose

there existed a Meissel-Lehmer type algorithm with an asymptotic running time exponent

β smaller than 2/3, which computed π(x) using the formula

π(x) = a − 1 −
j = 2
Σ

[log 2 x]

P j (x ,a) + φ(x ,a) ,

for some sieving limit p a . By the remark after Lemma 3.1, it seems that we must have

a ≥ π(x 1 − β)

to compute P 2 (x ,a) in O(x β) arithmetic operations. Now consider computing φ(x ,a).

In order to keep the time bound O(x β) we can only afford to sieve the interval [1 ,x β].

Hence it appears that we cannot evaluate nodes (n ,b) in the binary tree for φ(x ,a) having

- 23 -

n < x 1 − β by a direct sieving. We know of no other way than sieving to quickly evaluate

many such values φ(
n
x_ _ ,b) when b is large. Thus it appears that we must split all such

nodes in the binary tree, consequently the tree must contain all nodes corresponding to

(p r p s ,s − 1) where

a ≥ p r ≥ p s ≥ x 1 − β /2 ,

and there are roughly x 2 (1 − β) such nodes in the tree. Since the number of leaves exceeds

the number of nodes, there are at least x 2 (1 − β) leaves. Computing the contribution of

these leaves one at a time requires a running time exponent at least 2 (1 − β), which

exceeds 2/3, a contradiction.

This heuristic argument suggests that to improve the running time exponent below

2/3 one needs at least one of:

(i) A faster way to compute P 2 (x ,a) than that given after Lemma 3.1.

(ii) A new method to evaluate the contribution of many leaves (n ,b) when n is

small and b is large.

4. The Extended Parallel Meissel-Lehmer Algorithm

We now adapt the Meissel-Lehmer algorithm to the case where there are M parallel

processors, with M ≤ x 1/3 . We compute π(x) via formula (3.1), using separate

algorithms for computing P 2 (x ,a) and φ(x ,a), where a = π(x 1/3). Both algorithms

have three phases, an initialization phase in which the interval [1 , [x 2/3]] to be sieved is

divided into at most M subintervals, a sieving phase and a final accumulation phase

during which the results of the processors are combined to compute the final answer.

- 24 -

The parallel processing algorithm for computing P 2 (x ,a) is the simpler of the two

algorithms.

Algorithm Parallel P 2P 2 .

In the initialization phase, the interval [1 , [x 2/3]] is subdivided into M subintervals.

We let L =


 M

x 2/3
_ ____





+ 1 and set subinterval B j = [(j − 1) L + 1 , j L] for 1 ≤ j ≤ M − 1

and set B M = [(M − 1) L , [x 2/3]]. Also one processor sieves the interval [1 , x 1/3] and

computes π(x 1/3) and a list P of all primes up to x 1/3 . The list P is available to all

processors until the end of the algorithm. (Note that the space bounds of Theorem B

permit each processor to store the list P separately throughout the algorithm.)

To describe the sieving phase, we introduce some notation. Let I = [a + 1 ,b + 1) be

a half-open interval with integer endpoints, and let S(I) denote the following set of

values associated to the interval I:

(i) The number of primes π
_

(I) in the interval, i.e.

π
_

(I) = π(b) − π(a) .

(ii) The number of n(I) of primes p in the set

A(I) =


î
p:

b + 1
x_ ____ < p ≤

a + 1
x_ ____ and x 1/3 < p ≤ x 1/2





.

(iii) The sum

- 25 -

t(I) =
p ∈ A(I)
Σ





π



î p

x_ _




− π(a)





=
p ∈ A(I)
Σ π



î p

x_ _




− n(I) π(a) . (4.1)

An important observation is that given the values S(I 1) and S(I 2) for two contiguous

intervals I 1 = [a + 1 ,b + 1) and I 2 = [b + 1 ,c + 1), it is easy to compute the values S(I)

for the concatenated interval I = I 1 ∪ I 2 = [a + 1 ,c + 1) using the formulae

π
_

(I) = π
_

(I 1) + π
_

(I 2) , (4.2)

n(I) = n(I 1) + n(I 2) , (4.3)

and

t(I) = t(I 1) + t(I 2) + π
_

(I 1) n(I 2) . (4.4)

Now we can describe the sieving phase of the algorithm. Each processor j computes

the information S(B j). This is done by breaking the interval B j down into subintervals

C i j of length N = [x 1/3] and sieving each of these subintervals sequentially with only

one subinterval in storage at any time. There are at most 
M

x 1/3
_ ____  + 2 such subintervals.

For each subinterval C i j the information S(C i j) is computed during the sieving of that

subinterval by a method exactly like that of Algorithm P 2 described in Section 2. By

sieving the intervals C i j in increasing order, we may calculate

S(C 1 j ∪ C 2 j ∪ ... ∪ C i j) after the ith block is sieved, using the previously calculated

data S(C 1 j ∪ ... ∪ C (i − 1) j) and the just computed S(C i j) using (4.2)-(4.4), then

- 26 -

discarding S(C 1 j ∪ ... ∪ C (i − 1) j). After the last interval C i j is processed the

calculated data is S(B j).

In the accumulation phase the information S(B j) for 1 ≤ j ≤ M is combined to yield

S(I) where I = [1 , [x 2/3] + 1). A simple method to do this, which is sufficient to obtain

the required time and space bounds, is to move all the information S(B j) for 1 ≤ j ≤ M

to the first processor and then sequentially calculate S(B j ∪ ... ∪ B i) for 1 ≤ i ≤ M

using (4.2)-(4.4). At the final step S(I) is calculated. This gives

n(I) = π(x 1/2) ,

t(I) =
x 1/3 < p≤x 2/3

Σ π(
p
x_ _) ,

since π(0) = 0. Then we calculate

P 2 (x , π(x 1/3)) = 
î 2
n(I)

 −


î 2
π(x 1/3)


+ t(I) .

Lemma 4.1. Algorithm Parallel P 2 using M parallel RAM processors with M ≤ x 1/3

computes P 2 (x , π(x 1/3)) using O (M − 1 x 2/3 + ε) arithmetic operations on each

processor and O(x 1/3 + ε) storage locations on each processor, using words of length

 log 2 x  + 1 bits.

Proof. This is straightforward. The initialization and accumulation phases clearly use

O(x 1/3 + ε) arithmetic operations, and O(x 1/3 + ε) storage locations. In the sieving phase

the sieving of each interval C i j is seen to require O(x 1/3 + ε) arithmetic operations at

O(x 1/3 + ε) storage locations as in Lemma 3.1. There are at most O


î M

x 1/3
_ ____





such

- 27 -

intervals sequentially sieved on each processor, yielding a count of O


î M

x 2/3 + ε
_ ______





arithmetic operations.

We now describe our parallel processing algorithm for computing φ(x , π(x 1/3)).

Algorithm Parallel φ φ.

In the initialization phase, the interval [[x 1/3] , [x 2/3] + 1) is subdivided into at

most M subintervals in such a way as to approximately equalize the running times of all

processors in the sieving phase. The two major contributions to the running time in the

sieving phase arise from the sieving process itself and from computing the contribution

of the special leaves. For any subinterval I = [y 1 ,y 2) with y 1 ≥ [x 1/3] we define the

sieving cost by

C S (I) = y 2 − y 1 (4.5)

and the special leaf cost by

C L (I) = x


î y 1

1_ __ −
y 2

1_ __




. (4.6)

Note that both of these functions are additive on disjoint subintervals of

J = [[x 1/3] , [x 2/3] + 1), and that

C S (J) ≤ x 2/3

C L (J) ≤ x 2/3 (4.7)

We subdivide J into at most M subintervals { Bi
∗ : 1 ≤ i ≤ M } with Bi

∗ = [z i − 1 , z i) by

setting z 0 = [x 1/3] and then, after z i − 1 is chosen, selecting z i so that z i is minimal with

- 28 -

respect to the property that

MAX (C S ([z i − 1 , z i)) , C L ([z i − 1 , z i))) >
M

2x 2/3
_ _____ . (4.8)

If no such z i ≤ [x 2/3] exists, set z i = [x 2/3]. To compute z i explicitly, we observe that

(4.5) implies that C S ([z i − 1 , z i)) >
M

2x 2/3
_ _____ exactly when

z i >
M

2x 2/3
_ _____ − z i − 1 , (4.9)

and (4.6) implies that C L ([z i − 1 , z i)) >
M

2x 2/3
_ _____ exactly when

z i >
Mx 1/3 − 2z i − 1

Mx 1/3 z i − 1_ ____________ provided 2z i − 1 < Mx 1/3 ,

and that no such z i exists if 2z i − 1 ≥ Mx 1/3 . Hence z i is easily computed using

z i =









î
MIN{[x 2/3] , 1 + [

M
2x 2/3
_ _____ − z i − 1] }

MIN{[x 2/3] , 1 + [
M

2x 2/3
_ _____ − z i − 1] , 1 + [

Mx 1/3 − 2z i − 1

Mx 1/3 z i − 1_ ____________] }

if 2z i − 1 ≥ Mx 1/3 .

if 2z i − 1 < Mx 1/3 .

(4. 10 b)

(4. 10 a)

(We verify in Lemma 4.2 below that this method divides ([x 1/3] , [x 2/3] + 1) into at

most M subintervals.)

Also in the initialization phase, we completely sieve the interval [1 , [x 1/3]] and

compute:

(i) A list P of all primes p ≤ x 1/3 .

- 29 -

(ii) An array {φ(z 0 ,i) : 1 ≤ i ≤ π(x 1/3) } of the partial sieve function values,

where z 0 = [x 1/3].

(iii) The array F = {(m , f (m) ,µ(m) : 1 ≤ m ≤ [x 1/3] } given by (3.7).

(iv) The contribution S 1 of the ordinary leaves computed via (3.5).

To describe the sieving phase, we introduce some notation. Let I = [a + 1 ,b + 1) be

a half-open interval with integer endpoints, and let S *(I) denote the following set of

values associated to the interval I.

(i) An array T(I) of partial sieving information for the interval I. Here

T = {ψ i (I) : 1 ≤ i ≤ π(x 1/3) } ,

where

ψ i (I) = φ(b ,i) − φ(a ,i) (4.11)

denotes the number of elements in the interval I not sieved out by the first i

primes.

(ii) An array R(I) counting special leaves. Here

R(I) = { r i (I) : 1 ≤ i ≤ π(x 1/3) } ,

where

r i (I) = Σ′ µ(n)

where the prime denotes the sum over all special leaves of the form (n ,i)

such that
n
x_ _ lies in the interval I.

- 30 -

(iii) The sum

u(I) =
i = 1
Σ

π(x 1/3)

(n ,i)
Σ ′ µ(n) [φ(

n
x_ _ , i) − φ(a ,i)] , (4.12)

where the prime means that the sum is over all special leaves (n ,i) for which

n
x_ _ lies in the interval I.

Given the values S *(I 1) and S *(I 2) for two contiguous subintervals I 1 = [a + 1 ,b + 1)

and I 2 = [b + 1 ,c + 1), we can directly compute the values S *(I) for the concatenated

interval I = I 1 ∪ I 2 = [a + 1 ,c + 1) using the formulae

ψ i (I) = ψi (I 1) + ψi (I 2) , (4.13)

r i (I) = r i (I 1) + r i (I 2) , (4.14)

for 1 ≤ i ≤ π(x 1/3), and

u(I) = u(I 1) + u(I 2) +
i = 1
Σ

π(x 1/3)
ψ i (I 1) r i (I 2) . (4.15)

Also, for the interval J = [[x 1/3] , [x 2/3] + 1) the sum u(J) gives the total

contribution of the special leaves.

Now we can describe the sieving phase of the algorithm. Processor j computes the

information S *(Bj
∗). If

length (Bj
∗) = z j − z j − 1 ≤ [x 1/3] ,

then Bj
∗ is sieved in one piece. If length (Bj

∗) > [x 1/3], then Bj
∗ is subdivided into

subintervals Ci j
∗ of length [x 1/3] (with one possibly short subinterval) and these are

sieved to compute the information S *(Ci j
∗). The information S *(Ci j

∗) is computed by a

- 31 -

method like that of Algorithm φ described in Section 3; the modifications needed are

described below. By sieving the intervals Ci j
∗ in increasing order, we may calculate

S *(C1 j
∗ ∪ ... ∪ Ci j

∗) after the ith subinterval is sieved, using the previously calculated

data S *(C1 j
∗ ∪ ... ∪ C(i − 1) j

∗) and the just computed S *(Ci j
∗) using (4.13)-(4.15). After

the last subinterval C i j is sieved, the calculated data is S *(Bj
∗).

To compute the information S *(I) for an interval I = [a + 1 ,b + 1), we use the same

data structure and formulae (3.4)-(3.14) as in Algorithm φ, with the following

modifications. We create an array of accumulators { v i : 1 ≤ i ≤ π(x 1/3) }. Just after the

interval I is sieved by the (i + 1)-st prime p i + 1 , we search for special leaves (n ,i) having

n
x_ _ ∈ I, where n = n * p i + 1 , and for each leaf found we add µ(n) = − µ(n *) to the

accumulator v i . We locate all such special leaves by finding exactly those n * in the

interval

J i (I) =


 (b + 1) p i + 1

x_ __________ ,
(a + 1) p i + 1

x_ __________




∩ [1 , [x 1/3]] (4.16)

which have f (n *) > p i + 1 and µ(n *) ≠ 0. After all these special leaves are found, the

value of v i is r i (I). To compute u(I) we use an accumulator to which, after sieving by

p i + 1 , we add the sum

∆ i =
(n ,i)
Σ ′ µ(n)




φ(

n
x_ _ , i) − φ(a ,i)





(4.17)

where the prime indicates this sum is over all special leaves (n ,i) with
n
x_ _ ∈ I. (Here i is

held fixed.) To compute the inner sum in (4.17) we use a modified form of (3.10), which

is

- 32 -

φ(y ,i) − φ(a ,i) =
r = 1
Σ
M

a


î
e r , 1 +

s > r
Σ 2e s − e r





(4.18)

where e 1 > ... > e m ≥ 0 are the exponents in the binary expansion of y − a.

In the accumulation phase, the information S *(Bj
∗) for 1 ≤ j ≤ M is combined to

compute S *(J) where J = [[x 1/3] , [x 2/3] + 1). Since combining the information

S *(I) from two continguous intervals requires on the order of x 1/3 arithmetic operations

(see (4.15)) we cannot use the sequential method of Algorithm Parallel P 2 . Instead we

combine intervals using a binary tree structure. We define

Ii
(j)

Ii
(0)

=

=

(i − 1) 2 j + 1≤k≤ i2 j
∪ Bk

∗ ,

Bi
∗ ,

1 ≤ i ≤ 
2 j

M_ __ 

1 ≤ i ≤ M

At step 0 we have S *(Ii
(0)) stored in processor i. At step j the values in processors 2i − 1

and 2i are combined and sent to processor i, for 1 ≤ i ≤
2 j + 1

M_ ____. If m j = 
2 j

M_ __  is odd,

then the information in processor m j is sent unchanged to processor
2

m j + 1_ _____. After

 log 2 M  + 1 such steps we have computed S *(J) in processor 1. The contribution S 2

of the special leaves is given in terms of S *(J) by

S 2 = u(J) .

Finally we compute

φ(x , [x 1/3]) = S 1 + S 2 .

Lemma 4.2. Algorithm Parallel φ using M parallel RAM processors with M ≤ x 1/3

computes φ(x , [x 1/3]) using O(M − 1 x 2/3 + ε) arithmetic operations on each processor

- 33 -

and O(x 1/3 + ε) storage locations on each processor, using words of length at most

 log 2 x  + 1 bits.

Proof. We first verify that Algorithm Parallel φ is correct. The main thing that requires

checking is that the initialization phase divides J = [[x 1/3] , [x 2/3] + 1) into at most

M subintervals. To see this, let K be the number of such subintervals. According to

(4.8), at least K − 1 of these subintervals I satisfy

C S (I) + C L (I) >
M

2x 2/3
_ _____ .

Now using (4.7) and the additivity of the functions C S and C L on disjoint intervals, we

have

2x 2/3 ≥ C S (J) + C L (J)

=
j = 1
Σ
K

[C S (Bj
∗) + C L (Bj

∗)] > 2x 2/3


î M

K − 1_ ____




.

Hence K − 1 ≤ M − 1 and K ≤ M follows.

It is easily checked that the running time of Algorithm Parallel φ requires O(x 1/3 + ε)

arithmetic operations using at most O(x 1/3 + ε) locations on a single processor to

complete the Initialization and Accumulation phases of the algorithm. Note here that

since there are ≤ x 1/3 processors, the z i can be computed sequentially using (4.10) in

O(x 1/3 + ε) arithmetic operations in the Initialization Phase. Also note that the

assumption concerning the simultaneous transfer of information between processors

(described just before the statement of Theorem B) is used in obtaining the O(x 1/3 + ε)

arithmetic operations bound for the Accumulation phase.

- 34 -

It remains to examine the sieving phase of the algorithm. We first observe that for

any interval B j ,

MAX (C S (B j) , C L (B j)) <
M

2x 2/3
_ _____ + 2x 1/3 . (4.19)

This inequality follows from the fact that z j was chosen to be the smallest integer

satisfying (4.8), and that C S and C L are additive on disjoint intervals, and that for any

interval I = [z , z + 1) with z ≥ [x 1/3] one has

MAX (C S (I) , C L (I)) ≤ 2x 1/3 .

Second, we observe that the main contributions to the running time of each processor in

the sieving phase come from the sieving operations and the special leaf computations.

The sieving operations on an interval I require O(C S (I) x ε + x 1/3 + ε) arithmetic

operations and the special leaf operations require O(C L (I) x ε + x 1/3 + ε) arithmetic

operations. For the special leaf operations case this bound arises from the total length of

the intervals J i (I) searched in (4.16). The time spent computing S *(B j) from the data

S *(Ci j
∗) is also at most O(C L (I) x ε) arithmetic operations. Finally the bound of

O(x 1/3 + ε) storage locations follows by observing that all intervals sieved are of length

≤ [x 1/3].

Proof of Theorem B. This is immediate from Lemma 4.1 and Lemma 4.2.

5. Practical Modifications of the Extended Meissel-Lehmer Method

Efficient implementation of the Extended-Meissel Lehmer method requires some

modifications to the algorithm presented in Section 3. These modifications are in the area

of changing the sieving limit slightly to gain a factor of log2 x in speed and of changing

- 35 -

the method of finding the special leaves contained in a given interval, to gain an

additional factor of log x.

In order to save space in the tables computed, as well as time in the actual sieving,

Truncation rule T is modified to:

Truncation rule T’. Do not split a node labelled ± φ(
n
x_ _ , b) if either of the following

holds.

(i) b = k and n ≤ y.

(ii) n > y.

Here y is some parameter, x 2/5 ≥ y ≥ x 1/3 , and k is some small integer (taken in the

actual implementation to be 5).

In order to find a good choice of y, it is necessary to get a good asymptotic formula

for the number of special leaves. More precisely, if the sieving limit is taken to be of the

form x / y, then the number of special leaves is the cardinality of the set

{ n n > y ,
δ(n)

n_ ____ ≤ y } ,

where n is square-free, not prime, and not divisible by primes < p k , and δ(n) denotes the

smallest prime factor of n. A simple upper bound for the cardinality of this set is yπ(y),

which is asymptotic to y 2 / log y. However, we have the following:

- 36 -

Lemma 5.1 The number of special leaves is

2
1_ _ π(y)2 + O(

log y
y 3/2

_ ____) .

Proof. We can divide the special leaves x / n into two classes: Those for which

δ(n) < √ y and those for which δ(n) ≥ √ y . The cardinality of the former set is

≤ yπ(√ y) which is O(y 3/2 / log y) because there are only π(√ y) possible choices for

δ(n). The cardinality of the latter set is exactly 1/2 (π(y) − π(√ y)) (π(y) − π(√ y) − 1)

because in that case we must have n = pq where √ y ≤ p < q. These two facts give the

result.

Finding the sieving limit. We use the above formula to find the best sieving limit.

The special leaves x / n maybe divided into four classes:

(1) Those leaves for which x 1/3 < δ(n) ≤ y.

(2) Those leaves for which √ x / y < δ(n) ≤ x 1/3 .

(3) Those leaves for which x / y 2 < δ(n) ≤ √ x / y .

(4) Those leaves for which δ(n) ≤ x / y 2 .

The contribution of each of the leaves in class (1) is 1, because in that case we have

n = pq, where q > p > x 1/3 and so x /(pq) < x 1/3 < p. The exact number of leaves

in class (1) is

2
(π(y) − π(x 1/3)) (π(y) − π(x 1/3) − 1)_ ______________________________ ,

which is also their total contribution. It takes constant time to calculate this. Each of the

- 37 -

leaves in class (2) is also of the form x /(pq). If q > x / p 2 then x /(pq) < p, so the

contribution of such a leaf is 1. We call such a leaf trivial. The number of such leaves is

p
Σ



î
π(y) − π(

p 2

x_ __)




,

where the sum is over primes p, √ x / y < p < x 1/3 . This number is also their

contribution. This sum takes time O(x 1/3) to calculate, once we have tabulated π(m) for

m ≤ y. All of the other leaves in class (2) satisfy √ y ≤ p ≤ x /(pq) ≤ p 2 , so we have

φ(x /(pq) , π(p) − 1) = 1 + π(x / pq) − π(p) + 1 .

We now derive a bound for the number of such leaves.

If e m − 1 √ x / y < p ≤ e m √ x / y , then the number of q such that p < q < x / p 2 is

O(y /(e 2m − 2 log x)), so the total number of pairs (p , q) is O(√ xy /(e m − 2 log2 x)).

Summing over all m gives O(√ xy /log2 x) nontrivial leaves in class (2). We may

evaluate each of the leaves in class (2) in constant time after doing O(y log log x)

preprocessing required to tabulate the values of π(m) for m ≤ y.

A leaf in class (3) is of the form x /(pq) because p > x / y 2 ≥ √ y . If a leaf x /(pq) in

class (3) satisfies q ≥ x /(yp), then x /(pq) ≤ y ≤ p 2 . We call such a leaf easy. A leaf in

class (3) which is not easy is hard. Each easy leaf maybe evaluated in constant time as

can each of those in class (2). The number of such leaves is O(√ xy /log2 x). We derive a

bound for the number of hard leaves. If e m − 1 x / y 2 < p ≤ e mx / y 2 , then the number of q

such that p < q < x /(yp) is O(y /(e m − 1 log x)). So the total number of pairs (p , q) is

O(x /(y log2 x)). For leaves of class (3) we have that m ≤ 1/2 log (y 3 / x). So the total

number of leaves in question is O((x log (y 3 / x))/(y log2 x)).

- 38 -

The number of leaves in class (4) is O(x /(y log2 x)).

The total amount of work done in the algorithm is

O(
y
x_ _ log

y
x_ _) ,

for the sieving, O(√ x log log x) for the finding the primes ≤ √ x in algorithm P 2 , and

O(x log log x + (log (y 3 / x)) (x / y) / log x + √ xy /log2 x) for the calculation of the leaf

sums. The first term is negligible, and the second is always dominated by the total

sieving cost. We choose y = cx 1/3 log2 x which balances the sieving and calculating

special leaves, giving time O(x 2/3 / log x). (In the actual implementation, a good value

of the constant c was determined empirically.) It is also necessary to account for the time

spent in actually finding the special leaves. We show below that using the proper data

structure, this is

O(√ xy /log2 x + Iy /log x) ,

where I is the number of intervals sieved. Thus, with the above choice of y we must have

I = O(x 1/3 / log2 x). This is satisfied if we take equal-sized intervals of length x 1/3 or

greater.

Finding the special leaves. In order to find the special leaves in the above quoted

time, we calculate for each prime p k ≤ √ y two parallel tables A k and M k . The value of

A k (j) is the j-th square-free n ≤ y such that δ(n) = p k . The value of M k (j) is

µ(A k (j)). For each prime p k ≤ √ y we store a table called N k such that l = N k (j)

satisfies A k (l − 1) < j p ≤ A k (l). Clearly, these tables may be computed in time

O(y log x) and take up space O(y log log x).

- 39 -

To find all special n ∈ [a , b) we use these two tables together with the procedure in

Figure 1. By using these tables one can find each special leaf x / n ∈ [a , b) in a constant

time, plus a constant time for each interval and each pair (p , q) , p < q < √ y , which

gives time O(π(√ y)2), plus the time to find the

for i : = k to π(√ y) do

for j : = i + 1 to π(√ y) do

l : = N j ([(a − 1)/ p j + 1])

while A j (l) ≤ b / p i

p i A j (l) is a special leaf

l : = l + 1

and

for i : = π(√ y) to π(y)

l : = next prime([a / p i])

while p l ≤ b / p i

p i p l is a special leaf

l : = l + 1

Figure 1: Computing special leaves
___________________________________ 



















































special leaves of the form x /(pq), which takes O(π(y)) time per interval, in overhead.

Calculating P 2 (x , a). The sieving done in calculating the contributions for the

special leaves can also be used to compute P 2 (x , a). The algorithm P 2 may be

interleaved with the running of algorithm φ to avoid doing the sieving twice.

Remarks. The dominant time in the sieving is contributed by the time that it takes to

delete the non-primes. Thus, if we choose k > 0 we can get a speedup of a factor of r k

by storing only the residue classes mod P k which are not divisible by the first k primes.

- 40 -

This, in essence, pre-computes the first k stages of the sieving. It does, however, slow

down the accesses to the individual elements of the sieve. In the balance, though, it

seems to be a big gain. In the program described below, changing k from 0 to 5 resulted

in a speedup of 25 percent.

6. Computational Results

The second author implemented a version of the Extended Meissel-Lehmer method

on an IBM/370 3081 Model K, using the modified algorithm described in Section 5.

The programs implementing the algorithm were all written in PL8 [2], a high-level

systems programming language with a highly optimizing compiler written at IBM

Research. There are tremendous benefits involved in implementing this algorithm in a

higher level language. This allowed different strategies to be tried in the algorithm with

relative case, compared to an assembly language program. Optimizing various program

parameters led to a five-fold speedup of the original version of the program.

The analysis of Section 5 assumed that all arithmetic operations take constant time.

For the actual program this is a reasonable approximation. All arithmetic was done using

32 bit integers when possible, otherwise it was done in floating point, which on the

IBM/370 is capable of representing integers up to 256 − 1 exactly. We show below that

all intermediate results for x ≤ 4×1016 satisfy this bound.

Fix a parameter k and define P k = p 1 p 2 ... p k and r k = (1 − 1/ p 1) (1 − 1/ p 2) ...

(1 − 1/ p k), s k = (6/π2) /((1 + 1/ p 1) ... (1 + 1/ p k)). Note that s k ≤ r k .

The ordinary leaves. The contribution of the ordinary leaves is N(y), where

- 41 -

N(z) =
n
Σ µ(n) φ(

n
x_ _ , k)

and n ranges over all square-free integers ≤ z not divisible by the first k primes. We have

N(z) = xφ(P k)
n≤z
Σ P k n

µ(n)_ ____ +
n≤z
Σ µ(n) {

P k n
x_ ____ } +

n≤z
Σ µ(n) φ(

n
x_ _ mod P k , k) .

If we calculate the sum in order then any intermediate result is bounded by

r k x + (1 + φ(P k)) y (cf. [8], p. 582). When x = 4×1016 and k = 5 this is bounded by

0. 85 × 1016 .

The special leaves. The contribution of the special leaves is

n
Σ µ(n) φ(

n
x_ _ , π(δ(n)) − 1) ,

where the sum is taken over all special n. Now we have

φ(
n
x_ _ , r) = [

P r n
x_ ____] φ(P r) + φ([

n
x_ _] mod P r , r) ,

where r = π(δ(n)) − 1. So if δ(n) > p k + 1 , then the contribution of this n is

≤ (x / n) r k + 2φ(P k). Hence any intermediate sum is bounded by

n
Σ (r k n

x_ _ + 2φ(P k)) (6.1)

where the sum is taken over all square-free n ∈ [x 1/3 , x 2/3) not divisible by primes

≤ p k . If we denote by Q k (x) the number of such integers ≤ x, then, by Landau ([8], pp.

633-636) we have

Q k (x) = s k x + R(x) ,

and  R(x) ≤ φ(P k) √ x . The sum may be written as a Stieltjes integral

- 42 -

x 1/3

∫
x 2/3

(r k t
x_ _ + 2φ(P k)) dQ k (t) .

Using the above expression for Q k and integration by parts we find that the sum in

equation (1) is bounded by (1/3) rk
2 x log x + 2φ(P k) x 2/3 + r k φ(P k) x 5/6 . When

x = 4×1016 and k = 5 this is bounded by 2. 2 × 1016 .

Numerical results. The program was run on selected values of x up to 4×1016 .

Some of the results are presented in Table 1. That table also includes the discrepancies

between π(x) and Li(x) = ∫
0

x

ln t
dt_ ___, where the integral is to be regarded as the Cauchy

principal value, and between π(x) and Riemann’s approximation to π(x),

R(x) =
n = 1
Σ
∞

n
µ(n)_ ____ Li(x 1/ n) ,

and timing information.

A major surprise is that J. Bohman’s value [3] for π(1013) turns out to be too small

by 941. We checked our computations of π(1013) in several ways. First, we checked

that the program computed values of π(x) that agreed with existing tables for values of x

smaller than 1013 . Second, the value of π(1013) was computed several times using

different sieving limits, in which case the intermediate terms summing to π(1013) are

different for each different sieving limit. Third, we computed π(1013 + 105) and sieved

the interval [1013 , 1013 + 105] to locate all primes in it, using this to get a check on the

computation for π(1013). Similarly we checked all the other values of π(x) in the table

by also computing π(x + 105) and sieving the interval [x , x + 105]. (The other values

in Bohman’s [3] table agree with ours.) Our computation of π(1013) took approximately

- 43 -

9 minutes, which is about 30 times less than Bohman’s computation [3]. Since the IBM

3081 Model K computer is generally thought to be 5 to 7 times faster than Bohman’s

machine, our algorithm seems to be about 5 times faster than Bohman’s at x = 1013 , and

we expect the disparity to grow rapidly for larger x.

- 44 -

_ __
x π(x) Li(x) − π(x) R(x) − π(x) Time (minutes)_ __

1012 37,607,912,018 38,263 - 1,476 2
2×1012 73,301,896,139 48,195 - 6,432 3
3×1012 108,340,298,703 80,927 15,096 4
4×1012 142,966,208,126 61,848 - 13,314 5
5×1012 177,291,661,649 72,126 - 11,182 6
6×1012 211,381,427,039 99,289 8,669 7
7×1012 245,277,688,804 110,790 13,484 7
8×1012 279,010,070,811 79,478 - 24,020 8
9×1012 312,600,354,108 127,831 18,542 8

1013 346,065,536,839 108,971 - 5,773 9
2×1013 675,895,909,271 170,356 12,194 14
3×1013 1,000,121,668,853 157,353 - 33,533 18
4×1013 1,320,811,971,702 221,646 3,483 22
5×1013 1,638,923,764,567 253,033 11,037 25
6×1013 1,955,010,428,258 323,908 60,505 28
7×1013 2,269,432,871,304 197,552 - 85,431 31
8×1013 2,582,444,113,487 327,644 26,520 34
9×1013 2,894,232,250,783 348,266 30,170 36

1014 3,204,941,750,802 314,890 - 19,200 39
2×1014 6,270,424,651,315 531,925 70,408 59
3×1014 9,287,441,600,280 434,926 - 122,759 77
4×1014 12,273,824,155,491 567,492 - 70,423 93
5×1014 15,237,833,654,620 812,601 104,541 107
6×1014 18,184,255,291,570 530,687 - 240,406 120
7×1014 21,116,208,911,023 874,392 45,623 132
8×1014 24,035,890,368,161 1,084,477 202,253 143
9×1014 26,944,926,466,221 1,179,734 247,489 155

1015 29,844,570,422,669 1,052,619 73,218 165
1016 279,238,341,033,925 3,214,632 327,052 718

2×1016 547,863,431,950,008 3,776,488 -225,875 1125
4×1016 1,075,292,778,753,150 5,538,861 -10,980 1730

_ __ 

















































































Table 1. Values of π(x)

- 45 -

REFERENCES

[1] A. Aho, J. E. Hopcraft, and J. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley Publ. Co., Reading, Mass. 1974.

[2] M. A. Auslander and M. E. Hopkins, An overview of PL.8 compiler, Proceeding

of the SIGPLAN 82 Symposium on Compiler Construction, Boston, 1982.

[3] J. Bohman, On the number of primes less than a given limit, BIT, 12 (1972),

576-588.

[4] L. E. Dickson, History of the Theory of Numbers, Chelsea Publ. Co. (Reprint),

Volume 1, Chapter XVIII.

[5] R. A. Hudson and A. Brauer, On the exact number of primes in the arithmetic

progressions 4n ± 1 and 6n ± 1, J. reine angew. Math. 291 (1977), 23-29.

[6] J. C. Lagarias and A. M. Odlyzko, New algorithms for computing π(x), in:

Proceedings of the 1981-82 New York Number Theory Seminar, Springer Lecture

Notes, to appear.

[7] J. C. Lagarias and A. M. Odlyzko, Computing π(x): An analytic method,

preprint.

[8] E. Landau, Primzahlen, Chelsia reprint, New York, 1958.

[9] D. H. Lehmer, On the exact number of primes less than a given limit, Illinois J.

Math. 3 (1959), 381-388.

- 46 -

[10] D. C. Mapes, Fast method for computing the number of primes less than a given

limit, Math. Comp. 17 (1963), 179-185.

[11] E. D. F. Meissel, Uber die Bestimmung der Primzahlmenge innerhalb gegebener

Grenzen, Math. Ann. 2 (1870), 636-642.

[12] E. D. F. Meissel, Berechnung der Menge von Primzahlen, welche innerhalb des

ersten Hundert Millionen naturlicher Zahlen vorkommen, Math. Ann. 3 (1871),

525-525.

[13] E. D. F. Meissel, Ueber Primzahlungen, Math. Ann. 21 (1883), 304.

[14] E. D. F. Meissel, Berechnung der Menge von Primzahlen, welche innerhalb der

ersten Milliarde naturlicher Zahlen vorkommen, Math. Ann. 25 (1885) 251-257.

[15] H. S. Wilf, What is an answer?, Amer. Math. Monthly 89 (1982), 289-292.

