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ABSTRACT

The Riemann Hypothesis, which specifies the location of zeros of
the Riemann zeta function, and thus describes the behavior of
primes, is one of the most famous unsolved problems in
mathematics, and extensive efforts have been made over more than
a century to check it numerically for large sets of cases. Recently a
new algorithm, invented by the speaker and A. Scho

. .
nhage, has been

implemented, and used to compute over 175 million zeros near zero
number 1020 . The new algorithm turned out to be over 5 orders of
magnitude faster than older methods. The crucial ingredients in it
are a rational function evaluation method similar to the Greengard-
Rokhlin gravitational potential evaluation algorithm, the FFT, and
band-limited function interpolation. While the only present
implementation is on a Cray, the algorithm can easily be
parallelized.

1. Introduction and History

The Riemann zeta function is defined for complex values of s with
Re (s) > 1 by

ζ (s) =
n =1
Σ
∞

n s

1_ __ , (1.1)

and it can be continued analytically to the entire complex plane with
the exception of s = 1, where it has a first order pole. The zeta
function was actually first defined by Euler in the first half of the
eighteenth century [2, 26]. Euler’s work was motivated by the
problem of evaluating

n =1
Σ
∞

n 2

1_ __ ,

(which is ζ ( 2 ) in our notation), which was posed in the seventeenth
century by Mengoli. Euler eventually showed that ζ ( 2 ) = π2 /6,
but some of his initial efforts went into numerically evaluating ζ ( 2 )
and involved development of what is now called the Euler-
Maclaurin formula. This was the first of many connections between
numerical analysis and the zeta function.

Euler found some important relations between the zeta function and
primes, but it was only Riemann in the 1850’s who showed the full
extent of these connections. In particular, Riemann showed that the
distribution of primes is determined by the nontrivial zeros of ζ (s);
i.e., those zeros of ζ (s) that lie in the strip 0 < Re (s) < 1 (called
the critical strip). Riemann further conjectured that all of the
nontrivial zeros lie on the critical line, Re (s) = 1/2. This
conjecture, known as the Riemann Hypothesis (RH), is probably the
most important unsolved problem in mathematics. (For general



background and history, see [9].)

Given the importance of the RH, it is not surprising that many
attempts have been made to check it numerically for various sets of
zeros. Since ρ

_
is a zero of ζ (s) whenever ρ is, we consider only the

nontrivial zeros ρ with Im (ρ) > 0, and number them ρ1 , ρ2 , ..., so
that

0 < Im (ρ1 ) ≤ Im (ρ2 ) ≤ . . . .

(In case of multiple zeros, they have to be counted according to their
multiplicity.) The RH is the equivalent to the claim that each
ρn = 1/2 + i γn , where γn is real. A partial list of the most
important numerical verifications of the RH is given in Table 1.
The number in parentheses refers to the date of publication, and the
n entry denotes that the RH has been checked for the first n zeros, so
that γ1 , γ2 , ... , γn are real. This means not just that the γn are real
to within some bound, like 10 −20 , but that they are actually real. It
is possible to establish this rigorously, assuming of course that the
programs and hardware are correct, due to some special properties
of the zeta function. For a fuller history of these computations, see
[9, 21].

There were two main innovations that were introduced in the
computations listed in Table 1. One was a change in technology;
starting with the work of A. Turing, all computations were
performed on electronic digital computers, as opposed to paper and
pencil or the electromechanical devices of earlier workers, with the
latest result, the verification of the RH for the first 1. 5×109 zeros by
van de Lune, te Riele, and Winter [17] taking about 1500 hours on a
Cyber 205. The other innovation was in algorithms, and was at
least as important. The computations of Gram, Backlund, and
Hutchinson used a method for computing the zeta function that is
based on the Euler-Maclaurin formula. It is effective, but not very
efficient, since to compute a single value of ζ ( 1/2 + it) with this
method takes on the order of t steps. (The n-th zero 1/2 + i γn has
γn ∼ 2πn /( log n), with the 1. 5×109-th zero having γn ∼∼ 5×108 .)
Starting with the work of Titchmarsh, a much more efficient
algorithm has been employed. As it turns out, this was not a new
invention, but rather a discovery by C. L. Siegel [25] in Riemann’s
unpublished notes of a method now known as the Riemann-Siegel
formula. This method was already used by Riemann to compute at
least the first few zeros of the zeta function, and the results of these
computations may have been a crucial factor in stimulating him to
make the RH.

The Euler-Maclaurin formula is a very general technique that
applies to many summations. In contrast, the Riemann-Siegel
formula relies on special properties of the zeta function. It is much
more efficient in that only about √ t operations are needed to
evaluate ζ ( 1/2 + it), in contrast to the roughly t operations needed



by the Euler-Maclaurin method. For computations near the 109-th
zero, the gain in efficiency is about 4 orders of magnitude.

Recently A. Scho
. .
nhage and the author [19, 24] have invented an

even faster method for computing large sets of zeros of the zeta
function. In time roughly √ T , it enables one to compute up to B
zeros, where B <∼ √ T is approximately the storage capacity on
moderately fast devices (such as magnetic disks) that is available.
This algorithm has been implemented on a Cray X-MP, and used to
compute the zeros listed in Table 2. (The N = 1012 entry, for
example, means that 1,592,196 zeros were computed, starting with
zero number 1012 − 6032 and ending with zero number
1012 + 1586163.) An earlier implementation of the standard
Riemann-Siegel formula method [20] calculated 105 zeros near zero
number 1012 in about 15 hours on the Cray X-MP. Since
γn

∼∼ 2. 6×1011 for n = 1012 , and γn
∼∼ 1. 5×1019 for n = 1020 , this

indicates that computing 6. 5×107 zeros near zero number 1020

would have required about

105

6. 5×107
_ _______ .



î 2. 6×1011

1. 5×1019
_ ________





1/2

∼∼ 5×106

as long, or about 7. 5×107 hours, if one were to use the Riemann-
Siegel method. On the other hand, one run of the new algorithm
determined those 6. 5×107 zeros in about 250 hours (of otherwise
idle time), which is about 3×105 times faster.

A full description of the implementation of the new algorithm and
the results that have been obtained with it are presented in [22]. The
next section sketches some of the main features of the new
algorithm. Now we will mention some of the main results from
[22]. First of all, no counterexamples to the RH were found!
Further, extensive statistics about the zeros were collected. The
main purpose for this (and, in fact, for the whole project) was to
obtain more insight into the behavior of the zeros of the zeta
function. The fact that the RH holds for the first 1. 5×109 zeros, as
well as for over 3×108 zeros at heights as far up as the 2×1020-th
zero, is not entirely convincing evidence in favor of the RH, since
there are many examples of number theoretic conjectures that have
been shown to be false, but where the smallest known
counterexamples are very high up (up to exp ( exp ( 65 ) ) in one case
[23]). Thus it is important to examine more sophisticated heuristics
as to whether the RH is likely to be true, and computational results
are very valuable in this regard. (See [21] for a full discussion.) In
particular, there is a set of conjectures, going back to Hilbert and
Po ´lya, which imply the RH, and, when combined imaginatively
with some observations of Dyson and H. Montgomery might lead
one to expect that the zeros of the zeta function behave like
eigenvalues of random Hermitian matrices. More precisely, if we
let

δn = (γn +1 − γn )
2π

log (γn /( 2π) )_ ____________

be the normalized gap between consecutive zeros of the zeta
function, then the conjecture is that the δn behave like the gaps
between successive normalized eigenvalues in the Gaussian unitary
ensemble (GUE), which has been investigated very extensively by
physicists [5, 6, 18]. In the case of the GUE, it is known that the δn
have a particular (complicated) distribution. Fig. 1 compares the



distribution of the δn for the first 106 zeros of the zeta function
(scatterplot) to the GUE distribution (solid line). As can be seen,
the agreement is only moderate. On the other hand, Fig. 2 shows a
similar graph based on about 106 zeros near zero number 2×1020 ,
and here the agreement as almost perfect. This might be taken as
evidence that the highly speculative Hilbert and Po ´lya conjectures
are indeed correct, and that the RH is true.

The papers [21, 22] contain many more statistical studies of the
zeros and discussions of what they might mean for the truth of the
RH. At this point we will only mention that there are some
interesting conjectural connections between zeta function zeros and
quantum chaos [4].

2. Algorithms and Implementations

The new algorithm is based on the Riemann-Siegel formula. In the
standard implementation, almost all of the computing time is
devoted to evaluating sums of the form

F(t) = 2
k =2
Σ
k1

k−1/2 exp (it log k) , (2.1)

where

k 1 = 
 (t /( 2π) )1/2 

 . (2.2)

Once F(t) (or, actually, the F(t) exp ( − iθ(t) ), where θ(t) is a
certain easy to evaluate function) is computed, ζ ( 1/2 + it) is very
easy to obtain.

For values of t near zero number 1020 , k 1 ∼∼ 1. 5×109 , so the sum in
(2.1) is very long, and it is desirable to avoid evaluating that sum
term-by-term for each value of t that one might wish to investigate.
The first crucial ingredient in the new algorithm is to observe that if
one can precompute F(t) at an evenly spaced grid of points, t = T,
T + δ, T + 2δ, ... , T + (R − 1 ) δ, which is dense enough, then one
can compute F(t) at any point in that interval from the precomputed
values. The initial method that was proposed for doing this
involved Taylor series expansions [24]. However, a much more
efficient method can be obtained by using band-limited function
interpolation, and it was used in the implementation [22]. It relies
on the fact, well known to communication engineers and complex
analysts, that a band-limited function G(t),

G(t) =
− τ
∫
τ

g(x) e ixt dx , (2.3)

is determined by its samples at the points nπ/τ, n running through
the integers, provided only that it satisfies some mild growth
conditions [7, 14, 15]. In fact, one has the classical ‘‘cardinal
series’’

G(t) =
n = − ∞
Σ
∞

G


î τ

nπ_ __


 τ t − nπ

sin (τ t − nπ)_ __________ . (2.4)

This series is not suitable for zeta function computations because of
slow convergence, but it is possible to obtain a similar series with
the ( sin u)/ u kernel replaced by one that drops off much more
rapidly, provided one is willing to compute samples G(nπ/β) for
some β > τ. As is shown in [22], this yields a very efficient



method for computing G(t) from the G(nπ/β).

We next consider the problem of evaluating F(t),
F(T + δ) , ... , F(T + (R − 1 ) δ). We need to find a method that
requires substantially fewer than Rk 1 operations to compute all
these values. The first step is to apply the discrete Fourier
transform. We let

h k =
j =0
Σ

R −1
F(T + jδ) exp ( 2πi j / R) , 0 ≤ k < R . (2.5)

If R is chosen appropriately (say R = 2r), then the F(T + jδ) can be
computed efficiently from the h k using the FFT. (In the current
implementation, the FFT routines that were used were those of
Bailey [3]. They consume a negligible fraction of the total
computing time.) Thus we reduce to the problem of computing all
the h k efficiently.

To compute the h k , which consumes most of the time, we note that
when we put in the definition (2.1) of F(t) into (2.5), we obtain
h k = h( exp ( 2πik / R) ), where

h(z) =
k =2
Σ
k1

z − b k

a k_ _____ ,

(2.6)
b k = exp (iδ log k) ,

and the a k are certain complex constants. The straightforward
term-by-term evaluation of the series (2.6) takes ∼∼ k 1 steps for each
k, which takes ∼∼ Rk 1 steps in all, and offers no saving over the
standard evaluation of the Riemann-Siegel formula. However, there
is a way to compute all of h k simultaneously in O(k 1 ( log k 1 )2 )
operations (for R <∼ k 1) [24]. This method relies on Taylor series
expansions of partial sums of the sum in (2.1). It is explained in
detail in [22, 24].

The method of [24] for evaluating the rational function h(z) of (2.6)
simultaneously is very similar in spirit (although not in form) to the
Greengard-Rokhlin algorithm for evaluating gravitational and
Coulomb potentials [11] (see also [1,8,12,13]), and it can be
adapted to handle such problems. For gravitational potential
problems, it appears that the algorithms of [11] and [24] are of
comparable efficiences. However, as is discussed in [22], it seems
likely that for computing zeros of the zeta function, the Greengard-
Rokhlin algorithm could turn out to be faster, due to the special
structure of the zeta function problem and space limitations.

Although the current implementation of the new algorithm is over
five orders of magnitude faster than the standard Riemann-Siegel
method, substantial further improvements are possible. One could
come from using the Greengard-Rokhlin algorithm. Others could
come from more careful coding, including the use of assembly
language. (Right now all the programs are written in Fortran, and
most of the important loops are vectorized by the Cray Fortran
compiler, with the most important loop operating at 100 Mflops/sec,
but given the mix of arithmetic operations, this could probably be
increased by using assembly language and rearranging the
computation.) Perhaps the largest improvement that can be
obtained would come from use of larger disk storage. Main
memory is not a major constraint (the basic program uses under 7
Mbytes), but lack of temporary disk storage is. By using larger



devices (which, if one were willing to do extra work, could even be
magnetic tapes or optical disks) one could obtain substantially
higher speeds.

While the current program has only been implemented on a Cray
X-MP (and its has also been tested on a Cray-2), it can easily be
parallelized. There are already some parallel implementations of the
Greengard-Rokhlin algorithm [10, 16, 27, 28], and so similar ones
could be carried out for the zeta function algorithm.

One interesting feature of the new computations is the problem of
accuracy. The current computations are not completely rigorous
due to incomplete control over roundoff errors. This problem is due
to the extremely large heights at which the computations are being
carried out and to the 64-bit word size on the Cray. Basically,
double precision arithmetic is being used, but even that is not
sufficient. Larger word sizes (72 or 80 bits) would be very helpful
here!
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Table 1. Numerical verifications of the Riemann Hypothesis
for the first n zeros.

Investigator n_ _________________________________________________
Gram (1903) 10
Backlund (1914) 79
Hutchinson (1925) 138
Titchmarsh et al. (1936) 1,041
Turing (1953) 1,104
Lehmer (1956) 25,000
Meller (1958) 35,337
Lehman (1966) 250,000
Rosser et al. (1969) 3,500,000
Brent (1979) 81,000,001
van de Lune et al. (1986) 1,500,000,000
















Table 2. Large computed sets of zeros of the
Riemann zeta function.

index of first
N number of zeros zero in set_ ______________________________________

1012 1,592,196 N − 6 , 032

1014 1,685,452 N − 736

1016 16,480,973 N − 5 , 946

1018 16,671,047 N − 8 , 839

1019 16,749,725 N − 13 , 607

1020 175,587,726 N − 30 , 769 , 710

2×1020 101,305,325 N − 633 , 984































FIGURE CAPTIONS

Fig. 1. Probability density of the normalized spacings δn . Solid
line: GUE prediction. Scatterplot: empirical data based
on initial 1,000,000 zeros.

Fig. 2. Probability density of the normalized spacings δn . Solid
line: GUE prediction. Scatterplot: empirical data based
on 1,041,600 zeros near zero number 2×1020 .


