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1. In tro duction

Asymptotic enumeration methods provide quantitativ e information about the rate of

growth of functions that count combinatorial objects. Typical questions that these meth-

ods answer are: (1) How does the number of partitions of a set of n elements grow with n?

(2) How doesthis number compareto the number of permutations of that set?

There do exist enumeration results that leave nothing to be desired. For example, if an

denotesthe number of subsetsof a set with n elements, then we trivially have an = 2n . This

answer is compact and explicit, and yields information about all aspects of this function. For

example, congruenceproperties of an reduce to well-studied number theory questions. (This

is not to say that all such questionshave beenanswered, though!) The formula an = 2n also

provides complete quantitativ e information about an . It is easy to compute for any value

of n, its behavior is about as simple as possible,and it holds uniformly for all n. However,

such examplesare extremely rare. Usually, even when there is a formula for the function we

are interested in, it is a complicated one, involving summations or recurrences. The purpose

of asymptotic methods is to provide simple explicit formulas that describe the behavior of a

sequencefor large values of indices. There is no satisfactory de�nition of what is meant by

\simple" or by \explicit." However, we can illustrate this concept by some examples. The

number of permutations of n letters is given by bn = n!. This is a compact notation, but only

in the sensethat factorials are so widely usedthat they have a special symbol. The symbol n!

stands for n � (n � 1) � (n � 2) � : : : � 2� 1, and it is the latter formula that has to be usedto answer

questionsabout the number of permutations. If oneis after arithmetic information, such asthe

highest power of 7, say, that divides n!, one can obtain it from the product formula, but even

then somework hasto bedone. For most quantitativ e purposes,however, n! = n�(n� 1)�: : :�2�1

is inadequate. Since this formula is a product of n terms, most of them large, it is clear that

n! grows rapidly, but it is not obvious just how rapidly. Sinceall but the last term are � 2, we

have n! � 2n� 1, and since all but the last two terms are � 3, we have n! � 3n� 2, and so on.

On the other hand, each term is � n, so n! � nn . Better bounds can clearly be obtained with



greater care. The question such estimatesraise is just how far can one go? Can one obtain an

estimate for n! that is easyto understand, compute, and manipulate? One answer provided by

asymptotic methods is Stirling's formula: n! is asymptotic to (2� n)1=2(n=e)n asn ! 1 , which

meansthat the limit as n ! 1 of n!(2� n) � 1=2(n=e) � n exists and equals 1. This formula is

conciseand givesa useful representation of the growth rate of n!. It shows, for example, that

for n large, the number of permutations on n letters is considerably larger than the number of

subsetsof a set with b1
2n lognc elements.

Another simple exampleof an asymptotic estimate occursin the \probl �emedesrencontres"

[81]. The number dn of derangementsof n letters, which is the number of ways of handing

back hats to n peopleso that no personreceiveshis or her own hat, is given by

dn =
nX

k=0

(� 1)k n!
k!

: (1.1)

This is a nice formula, yet to compute dn exactly with it requires substantial e�ort, since the

summandsare large, and at �rst glance it is not obvious how large dn is. However, we can

obtain from (1.1) the asymptotic estimate

dn

n!
! e� 1 as n ! 1 : (1.2)

To prove (1.2), we factor out n! from the sum in (1.1). We are then left with a sum of rapidly

decreasingterms that make up the initial segment of the series

e� 1 =
1X

k=0

(� 1)k

k!
;

and (1.2) follows easily. It can even be shown that dn is the nearest integer to e� 1n! for all

n � 1, see[81]. The estimate (1.2) does not allow us to compute dn , but combined with the

estimate for n! cited above it shows that dn grows like (2� n)1=2nne� n� 1. Further, (1.2) shows

that the fraction of all ways of handing out hats that results in every personreceivingsomebody

else'shat is approximately 1=e. Results of this type are often exactly what is desired.

Asymptotic estimates usually provide information only about the behavior of a function

as the arguments get large. For example, the estimate for n! cited above says only that the

ratio of n! to (2� n)1=2(n=e)n tends to 1 as n gets large, and says nothing about the behavior

of this ratio for any speci�c value of n. There are much sharper and more precise bounds

for n!, and they will be presented in Section 3. However, it is generally true that the simpler

the estimate, the weaker and less precise it is. There seemsto be an unavoidable tradeo�
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betweenconcisenessand precision. Just about the simplest formula that exactly expressesn!

is n � (n � 1) � : : : � 2 � 1. (We have to be careful, sincethere is no generally acceptedde�nition

of simplicit y, and in many situations it is better to useother exact formulas for n!, such as the

integral formula n! =
R1

0 tne� tdt for the �-function. There are also methods for evaluating

n! that are somewhatmore e�cien t than the straightforward evaluation of the product.) Any

other formula is likely to involve somelossof accuracyas a penalty for simplicit y.

Sometimes,the tradeo�s are clear. Let p(n) denote the number of partitions of an integer

n. The Rademacher convergent seriesrepresentation [13, 23] for p(n) is valid for any n � 1:

p(n) = � � 12� 1=2
1X

m=1

Am (n)m1=2 d
dv

(� � 1
v sinh(Cm� 1� v))

�
�
�
v= n

; (1.3)

where

C = � (2=3)1=2; � v = (v � 1=24)1=2 ; (1.4)

and the Am (n) satisfy

A1(n) = 1; A2(n) = (� 1)n for all n � 1 ;

jAm (n)j � m; for all m; n � 1 ;

and are easy to compute. Remarkably enough, the series(1.3) does yield the exact integer

value of p(n) for every n, and it convergesrapidly. (Although this is not directly relevant, we

note that using this seriesto compute p(n) givesan algorithm for calculating p(n) that is close

to optimal, since the number of bit operations is not much larger than the number of bits of

p(n).) By taking more and more terms, we obtain better and better approximations. The �rst

term in (1.3) shows that

p(n) = � � 12� 1=2 d
dv

(� � 1
v sinh(C� v))

�
�
�
v= n

+ O(n� 1 exp(Cn1=2=2)) ; (1.5)

and if we don't like working with hyperbolic sines,we can derive from (1.5) the simpler (but

lessprecise)estimate

p(n) =
1 + O(n� 1=2)

4 � 31=2n
eCn1=2

; (1.6)

valid for all n � 1. Unfortunately, exact and rapidly convergent seriessuch as (1.3) occur

infrequently in enumeration, and in generalwe have to be content with poorer approximations.

The advantage of allowing parametersto grow large is that in surprisingly many cases,even

when there do exist explicit expressionsfor the functions we are interested in, this procedure

doesyield simple asymptotic approximations, when the inuence of lessimportant factors falls
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o�. The resulting estimatescan then be usedto comparenumbersof di�eren t kinds of objects,

decide what the most common objects in somecategory are, and so on. Even in situations

where bounds valid for all parameter valuesare needed,asymptotic estimatescan be used to

suggestwhat form those bounds should take. Usually the error terms in asymptotic estimates

can be made explicit (although good bounds often require substantial work), and can be used

together with computations of small values to obtain universal estimates. It is common that

already for n not much larger than 10 (wheren is the basicparameter) the asymptotic estimate

is accurate to within a few percent, and for n � 100 it is accurate to within a fraction of a

percent, even though known proofs do not guarantee results as good as this. Therefore the

value of asymptotic estimates is much greater than if they just provided a picture of what

happensat in�nit y.

Under someconditions, asymptotic results can beusedto prove completely uniform results.

For example,if there wereany planar mapsthat werenot four-colorable, then almost every large

planar map would not be four-colorable, as it would contain one of those small pathological

maps. Therefore if it could be proved that most large planar mapsare four-colorable,we would

obtain a new proof of the four-color theorem that would be more satisfactory to many people

than the original one of Haken and Appel. Unfortunately, while this is an attractiv e idea, no

proof of the required asymptotic estimate for the normal chromatic number of planar maps

has beenfound so far.

Asymptotic estimatesare often useful in deciding whether an identit y is true. If the growth

rates of the two functions that are supposedto be equal are di�eren t, then the coincidenceof

initial valuesmust be an accident. There are also more ingeniousways, such as that of Exam-

ple 13.1, for deducing nonexistenceof identities in a wide classfrom asymptotic information.

Sometimesasymptotics is used in a positive way, to suggestwhat identities might hold.

Simplicity is an important advantage of asymptotic estimates. They are even more useful

when no explicit formulas for the function being studied are available, and one has to deal

with indirect relations. For example, let Tn be the number of rooted unlabeled trees with n

vertices, so that T0 = 0, T1 = T2 = 1, T3 = 2, T4 = 4; : : : . No explicit formula for the Tn is

known. However, if

T(z) =
1X

n=1

Tnzn (1.7)
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is the ordinary generating function of Tn , then Cayley and P�olya showed that

T(z) = z exp

 
1X

k=1

T(zk )=k

!

: (1.8)

This functional equation can be derived using the generalP�olya-Red�eld enumeration method,

an approach that is sketched in Section15. Example 15.1 shows how analytic methods can be

usedto prove, starting with Eq. (1.8), that

Tn � Cr � nn� 3=2 as n ! 1 ; (1.9)

where

C = 0:4399237: : : ; r = 0:3383219: : : ; (1.10)

are constants that can be computed e�cien tly to high precision. For n = 20, Tn = 12; 826; 228,

whereasCr � 2020� 3=2 = 1:274: : : � 107, so asymptotic formula (1.9) is accurate to better than

1%. Thus this approximation is good enoughfor many applications. It can also be improved

easily by adding lower order terms.

Asymptotic enumeration methodsarea sub�eld of the hugeareaof generalasymptotic anal-

ysis. The functions that occur in enumeration tend to be of restricted form (often nonnegative

and of regular growth, for example) and therefore the repertoire of tools that are commonly

usedis much smaller than in generalasymptotics. This makesit possibleto attempt a concise

survey of the most important techniques in asymptotic enumeration. The task is not easy,

though, as there has been tremendous growth in recent years in combinatorial enumeration

and the closelyrelated �eld of asymptotic analysisof algorithms, and the sophistication of the

tools that are commonly usedhas beenincreasingrapidly.

In spite of its importance and growth, asymptotic enumeration has seldombeenpresented

in combinatorial literature at a level other than that of a research paper. There are several

books that treat it [43, 81, 175, 177, 235, 236, 237, 377], but usually only briey . The only

comprehensive survey that is available is the excellent and widely quoted paper of Bender [33].

Unfortunately it is somewhat dated. Furthermore, the last two decadeshave also witnessed

a o wering of asymptotic analysis of algorithms, which was pioneered and popularized by

Knuth. Combinatorial enumeration and analysisof algorithms are closelyrelated, in that both

deal with counting of particular structures. The methods used in the two �elds are almost

the same, and there has been extensive cross-fertilization between them. The literature on

theoretical computer science,especially on averagecaseanalysis of algorithms, can therefore

5



be used fruitfully in asymptotic enumeration. One notable survey paper in that area is that

of Vitter and Flajolet [371]. There are also presentations of relevant methods in the books

[177, 209, 235, 236, 237, 223]. Section 18 is a guide to the literature on thesetopics.

The aim of this chapter is to survey the most important tools of asymptotic enumeration,

point out referencesfor the results and methods that are discussed,and to mention additional

relevant papers that have other techniques that might be useful. It is intended for a reader

who hasalready usedcombinatorial, algebraic,or probabilistic methods to reducea problem to

that of estimating sums,coe�cien ts of a generating function, integrals, or terms in a sequence

satisfying some recursion. How such a reduction is to be accomplishedwill be dealt with

sparingly, since it is a large subject that is already covered extensively in other chapters,

especially [?]. We will usually assumethat this task has beendone, and will discussonly the

derivation of asymptotic estimates.

The emphasis in this chapter is on elementary and analytic approaches to asymptotic

problems, relying extensively on explicit generating functions. There are other ways to solve

some of the problems we will discuss,and probabilistic methods in particular can often be

usedinstead. We will only make somegeneralremarks and give referencesto this approach in

Section 16.

The only methods that will be discussedin detail are fully rigorous ones. There are also

methods, mostly from classicalapplied mathematics (cf. [31]) that are powerful and often give

estimateswhen other techniques fail. However, we do not treat them extensively (aside from

someremarks in Section 16.4) sincemany of them are not rigorous.

Fewproofsare included in this chapter. The stressis on presentation of basicmethods, with

discussionsof their rangeof applicabilit y, statements of generalestimatesderivable from them,

and examples of their applications. There is some repetitiv enessin that several functions,

such as n!, are estimated several times. The purposeof doing this is to show how di�eren t

methods compare in their power and easeof use. No attempt is made to present derivations

starting from �rst principles. Someof the examplesaregiven with full details of the asymptotic

analysis, to explain the basic methods. Other examplesare barely more than statements of

results with a brief explanation of the method of proof and a referenceto where the proof can

be found. The reader might go through this chapter, possibly in a random order, looking for

methods that might be applicable to a speci�c problem, or can look for a category of methods

that might �t the problem and start by looking at the corresponding sections.
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There are no prerequisitesfor reading most of this chapter, other than acquaintance with

advanced calculus and elementary asymptotic estimates. Many of the results are presented

so that they can be used in a cookbook fashion. However, many of the applications require

knowledgeof complex variables.

Section2 presents the basicnotation usedthroughout the chapter. It is largely the standard

one usedin the literature, but it seemedworthwhile summarizing it in one place. Section 3 is

devoted to a brief discussionof identities and related topics. While asymptotic methods are

useful and powerful, they can often be either augmented or entirely replacedby identities, and

this section points out how to usethem.

Section4 summarizesthe most important and most useful estimatesin combinatorial enu-

meration, namely those related to factorials and binomial coe�cien ts. Section 5 is the �rst

one to feature an in-depth discussionof methods. It deals with estimates of sums in terms

of integrals, summation formulas, and the inclusion-exclusionprinciple. However, it doesnot

present the most powerful tool for estimation of sums,namely generating functions. Theseare

introduced in Section 6, which presents someof the basic properties of, and tools for dealing

with generating functions. While most generating functions that are used in combinatorial

enumeration converge at least in someneighborhood of the origin, there are also many non-

convergent ones. Section 7 discussessomeestimates that apply to all formal series,but are

especially useful for nonconvergent ones.

Section 8 is devoted to estimates for convergent power series that do not use complex

variables. While not as powerful as the analytic methods presented later, thesetechniquesare

easyto useand su�ce in many applications.

Section 9 presents a variety of techniques for determining the asymptotics of recurrence

relations. Many of these methods are basedon generating functions, and someuse analytic

methods that are discussedlater in the chapter. They are presented at this point becausethey

are basic to combinatorial enumeration, and they also provide an excellent illustration of the

power of generating functions.

Section 10 is an introduction to the analytic methods for estimating generating functions.

Many of the results mentioned here are common to all introductory complex analysiscourses.

However, there are alsomany, especially thosein Sections10.4and 10.5,are not aswell known,

and are of special value in asymptotics.

Sections11 and 12 present the main methods usedin estimation of coe�cien ts of analytic
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functions in a single variable. The basic principle is that the singularities of the generating

function that are closestto the origin determine the growth rate of the coe�cien ts. If the func-

tion doesnot grow too fast as it approachesthose singularities, the methods of Section 11 are

usually applicable,while if the growth rate is high, methods of Section12 are moreappropriate.

Sections13{15 discussextensionsof the basic methods of Sections10{12 to multiv ariate

generatingfunctions, integral transforms, and problemsthat involve a combination of methods.

Section16 is a collection of miscellaneousmethodsand results that did not easily �t into any

other section, yet are important in asymptotic enumeration. Section 17 discussesthe extent

to which computer algebra systemscan be used to derive asymptotic information. Finally,

Section 18 is a guide to further reading on asymptotics, since this chapter does not provide

complete coverageof the topic.

2. Notation

The symbols O, o, and � will have the usual meaning throughout this paper:

f (z) = O(g(z)) as z ! w means f (z)=g(z) is bounded as z ! w ;

f (z) = o(g(z)) as z ! w means f (z)=g(z) ! 0 as z ! w ;

f (z) � g(z) as z ! w means f (z)=g(z) ! 1 as z ! w :

When an asymptotic relation is stated for an integer variable n instead of z, it will implicitly

be taken to apply only for integer values of n ! w, and then we will always have w = 1 or

w = �1 . An introduction to the use of this notation can be found in [175]. Only a slight

acquaintance with it is assumed,enough to see that (1 + O(n � 1=3))n = exp(O(n2=3)) and

log(n + n1=2) = log(n) + n � 1=2 � (2n) � 1 + O(n� 3=2).

The notation x ! w� for real w meansthat x tends to w only through valuesx < w.

Someasymptotic estimates refer to uniform convergence. As an example, the statement

that f (z) � (1 � z) � 2 as z ! 1 uniformly in jArg(1 � z)j < 2� =3 meansthat for every � > 0,

there is a � < 0 such that

jf (z)(1 � z)2 � 1j � �

for all z with 0 < j1 � zj < � , jArg(1 � z)j < 2� =3. This is an important concept, since lack

of uniform convergenceis responsible for many failures of asymptotic methods to yield useful

results.
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Generating functions will usually be written in the form

f (z) =
1X

n=0

f nzn ; (2.1)

and we will usethe notation [zn ]f (z) for the coe�cien t of zn in f (z), so that if f (z) is de�ned

by (2.1), [zn ]f (z) = f n . For multiv ariate generating functions, [xm yn ]f (x; y) will denote the

coe�cien t of xmyn , and so on. If an denotesa sequencewhoseasymptotic behavior is to be

studied, then in combinatorial enumeration one usually useseither the ordinary generating

function f (z) de�ned by (2.1) with f n = an , or elsethe exponential generating function f (z)

de�ned by (2.1) with f n = an=n!. In this chapter we will not be concernedwith the question

of which type of generating function is best in a given context, but will assumethat a gener-

ating function is given, and will concentrate on methods of extracting information about the

coe�cien ts from the form we have.

Asymptotic series,as de�ned by Poincar�e, are written as

f n �
1X

k=0

akn� k ; (2.2)

and mean that for every K � 0,

f n =
KX

k=0

akn� k + O(n� K � 1) as n ! 1 : (2.3)

The constant implied by the O-notation may depend on K . It is unfortunate that the same

symbol is used to denote an asymptotic seriesas well as an asymptotic relation, de�ned in

the �rst paragraph of this section. Confusion should be minimal, though, since asymptotic

relations will always be written with an explicit statement of the limit of the argument.

The notation f (z) � g(z) will be used to indicate that f (z) and g(z) are in somevague

senseclosetogether. It is used in this chapter only in caseswhere a precisestatement would

be cumbersomeand would not help in explaining the essenceof the argument.

All logarithms will be natural ones to basee unless speci�ed otherwise, so that log 8 =

2:0794: : :, log2 8 = 3. The symbol bxc denotesthe greatest integer � x. The notation x ! 1�

meansthat x tends to 1, but only from the left, and similarly, x ! 0+ meansthat x tends to

0 only from the right, through positive values.

3. Iden tities, inde�nite summations, and related approac hes

Asymptotic estimatesare useful, but often they can be avoided by using other methods.

For example,the asymptotic methods presented later yield estimatesfor
� n

k

�
2k ask and n vary,
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which can be usedto estimate accurately the sum of
� n

k

�
2k for n �xed and k running over the

full rangefrom 0 to n. That is a generaland e�ectiv e process,but somewhatcumbersome.On

the other hand, by the binomial theorem,

nX

k=0

�
n
k

�
2k = (1 + 2)n = 3n : (3.1)

This is much moresatisfactory and simpler to derivethan what could beobtained from applying

asymptotic methods to estimate individual terms in the sum. However, such identities are

seldomavailable. There is nothing similar that can be applied to

X

k� n=5

�
n
k

�
2k ; (3.2)

and we are forced to useasymptotic methods to estimate this sum.

Recognizingwhen somecombinatorial identit y might apply is not easy. The literature on

this subject is huge,and someof the referencesfor it are [172, 174, 186, 216, 336]. Many of the

books listed in the referencesare useful for this purpose.Generating functions (seeSection 6)

are one of the most common and powerful tools for proving identities. Here we only mention

two recent developments that areof signi�cance for both theoretical and practical reasons.One

is Gosper's algorithm for inde�nite hypergeometric summation [171, 175]. Given a sequence

a1, a2; : : :, Gosper's algorithm determineswhether the sequenceof partial sums

bn =
nX

k=1

ak ; n = 1; 2; : : : (3.3)

has the property that bn=bn� 1 is a rational function of n, and if it is, it givesan explicit form

for bn . We note that if bn=bn� 1 is a rational function of n, then so is

an

an� 1
=

bn=bn� 1 � 1
1 � bn� 2=bn� 1

: (3.4)

Therefore Gosper's algorithm should be applied only when an=an� 1 is rational.

The other recent development is the Wilf-Zeilb erger method for proving combinatorial

identities [379, 380]. Given a conjectured identit y, it provides an algorithmic procedure for

verifying it. This method succeedsin a surprisingly wide range of cases.Typically, to prove

an identit y of the form
X

k

U(n; k) = S(n) ; n � 0 ; (3.5)
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where S(n) 6= 0, Wilf and Zeilberger de�ne F (n; k) = U(n; k)=S(n) and search for a rational

function R(n; k) such that if G(n; k) = R(n; k)F (n; k � 1), then

F (n + 1; k) � F (n; k) = G(n; k + 1) � G(n; k) (3.6)

holds for all integersn; k with n � 0, and such that

1) for each integer k, the limit

f k = lim
n!1

F (n; k) (3.7)

exists and is �nite.

2) for each integer n � 0, lim k!�1 G(n; k) = 0.

3) lim k!�1
P 1

n=0 G(n; k) = 0.

If all theseconditions are satis�ed, and Eq. (3.5) holds for n = 0, then it holds for all n � 0.

Example 3.1. Dixon's binomial sum identity. This identit y states that

X

k

(� 1)k
�

n + b
n + k

� �
b+ c
b+ k

��
n + c
c + k

�
=

(n + b+ c)!
n! b! c!

: (3.8)

This can be proved by the Wilf-Zeilb erger method by taking

R(n; k) =
(b+ 1 � k)(c + 1 � k)

2(n + k)(n + b+ c + 1)
(3.9)

and verifying that the conditions above hold.
�

The Wilf-Zeilb erger method requires �nding a rational function R(n; k) that satis�es the

properties listed above. This is often hard to do, especially by hand. Gosper's algorithm leads

to a systematic procedurefor constructing such R(n; k).

To conclude this section, we mention that a useful resourcewhen investigating sequences

arising in combinatorial settings is the book of Sloane[345, 346], which lists several thousand

sequencesand gives referencesfor them. Section 17 mentions somesoftware systemsthat are

useful in asymptotics.
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4. Basic estimates: factorials and binomial coe�cien ts

No functions in combinatorial enumeration are as ubiquitous and important as the facto-

rials and the binomial coe�cien ts. In this sectionwe state someestimatesfor thesequantities,

which will beusedthroughout this chapter and areof widespreadapplicabilit y. Several di�eren t

proofs of someof theseestimateswill be sketched later.

The basic estimate, from which many others follow, is that for the factorial. As was

mentioned in the introduction, the basic form of Stirling's formula is

n! � (2� n)1=2nne� n as n ! 1 : (4.1)

This is su�cien t for many enumeration problems. However, when necessaryone can draw on

much more accurate estimates. For exampleEq. 6.1.38in [297] gives

n! = (2� n)1=2nn exp(� n + � =(12n)) (4.2)

for all n � 1, where � = � (n) satis�es 0 < � < 1. More generally, there is Stirling's asymptotic

expansion:

logf n!(2� n) � 1=2n� neng �
1

12n
�

1
360n3 + � � � : (4.3)

(This is an asymptotic seriesin the senseof Eq. (2.2), and there is no convergent expansion

for logf n!(2� n) � 1=2n� neng as a power seriesin n � 1.) Further terms in the expansion (4.3)

can be obtained, and they involve Bernoulli numbers. In most references,such as Eq. 6.1.37

or 6.1.40of [297], Stirling's formula is presented for �( x), where � is Euler's gamma function.

Expansionsfor �( x) translate readily into onesfor n! becausen! = �( n + 1).

Stirling's approximation yields the expansion

�
2n
n

�
=

4n

(� n)1=2

�
1 �

1
8n

+
1

128n2 +
5

1024n3 + O(n� 4)
�

: (4.4)

A lessprecisebut still useful estimate is

�
n

bn=2c

�
�

�
2

� n

� 1=2

2n as n ! 1 : (4.5)

This estimate is usedfrequently. The binomial coe�cien ts are symmetric, so that
� n

k

�
=

� n
n� k

�

and unimodal, so that for a �xed n and k varying, the
� n

k

�
increasemonotonically up to a peak

at k = bn=2c (which is unique for n even and has two equal high points at k = (n � 1)=2 for

n odd) and then decrease.
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More important than Eq. (4.5) are expansionsfor generalbinomial coe�cien ts. Eq. (4.2)

shows that for 1 � k � n � 1,

�
n
k

�
=

n!
k!(n � k)!

=
�

n
2� k(n � k)

� 1=2 nn

kk(n � k)n� k exp
�

O
�

1
k

+
1

n � k

��

=
�

n
2� k(n � k)

� 1=2

exp
�

nH
�

k
n

�
+ O

�
1
k

+
1

n � k

��
; (4.6)

where

H (x) = � x logx � (1 � x) log(1 � x) (4.7)

is the entropy function. (We set H (0) = H (1) = 0 to make H (x) continuous for 0 � x � 1.)

Simplifying further, we obtain
�

n
k

�
= exp(nH (k=n) + O(log n)) ; (4.8)

an estimate that is valid for all 0 � k � n. In many situations it su�ces to usethe weaker but

simpler bound �
n
k

�
�

� ne
k

� k
; 0 � k � n : (4.9)

Approximations of this form are usedfrequently in information theory and other �elds.

A general estimate that can be derived by totally elementary methods, without recourse

to Stirling's formula, is
�

n
k

��
n

bn=2c

� � 1

= exp(� 2(k � n=2)2=n + O(jk � n=2j3=n2)) ; (4.10)

valid for jk � n=2j � n=4, say. It is most useful for jk � n=2j = o(n2=3), sincethe error term is

small then. Similarly,
�

n
k + r

�
�

�
n
k

� �
n � k

k

� r

as n ! 1 ; (4.11)

uniformly in k provided r (which may be negative) satis�es r 2 = o(k) and r 2 = o(n � k).

Further, we have

(n + k)! � nk exp(k2=(2n))n! as n ! 1 ; (4.12)

again uniformly in k provided k = o(n2=3).

5. Estimates of sums and other basic techniques

When encountering a combinatorial sum, the �rst reaction should always be to check

whether it can be simpli�ed by use of someidentit y. If no identit y for the sum is found, the

13



next step should be to try to transform the problem to eliminate the sum. Usually we are

interested not in single isolated sums,but parametrized families of them, such as

bn =
X

k

an (k) ; (5.1)

and it is the asymptotic behavior of the bn as n ! 1 that is desired. A standard and well-

known technique (named the \snake-oil" method by Wilf [377]) for handling such casesis to

form a generating function f (z) for the bn , use the properties of the an (k) to obtain a simple

form for f (z), and then obtain the asymptotics of the bn from the properties of f (z). This

method will be presented briey in Section 6. In this section we discusswhat to do if those

two approachesfail. Sometimesthe methods to be discussedcan also be usedin a preliminary

phaseto obtain a rough estimate for the sum. This estimate can then be usedto decidewhich

identities might be true, or what generating functions to form.

There are general methods for dealing with sums (cf. [234]), many of which are used in

asymptotic enumeration. A basic technique of this type is summation by parts. Often sums

to be evaluated can be expressedas

nX

j =1

aj bj or
1X

j =1

aj bj ;

where the bj , say, are known explicitly or behave smoothly, while the aj by themselvesmight

not be known well, but the asymptotics of

A(k) =
kX

j =1

aj (5.2)

are known. Summation by parts relies on the identit y

nX

j =1

aj bj =
n� 1X

k=1

A(k)(bk � bk+1 ) + A(n)bn : (5.3)

Example 5.1. Sum of primes. Let

Sn =
X

p� n

p ; (5.4)

where p runs over the primes � n. The Prime Number Theorem [23] states that the function

� (x) =
X

p� x

1 (5.5)
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satis�es

� (x) �
x

logx
as x ! 1 : (5.6)

(More preciseestimatesare available, but we will not usethem.) We rewrite

Sn =
nX

j =1

aj bj ; (5.7)

where

aj =

8
<

:

1 j is prime ;

0 otherwise ;
(5.8)

and bj = j for all j . Then A(k) = � (k) and summation by parts yields

Sn =
n� 1X

k=1

� � (k) + � (n)n : (5.9)

Since
n� 1X

k=1

� (k) �
n� 1X

k=2

k
logk

�
n2

2logn
as n ! 1 ; (5.10)

we have

Sn �
n2

2logn
as n ! 1 : (5.11)

�

Summation by parts is used most commonly in situations like those of Example 5.1, to

obtain an estimate for one sum from that of another.

Summation by parts is often easiestto carry out, both conceptually and notationally, by

using integrals. If we let

A(x) =
X

k� x

ak ; (5.12)

then A(x) = A(n) for n � x < n + 1. Supposethat bk = b(k) for somecontinuously di�eren-

tiable function b(x). Then

bk � bk+1 = �
Z k+1

k
b0(x)dx ; (5.13)

and we can rewrite Eq. (5.3) as

nX

j =1

aj bj = A(n)b(n) �
Z n

1
A(x)b0(x)dx : (5.14)

(One can apply similar formulas even when the bj are not smooth, but this usually requires

Riemann-Stieltjes integrals, cf. [14].) The approximation of sumsby integrals that appears in

(5.14) is common, and will be treated at length later.
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5.1. Sums of positiv e terms

Sumsof positive terms are extremely common. They can usually be handled with only a

few basic tools. We devote substantial spaceto this topic becauseit is important and because

the simplicit y of the methods helps in illustrating someof the basic principles of asymptotic

estimation, such as approximation by integrals, neglecting unimportant terms, and uniform

convergence.For readersnot familiar with asymptotic methods, working through the examples

of this section is a good exercisethat will make it easierto learn other techniques later.

Typical sumsare of the form

bn =
X

k

an (k) ; an (k) � 0 ; (5.15)

where k runs over some range of summation, often 0 � k � n or 0 � k < 1 , and the

an (k) may be given either explicitly or only through an asymptotic approximation. What

is desired is the asymptotic behavior of bn as n ! 1 . Usually the an (k) for n �xed are

unimodal, so that either i) an (k) � an (k + 1) for all k in the range, or ii) an (k) � an (k + 1)

for all k, or iii) an (k) � an (k + 1) for k � k0, and an (k) � an (k + 1) for k > k0. The

single most important task in estimating bn is usually to �nd the maximal an (k). This can be

done either by combinatorial means(involving knowledgeof where the an (k) come from), by

asymptotic estimation of the an (k), or (most common when the an (k) are expressedin terms

of factorials or binomial coe�cien ts) by �nding where the ratio an (k + 1)=an (k) is closeto 1.

If an (k + 1)=an (k) < 1 for all k, then we are in caseii) above, and if an (k + 1)=an (k) > 1 for

all k, we are in casei). If there is a k0 in the range of summation such that an (k0 + 1) is close

to an (k0), then we are almost certainly in caseiii) and the peak occurs at somek closeto k0.

The di�eren t casesare illustrated in the examplespresented later in this section.

Once max an (k) = an (k0) has beenfound, the next task is to show that most of the terms

in the sum are insigni�can t. For example, if the sum in Eq. (5.15) is over 0 � k � n, and if

an (0) = 1 is the largest term, then

nX

k =0
an ( k ) <n � 2

an (k) < n� 1 ;

which is negligible if we are only after a rough approximation to bn , say of the form bn � cn

as n ! 1 , or even bn = cn (1 + O(n� 1)) as n ! 1 . Once the small terms have been

discarded,we are usually left with a short range of summation. It can happen that this range
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is extremely short, and the maximal term an (k0) is much larger than any of its neighbors to

the extent that bn � an (k0) as n ! 1 . More commonly, the number of terms that contribute

signi�cantly to bn doesgrow as n ! 1 , but slowly. Their contribution, relative to that of the

maximal term an (k0), can usually be estimated by somesimple function of k � k0, and the sum

of all of them approximated by an explicit integral. This method is sometimesreferred to as

Laplace'smethod for sums(in analogyto Laplace'smethod for estimating integrals, mentioned

in Section5.5, which proceedsin a similar spirit). There is extensive discussionof this method

in [63].

Example 5.2. Sumsof the partition function. We estimate

Un =
nX

k=1

p(k)k ; (5.16)

wherep(k) is the number of partitions of k. Sinceany partition of m � 1, say onewith cj parts

of size j , can be transformed into a partition of m with c1 + 1 parts of size 1, and cj of size

j for j � 2, we have p(m) � p(m � 1) for all m � 2. Therefore the largest term in the sum

in (5.16) is the one with k = n. If the only estimate for p(k) that we have is the one given by

(1.6), then

p(n)n = exp(Cn3=2 � n log(4 � 31=2n) + O(n1=2)) : (5.17)

Sincethe constant implied by the O-symbol is not speci�ed, this estimate is potentially larger

than p(n)n by a factor of exp(cn1=2), so we can only obtain asymptotics of logp(n)n , not

of p(n)n itself. This also meansthat rough estimates of Un follow easily from (5.17). Since

p(k)k � p(n)n for all k < n, and there are n terms in the sum, we have p(n)n � Un � np(n)n ,

and becauseof the large error term in (5.17), we obtain

Un = exp(Cn3=2 � n log(4 � 31=2n) + O(n1=2)) : (5.18)

Thus the useof the poor estimate (1.6) for p(n) meansthat we canobtain only a crudeestimate

for Un , and there is no needfor careful analysis.

Instead of (1.6) we can usethe more re�ned estimate (1.5). Let qn denote �rst term on the

right side of (1.5). Then we have

p(n) = qn + O(n� 1 exp(Cn1=2=2)) = qn(1 + O(exp(� Cn1=2=2))) ; (5.19)

so

p(n)n = qn
n (1 + O(n exp(� Cn1=2=2))) = qn

n (1 + O(exp(� Cn1=2=3))) ; (5.20)
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say. Also, for some� > 0 we �nd from Eq. (1.5) (or Eq. 1.6) that for large n

qn� 1 < qn � �n � 1=2qn :

Thus for large n,
qn� 1

n� 1 < qn� 1
n (1 � �n � 1=2)n� 1

< qn
n exp(� �n 1=2=2) ;

and therefore
n� 1X

k=1

p(k)k � (n � 1)p(n � 1)n� 1 < qn
n exp(� �n 1=2=3) :

Thus we obtain

Un = qn
n (1 + O(exp(� � n1=2))) (5.21)

for some� > 0.

The estimatesof Un presented above relied on the observation that the last term in the sum

(5.16) de�ning Un is much larger than the sum of all the other terms. This does not happen

often. A more typical example is presented by

Tn =
nX

k=1

p(k) : (5.22)

As wasnoted before,p(n) is larger than any of the other terms, but not by enoughto dominate

the sum. We thereforetry the other approachesthat werelisted at the beginningof this section.

We useonly the estimate (1.6). Since(1 � x)1=2 < 1� x=2 for 0 � x � 1, we �nd that for large

n, X

k<n � n2=3

p(k) � np(n � dn2=3e)

� exp(C(n � dn2=3e)1=2)

� exp(Cn1=2 � Cn1=6=2)

= O(p(n) exp(� Cn1=6=3)) :

(5.23)

Thus most of the values of k contribute a negligible amount to the sum. For k = n � j ,

0 � j � n2=3, we �nd that

p(n � j )=p(n) = (1 + O(n � 1=3)) exp(C(n � j )1=2 � Cn1=2) :

Since
(n � j )1=2 = n1=2 � j n� 1=2=2 + O(j 2n� 3=2) ;

p(n � j )=p(n) = exp(� Cj n � 1=2=2 + O(n� 1=6))

= (1 + O(n � 1=6)) exp(� Cj n � 1=2=2) :

(5.24)
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Thus the ratios p(n � j )=p(n) decreasegeometrically, and so

p(n) � 1
X

0� j � n2=3

p(n � j ) =
(1 + O(n� 1=6))

1 � exp(� Cn � 1=2=2)
= 2C � 1n1=2(1 + O(n� 1=6)) : (5.25)

Therefore, combining all the estimates,

Tn =
nX

k=1

p(k) =
1 + O(n� 1=6)

2 � C � 31=2 � n1=2
eCn1=2

: (5.26)

The O(n� 1=6) error term above can easily be improved with a little more care to O(n � 1=2),

even if we continue to rely only on (1.6).
�

Before presenting further examples,we discusssomeof the problems that can arise even

in the simple setting of estimating positive sums. We then introduce the basic technique of

approximating sumsby integrals.

The lack of uniform convergenceis a frequent causeof incorrect estimates. If an (k) � cn (k)

for each k as n ! 1 , it doesnot necessarilyfollow that

bn =
X

k

an (k) �
X

k

cn (k) as n ! 1 : (5.27)

A simple counterexample is given by an (k) =
� n

k

�
and cn (k) =

� n
k

�
(1 + k=n). To conclude

that (5.27) holds, it is usually necessaryto know that an (k) � cn (k) as n ! 1 uniformly in

k. Such uniform convergencedoes hold if we replace cn (k) in the counterexample above by

c0
n (k) =

� n
k

�
(1 + k=n2), for example.

There is a general principle that sums of terms that vary smoothly with the index of

summation should be replacedby integrals, so that for � > 0, say,

nX

k=1

k� �
Z n+1

1
u� du as n ! 1 : (5.28)

The advantage of replacing a sum by an integral is that integrals are usually much easierto

handle. Many more closed-formexpressionsare available for de�nite and inde�nite integrals

than for sums. We will discussextensionsof this principle of replacingsumsby integrals further

in Section 5.3, when we present the Euler-Maclaurin summation formula. Usually, though, we

do not needanything sophisticated, and the application of the principle to situations like that

of (5.28) is easyto justify . If an = g(n) for somefunction g(x) of a real argument x, then
�
�
�
�g(n) �

Z n+1

n
g(u)du

�
�
�
� � max

n� u� n+1
jg(u) � g(n)j ; (5.29)
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and so �
�
�
�
�

X

n

g(n) �
Z

g(u)du

�
�
�
�
�

�
X

n

max
n� u� n+1

jg(u) � g(n)j ; (5.30)

wherethe integral is over [a;b+ 1] if the sum is over a � n � b, a;b 2 Z . If g(u) is continuously

di�eren tiable, then jg(u) � g(n)j � maxn� v� n+1 jg0(v)j for n � u � n + 1. This gives the

estimate �
�
�
�
�

bX

n= a

g(n) �
Z b+1

a
g(u)du

�
�
�
�
�

�
bX

n= a

max
n� v� n+1

jg0(v)j : (5.31)

Often one can �nd a simple explicit function h(w) such that jg0(v)j � h(w) for any v and w

with jv � wj � 1, in which caseEq. (5.31) can be replacedby

�
�
�
�
�

bX

n= a

g(n) �
Z b+1

a
g(u)du

�
�
�
�
�

�
Z b+1

a
h(v)dv : (5.32)

For good estimatesto beobtained from integral approximations to sums,it is usually necessary

for individual terms to be small comparedto the sum.

Example 5.3. Sum of exp(� �k 2). In the �nal stagesof an asymptotic approximation one

often encounters sumsof the form

h(� ) =
1X

k= �1

exp(� �k 2) ; � > 0 : (5.33)

There is no closedform for the inde�nite integral of exp(� �u 2) (it is expressiblein terms of

the Gaussianerror function only), but there is the famous evaluation of the de�nite integral

Z 1

�1
exp(� �u 2)du = (� =� )1=2 : (5.34)

Thus it is natural to approximate h(� ) by (� =� )1=2. If g(u) = exp(� �u 2), then g0(u) =

� 2�ug (u), and so for n � 0,

max
n� v� n+1

jg0(v)j � 2� (n + 1)g(n) : (5.35)

For the integral in Eq. (5.30) to yield a good approximation to the sum we must show that

the error term is smaller than the integral. The largest term in the sum occurs at n = 0 and

equals1. The error bound (5.35) that comesfrom approximating g(0) = 1 by the integral of

g(u) over 0 � u � 1 is 2� . Thereforewe cannot expect to obtain a good estimate unless� ! 0.

We �nd that

2� (n + 1)g(n) � 4�ug (u=2) for n � 1; n � u � n + 1 ;
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so (integral approximation again!)

1X

n=1

2� (n + 1)g(n) � 4�
Z 1

1
ug(u=2)du

(5.36)

� 4�
Z 1

0
ug(u=2)du = (8� )1=2 :

Therefore, taking into account the error for n = 0 which was not included in the bound (5.36),

we have

h(� ) =
1X

n= �1

exp(� �n 2) =
Z 1

�1
exp(� �u 2)du + O(� 1=2 + � )

(5.37)

= (� =� )1=2 + O(� 1=2) as � ! 0+ :

For this sum much more preciseestimatesare available, as will be shown in Example 5.9. For

many purposes,though, (5.37) is su�cien t.
�

Example 5.3 showed how to use the basic tool of approximating a sum by an integral.

Moreover, the estimate (5.37) that it provides is ubiquitous in asymptotic enumeration, since

many approximations reduceto it. This is illustrated by the following example.

Example 5.4. Bell numbers (cf. [63]). The Bell number, B (n), counts the partitions of an

n-element set. It is given by [81]

B (n) = e� 1
1X

k=1

kn

k!
: (5.38)

In this sum no single term dominates. The ratio of the (k + 1)-st to the k-th term is

(k + 1)n

(k + 1)!
�

k!
kn =

1
k + 1

�
1 +

1
k

� n

: (5.39)

As k increases,this ratio strictly decreases.We search for the point where it is about 1. For

k � 2, �
1 +

1
k

� n

= exp
�

n log
�

1 +
1
k

��
= exp(n=k + O(n=k2)) ; (5.40)

so the ratio is closeto 1 for n=k closeto log(k + 1). We choosek0 to be the closestinteger to

w, the solution to

n = w log(w + 1) : (5.41)
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For k = k0 + j , 1 � j � k0=2, we �nd, since log(1 + i=k0) = i=k0 � i2=(2k2
0) + O(i 3=k3

0),

kn

k!
=

kn
0

k0!
(1 + j =k0)n

k j
0� j

i =1 (1 + i=k0)

=
kn

0

k0!
exp

�
j n=k0 � j logk0 � j 2(n + k0)=(2k2

0) + O(nj 3=k3
0 + j =k0)

�
:

(5.42)

The same estimate applies for � k0=2 � j � 0. The term j n=k0 � j logk0 is small, since

jk0 � wj � 1=2 and w satis�es (5.41). We �nd

n=k0 � logk0 = n=w � log(w + 1) + O(n=w2 + 1=w)

= O(n=w2 + 1=w) :
(5.43)

By (5.41), w � n= logn as n ! 1 . We now further restrict j to jj j � n1=2 logn. Then (5.42)

and (5.43) yield

kn

k!
=

kn
0

k0!
exp(� j 2(n + k0)=(2k2

0) + O((log n)6n� 1=2)) : (5.44)

Approximating the sum by an integral, as in Example 5.3, shows that

X

k
j j j� n 1=2 log n

kn

k!
=

kn
0

k0!
k0(2� )1=2(n + k0)� 1=2(1 + O((log n)6n� 1=2)) : (5.45)

(An easyway to obtain this is to apply the estimate of Example 5.3 to the sum from �1 to

1 , and show that the range jj j > n1=2 logn contributes little.) To estimate the contribution of

the remaining summands,with jj j > n1=2 logn, we observe that the ratio of successive terms

is � 1, so the range 1 � k � k0 � bn1=2 lognc contributes at most k0 (the number of terms)

times the largest term, which arisesfor k = k0 � bn1=2 lognc. By (5.44), this largest term is

O(kn
0 (k0!)� 1 exp(� (log n)3)) :

For k � k1 � k0 + bn1=2 lognc, we �nd that the ratio of the (k + 1)-st to the k-th term is, for

large n,

�
1

k1 + 1

�
1 +

1
k1

� n

= exp(n=k1 � log(k1 + 1) � n=(2k2
1) + O(n=k3

1))

� exp(� (k1 � k0)n=k2
1 + O(n=k3

1))

� exp(� 2n � 1=2) � 1 � n� 1=2 ;

(5.46)

and so the sum of these terms, for k1 � k < 1 , is bounded above by n1=2 times the term for

k = k1. Therefore the estimate on the right-hand side of (5.45) applies even when we sum on

all k, 1 � k < 1 .
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To obtain an estimate for B (n), it remains only to estimate kn
0 =k0!. To do this, we apply

Stirling's formula and usethe property that jk0 � wj � 1=2 to deducethat

B (n) � (log w)1=2wn� wew as n ! 1 ; (5.47)

where w is given by (5.41).

There is no explicit formula for w in terms of n, and substituting various asymptotic

approximations to w, such as

w =
n

logn
+ O

�
n

(log n)2

�
(5.48)

(seeExample 5.10) yields large error terms in (5.47), so for accuracy it is usually better to

use (5.47) as is. There are other approximations to B (n) in the literature (see, for example,

[33, 63]). They di�er slightly from (5.47) becausethey estimate B (n) in terms of roots of

equationsother than (5.41).

Other methods of estimating B (n) are presented in Examples 12.5 and 12.6.
�

5.2. Alternating sums and the principle of inclusion-exclusion

At the beginningof Section5, the readerwasadvisedin generalto search for identities and

transformations when dealing with general sums. This advice is even more important when

dealing with sumsof terms that have alternating or irregularly changing coe�cien ts. Finding

the largest term is of little help when there is substantial cancellation among terms. Several

generalapproachesfor dealing with this di�cult y will be presented later. Generating function

methods for dealing with complicated sums are discussedin Section 6. Contour integration

methods for alternating sumsare mentioned in Section 10.3. The summation formulas of the

next section can sometimesbe used to estimate sums with regularly varying coe�cien ts as

well. In this section we present somebasic elementary techniques that are often su�cien t.

Sometimesit is possibleto obtain estimatesof sumswith positive and negative summands

by approximating separatelythe sumsof the positive and of the negative summands. Methods

of the preceding section or of the next section are useful in such situations. However, this

approach is to be avoided as much as possible, becauseit often requires extremely precise

estimatesof the two sumsto obtain even rough boundson the desiredsums. One method that

often works and is much simpler consistsof a simple pairing of adjacent positive and negative

terms.
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Example 5.5. Alternating sum of square roots. Let

Sn =
nX

k=1

(� 1)kk1=2 : (5.49)

We have

(2m)1=2 � (2m � 1)1=2 = (2m)1=2

(

1 �
�

1 �
1

2m

� 1=2
)

= (2m)1=2
�

1 �
�

1 �
1

4m
+ O(m� 2)

��
(5.50)

= (8m) � 1=2 + O(m� 3=2) ;

so

2bn=2cX

k=1

(� 1)kk1=2 =
bn=2cX

m=1

(8m) � 1=2 + O(1)

(5.51)

= n1=2=2 + O(1) :

Hence

Sn =

8
<

:

n1=2=2 + O(1) if n is even ;

� n1=2=2 + O(1) if n is odd :
(5.52)

�

In Example 5.5, the sums of the positive terms and of the negative terms can easily be

estimated accurately (for example, by using the Euler-Maclaurin formula of the next section)

to obtain (5.52). In other cases,though, the cancellation is too extensive for such an approach

to work. This is especially true for sumsarising from the principle of inclusion-exclusion.

Supposethat X is someset of objects and P is a set of properties. For R � P, let N = (R)

be the number of objects in X that have exactly the properties in R and noneof the properties

in P n R. We let N � (R) denote the number of objects in X that have all the properties in R

and possibly someof those in P n R. The principle of inclusion-exclusionsays that

N= (R) =
X

R� Q� P

(� 1)jQnRjN � (Q) : (5.53)

(This is a basic version of the principle. For more general results, proofs, and references,see

[81, 173, 351].)
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Example 5.6. Derangementsof n letters. Let X be the set of permutations of n letters, and

supposethat Pi , 1 � i � n, is the property that the i -th letter is �xed by a permutation, and

P = f P1; : : : ; Pn g. Then dn , the number of derangements of n letters, equalsN = (� ), where �

is the empty set, and so by (5.53)

dn =
X

Q� P

(� 1)jQjN � (Q) : (5.54)

However, N � (Q) is just the number of permutations that leave all letters speci�ed by Q �xed,

and thus
dn =

X

Q� P

(� 1)jQj (n � jQj)!

=
nX

k=0

(� 1)k (n � k)!
�

n
k

�
=

nX

k=0

(� 1)k n!
k!

;

(5.55)

which is Eq. (1.1).
�

The formula (1.1) for derangements is easy to use becausethe terms decreaserapidly.

Moreover, this formula is exceptionally simple, largely becauseN � (Q) dependsonly on jQj. In

general,the inclusion-exclusionprinciple producescomplicatedsumsthat are hard to estimate.

A frequently helpful tool is provided by the Bonferroni inequalities [81, 351]. One form of these

inequalities is that for any integer m � 0,

N= (R) �
X

Q
R � Q � P

j Q nR j� 2m

(� 1)jQnRjN � (Q) (5.56)

and

N= (R) �
X

Q
R � Q � P

j Q nR j� 2m +1

(� 1)jQnRjN � (Q) : (5.57)

Thus in general
�
�
�N= (R) �

X

Q
R � Q � P
j Q nR j� k

(� 1)jQnRjN � (Q)
�
�
� �

X

Q
R � Q � P

j Q nR j� k +1

N � (Q) : (5.58)

These inequalities are frequently applied for n = jX j increasing. Typically one choosesk

that increasesmuch more slowly than n, so that the individual terms N � (Q) in (5.58) can

be estimated asymptotically, as the interactions of the di�eren t properties counted by N � (Q)

is not too complicated to estimate. Bender [33] presents someuseful generalprinciples to be

usedin such estimates(especially the asymptotically Poissondistribution that tends to occur

when the method is successful).We present an adaptation of an example from [33].
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Example 5.7. Balls and cells. Given n labeled cells and m labeled balls, let ah(m; n) be

the number of ways to place the balls into cells so that exactly h of the cells are empty. We

consider h �xed. Let X be the ways of placing the balls into the cells (nm in total), and

P = f P1; : : : ; Pn g, where Pi is the property that the i -th cell is empty. If R = f P1; : : : ; Phg,

then ah(m; n) =
� n

h

�
N= (R). Now

N � (Q) = (n � jQj)m ; (5.59)

so
X

Q
R � Q � P
j Q nR j = t

N � (Q) =
� n� h

t

�
(n � h � t)m

= nm e� mh=n (ne� m=n )t (t!)� 1(1 + O((t2 + 1)mn � 2 + (t2 + 1)n� 1)) ;
(5.60)

provided t2 � n and mt 2n� 2 � 1, say. In the range 0 � t � logn, n logn � m � n2(log n) � 3,

we �nd that the right-hand side of (5.60) is

nm e� mh=n (ne� m=n )t (t!)� 1(1 + O(mn � 2(log n)2)) :

We now apply (5.58) with k = blognc, and obtain

ah(m; n) =
� n

h

�
N= (R) �

� n
h

�
nm exp(� mh=n � ne� m=n )

� nm (h!)� 1(ne� m=n )h exp(� ne� m=n )
(5.61)

as m; n ! 1 , provided n logn � m � n2(log n) � 3. Sinceah(m; n)n� m is the probabilit y that

there are exactly h empty cells, the relation (5.61) (which we have establishedonly for �xed h)

shows that this probabilit y is asymptotically distributed like a Poissonrandom variable with

parameter n exp(� m=n).

Many additional results on random distributions of balls into cells, and referencesto the

extensive literature on this subject can be found in [241].
�

Bonferroni inequalities include other methods for estimating N = (R) by linear combinations

of the N � (Q). Recent approachesand references(phrased in probabilistic terms) can be found

in [152]. For bivariate Bonferroni inequalities (where one asksfor the probabilit y that at least

one of two setsof events occurs) see[153, 249].

The Chen-Stein method [75] is a powerful technique that is often used in place of the

principle of inclusion-exclusion, especially in probabilistic literature. Recent referencesare

[17, 27].
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5.3. Euler-Maclaurin and Poisson summation form ulas

Section 5.0 showed that sums can be successfullyapproximated by integrals if the sum-

mandsareall small comparedto the total sumand vary smoothly asfunctions of the summation

index. The approximation (5.29), though crude, is useful in a wide variety of cases.Sometimes,

though, more accurate approximations are needed. An obvious way is to improve the bound

(5.29). If g(x) is really smooth, we can expect that the di�erence

an �
Z n+1

n
g(u)du

will vary in a regular way with n. This is indeed the case,and it is exploited by the Euler-

Maclaurin summation formula. It can be found in many books, such as [63, 175, 297, 298].

There are many formulations, but they do not di�er much.

Euler-Maclaurin summation form ula . Supposethat g(x) has 2m continuous derivatives

in [a;b], a;b 2 Z . Then

bX

k= a

g(k) =
Z b

a
g(x)dx +

mX

r =1

B2r

(2r )!

n
g(2r � 1) (b) � g(2r � 1) (a)

o

(5.62)

+
1
2

f g(a) + g(b)g + Rm ;

where

Rm = �
Z b

a
g(2m) (x)

B2m (x � bxc)
(2m)!

dx ; (5.63)

and so

jRm j �
Z b

a
jg(2m) (x)j

jB2m (x � bxc)j
(2m)!

dx : (5.64)

In the above formulas, the Bn (x) denote the Bernoulli polynomials, de�ned by

zexz

ez � 1
=

1X

n=0

Bn (x)
zn

n!
: (5.65)

The Bn are the Bernoulli numbers, de�ned by

z
ez � 1

=
1X

n=0

Bn
zn

n!
; (5.66)

so that Bn = Bn (0), and

B0 = 1 ; B1 = � 1=2 ; B2 = 1=6 ;

B3 = B5 = B7 = � � � = 0 ; (5.67)

B4 = � 1=30 ; B6 = 1=42 ; B8 = � 1=30; : : : :
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It is known that

jB2m (x � bxc)j � jB2m j ; (5.68)

so we can simplify (5.64) to

jRm j � jB2m j((2m)!) � 1
Z b

a
jg(2m) (x)jdx : (5.69)

There are many applications of the Euler-Maclaurin formula. One of the most frequently

cited onesis to estimate factorials.

Example 5.8. Stirling's formula. We transform the product in the de�nition of n! into a sum

by taking logarithms, and �nd that for g(x) = logx and m = 1 we have

logn! =
nX

k=1

logk =
Z n

1
(log x)dx +

1
2

logn +
1
2

B2

�
1
n

� 1
�

+ R1 ; (5.70)

where

R1 =
Z n

1

B2(x � bxc)
2x2 dx = C + O(n � 1) (5.71)

for

C =
Z 1

1

B2(x � bxc)
2x2 dx : (5.72)

Therefore

logn! = n logn � n +
1
2

logn + C + 13=12+ O(n � 1) ; (5.73)

which gives

n! � C0n1=2nne� n as n ! 1 : (5.74)

To obtain Stirling's formula (4.1), we need to show that C0 = (2� )1=2. This can be done in

several ways (cf. [63]). In Examples12.1, 12.4, and 12.5 we will seeother methods of deriving

(4.1).
�

There is no requirement that the function g(x) in the Euler-Maclaurin formula be positive.

That was not even needed for the crude approximation of a sum by an integral given in

Section 5.0. The function g(x) can even take complex values. (After all, Eq. (5.62) is an

identit y!) However, in most applications this formula is usedto derive an asymptotic estimate

with a small error term. For that, somehigh order derivativeshave to be small, which means

that g(x) cannot change sign too rapidly. In particular, the Euler-Maclaurin formula usually

is not very useful when the g(k) alternate in sign. In those casesone can sometimesuse
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the di�erencing trick (cf. Example 5.5) and apply the Euler-Maclaurin formula to h(k) =

g(2k) + g(2k + 1). There is also Boole's summation formula for alternating sumsthat can be

applied. (SeeChapter 2, x3 and Chapter 6, x6 of [298], for example.) Generalizationsto other

periodic patterns in the coe�cien ts have beenderived by Berndt and Schoenfeld [47].

The bounds for the error term Rm in the Euler-Maclaurin formula that were stated above

can often be improved by using special properties of the function g(x). For example, when

g(x) is analytic in x, there are contour integrals for Rm that sometimesgive good estimates

(cf. [315]).

The Poissonsummation formula states that

1X

n= �1

f (n + a) =
1X

m= �1

exp(2� ima )
Z 1

�1
f (y) exp(� 2� imy )dy (5.75)

for \nice" functions f (x). The functions for which (5.75) holds include all continuous f (x) for

which
R

jf (x)jdx < 1 , which are of bounded variation, and for which
P

n f (n + a) converges

for all a. For weaker conditions that ensure validit y of (5.75), we refer to [63, 365]. The

Poissonsummation formula often converts a slowly convergent sum into a rapidly convergent

one. Generally it is not as widely applicable as the Euler-Maclaurin formula as it requires

extreme regularity for the Fourier coe�cien ts to decreaserapidly. On the other hand, it can

be applied in somesituations that are not covered by the Euler-Maclaurin formula, including

somewhere the coe�cien ts vary in sign.

Example 5.9. Sum of exp(� �k 2). We consideragain the function h(� ) of Example 5.3. We

let f (x) = exp(� �x 2), a = 0. Eq. (5.15) then gives

h(� ) =
1X

n= �1

exp(� �n 2) = (� =� )1=2
1X

m= �1

exp(� � 2m2=� ) : (5.76)

This is an identit y, and the sum on the right-hand side above converges rapidly for small

� . Many applications require the evaluation of the sum on the left in which � tends to 0.

Eq. (5.76) o�ers a method of converting a slowly convergent sum into a tractable one, whose

asymptotic behavior is explicit.
�

5.4. Bo otstrapping and other basic metho ds

Bootstrapping is a useful technique that usesasymptotic information to obtain improved

estimates. Usually westart with somerough bounds,and by combining them with the relations

de�ning the function or sequencethat we are studying, we obtain better bounds.
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Example 5.10. Approximation of Bell numbers. Example 5.4 obtained the asymptotics of

the Bell numbers Bn , but only in terms of w, the solution to Eq. (5.41). We now show how

to obtain asymptotic expansionsfor w. As n increases,so doesw. Therefore log(w + 1) also

increases,and so w < n for large n. Thus

n = w log(w + 1) < w log(n + 1) ;

and so

n(log(n + 1))� 1 < w < n : (5.77)

Therefore

log(w + 1) = logn + O(log logn) ; (5.78)

and so

w =
n

log(w + 1)
=

n
logn

+ O
�

n log logn
(log n)2

�
: (5.79)

To go further, note that by (5.79),

log(w + 1) = log
�

n
logn

�
1 + O

�
log logn

logn

���

= logn � log logn + O((log logn)(log n) � 1) ;

(5.80)

and so by applying this estimate in Eq. (5.41), we obtain

w =
n

logn
+

n log logn
(log n)2 +

n(log logn)2

(log n)3 + O
�

n log logn
(log n)3

�
: (5.81)

This procedure can be iterated inde�nitely to obtain expansions for w with error terms

O(n(log n) � � ) for as large a value of � as desired.
�

In the above example, w can also be estimated by other methods, such as the Lagrange-

B•urmann inversion formula (cf. Example 6.7). However, the bootstrapping method is much

more widely applicable and easyto apply. It will be usedseveral times later in this chapter.

5.5. Estimation of in tegrals

In some of the examples in the preceding sections integrals were used to approximate

sums. The integrals themselveswerealways easyto evaluate. That is true in most asymptotic

enumeration problems,but there do occur situations wherethe integrals are more complicated.

Often the hard integrals are of the form

f (x) =
Z �

�
g(t) exp(xh(t))dt ; (5.82)
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and it is necessaryto estimate the behavior of f (x) asx ! 1 , with the functions g(t), h(t) and

the limits of integration � and � held �xed. There is a substantial theory of such integrals, and

good referencesare [54, 63, 100, 315]. The basic technique is usually referred to as Laplace's

method, and consistsof approximating the integrand by simpler functions near its maxima.

This approach is similar to the one that is discussedat length in Section 5.1 for estimating

sums. The contributions of the approximations are then evaluated, and it is shown that the

remaining rangesof integration, away from the maxima, contribute a negligible amount. By

breaking up the interval of integration we can write the integral (5.82) as a sum of several

integrals of the sametype, with the property that there is a unique maximum of the integrand

and that it occursat oneof the endpoints. When � > 0, the maximum of the integrand occurs

for large x at the maximum of h(t) (except in rare caseswhere g(t) = 0 for that t for which

h(t) is maximized). Supposethat the maximum occurs at t = � > 0. It often happensthat

h(t) = h(� ) � c(t � � )2 + O(jt � � j3) (5.83)

for � � t � � and c = � h00(� )=2 > 0, and then one obtains the approximation

f (x) � g(� ) exp(xh(� ))[ � � =(4xh00(� ))]1=2 as x ! 1 ; (5.84)

provided g(� ) 6= 0. For precisestatements of even more general and rigorous results, seefor

exampleChapter 3, x7 of [315]. Those results cover functions h(t) that behave near t = � like

h(� ) � c(t � � ) � for any � > 0.

When the integral is highly oscillatory, as happens when h(t) = iu (t) for a real-valued

function u(t), still other techniques (such as the stationary phase method), are used. We

will not present them here, and refer to [54, 63, 100, 315] for descriptions and applications.

In Section 12.1 we will discussthe saddle point method, which is related to both Laplace's

method and the stationary phasemethod.

Laplace integrals

F (x) =
Z 1

0
f (t) exp(� xt )dt (5.85)

can often be approximated by integration by parts. We have (under suitable conditions on

f (t))

F (x) = x � 1f (0) + x � 1
Z 1

0
f 0(t) exp(� xt )dt

= x � 1f (0) + x � 2f 0(0) + x � 2
Z 1

0
f 00(t) exp(� xt )dt ; (5.86)
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and so on. There are general results, usually associated with the name of Watson's Lemma,

for deriving such expansions.For references,see[100, 315].

6. Generating functions

6.1. A brief overview

Generating functions are a wonderfully powerful and versatile tool, and most asymptotic

estimates are derived from them. The most common ones in combinatorial enumeration are

the ordinary and exponential generating functions. If a0; a1; : : :, is any sequenceof real or

complex numbers, the ordinary generating function is

f (z) =
1X

n=0

anzn ; (6.1)

while the exponential generating function is

f (z) =
1X

n=0

anzn

n!
: (6.2)

Doubly-indexed arrays, for example an;k , 0 � n < 1 , 0 � k � n, are encoded as two-variable

generating functions. Depending on the array, sometimesone uses

f (x; y) =
1X

n=0

nX

k=0

an;k xkyn ; (6.3)

and sometimesother forms that might even mix ordinary and exponential types,as in

f (x; y) =
1X

n=0

yn

n!

nX

k=0

an;k xk : (6.4)

For example, the Stirling numbers of the �rst kind, s(n; k) (( � 1)n+ ks(n; k) is the number of

permutations on n letters with k cycles) have the generating function (seepp. 50, 212{213,

and 234{235 in [81])

1 +
1X

n=1

yn

n!

nX

k=1

s(n; k)xk = (1 + y)x : (6.5)

In general,a generatingfunction is just a formal power series,and questionsof convergence

do not arise in the de�nition. However, someof the main applications of generating functions

in asymptotic enumeration do rely on analyticit y or other convergenceproperties of those

functions, and there the domain of convergenceis important.

A generatingfunction is just another form for the sequencethat de�nes it. There are many

reasonsfor using it. One is that even for complicated sequences,generating functions are
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frequently simple. This might not be obvious for the partition function p(n), which has the

ordinary generating function

f (z) =
1X

n=0

p(n)zn =
1Y

k=1

(1 � zk )� 1 : (6.6)

The sequencep(n), which is complicated, is encoded here as an in�nite product. The terms in

the product are simple and vary in a regular way with the index, but it is not clear at �rst what

is gainedby this representation. In other cases,though, the advantagesof generatingfunctions

are clearer. For example, the exponential generating function for derangements (Eq. (1.1) and

Example 5.6) is

f (z) =
1X

n=0

dn

n!
zn =

1X

n=0

zn

n!

nX

n=0

(� 1)k n!
k!

=
1X

k=0

(� 1)k

k!

1X

n= k

zn =
e� z

1 � z
; (6.7)

which is extremely compact.

Reasonsfor using generating functions go far beyond simplicit y. The one that matters

most for this chapter in that generating functions can be usedto obtain information about the

asymptotic behavior of sequencesthey encode, information that often cannot be obtained in

any other way, or not as easily. Methods such as those of Section 10.2 can be used to obtain

immediately from Eq. (6.7) the asymptotic estimate dn � e� 1n! as n ! 1 . This estimate can

alsobe derived easily by elementary methods from Eq. (1.1), sohere the generatingfunction is

not essential. In other cases,though, such as that of the partition function p(n), all the sharp

estimates,such as that of Hardy and Ramanujan given in (1.5), are derived by exploiting the

properties of the generating function. If there is any main theme to this chapter, it is that

generating functions are usually the easiest,most versatile, and most powerful way to study

asymptotic behavior of sequences. Especially when the generating function is analytic, its

behavior at the dominant singularities (a term that will be de�ned in Section 10) determines

the asymptotics of the sequence.When the generating function is simple, and often even when

it is not simple, the contribution of the dominant singularity can often be determined easily,

although the sequenceitself is complicated.

There are many applications of generatingfunctions, somerelated to asymptotic questions.

Averagescan often be studied using generating functions. Suppose, for example, that an;k ,

0 � k � n, 0 � n < 1 , is the number of objects in someclassof sizen, which have weight k
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(for somede�nition of sizeand weight), and that we know, either explicitly or implicitly , the

generating function f (x; y) of an;k given by (6.4). Then

g(y) = f (1; y) =
1X

n=0

yn

n!

nX

k=0

an;k (6.8)

is the exponential generating function of the number of objects of sizen, while

h(y) =
@

@x
f (x; y)

�
�
�
x=1

=
1X

n=0

yn

n!

nX

k=0

kan:k (6.9)

is the exponential generating function of the sum of the weights of objects of sizen. Therefore

the averageweight of an object of sizen is

[yn ]h(y)
[yn ]g(y)

: (6.10)

The wide applicabilit y and power of generating functions come primarily from the struc-

tured way in which most enumeration problemsarise. Usually the classof objects to becounted

is derived from simpler objects through basic composition rules. When the generating func-

tions are chosento reect appropriately the classesof objects and composition rules, the �nal

generating function is derivable in a simple way from those of the basic objects. Suppose,

for example, that each object of size n in classC can be decomposeduniquely into a pair of

objects of sizesk and n � k (for somek) from classesA and B , and each pair corresponds to

an object in C. Then cn , the number of objects of sizen in C, is given by the convolution

cn =
nX

k=0

akbn� k ; (6.11)

(where ak is the number of objects of size k in A, etc.). Hence if A(z) =
P

anzn , B (z) =
P

bnzn , C(z) =
P

cnzn are the ordinary generating functions, then

C(z) = A(z)B (z) : (6.12)

Thus orderedpairing of objects correspondsto multiplication of ordinary generatingfunctions.

If A(z) =
P

anzn and

bn =
nX

k=0

ak ;

then B (z) =
P

bnzn is given by

B (z) =
A(z)
1 � z

; (6.13)
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so that the ordinary generating function of cumulativ e sums of coe�cien ts is obtained by

dividing by 1 � z. There are many more such general correspondencesbetween operations

on combinatorial objects and on the corresponding generating functions. They are present,

implicitly or explicitly , in most books that cover combinatorial enumeration, such as [81, 173,

351, 377]. The most systematic approach to developing and using generalrules of this type has

beencarried out by Flajolet and his collaborators [139]. They develop ways to seeimmediately

(cf. [134]) that if we considermappings of a set of n labeled elements to itself, so that all n n

distinct mappings are consideredequally likely, then the generating function for the longest

path length is given by

f (z) =
1X

k=0

�
1

1 � t(z)
� evk (z)

�
; (6.14)

where

vk (z) = tk� 1(z) +
1
2

tk� 2(z)2 + � � � +
1
k

t0(k)k ; (6.15)

with

t0(z) = z ; th+1 (z) = z exp(th(z)) ; (6.16)

and t(z) = lim
h!1

th(z) (in the senseof formal power series,soconvergenceis that of coe�cien ts).

Furthermore, as is mentioned in Section17, many of theserules for composition of objects and

generating functions can be implemented algorithmically, automating some of the chores of

applying them.

We illustrate someof the basic generating function techniques by deriving the generating

function for rooted labeled trees,which will occur later in Examples6.6 and 10.8. (The rooted

unlabeled trees, with generating function given by (1.8), are harder.)

Example 6.1. Rooted labeled trees. Let tn be the number of rooted labeledtreeson n vertices,

so that t1 = 1, t2 = 2, t3 = 9. (It will be shown in Example 6.6 that tn = nn� 1.) Let

t(z) =
1X

n=1

tn
zn

n!
(6.17)

be the exponential generating function. If we remove the root of a rooted labeled tree with n

vertices, we are left with k � 0 rooted labeled trees that contain a total of n � 1 vertices. The

total number of ways of arranging an ordered selectionof k rooted trees with a total of n � 1

vertices is

[zn� 1]t(z)k :
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Sincethe order of the trees doesnot matter, we have

1
k!

[zn� 1]t(z)k

di�eren t trees of sizen that have exactly k subtrees,and so

tn =
1X

k=0

1
k!

[zn� 1]t(z)k

= [zn� 1]
1X

k=0

t(z)k=k! = [zn ]z exp(t(z)) ; (6.18)

which gives

t(z) = z exp(t(z)) : (6.19)

As an aside, the function th(z) of Eq (6.16) is the exponential generating function of rooted

labeled trees of height � h.
�

The key to the successfuluseof generating functions is to usea generating function that is

of the appropriate form for the problem at hand. There is no simple rule that describeswhat

generating function to use, and sometimes two are used simultaneously. In combinatorics

and analysisof algorithms, the most useful forms are the ordinary and exponential generating

functions, which reects how the classesof objects that arestudied are constructed. Sometimes

other forms are used,such as the double exponential form

f (z) =
1X

n=0

anzn

(n!)2 (6.20)

that occurs in Section 7, or the Newton series

f (z) =
1X

n=0

anz(z � 1) � � � (z � n + 1) : (6.21)

Also frequently encountered are various q-analog generating functions, such as the Eulerian

f (z) =
1X

n=1

anzn

(1 � q)(1 � q2) � � � (1 � qn )
: (6.22)

In multiplicativ e number theory, the most common are Dirichlet series

f (z) =
1X

n=1

ann� z ; (6.23)

which reect the multiplicativ e structure of the integers. If an is a multiplicativ e function (so

that amn = aman for all relatively prime positive integers m and n) then the function (6.23)

36



has an Euler product representation

f (z) =
Y

p

(1 + app� z + ap2 p� 2z + � � �) ; (6.24)

where p runs over the primes. This allows new tools to be used to study f (z) and through it

an . Additiv e problems in combinatories and number theory often are handled using functions

such as functions such as

f (z) =
1X

n=1

zak ; (6.25)

where 0 � a1 < a2 < � � � is a sequenceof integers. Addition of two such sequencesthen

corresponds to a multiplication of the generating functions of the form (6.25).

We next mention the \snake oil method." This is the name given by Wilf [377] to the

useof generating functions for proving identities, and comesfrom the surprising power of this

technique. The typical application is to evaluation of sequencesgiven by sumsof the type

an =
X

k

bn;k : (6.26)

The standard procedureis to form a generating function of the an and manipulate it through

interchangesof summation and other tricks to obtain the �nal answer. The generatingfunction

can be ordinary, exponential, or (lesscommonly) of another type, depending on what givesthe

best results. We show a simple application of this principle that exhibits the main features of

the method.

Example 6.2. A binomial coe�cient sum [377]. Let

an =
nX

k=0

�
n + k

2k

�
2n� k ; n � 0 : (6.27)

We de�ne A(z) to be the ordinary generating function of an . We �nd that

A(z) =
1X

n=0

anzn =
1X

n=0

zn
nX

k=0

�
n + k

2k

�
2n� k

=
1X

k=0

2� k
1X

n= k

2n zn
�

n + k
2k

�
=

1X

k=0

2� k (2z) � k
1X

n=0

�
n + k

2k

�
(2z)n+ k

=
1X

k=0

2� k (2z) � k (2z)2k

(1 � 2z)2k+1 =
1

1 � 2z

1X

k=0

�
z

1 � 2z

� k

=
1 � 2z

(1 � 4z)(1 � z)
=

2
3(1 � 4z)

+
1

3(1 � z)
: (6.28)
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Therefore we immediately �nd the explicit form

an = (22n+1 + 1)=3 for n � 0 : (6.29)

�

We next present someadditional examplesof how generating functions are derived. We

start by considering linear recurrenceswith constant coe�cien ts.

The �rst step in solving a linear recurrenceis to obtain its generating function. Suppose

that a sequencea0; a1; a2; : : : satis�es the recurrence

an =
dX

i =1

ci an� i ; n � d : (6.30)

Then

f (z) =
1X

n=0

anzn =
d� 1X

n=0

anzn +
1X

n= d

zn
dX

i =1

ci an� i (6.31)

=
d� 1X

n=0

anzn +
dX

i =1

ci zi
1X

n= d

an� i zn� i

=
d� 1X

n=0

anzn +
dX

i =1

ci zi

 

f (z) �
d� i � 1X

n=0

anzn

!

;

and so

f (z) =
g(z)

1 �
P d

i=1 ci zi
; (6.32)

where

g(z) =
d� 1X

n=0

anzn �
dX

i =1

ci zi
d� i � 1X

n=0

anzn (6.33)

is a polynomial of degree� d � 1. Eq. (6.32) is the fundamental relation in the study of linear

recurrences,and 1 �
P

ci zi is called the characteristic polynomial of the recursion.

Example 6.3. Fibonacci numbers. We let F0 = 0, F1 = 1, Fn = Fn� 1 + Fn� 2 for n � 2, and

F (z) =
1X

n=0

Fnzn :

Then by (6.32) and (6.33),

F (z) =
z

1 � z � z2 :
�

(6.34)
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Often there is no obvious recurrencefor the sequencean being studied, but there is one

involving someother auxiliary function. Usually if onecan obtain at least asmany recurrences

as there are sequences,one can obtain their generating functions by methods similar to those

used for a single sequence.The main additional complexity comesfrom the need to solve a

system of linear equations with polynomial coe�cien ts. We illustrate this with the following

example.

Example 6.4. Sequences with forbidden subwords. Let A = a1a2 � � � ak be a binary string of

length k. De�ne f A (n) to be the number of binary strings of length n that do not contain A

as a subword of k adjacent characters. (Subsequencesdo not count, so that if A = 1110,then

A is contained in 1101110010,but not in 101101.) We introduce the correlation polynomial

CA (z) of A:

CA (z) =
k� 1X

j =0

cA (j )zj ; (6.35)

where cA (0) = 1 and for 1 � j � k � 1,

cA (j ) =
�

1 if a1a2 � � � ak� j = aj +1 aj +2 � � � ak ;
0 otherwise :

(6.36)

As examples,we note that if A = 1000, then CA (z) = 1, whereasCA (z) = 1 + z + z2 + z3 if

A = 1111. The generating function

FA (z) =
1X

n=0

f A (n)zn (6.37)

then satis�es

FA (z) =
CA (z)

zk + (1 � 2z)CA (z)
: (6.38)

To prove this, de�ne gA (n) to be the number of binary sequencesb1b2 � � � bn of length n such

that b1b2 � � � bk = A, but such that bj bj +1 � � � bj + k� 1 6= A for any j with 2 � j � n � k + 1; i.e.,

sequencesthat start with A but do not contain it any place else. We then have gA (n) = 0 for

n < k, and gA (k) = 1. We also de�ne

GA (z) =
1X

n=0

gA (n)zn : (6.39)

We next obtain a relation betweenGA (z) and FA (z) that will enableus to determine both.

If b1b2 � � � bn is counted by f A (n), then for x either 0 or 1, the string xb1b2 � � � bn either does

not contain A at all, or if it doescontain it, then A = xb1b2 � � � bk� 1. Therefore for n � 0,

2f A (n) = f A (n + 1) + gA (n + 1) (6.40)
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and multiplying both sidesof Eq. (6.40) by zn and summing on n � 0 yields

2FA (z) = z� 1(FA (z) � 1) + z� 1GA (z) : (6.41)

We need one more relation, and to obtain it we consider any string B = b1b2 � � � bn that

does not contain A any place inside. If we let C be the concatenation of A and B , so that

C = a1a2 � � � akb1b2 � � � bn , then C starts with A, and may contain other occurrencesof A, but

only at positions that overlap with the initial A. Therefore we obtain,

f A (n) =
kX

j =1
cA ( k � j )=1

gA (n + j ) for n � 0 ; (6.42)

and this gives the relation

FA (z) = z� kCA (z)GA (z) : (6.43)

Solving the two equations (6.41) and (6.43), we �nd that FA (z) satis�es (6.38), while

GA (z) =
zk

zk + (1 � 2z)CA (z)
: (6.44)

The proof above follows that in [182], except that [182] usesgenerating functions in z � 1, so

the formulas look di�eren t. Applications of the formulas (6.38) and (6.44) will be found later

in this chapter, as well as in [182, 130]. Other approachesto string enumeration problems are

referencedthere as well. Other approaches and applications of string enumerations are given

in the referencesto [182] and in papers such as [18].
�

The above example can be generalized to provide generating functions that enumerate

sequencesin which any of a given set of patterns are forbidden [182].

Whenever one has a �nite system of linear recurrenceswith constant coe�cien ts that in-

volve several sequences,say a(i )
n , 1 � i � k, n � 0, one can translate these recurrencesinto

linear equationswith polynomial coe�cien ts in the generating functions A (i ) (z) =
P

a(i )
n zn for

thesesequences.To obtain the A (i ) (z), one then needsto solve the resulting system. Such so-

lutions will exist if the matrix of polynomial coe�cien ts is nonsingular over the �eld of rational

functions in z. In particular, one needsat least as many equations (i.e., recurrencerelations)

as k, the number of sequences,and if there are exactly as many equations as sequences,then

the determinant of the matrix of the coe�cien ts has to be a nonzeropolynomial.

One interesting observation is that whena systemof recurrencesinvolving several sequences

is solved by the above method, each of the generating functions A (i ) (z) is a rational function
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in z. What this meansis that each of the sequencesa(i )
n , 1 � i � k, satis�es a linear recurrence

with constant coe�cien ts that does not involve any of the other a(j )
n sequences!In principle,

therefore, that recurrence could have been found right at the beginning by combinatorial

methods. However, usually the degreeof the recurrencefor an isolated a(j )
n sequenceis high,

typically about k times as large as the averagedegreeof the k recurrencesinvolving all the

a(j )
n . Thus the use of several sequencesa(j )

n leads to much simpler and combinatorially more

appealing relations.

That generating functions can signi�cantly simplify combinatorial problems is shown by

the following example. It is taken from [349], and is a modi�cation of a result of Klarner [229]

and P�olya [321]. This examplealsoshows a more complicated derivation of explicit generating

functions than the simple onespresented so far.

Example 6.5. Polyomino enumeration [349]. Let an be the number of n-squarepolyominoes

P that are inequivalent under translation, but not necessarilyunder rotation or reection, and

such that each row of P is an unbroken line of squares. Then a1 = 1, a2 = 2, a3 = 6. We

de�ne a0 = 0. It is easily seenthat

an =
X

(m1 + m2 � 1)(m2 + m3 � 1) � � � (ms� 1 + ms � 1) ; (6.45)

where the sum is over all ordered partitions m1 + � � � + ms = n of n into positive integersm i .

Let ar ;n be the sum of terms in (6.45) with m1 = r , where we set an;n = 1, and ar ;n = 0 if

r > n or n < 0. Then

an =
1X

r =1

ar ;n ; (6.46)

ar ;n =
1X

i =1

(r + i � 1)ai;n � r ; r < n : (6.47)

De�ne

A(x; y) =
1X

n=1

1X

r =1

ar ;n xr yn ; (6.48)

so that

A(1; y) =
1X

n=1

anyn (6.49)

is the generating function of the an , which are what we needto estimate.

By (6.47), we �nd that

A(x; y) =
1X

n=1

xnyn +
1X

n=1

1X

r =1

1X

i =1

(r + i � 1)ai (n � r )x r yn
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(6.50)

=
xy

1 � xy
+

x2y2

(1 � xy)2 A(1; y) +
xy

1 � xy
G(x; y) ; (6.51)

where

G(y) =
1X

n=1

1X

i =1

ia i;n yn =
@

@x
A(x:y)

�
�
�
�
x=1

; (6.52)

We now set x = 1 in (6.50) and obtain an equation involving A(1; y) and G(y), namely

A(1; y) =
y

1 � y
+

y2

(1 � y)2 A(1; y) +
y

1 � y
G(y) : (6.53)

We next di�eren tiate (6.50) with respect to x, and set x = 1. This givesus a secondequation,

G(y) =
y

(1 � y)2 +
2y2

(1 � y)3 A(1; y) +
y

(1 � y)2 G(y) : (6.54)

We now eliminate G(y) from (6.53) and (6.54) to obtain

A(1; y) =
y(1 � y)3

1 � 5y + 7y2 � 4y3 : (6.55)

This formula shows that

an+3 = an+2 � 7an+1 + 4an for n � 2 : (6.56)

Using the results of Section 10 we can easily obtain from (6.55) an asymptotic estimate

an � c� n as n ! 1 ; (6.57)

where c is a certain constant and � = 3:205569: : : is the inverse of the smallest zero of

1 � 5y + 7y2 � 4y3.
�

For other methods and results related to polyomino enumeration, see[326, 327].

6.2. Comp osition and inversion of power series

So far we have only discussedsimple operations on generating functions, such as multipli-

cation. What happenswhen we do somethingmore complicated? There are several frequently

occurring operations on generating functions whoseresults can be described explicitly .

Fa�a di Bruno's form ula [81]. Supposethat

A(z) =
1X

m=0

am
zm

m!
; B (z) =

1X

n=0

bn
zn

n!
; (6.58)

42



are two exponential generating functions with b0 = 0. Then the formal composition C(z) =

A(B (z)) is well-de�ned, and

C(z) =
1X

n=0

cn
zn

n!
(6.59)

with

c0 = 0; cn =
nX

k=1

akBn;k (b1; b2; : : : ; bn� k+1 ) ; (6.60)

where the Bn;k are the exponential Bell polynomials de�ned by

1X

n;k =0

Bn;k (x1; : : : ; xn� k+1 )
tnuk

n!
= exp

 

u
1X

m=1

xm
tm

m!

!

; (6.61)

with the x j independent variables.

Fa�a di Bruno's formula makes it possible to compute successive derivatives of functions

such as logA(z) in terms of the derivatives of A(z). For further examples,see[81, 335, 336].

Fa�a di Bruno's formula is derivable in a straightforward way from the multinomial theorem.

Composition of generating functions occurs frequently in combinatorics and analysis of

algorithms. When it yields the desiredgenerating function as a composition of several known

generating functions, the basic problem is solved, and one can work on the asymptotics of the

coe�cien ts using Fa�a di Bruno's formula or other methods. A more frequent event is that

the composition yields a functional equation for the generating function, as in Example 6.1,

where the exponential generating function t(z) for labeled rooted trees was shown to satisfy

t(z) = z exp(t(z)). General functional equations are hard to deal with. (Many examples

will be presented later.) However, there is a class of them for which an old technique, the

Lagrange-B•urmann inversion formula, works well. We start by noting that if

f (z) =
1X

n=0

f nzn (6.62)

is a formal power serieswith f 0 = 0, f 1 6= 0, then there is an inverse formal power series

f h� 1i (z) such that

f (f h� 1i (z)) = f h� 1i (f (z)) = z : (6.63)

The coe�cien ts of f h� 1i (z) can beexpressedexplicitly in terms of the coe�cien ts of f (z). More

generally, we have the following result.

Lagrange-B •urmann in version form ula . Suppose that f (z) is a formal power series

with [z0]f (z) = 0, [z1]f (z) 6= 0, and that g(z) is any formal power series.Then for n � 1,

[zn ]f g(f h� 1i )(z)g = n � 1[zn� 1]f g0(z)( f (z)=z) � n g : (6.64)
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In particular, for g(z) = z, we have

[zn ]f h� 1i (z) = n� 1[zn� 1](f (z)=z) � n : (6.65)

Example 6.6. Rooted labeled trees. As was shown in Example 6.1, the exponential gener-

ating function of rooted labeled trees satis�es t(z) = z exp(t(z)). If we rewrite it as z =

t(z) exp(� t(z)), we seethat t(z) = f h� 1i (z), where f (z) = z exp(� z). Therefore Eq. (6.65)

yields

[zn ]t(z) = n � 1[zn� 1] exp(� nz)

(6.66)

= n� 1nn� 1=(n � 1)! = nn� 1=n! ;

which shows that tn , the number of rooted labeled trees on n nodes, is nn� 1.
�

Proof of a form of the Lagrange-B•urmann theorem is given in Chapter ?. Extensive dis-

cussion, proofs, and referencesare contained in [81, 173, 205, 375]. Some additional recent

referencesare [159, 208]. There exist generalizations of the Lagrange-B•urmann formula to

several variables [173, 169, 208].

The Lagrange-B•urmann formula, asstated above, is valid for generalformal power series.If

f (z) is analytic in a neighborhood of the origin, then so are f h� 1i (z) and g(f h� 1i )(z), provided

g(z) is alsoanalytic near 0 and f 0(0) 6= 0, f (0) = 0. Most of the presentations of this inversion

formula in the literature assumeanalyticit y. However, that is not a real restriction. To prove

(6.65), say, in full generality, it su�ces to prove it for any n. Given n, if we let

F (z) =
nX

k=0

f kzk ; G(z) =
nX

k=0

gkzk ;

then we seethat

[zn ]f g(f h� 1i )(z)g = [zn ]G(F h� 1i )(z) ; (6.67)

and F (z) and G(z) are analytic, so the formula (6.65) can be applied. Thus combinatorial

proofs of the Lagrange-B•urmann formula do not o�er greater generality than analytic ones.

While the analytic vs. combinatorial distinction in the proofs of the Lagrange-B•urmann

formula does not matter, it is possible to use analyticit y of the functions f (z) and g(z) to

obtain useful information. Example 6.6 above was atypical in that a simple explicit formula
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wasderived. Often the quantit y on the right-hand sideof (6.64) is not explicit enoughto make

clear its asymptotic behavior. When that happens, and g(z) and f (z) are analytic, one can

usethe contour integral representation

[zn� 1]f g0(z)( f (z)=z) � n g =
1

2� i

Z

�
g0(z)f (z) � n dz ; (6.68)

where � is a positively oriented simple closedcontour enclosingthe origin that lies inside the

region of analyticit y of both g(z) and f (z). This representation, which is discussedin Sec-

tion 10, can often be usedto obtain asymptotic information about coe�cien ts [zn ]g(f h� 1i )(z)

(cf. [273]).

The Lagrange-B•urmann formula can provide numerical approximations to roots of equa-

tions and even convergent in�nite seriesrepresentations for such roots. An important caseis

the trinomial equation y = z(1 + yr ), and there are many others.

Example 6.7. Dominant zero for forbidden subword generating functions. The generating

functions FA (z) and GA (z) of Example 6.4 both have denominators

h(z) = zk + (1 � 2z)C(z) ; (6.69)

whereC(z) is a polynomial of degree� k, with coe�cien ts 0 and 1, and with C(0) = 1. It will

be shown later that h(z) has only one zero � of small absolute value, and that this zero is the

dominant inuence on the asymptotic behavior of the coe�cien ts of FA (z) and GA (z). Right

now we obtain accurate estimatesfor � .

For simplicit y, we will consider only large k. Since C(z) has nonnegative coe�cien ts and

C(0) = 1, h(3=4) � (3=4)k � 1=2 < 0 for k � 3. On the other hand, h(1=2) = 2� k . Therefore

h(z) has a real zero � with 1=2 < � < 3=4. As k ! 1 , � ! 1=2, since

� k = (2� � 1)C(� ) ; (6.70)

and � k ! 0 as k ! 1 for 1=2 < � < 3=4, while 2� � 1 and C(� ) are bounded. We can deduce

from (6.69) that

2� � 1 � 2� kC(1=2)� 1 as k ! 1 ; (6.71)

uniformly for all polynomials C(z) of the prescribed type. By applying the bootstrapping

technique (seeSection 5.4) we can �nd even better approximations. By (6.71),

C(� ) = C(1=2) + O(j� � 1=2j) = C(1=2) + O(2� k ) ; (6.72)

� k = 2� k (1 + O(2� k ))k = 2� k (1 + O(k2� k )) ; (6.73)
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so (6.70) now yields

� = 1=2 + 2� k� 1C(1=2)� 1 + O(k2� 2k ) : (6.74)

Even better approximations can be obtained by repeating the processusing (6.74). At the

next stagewe would apply the expansion

C(� ) = C(1=2) + (� � 1=2)C0(1=2) + O(( � � 1=2)2)

(6.75)

= C(1=2) + 2� k� 1C0(1=2) + O(k2� 2k )

and a similar one for � k .

A more systematic way to obtain a rapidly convergent seriesfor � is to use the inversion

formula. If we set u = � � 1=2, then (6.70) can be rewritten as w(u) = 1, where

w(u) = 2uC(1=2 + u)(1=2 + u) � k =
1X

j =1

aj uj ; (6.76)

with

a1 = 2k+1 C(1=2) 6= 0 : (6.77)

Henceu = wh� 1i (1), and the Lagrange-B•urmann inversionformula (6.65) yields the coe�cien ts

of wh� 1i (z). In particular, we �nd that

� = 1=2+ u � 1=2+ 2� k� 1C(1=2)� 1 + k2� 2k� 1C(1=2)� 2 � 2� 2k� 2C0(1=2)C(1=2)� 3 + � � � (6.78)

as a Poincar�e asymptotic series. With additional work one can show that the series(6.78)

converges,and that

� = 1=2 + 2� k� 1C(1=2)� 1 + k2� 2k� 1C(1=2)� 2

� 2� 2k� 2C0(1=2)C(1=2)� 3 + O(k22� 3k ) ;
(6.79)

for example. The sameestimate can be obtained by the bootstrapping technique.
�

6.3. Di�eren tiably �nite power series

Homogeneousrecurrenceswith constant coe�cien ts are the nicest large set of sequences

onecan imagine, with rational generatingfunctions, and well-understood asymptotic behavior.

The next classin complexity consistsof the polynomially-recursive or, P-recursive sequences,

a0; a1; : : :, which satisfy recurrencesof the form

pd(n)an+ d + pd� 1(n)an+ d� 1 + � � � + p0(n)an = 0; n � 0 ; (6.80)
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where d is �xed and p0(n); : : : ; pd(n) are polynomials in n. Such sequencesare common in

combinatorics, with an = n! a simple example. Normally P-recursive sequencesdo not have

explicit forms for their generating functions. In this section we briey summarize some of

their main properties. Asymptotic properties of P-recursive sequenceswill be discussedin

Section 9.2. The main referencesfor the results quoted here are [254, 350].

A formal power series

f (z) =
1X

k=0

akzk (6.81)

is called di�eren tiably �nite, or D -�nite , if the derivatives f (n) (z) = dn f (z)
dzn , n � 0, span a

�nite-dimensional vector spaceover the �eld of rational functions with complex coe�cien ts.

The following three conditions are equivalent for a formal power seriesf (z):

i) f (z) is D -�nite.

ii) There exist �nitely many polynomials q0(z); : : : ; qk (z) and a polynomial q(z), not all 0,

such that

qk(z)f (k) (z) + � � � + q0(z)f (z) = q(z) : (6.82)

iii) There exist �nitely many polynomials p0(z); : : : ; pm (z), not all 0, such that

pm (z)f (m) (z) + � � � + p0(z)f (z) = 0 : (6.83)

The most important result for combinatorial enumeration is that a sequencea0; a1; : : :, is

P-recursive if and only if its ordinary generating function f (z), de�ned by (6.81), is D -�nite.

This makes it possibleto apply results that are more easily proved for D -�nite power series.

If f (z) is D -�nite, then so is the power seriesobtained by changing a �nite number of the

coe�cien ts of f (z). If f (z) is algebraic (i.e., there exist polynomials q0(z); : : : ; qd(z), not all

0, such that qd(z)f (z)d + � � � + q0(z)f (z) + q0(z) = 0), then f (z) is D -�nite. The product

of two D-�nite power series is also D-�nite, as is any linear combination with polynomial

coe�cien ts. Finally, the Hadamard product of two D-�nite seriesis D-�nite. The proofs rely

on elementary linear algebraconstructions. An important feature of the theory is that identit y

betweenD-�nite seriesis decidable.

The concept of a D-�nite power seriescan be extendedto several variables [254, 405], and

there are generalizationsof P-recursiveness[254, 405]. (Seealso [161].) Zeilberger [405] has

usedthe word holonomic to describe corresponding sequencesand generating functions.
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When we investigate a sequencef an g, sometimesthe combinatorial context yields only

relations for more complicated object with several indices. While we might like to obtain the

generating function f (z) =
P

anzn , we might instead �nd a formula for a generating function

F (z1; z2; : : : ; zk ) =
X

n1 ;:::;n k

bn1 ; : : : ; nkzn1
1 ; : : : ; znk

k ; (6.84)

where an = bn;n;::: ;n , say. When this happens,we say that f (z) is a diagonal of F (z1; : : : ; zk ).

(There are more generalde�nitions of diagonals in [90, 253, 254, 255], which are recent refer-

encesfor this topic.) Diagonalsof D -�nite power seriesin any number of variablesare D-�nite.

Diagonalsof two-variable rational functions are algebraic,but there are three-variable rational

functions whosediagonalsare not algebraic [151].

6.4. Unimo dalit y and log-conca vit y

A �nite sequencea0; a1; : : : ; an of real numbers is called unimodal if for some index k,

a0 � a1 � � � � � ak and ak � ak+1 � � � � � an . A sequencea0; : : : ; an of nonnegative

elements is called log-concave (short for logarithmically concave) if a2
j � aj � 1aj +1 holds for

1 � j � n � 1. Unimodal and log-concave sequencesoccur frequently in combinatorics and

are objects of intensive study. We present a brief review of someof their properties because

asymptotic methods are often used to prove unimodalit y and log-concavit y. Furthermore,

knowledgethat a sequenceis log-concave or unimodal is often helpful in obtaining asymptotic

information. For example, somemethods provide only asymptotic estimates for summatory

functions of sequences,and unimodalit y helps in obtaining from those estimates bounds on

individual coe�cien ts. This approach will be presented in Section 13, in the discussionof

central and local limit theorems.

The basic referencesfor unimodalit y and log-concavit y are [222, 352]. For recent results,

seealso [56] and the referencesgiven there. All the results listed below can be found in those

sourcesand the referencesthey list.

In the rest of this subsection we will consider only sequencesof nonnegative elements.

A sequencea0; : : : ; an will be said to have no internal zeros if there is no triple of integers

0 � i < j < k � n such that aj = 0, ai ak 6= 0. It is easy to see that a log-concave

sequencewith no internal zerosis unimodal, but there are sequencesof positive elements that

are unimodal but not concave. The convolution of two unimodal sequencesdoes not have to

be unimodal. However, it is unimodal if each of the two unimodal sequencesis alsosymmetric.
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Convolution of two log-concave sequencesis log-concave. The convolution of a log-concave and

a unimodal sequenceis unimodal. A log-concave sequenceis even characterizedby the property

that its convolution with any unimodal sequenceis unimodal. This last property is related

to the variation-diminishing character of log-concave sequences(see[222]), which we will not

discussat greater length here except to note that there are more restrictiv e sets of sequences

(the P�olya frequencyclasses,see[56, 222]) which have stronger convolution properties.

The binomial coe�cien ts
� n

k

�
, 0 � k � n, are log-concave, and therefore unimodal. The

q-binomial coe�cien ts
� n

k

�
q are log-concave for any q � 1. On the other hand, if we write a

single coe�cien t
� n

k

�
q for �xed n and k as a polynomial in q, the sequenceof coe�cien ts is

unimodal, but doesnot have to be log-concave.

The most frequently usedmethod for showing that a sequencea0; : : : ; an is log-concave is

to show that all the zerosof the polynomial

A(z) =
nX

k=0

akzk (6.85)

are real and � 0. In that casenot only are the ak log-concave, but so are ak
� n

k

� � 1. Absolute

valuesof the Stirling numbersof both kinds were �rst shown to be log-concave by this method

[195]. There are many unsolved conjecturesabout log-concavit y of combinatorial sequences,

such as the Read-Hoggarconjecture that coe�cien ts of chromatic polynomials are log-concave

(cf. [57]).

A variety of combinatorial, algebraic, and geometric methods have been used to prove

unimodalit y of sequences,and we refer the reader to [352] for a comprehensive and insightful

survey. In Section 12.3 we will discussbriey someproofs of unimodalit y and log-concavit y

that useasymptotic methods. The basic philosophy is that since the Gaussiandistribution is

log-concave and unimodal (when we extend the de�nition of theseconceptsto continuous dis-

tributions), theseproperties should alsohold for sequencesthat by the central limit theorem or

its variants are asymptotic to the Gaussian. Therefore onecan expect high-order convolutions

of sequencesto be log-concave at least in their central region, and there are theorems that

prove this under certain conditions.

6.5. Momen ts and distributions

The secondmoment method is a frequently usedtechnique in probabilistic arguments, as

is shown in Chapter ? and [55, 108, 348]. It is basedon Chebyshev'sinequality, which says
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that if X is a real-valued random variable with �nite secondmoment E(X 2), then

Prob (jX � E(X )j � � jE (X )j) �
E (X 2) � E (X )2

� 2E(X )2 : (6.86)

An easycorollary of inequality (6.86) that is often usedis

Prob (X = 0) �
E(X 2) � E (X )2

E(X )2 : (6.87)

(There is a slightly stronger versionof the inequality (6.87), in which E(X )2 in the denominator

is replaced by E(X 2).) The inequalities (6.86) and (6.87) are usually applied for X = Y1 +

� � � + Yn , where the Yj are other random variables. The helpful feature of the inequalities is

that they require only knowledgeof the pairwise dependenciesamong the Yj , which is easier

to study than the full joint distribution of the Yj . For other bounds on distributions that can

be obtained from partial information about moments, see[343].

The reasonmoment boundsare mentioned at all in this chapter is that asymptotic methods

are often usedto derive them. Generating functions are a commonand convenient method for

doing this.

Example 6.8. Waiting times for subwords. In a continuation and application of Example 6.4,

let A be a binary string of length k. How many tossesof a fair coin (with sideslabeled 0 and

1) are neededon averagebeforeA appearsasa block of k consecutive outcomes?By a general

observation of probabilit y theory, this is just the sum over n � 0 of the probabilit y that A does

not appear in the �rst n coin tosses,and thus equals

1X

n=0

f A (n)2� n = FA (1=2) = 2kCA (1=2) ; (6.88)

where the last equality follows from Eq. (6.38). Another, more general, way to derive this is

to useGA (z). Note that gA (n)2� n is the probabilit y that A appears in the �rst n coin tosses,

but not in the �rst n � 1. Hencethe r -th moment of the time until A appears is

1X

n=0

nr gA (n)2� n =
�

z
d
dz

� r

GA (z)

�
�
�
�
z=1 =2

: (6.89)

If we take r = 1, we again obtain the expected waiting time given by (6.88). When we take

r = 2, we �nd that the secondmoment of the time until the appearanceof A is

1X

n=0

n2gA (n)2� n = 22k+1 CA (1=2)2 � (2k � 1)2kCA (1=2) + 2kC0
A (1=2) ; (6.90)
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and therefore the variance is

22kCA (1=2)2 � (2k � 1)2kCA (1=2) + 2kC0
A (1=2)

= 22kCA (1=2)2 + O(k2k ) ;
(6.91)

since 1 � CA (1=2) � 2. Higher moments can be used to obtain more detailed information.

A better approach is to use the method of Example 9.2, which gives preciseestimates for the

tails as well as the mean of the distribution.
�

Information about moments of distribution functions can often be usedto obtain the lim-

iting distribution. If Fn (x) is a sequenceof distribution functions such that for every integer

k � 0, the k-th moment

� n (k) =
Z

xkdFn (x) (6.92)

convergesto � (k) as n ! 1 , then there is a limiting measurewith distribution function F (x)

whosek-th moment is � (k). If the moments � (k) do not grow too rapidly, then they determine

the distribution function F (x) uniquely, and the Fn (x) convergeto F (x) (in the weakstar sense

[50]). A su�cien t condition for the � (k) to determine F (x) uniquely is that the generating

function

U(x) =
1X

k=0

� (2k)xk

(2k)!
(6.93)

should converge for somex > 0. In particular, the standard normal distribution with

F (x) = (2� ) � 1=2
Z x

�1
exp(� u2=2)du (6.94)

has � (2k) = 1 � 3 � 5 � 7 � : : : � (2k � 1) (and � (2k + 1) = 0), so it is determined uniquely by its

moments. On the other hand, there are somefrequently encountered distributions, such as the

log-normal one, which do not have this property.

7. Formal power series

This section discussesgenerating functions f (z) that might not converge in any interval

around the origin. Sequencesthat grow rapidly are common in combinatorics, with an = n!

the most obvious example for which

f (z) =
1X

n=0

anzn (7.1)

doesnot convergefor any z 6= 0. The usual way to deal with the problem of a rapidly growing

sequencean is to study the generating function of an=bn , where bn is some sequencewith
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known asymptotic behavior. When bn = n!, the ordinary generating function of an=bn is then

the exponential generating function of an . For derangements (Eqs. (1.1) and (6.7)) this works

well, as the exponential generating function of dn convergesin jzj < 1 and has a nice form.

Unfortunately, while we can always �nd a sequencebn that will make the ordinary generating

function f (z) of an=bn converge (even for all z), usually we cannot do it in a way that will

yield any useful information about f (z). The combinatorial structure of a problem almost

always severely restricts what forms of generating function can be used to take advantage of

the special properties of the problem. This di�cult y is common, for example, in enumeration

of labeled graphs. In such casesone often resorts to formal power seriesthat do not converge

in any neighborhood of the origin. For example, if c(n; k) is the number of connectedlabeled

graphs on n vertices with k edges,then it is well known (cf. [349]) that

1X

n=0

1X

k=0

c(n; k)
xkyn

n!
= log

 
1X

m=0

(1 + x)(
m
2 )ym

m!

!

: (7.2)

While the seriesinside the log in (7.2) does converge for � 2 � x � 0, and any y, it diverges

for any x > 0 as long as y 6= 0, and so this is a relation of formal power series.

There are few methods for dealing with asymptotics of formal power series,at least when

compared to the wealth of techniques available for studying analytic generating functions.

Fortunately, combinatorial enumeration problemsthat do require the useof formal power series

often involve rapidly growing sequencesof positive terms, for which somesimple techniques

apply. We start with an easygeneral result that is applicable both to convergent and purely

formal power series.

Theorem 7.1. ([33]) Suppose that a(z) =
P

anzn and b(z) =
P

bnzn are power series with

radii of convergence � > � � 0, respectively. Suppose that bn� 1=bn ! � as n ! 1 . If

a(� ) 6= 0, and
P

cnzn = a(z)b(z), then

cn � a(� )bn as n ! 1 : (7.3)

The proof of Theorem 7.1, which can be found in [33], is simple. The condition � > � is

important, and cannot be replacedby � = � . We can have � = 0, and that is indeed the only

possibility if the seriesfor b(z) doesnot converge in a neighborhood of z = 0.

Example 7.1. Double set coverings [33, 80]. Let vn be the number of choices of subsets

S1; : : : ; Sr of an n-element set T such that each t 2 T is in exactly two of the Si . There is
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no restriction on r , the number of subsets,and someof the Si can be repeated. Let cn be

the corresponding number when the Si are required to be distinct. We let C(z) =
P

cnzn=n!,

V (z) =
P

vnzn=n! be the exponential generating functions. Then it can be shown that

C(z) = exp(� 1 � (ez � 1)=2)A(z) ; (7.4)

V (z) = exp(� 1 + (ez � 1)=2)A(z) ; (7.5)

where

A(z) =
1X

k=0

exp(k(k � 1)z=2)=k! : (7.6)

We seeimmediately that A(z) doesnot converge in any neighborhood of the origin. We have

an = [zn ]A(z) = 2� n
1X

k=2

kn (k � 1)n

k!
: (7.7)

By consideringthe ratio of consecutive terms in the sum in (7.7), we �nd that the largest term

occurs for k = k0 with k0 logk0 � 2n, and by the methods of Section 5.1 we �nd that

an �
� 1=2kn

0 (k0 � 1)n

n1=22n (k0 � 1)!
as n ! 1 : (7.8)

Therefore an� 1=an ! 0 as n ! 1 , and Theorem 7.1 tells us that

cn � vn � e� 1n!an as n ! 1 : (7.9)

�

Usually formal power seriesoccur in more complicated relations than those covered by

Theorem 7.1. For example, if f n is the number of connected graphs on n labeled vertices

which have someproperty, and Fn is the number of graphson n labeledverticeseach of whose

connectedcomponents has that property, then (cf. [394])

1 +
1X

n=1

Fn
xn

n!
= exp

 
1X

n=1

f n
xn

n!

!

: (7.10)

Theorem 7.2. ([34]) Suppose that

a(x) =
1X

n=1

anxn ; F (x; y) =
X

h;k � 0

f hk xhyk ;

(7.11)

b(x) =
1X

n=0

bnxn = F (x; a(x)) ; D (x) = Fy(x; a(x)) ;

where Fy(x; y) is the partial derivative of F (x; y) with respect to y. Assumethat an 6= 0 and
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(i)

an� 1 = o(an ) as n ! 1 ; (7.12)

(ii)
n� rX

k= r

jakan� k j = O(an� r ) for some r > 0 ; (7.13)

(iii) for every � > 0 there are M (� ) and K (� ) such that for n � M (� ) and h + k > r + 1,

jf hk an� h� k+1 j � K (� )� h+ k jan� r j : (7.14)

Then

bn =
r � 1X

k=0

dkan� k + O(an� r ) : (7.15)

Condition (iii) of Theorem 7.2 is often hard to verify. Theorem 2 of [34] shows that this

condition holds under certain simpler hypotheses. It follows from that result that (iii) is

valid if F (x; y) is analytic in x and y in a neighborhood of (0; 0). Hence,if F (x; y) = exp(y) or

F (x; y) = 1+ y, then Theorem 7.2becomeseasyto apply. Onecan alsodeducefrom Theorem 2

of [34] that Theorem 7.2 applies when (i) and (ii) hold, b0 = 0, bn � 0, and

1 + a(z) = exp

 
1X

k=1

b(zk )=k

!

; (7.16)

another relation that is common in graph enumeration (cf. Example 15.1). There are also

someresults weaker than Theorem 7.2 that are easierto apply [393].

Example 7.2. Indecomposablepermutations [81]. For every permutation � of f 1; : : : ; n), let

f 1; : : : ; ng = [ I h, where the I h are the smallest intervals such that � (I h) = I h for all h.

For example, � = (134)(2)(56) corresponds to I 1 = f 1; 2; 3; 4g, I 2 = f 5; 6g, and the identit y

permutation has n components. A permutation is said to be indecomposable if it has one

component. For example, if � hasthe 2-cycle(1n), it is indecomposable. Let cn be the number

of indecomposablepermutations of f 1; : : : ; ng. Then [81]

1X

n=1

cn zn = 1 �
1

1 +
P 1

n=1 n!zn : (7.17)

We apply Theorem 7.2 with an = n! for n � 1 and F (x; y) = 1 � (1 + y) � 1. We easily obtain

cn � n! as n ! 1 ; (7.18)

so that almost all permutations are indecomposable.
�
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Somefurther useful expansionsfor functional inversesand computations of formal power

serieshave beenobtained by Bender and Richmond [40].

8. Elemen tary estimates for convergent generating functions

The word \elementary" in the title of this sectionis a technical term that meansthe proofs

do not usecomplex variables. It doesnot necessarilyimply that the proofs are simple. While

some,such asthoseof Section8.1, are easy, others are more complicated. The main advantage

of elementary methods is that they are much easierto use,and sincethey imposemuch weaker

requirements on the generating functions, they are more widely applicable. Usually they only

imposeconditions on the generating function f (z) for z 2 �

+ .

The main disadvantage of elementary methods is that the estimates they give tend to be

much weaker than those derived using analytic function approaches. It is easyto explain why

that is so by consideringthe two generating functions

f 1(z) =
1X

n=0

zn = (1 � z) � 1 (8.1)

and

f 2(z) = 3=2 +
1X

n=1

2z2n = 3=2 + 2z2(1 � z2)� 1 : (8.2)

Both seriesconvergefor jzj < 1 and divergefor jzj > 1, and both blow up as z ! 1. However,

f 1(z) � f 2(z) = �
1 � z

2(1 + z)
! 0 as z ! 1 : (8.3)

Thus thesetwo functions behave almost identically near z = 1. Sincef 1(z) and f 2(z) are both

� (1 � z) � 1 as z ! 1� , z 2 �

+ , and their di�erence is O(jz � 1j) for z 2 �

+ , it would require

exceptionally delicate methods to detect the di�erences in the coe�cien ts of the f j (z) just from

their behavior for z 2 �

+ . There is a substantial di�erence in the behavior of f 1(z) and f 2(z)

for real z if we let z ! � 1, so our argument does not completely exclude the possibility of

obtaining detailed information about the coe�cien ts of these functions using methods of real

variables only. However, if we consider the function

f 3(z) = 2 +
1X

n=1

3z3n = 2 + 3z3(1 � z3)� 1 ; (8.4)

then f 1(z) and f 3(z) are both � (1 � z) � 1 as z ! 1� , z 2 �

+ , yet now

jf 1(z) � f 3(z)j = O(jz � 1j) for all z 2 � :
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This di�erence is comparableto what would beobtained by modifying a singlecoe�cien t of one

generating function. To determine how such slight changesin the behavior of the generating

functions a�ect the behavior of the coe�cien ts we would need to know much more about

the functions if we were to use real variable methods. On the other hand, analytic methods,

discussedin Section 10 and later, are good at dealing with such problems. They require less

preciseknowledge of the behavior of a function on the real line. Instead, they imposeweak

conditions on the function in a wider domain, namely that of the complex numbers.

For reasonsdiscussedabove, elementary methods cannot be expected to produce precise

estimates of individual coe�cien ts. They often do produce good estimates of summatory

functions of the coe�cien ts, though. In the examplesabove, we note that

NX

n=1

[zn ]f j (z) � N as N ! 1 (8.5)

for 1 � j � 3. This holds becausethe f j (z) have the samebehavior as z ! 1� , and is part of

a more general phenomenon. Good knowledge of the behavior of the generating function on

the real axis combined with weak restrictions on the coe�cien ts often leads to estimates for

the summatory function of the coe�cien ts.

There are caseswhere elementary methods give precisebounds for individual coe�cien ts.

Typically when we wish to estimate f n , with ordinary generating function f (z) =
P

f nzn that

convergesfor jzj < 1 but not for jzj > 1, we apply the methods of this section to

gn = f n � f n� 1 for n � 1; g0 = f 0 (8.6)

with generating function

g(z) =
1X

n=0

gnzn = (1 � z)f (z) : (8.7)

Then
nX

k=0

gk = f n ; (8.8)

and soestimatesof the summatory function of the gk yield estimatesfor f n . The di�cult y with

this approach is that now g(z) and not f (z) has to satisfy the hypothesesof the theorems,

which requires more knowledge of the f n . For example, most of the Tauberian theorems

apply only to power serieswith nonnegative coe�cien ts. Hence to use the di�erencing trick

above to obtain estimates for f n we need to know that f n� 1 � f n for all n. In somecases

(such as that of f n = pn , the number of ordinary partitions of n) this is easily seento hold
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through combinatorial arguments. In other situations whereonemight like to apply elementary

methods, though, f n� 1 � f n is either falseor elseis hard to prove. When that happens,other

methods are required to estimate f n .

8.1. Simple upp er and lower bounds

A trivial upper bound method turns out to bewidely applicable in asymptotic enumeration,

and is surprisingly powerful. It relieson nothing more than the nonnegativity of the coe�cien ts

of a generating function.

Lemma 8.1. Suppose that f (z) is analytic in jzj < R, and that [zn ]f (z) � 0 for all n � 0.

Then for any x, 0 < x < R, and any n � 0,

[zn ]f (z) � x � n f (x) : (8.9)

Example 8.1. Lower bound for factorials. Let f (z) = exp(z). Then Lemma 8.1 yields

1
n!

= [zn ]ez � x � nex (8.10)

for every x > 0. The logarithm of x � nex is x � n logx, and di�eren tiating and setting it equal

to 0 shows that the minimum value is attained at x = n. Therefore

1
n!

= [zn ]ez � n� nen ; (8.11)

and son! � nne� n . This lower bound holds uniformly for all n, and is o� only by an asymptotic

factor of (2� n)1=2 from Stirling's formula (4.1).
�

Supposethat f (z) =
P

f nzn . Lemma 8.1 is proved by noting that for 0 < x < R, the n-th

term, f nxn , in the power seriesexpansionof f (x), is � f (x). As we will seein Section 10, it

is often possibleto derive a similar bound on the coe�cien ts f n even without assumingthat

they are nonnegative. However, the proof of Lemma 8.1 shows something more, namely that

f 0x � n + f 1x � n+1 + � � � + f n� 1x � 1 + f n � x � n f (x) (8.12)

for 0 < x < R. When x � 1, this yields an upper bound for the summatory function of the

coe�cien ts. Because(8.12) holds, we seethat the bound of Lemma 8.1 cannot be sharp in

general. What is remarkable is that the estimates obtainable from that lemma are often not

far from best possible.
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Example 8.2. Upper bound for the partition function. Let p(n) denotethe partition function.

It has the ordinary generating function

f (z) =
1X

n=0

p(n)zn =
1Y

k=1

(1 � zk )� 1 : (8.13)

Let g(s) = log f (e� s), and consider s > 0, s ! 0. There are extremely accurate estimates of

g(s). It is known [13, 23], for example, that

g(s) = � 2=(6s) + (log s)=2 � (log 2� )=2 � s=24+ O(exp(� 4� 2=s)) : (8.14)

If we use(8.14), we �nd that x � n f (x) is minimized at x = exp(� s) with

s = � =(6n)1=2 � 1=(4n) + O(n � 3=2) ; (8.15)

which yields

p(1) + p(2) + � � � + p(n) � 2� 3=4e� 1=4n� 1=4(1 + o(1)) exp(2� 6� 1=2n1=2) : (8.16)

Comparing this to the asymptotic formula for the sum that is obtainable from (1.6) (see

Example 5.2), we seethat the bound of (8.16) is too high by a factor of n1=4. If we use(8.16)

to bound p(n) alone, we obtain a bound that is too large by a factor of n3=4.

The application of Lemma 8.1 outlined above dependedon the expansion(8.14), which is

complicated to derive, involving modular transformation properties of p(n) that are beyond

the scope of this survey. (See[13, 23] for derivations.) Weaker estimates that are still useful

are much easierto derive. We obtain onesuch bound here,sincethe arguments illustrate some

of the methods from the precedingsections.

Consider

g(s) =
1X

k=1

� log(1 � e� ks) : (8.17)

If we replacethe sum by the integral

I (s) =
Z 1

1
� log(1 � e� us)du ; (8.18)

we �nd on expanding the logarithm that

I (s) =
Z 1

1

 
1X

m=1

m� 1e� mus

!

du = s� 1
1X

m=1

m� 2e� ms ; (8.19)
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since the interchange of summation and integration is easy to justify , as all the terms are

positive. Therefore as s ! 0+ ,

sI (s) !
1X

m=1

m� 2 = � 2=6 ; (8.20)

so that I (s) � � 2=(6s) as s ! 0+ . It remains to show that I is indeed a good approximation

to g(s). This follows easily from the bound (5.32), since it shows that

g(s) = I (s) + O
� Z 1

1

se� vs

1 � e� vs dv
�

: (8.21)

We could estimate the integral in (8.21) carefully, but we only need rough upper bounds for

it, so we write it as

Z 1

1

se� vs

1 � e� vs dv =
Z 1

s

e� u

1 � e� u du

=
Z 1

s

e� u

1 � e� u du +
Z 1

1

e� u

1 � e� u du (8.22)

=
Z 1

s

du
eu � 1

+ c �
Z 1

s

du
u

+ c = c � logs

for someconstant c. Thus we �nd that

g(s) = I (s) + O(log(s� 1)) as s ! 0+ : (8.23)

Combining (8.23) with (8.20) we seethat

g(s) � � 2=(6s) as s ! 0+ : (8.24)

Therefore, choosing s = � =(6n)1=2, x = exp(� s) in Lemma 8.1, we obtain a bound of the form

p(n) � exp((1 + o(1))� (2=3)1=2n1=2) as n ! 1 :
�

(8.25)

Lemma 8.1 yields a lower bound for n! that is only a factor of about n1=2 away from

optimal. That is common. Usually, when the function f (z) is reasonably smooth, the best

bound obtainable from Lemma 8.1 will only be o� from the correct value by a polynomial

factor of n, and often only by a factor of n1=2.

The estimate of Lemma 8.1 can often be improved with someadditional knowledgeabout

the f n . For example, if f n+1 � f n for all n � 0, then we have

x � n f (x) � f n + f n+1 x + f n+2 x2 + � � � � f n (1 � x) � 1 : (8.26)
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For f n = p(n), the partition function, then yields an upper bound for p(n) that is too large by

a factor of n1=4.

To optimize the bound of Lemma 8.1, oneshould choosex 2 (0; R) carefully. Usually there

is a single best choice. In somepathological casesthe optimal choice is obtained by letting

x ! 0+ or x ! R� . However, usually we have lim x! R � f (x) = 1 , and [zm ]f (z) > 0 for some

m with 0 � m < n as well as for somem > n. Under theseconditions it is easyto seethat

lim
x! 0+

x � n f (x) = lim
x! R �

x � n f (x) = 1 : (8.27)

Thus it doesnot pay to make x too small or too large. Let us now consider

g(x) = log(x � n f (x)) = log f (x) � n logx : (8.28)

Then

g0(x) =
f 0

f
(x) �

n
x

; (8.29)

and the optimal choice must be at a point where g0(x) = 0. For most commonly encountered

functions f (x), there exists a constant x0 > 0 such that

�
f 0

f

� 0

(x) > 0 (8.30)

for x0 < x < R, and so g00(x) > 0 for all x 2 (0; R) if n is large enough. For such n there

is then a unique choice of x that minimizes the bound of Lemma 8.1. However, one major

advantage of Lemma 8.1 is that its bound holds for all x. To apply this lemma, one can use

any x that is convenient to work with. Usually if this choice is not too far from the optimal

one, the resulting bound is fairly good.

We have already remarked above that the bound of Lemma 8.1 is usually close to best

possible. It is possibleto provegenerallower boundsthat show this for a wide classof functions.

The method, originated in [277] and developed in [305], relieson simple elementary arguments.

However, the lower bounds it produces are substantially weaker than the upper bounds of

Lemma 8.1. Furthermore, to apply them it is necessaryto estimate accurately the minimum of

x � n f (x), instead of selectingany convenient valuesof x. A more generalversion of the bound

below is given in [305].

Theorem 8.1. Suppose that f (x) =
P

f nxn convergesfor jxj < 1, f n � 0 for all n, f m0 > 0

for some m0, and
P

f n = 1 . Then for n � m0, there is a unique x0 = x0(n) 2 (0; 1) that
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minimizes x � n f (x). Let s0 = � logx0, and

A =
@2

@s2 log f (e� s)
�
�
�
s= s0

: (8.31)

If A � 106 and for all t with

s0 � t � s0 + 20A � 1=2 (8.32)

we have �
�
�
�

@3

@s3 log f (e� s)
�
�
�
s= t

�
�
�
� � 10� 3A3=2 ; (8.33)

then
nX

k=0

f k � x � n
0 f (x0) exp(� 30s0A1=2 � 100) : (8.34)

As is usual for Tauberian theorems, Theorem 8.1 only provides bounds on the sum of

coe�cien ts of f (z). As we mentioned before, this is unavoidable when one relies only on

information about the behavior of f (z) for z a positive real number. The conditions that

Theorem 8.1 imposeson the derivatives are usually satis�ed in combinatorial enumeration

applications and are easyto verify.

Example 8.3. Lower bound for the partition function. Let f (z) and g(s) beasin Example 8.2.

We showed there that g(s) satis�es (8.24) and similar rough estimates show that g0(s) �

� � 2=(6s2), g00(s) � � 2=(3s3), and g000(s) � � � 2=s4 as s ! 0+ . Therefore the hypothesesof

Theorem 8.1 are satis�ed, and we obtain a lower bound for p(0) + p(1) + � � � + p(n). If we only

usethe estimate (8.24) for g(s), then we can only concludethat for x = e� s,

log(x � n f (x)) = ns + g(s) � ns + � 2=(6s) as s ! 0 ; (8.35)

and so the minimum value occursat s � � =(6n)1=2 asn ! 1 . This only allows us to conclude

that for every � > 0 and n large enough,

log(p(0) + � � � + p(n)) � (1 � � )� (2=3)1=2n1=2 : (8.36)

However, we can also concludeeven without further computations that this lower bound will

be within a multiplicativ e factor of exp(cn1=4) of the best upper bound that can be obtained

from Lemma 8.1 for somec > 0 (and therefore within a multiplicativ e factor of exp(cn1=4) of

the correct value). In particular, if we use the estimate (8.14) for g(s), we �nd that for some

c0 > 0,

p(0) + � � � + p(n) � exp(� (2=3)1=2n1=2 � c0n1=4) : (8.37)
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Sincep(k) � p(k + 1), the quantit y on the right-hand side of (8.37) is also a lower bound for

p(n) if we increasec0, since(n + 1)p(n) � p(0) + � � � + p(n).
�

The di�erencing trick described at the introduction to Section 8 could also be used to

estimate p(n), sinceTheorem 8.1 can be applied to the generating function of p(n + 1) � p(n).

However, since the error term is a multiplicativ e factor of exp(cn1=4), it is simpler to use the

approach above, which bounds p(n) below by (p(0) + � � � + p(n))=(n + 1).

Brigham [58] has proved a general theorem about asymptotics of partition functions that

can be derived from Theorem 8.1. (For other results and referencesfor partition asymptotics,

see[13, 23, 150].)

Theorem 8.2. Suppose that

f (z) =
1Y

k=1

(1 � zk )� b(k) =
1X

n=0

a(n)zn ; (8.38)

where the b(k) 2 Z, b(k) � 0 for all k, and that for someC > 0, u > 0, we have

X

k� x

b(k) � Cxu(log x)v as x ! 1 : (8.39)

Then
log

� P
n� m a(n)

�
� u� 1f Cu�( u + 2)� (u + 1)g1=(u+1)

� (u + 1)(u� v)=(u+1) mu=(u+1) (log m)v=(u+1)

(8.40)

as m ! 1 .

If b(k) = 1 for all k, a(n) is pn , the ordinary partition function. If b(k) = k for all k, a(n) is

the number of plane partitions of n. Thus Brigham's theorem covers a wide classof interesting

partition functions. The cost of this generality is that we obtain only the asymptotics of the

logarithm of the summatory function of the partitions being enumerated. (For better estimates

of the number of plane partitions, for example, see[9, 170, 387]. For ordinary partitions, we

have the expansion(1.3).)

Brigham's proof of Theorem 8.2 �rst shows that

f (e� w) � Cw� u(� logw)v �( u + 1)� (u + 1) as w ! 0+ (8.41)

and then invokes the Hardy-Ramanujan Tauberian theorem [328]. Instead, one can obtain a

proof from Theorem 8.1. The advantage of using Theorem 8.1 is that it is much easier to

generalize. Hardy and Ramanujan proved their Tauberian theorem only for functions whose
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growth ratesareof the form givenby (8.41). Their approach canbeextendedto other functions,

but this is complicated to do. In contrast, Theorem 8.1 is easy to apply. The conditions of

Theorem 8.1 on the derivatives are not restrictiv e. For a function f (z) de�ned by (8.38) we

have B ! 1 if
P

b(k) = 1 , and the condition (8.33) can be shown to hold whenever there

are constants c1 and c2 such that for all w > 1, and all su�cien tly large m,

X

k� mw

b(k) � c1wc2
X

k� m

b(k) ; (8.42)

say. The main di�cult y in applying Theorem 8.1 to generalizationsof Brigham's theorem is

in accurately estimating the minimal value in Lemma 8.1.

There are many other applications of Lemma 8.1 and Theorem 8.1. For example, they can

be usedto prove the results of [158] on volumesof spheresin the Lee metric.

Lemma8.1canbegeneralizedin a straightforward way to multiv ariate generatingfunctions.

If

f (x; y) =
X

m;n � 0

am;n xm yn (8.43)

and am;n � 0 for all m and n, then for any x; y > 0 for which the sum in (8.43) convergeswe

have

am;n � x � m y� n f (x; y) : (8.44)

Generalizationsof the lower bound of Theorem8.1to multiv ariate functions canalsobederived,

but are again harder than the upper bound [289].

8.2. Taub erian theorems

The Brigham Tauberian theorem for partitions [58], based on the Hardy-Ramanujan

Tauberian theorem [328], was quoted already in Section 8.1. It applies to certain generat-

ing functions that have (in notation to be introduced in Section 10) a large singularity and

gives estimatesonly for the logarithm of the summatory function of the coe�cien ts. Another

theorem that is often more precise, but is again designedto deal with rapidly growing par-

tition functions, is that of Ingham [212], and will be discussedat the end of this section.

Most of the Tauberian theorems in the literature apply to functions with small singularities

(i.e., onesthat do not grow rapidly as the argument approachesthe circle of convergence)and

give asymptotic relations for the sum of coe�cien ts. Referencesfor Tauberian theorems are

[117, 154, 190, 212, 325]. Their main advantage is generality and easeof use, as is shown
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by the applications made to 0-1 laws in [77, 78, 79]. They can often be applied when the

information about generating functions is insu�cien t to use the methods of Sections11 and

12. This is especially true when the circle inside which the generating function convergesis a

natural boundary beyond which the function cannot be continued.

One Tauberian theorem that is often used in combinatorial enumeration is that of Hardy,

Littlew ood, and Karamata. We say a function L(t) varies slowly at in�nit y if, for every u > 0,

L (ut) � L (t) as t ! 1 .

Theorem 8.3. Suppose that ak � 0 for all k, and that

f (x) =
1X

k=0

akxk

convergesfor 0 � x < r . If there is a � � 0 and a function L(t) that varies slowly at in�nity

such that

f (x) � (r � x) � � L
�

1
r � x

�
as x ! r � ; (8.45)

then
nX

k=0

ak r k � (n=r) � L(n)=�( � + 1) as n ! 1 : (8.46)

Example 8.4. Cycles of permutations ([33]). If S is a set of positive integers, and f n the

probabilit y that a random permutation on n letters will have all cycle lengths in S (i.e.,

f n = an=n!, where an is the number of permutations with cycle length in S), then

f (z) =
1X

n=0

f nzn =
Y

k2 S

exp(zk=k) = (1 � z) � 1
Y

k62S

exp(� zk=k) : (8.47)

If j �

+ n Sj < 1 , then the methods of Sections10.2 and 11 apply easily, and one �nds that

f n � exp

0

@�
X

k62S

1=k

1

A as n ! 1 : (8.48)

This estimate can alsobe proved to apply for j �

+ nSj = 1 , provided jf 1; : : : ; mgnSj doesnot

grow too rapidly when m ! 1 . If jSj < 1 (or when jf 1; : : : ; mg \ Sj doesnot grow rapidly),

the methods of Section 12 apply. When S = f 1; 2g, one obtains, for example, the result of

Moser and Wyman [292] that the number of permutations of order 2 is

� (n=e)n=22� 1=2 exp(n1=2 � 1=4) as n ! 1 : (8.49)
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(For sharper and more general results, see[292, 376].) The methods used in these casesare

di�eren t from the oneswe are considering in this section.

We now consideran intermediate case,with

jf 1; : : : ; mg \ Sj � �m as m ! 1 : (8.50)

for some�xed � , 0 � � � 1. This casecan be handled by Tauberian techniques. To apply

Theorem 8.3, we need to show that L (t) = f (1 � t � 1)t � � varies slowly at in�nit y. This is

equivalent to showing that for any u 2 (0; 1),

f (1 � t � 1) � f (1 � t � 1u)u� as t ! 1 : (8.51)

Becauseof (8.47), it su�ces to prove that

X

k2 S

k� 1f (1 � t � 1)k � (1 � t � 1u)kg = � logu + o(1) as t ! 1 ; (8.52)

but this is easy to deducefrom (8.50) using summation by parts (Section 5). Therefore we

�nd from Theorem 8.3 that
mX

n=0

f n � f (1 � 1=n)�( � + 1)� 1 as n ! 1 : (8.53)

(For additional results and referenceson this problem see[317].)
�

As the above exampleshows, Tauberian theoremsyield estimatesunder weakassumptions.

These theorems do have some disadvantages. Not only do they usually estimate only the

summatory function of the coe�cien ts, but they normally give no bounds for the error term.

(See [154] for some Tauberian theorems with remainder terms.) Furthermore, they usually

apply only to functions with nonnegative coe�cien ts. Sometimes,as in the following theorem

of Hardy and Littlew ood, one can relax the nonnegativity condition slightly.

Theorem 8.4. Suppose that ak � � c=k for somec > 0,

f (z) =
1X

k=1

akxk ; (8.54)

and that f (x) convergesfor 0 < x < 1, and that

lim
x! 1�

f (x) = A : (8.55)

Then

lim
n!1

nX

k=1

ak = A : (8.56)
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Somecondition such as ak � � c=k on the ak is necessary, or otherwise the theorem would

not hold. For example, the function

f (x) =
1 � x
1 + x

= 1 � 2x + 2x2 � � � (8.57)

satis�es (8.55) with A = 0, but (8.56) fails.

We next present an examplethat shows an application of the above results in combination

with other asymptotic methods that were presented before.

Example 8.5. Permutations with distinct cycle lengths. The probabilit y that a random per-

mutation on n letters will have cyclesof distinct lengths is [zn ]f (z), where

f (z) =
1Y

k=1

�
1 +

zk

k

�
: (8.58)

Greeneand Knuth [177] note that this is also the limit as p ! 1 of the probabilit y that a

polynomial of degreen factors into irreducible polynomials of distinct degreesmodulo a prime

p. It is shown in [177] that

[zn ]f (z) = e�  (1 + n� 1) + O(n� 2 logn) as n ! 1 ; (8.59)

where  = 0:577: : : is Euler's constant. A simpli�ed version of the argument of [177] will be

presented that shows that

[zn ]f (z) � e�  as n ! 1 : (8.60)

Methods for obtaining better expansions,even more precisethan that of (8.59), are discussed

in Section 11.2. For related results obtained by probabilistic methods, see[20].

We have, for jzj < 1,

f (z) = (1 + z) exp

 
1X

k=2

log(1 + zk=k)

!

= (1 + z) exp

 
1X

k=2

zk=k + g(z)

!

= (1 + z)(1 � z) � 1 exp(g(z)) ;

(8.61)

where

g(z) = � z +
1X

m=2

(� 1)m� 1

m

1X

k=2

zmk

km : (8.62)
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Since the coe�cien ts of g(z) are small, the double sum in (8.62) convergesfor z = 1, and we

have

g(1) = lim
z! 1�

g(z) = � 1 +
1X

k=2

1X

m=2

(� 1)m� 1

m
k� m

= � 1 +
1X

k=2

f log(1 + k � 1) � k� 1g

= � log2 + lim
n!1

(log(n + 1) � H n ) = � log2 �  ;

(8.63)

where Hn = 1 + 1=2 + 1=3 + � � � + 1=n is the n-th harmonic number. Therefore, by (8.61), we

�nd from Theorem 8.4 that if f n = [zn ]f (z), then

f 0 + f 1 + � � � + f n � ne�  as n ! 1 : (8.64)

To obtain asymptotics of f n , we note that if hn = [zn ] exp(g(z)), then by (8.61),

f n = 2h0 + 2h1 + � � � + 2hn� 1 + hn : (8.65)

We next obtain an upper bound for jhn j. There are several ways to proceed.The method used

below gives the best possibleresult jhn j = O(n� 2).

Since g(z) has the power seriesexpansion (8.62), and hn = [zn ] exp(g(z)), comparison of

terms in the full expansionof exp(g(z)) and exp(v(z)) shows that jhn j � [zn ] exp(v(z)), where

v(z) is any power seriessuch that j[zn ]g(z)j � [zn ]v(z). For n � 2,

[zn ]g(z) =
X

mjn
m � 2
m < n

(� 1)m� 1

m

� m
n

� m
: (8.66)

The term (m=n)m is monotone decreasingfor 1 � m � n=e, since its derivative with respect

to m is � 0 in that range. Therefore

j[zn ]g(z)j �
1
2

�
2
n

� 2

+
X

3� m� n=3

1
m

�
3
n

� 3

+
2
n

2� n=2 � 10n� 2 ; (8.67)

say. Hencewe can take

v(z) = 10
1X

n=1

n� 2zn ; (8.68)

and then we needto estimate

wn = [zn ] exp(v(z)) : (8.69)
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We let w(z) = exp(v(z)), and note that

w0(z) = v0(z)w(z) ; (8.70)

so for n � 1,

nwn = 10
n� 1X

k=0

wk (n � k) � 1 : (8.71)

Further, since v(1) < 1 , and wn � 0 for all n, we have wn � A = w(1) = exp(v(1)) for all

n. Let B = 106A and note that wn � B n� 2 for 1 � n � 103. Supposenow that wm � B m� 2

for 1 � m < n for somen � 103. We will prove that wn � B n� 2, and then by induction this

inequality will hold for all n � 1. We apply Eq. (8.70). For 0 � k � 100, we use wk � A,

(n � k) � 1 � 2n� 1. For 100< k � n=2,

wk (n � k) � 1 � B k� 2(n � k) � 1 � 2B k� 2n� 1 ; (8.72)

and so
X

100� k� n=2

wk (n � k) � 1 � B (40n) � 1 : (8.73)

Finally,
X

n=2<k � n� 1

wk(n � k) � 1 � 4B n� 2
X

n=2<k � n� 1

(n � k) � 1 � 4B n� 2Hn : (8.74)

Therefore, by (8.71),

nwn � 2000An � 1 + B (4n) � 1 + 4B Hnn� 2 � B n� 1 ; (8.75)

which completesthe induction step and proves that wn � B n� 2 for all n � 1.
�

There are Tauberian theorems that apply to generating functions with rapidly growing

coe�cien ts but are more precisethan Brigham's theorem or the estimatesobtainable with the

methods of Section 8.1. One of the most useful is Ingham's Tauberian theorem for partitions

[212]. The following result is a corollary of the more generalTheorem 2 of [212].

Theorem 8.5. Let 1 � u1 < u2 < : : : be positive integers such that

jf uj : uj � xgj = B x � + R(x) ; (8.76)

where B > 0, � > 0, and

Z y

1
x � 1R(x)dx = blogy + c + o(1) as y ! 1 : (8.77)
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Let

a(z) =
1X

n=1

anzn =
1Y

j =1

(1 � zu j )� 1 ; (8.78)

a� (z) =
1X

n=1

a�
nzn =

1Y

j =1

(1 + zu j ) : (8.79)

Then, as m ! 1 ,

mX

n=1

an � (2� ) � 1=2(1 � � )1=2ecV � � (b+1 =2)m(b+1 =2)(1� � )� 1=2 exp(� � 1(Vm) � ) ; (8.80)

mX

n=1

a�
n � (2� ) � 1=2(1 � � )1=22b(V � m)� �= 2 exp(� � 1(V � m)� ) ; (8.81)

where

� = � (� + 1)� 1; V = f B � �( � + 1)� (� + 1)g1=� ; V � = (1 � 2� � )1=� V : (8.82)

If u1 = 1, then as n ! 1

an � (2� ) � 1=2(1 � � )1=2ecV � � (b� 1=2)n(b� 1=2)(1� � )� 1=2 exp(� � 1(Vn) � ) ; (8.83)

and if 1; 2; 4; 8; : : : all belong to f uj g, then

a�
n � (2� ) � 1=2(1 � � )1=22b(V � )�= 2n�= 2� 1 exp(� � 1(V � n)� ) : (8.84)

Theorem 8.5 provides more precise information than Brigham's Theorem 8.2, but under

more restrictiv e conditions. It is derived from Ingham's main result, Theorem 1 of [212],

which can be applied to wider classesof functions. However, that theorem cannot be used to

derive Theorem 8.2. The disadvantage of Ingham's main theorem is that it requiresknowledge

of the behavior of the generating function in the complex plane, not just on the real axis.

On the other hand, the region where this behavior has to be known is much smaller than

it is for the analytic methods that give more accurate answers, and which are presented in

Sections10{12. Only behavior of the generating functions �(1 � z � j )� 1 or �(1 + z� j ) in an

angle jArgj(1 � z)j � � =2 � � for some� > 0 needsto be controlled.

Ingham's paper [212] contains an extended discussionof the relations between di�eren t

Tauberian theoremsand of the necessity for various conditions.
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9. Recurrences

This section presents somebasic methods for handling recurrences. The title is slightly

misleading, sincealmost all of this chapter is devoted to methods that are useful in this area.

Almost all asymptotic estimation problemsconcernquantities that arede�ned through implicit

or explicit recurrences.Furthermore, the most common and most e�ectiv e method of solving

recurrencesis often to determine its generatingfunction and then apply the methods presented

in the other sections. However, there are many recurrences,and thosediscussedin Sections9.4

and 9.5 require special methods that do not �t into other sections. Thesemethods deserve to

be included, so it seemspreferable to explain them after treating someof the more common

typesof recurrences,even though those could have beencovered elsewherein this chapter.

Since generating functions are the most powerful tool for handling combinatorial recur-

rences,all the books listed in Section18 that help in dealing with combinatorial identities and

generating functions are also useful in handling recurrences.Methods for recurrencesthat are

not amenableto generating function methods are presented in [175, 177]. Lueker [264] is an

introductory survey to somerecurrencemethods.

Wimp's book [382] is concernedprimarily with numerical stabilit y problems in computing

with recurrences.Such problemsare important in computing valuesof orthogonal polynomials,

for example, but seldom arise in combinatorial enumeration. However, there are sectionsof

[382] that are relevant to our topic, for example to the discussionof di�eren tial equations in

Section 9.2.

9.1. Linear recurrences with constan t coe�cien ts

The most famous sequencethat satis�es a linear recurrencewith constant coe�cien ts is

that of the Fibonaccinumbers,de�ned by F0 = F1 = 1, Fn = Fn� 1+ Fn� 2 for n � 2. There are

many others that are only slightly lesswell known. Fortunately, the theory of such sequences

is well developed, and from the standpoint of asymptotic enumeration their behavior is well

understood. (For a survey of number theoretic results, together with a list of many unsolved

problemsabout such sequencesthat arisein that area,see[73].) There areevenseveral di�eren t

approachesto solving linear recurrenceswith constant coe�cien ts. The onewe emphasizehere

is that of generating functions, since it �ts in best with the rest of this chapter. For other

approaches,see[287, 298], for example.

Supposethat we have a linear recurrenceor a system of recurrencesand have found that
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the generating function f (z) we are interested in has the form

f (z) =
G(z)
h(z)

; (9.1)

where G(z) and h(z) are polynomials. The basic tool for obtaining asymptotic information

about [zn ]f (z) is the partial fraction expansionof a rational function [205]. Dividing G(z) by

h(z) we obtain

f (z) = p(z) +
g(z)
h(z)

; (9.2)

where p(z), g(z), and h(z) are all polynomials in z and degg(z) < degh(z). We can assume

that h(0) 6= 0, sinceif that were not the case,we would have g(0) = 0 (as in the opposite case

f (z) would not be a power seriesin z, but would have terms such as z � 1 or z� 2) and we could

cancela common factor of z from g(z) and h(z). Therefore, if d = degh(z), we can write

h(z) = h(0)
d0Y

j =1

�
1 �

z
zj

� m j

; (9.3)

where zj , 1 � j � d0 are the distinct roots of h(z) = 0, zj has multiplicit y m j � 1, and
P

mj = d. Hencewe �nd [175, 205] that for certain constants cj;k ,

f (z) = p(z) +
d0X

j =1

m jX

k=1

cj;k

(1 � z=zj )k

= p(z) +
d0X

j =1

m jX

k=1

cj;k

1X

h=0

�
h + k � 1

k � 1

�
zhz� h

j : (9.4)

Thus

an = [zn ]p(z) +
d0X

j =1

m jX

k=1

cj;k

�
h + k � 1

k � 1

�
z� n

j : (9.5)

When m j = 1,

cj; 1 =
� g(zj )
zj h0(zj )

; (9.6)

and explicit formulas for the cj;k when m j > 1 can also be derived [175], but are unwieldy and

seldomused.

Example 9.1. Fibonacci numbers. As was noted in Example 6.3,

F (z) =
1X

n=0

Fn zn =
z

1 � z � z2 :

Now

h(z) = 1 � z � z2 = (1 + � � 1z)(1 � �z ) ; (9.7)
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where � = (1 + 51=2)=2 is the golden ratio. Therefore

F (z) =
1

p
5

�
1

1 � �z
�

1
1 + � � 1z

�
(9.8)

and for n � 0,

Fn = [zn ]F (z) = 5� 1=2(� n � (� � ) � n ) : (9.9)

�

The partial fraction expansion(9.4) shows that the �rst-order asymptotics of sequencean

satisfying a linear recurrenceof the form (6.30) are determined by the smallest zerosof the

characteristic polynomial h(z). The full asymptotic expansionis given by (9.5), and involves

all the zeros. In practice, using (9.5) presents somedi�culties, in that multiplicities of zeros

are not always easyto determine, and the coe�cien ts cj;k are often even harder to deal with.

Eventually, for large n, their inuence becomesnegligible, but when uniform estimates are

required they present a problem. In such casesthe following theorem is often useful.

Theorem 9.1. Suppose that f (z) = g(z)=h(z), where g(z) and h(z) are polynomials, h(0) 6=

0, degg(z) < degh(z), and that the only zeros of h(z) in jzj < R are � 1; : : : ; � k , each of

multiplicity 1. Suppose further that

max
jzj= R

jf (z)j � W ; (9.10)

and that R � j� j j � � for some� > 0 and 1 � j � k. Then
�
�
�
�
�
�
[zn ]f (z) +

kX

j =1

g(� j )
h0(� j )

� � n� 1
j

�
�
�
�
�
�

� W R� n + � � 1R� n
kX

j =1

jg(� j )=h0(� j )j : (9.11)

Theorem 9.1 is derived using methods of complex variables, and a proof is sketched in

Section 10. That section also discusseshow to locate all the zeros� 1; : : : ; � k of a polynomial

h(z) in a disk jzj < R. In general,the zerolocation problem is not a seriousonein enumeration

problems. Usually there is a singlepositive real zerothat is closerto the origin than any other,

it can be located accurately by simple methods, and R is chosenso that jzj < R enclosesonly

that zero.

Example 9.2. Sequences with forbidden subblocks. We continue with the problem presented

in Examples 6.4 and 6.8. Both FA (z) and GA (z) have as denominators

h(z) = zk + (1 � 2z)CA (z) ; (9.12)
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which is a polynomial of degreeexactly k. Later, in Example 10.6, we will show that for k � 9,

h(z) has exactly one zero � in jzj � 0:6, and that for jzj = 0:55, jh(z)j � 1=100. Furthermore,

by Example 6.7, � ! 1=2 as k ! 1 . On jzj = 0:55,

jFA (z)j � 100� (0:55)k : (9.13)

Theorem 9.1 then shows, for example, that for n > k � k0,
�
�
�
� [z

n ]FA (z) +
CA (� )� � n� 1

h0(� )

�
�
�
� � 100(0:55)k� n + 40(0:55)� n jh0(� )j � 1

(9.14)

� 50(0:55)� n ;

sinceby Example 6.7, as k ! 1 ,

h0(� ) = k� k� 1 � 2CA (� ) + (1 � 2� )C0
A (� ) � � 2CA (� ) � � � � 1 : (9.15)

The estimate (9.14), when combined with the expansionsof Example 6.7, gives accurate

approximations for pn , the probabilit y that A does not appear as a block among the �rst n

coin tosses.We have

pn = 2� n [zn ]Fz(z)

= � 2� nCA (� )� � n� 1(h0(� )) � 1 + O(exp(� 0:09n)) :
(9.16)

We now estimate h0(� ) as before, in (9.15), but more carefully, putting in the approximation

for � from Example 6.7. We �nd that

h0(� ) = � � � 1 + O(k2� k ) ; (9.17)

and

� � n = 2n exp(� n(2kCA (1=2))� 1 + O(nk2� 2k )) : (9.18)

Therefore

pn = exp(� n(2kCA (1=2))� 1 + O(nk2� 2k )) + O(exp(� n=12)) : (9.19)

This shows that pn has a sharp transition. It is close to 1 for n = o(2k ), and then, as

n increasesthrough 2k , drops rapidly to 0. (The behavior on the two sides of 2k is not

symmetric, as the drop towards 0 beyond 2k is much faster than the increasestowards 1

on the other side.) For further results and applications of such estimates, see [180, 181].

Estimates such as (9.19) yield results sharper than thoseof Example 6.8. They alsoprove (see
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Example 14.1) that the expected lengths of the longest run of 0's in a random sequenceof

length n is log2 n + u(log2 n) + o(1) as n ! 1 , where u(x) is a continuous function that is not

constant and satis�es u(x + 1) = u(x). (Seealso the discussionof carry propagation in [236].)

For other methods and results in this area, see[18].
�

Inhomogeneousrecurrenceswith constant coe�cien ts, say,

an =
dX

i =1

ci an� i + bn ; n � d ; (9.20)

are not covered by the techniques discussedabove. One can still use the basic generating

function approach to derive the ordinary generating function of an , but this time it is in terms

of the ordinary generating function of bn . If bn doesnot grow too rapidly, the \subtraction of

singularities" method of Section 10.2 can be used to derive the asymptotics of an in a form

similar to that given by (9.26).

9.2. Linear recurrences with varying coe�cien ts

Linear recurrenceswith constant coe�cien ts have a nice and complete theory. That is no

longer the casewhen one allows coe�cien ts that vary with the index. This is not a fault of

mathematicians in not working hard enough to derive elegant results, but reects the much

more complicated behavior that can occur. The simplest caseis when the recurrencehas a

�nite number of terms, and the coe�cien ts are polynomials in n.

Example 9.3. Two-sided generalized Fibonacci sequences. Let t n be the number of integer

sequences(bj ; : : : ; b2; b1; 1; 1; a1; a2; : : : ; ak ) with j + k + 2 = n in which each bi is the sum of

one or more contiguous terms immediately to its right, and each ai is likewisethe sum of one

or more contiguous terms immediately to its left. It was shown in [120] that t 1 = t2 = 1 and

that

tn+1 = 2nt n � (n � 1)2tn� 1 for n � 2 : (9.21)

If we let

t(z) =
1X

n=1

tnzn� 1

(n � 1)!
(9.22)

be a modi�ed exponential generating function, then the recurrence(9.21) shows that

t0(z)(1 � z)2 � t(z)(2 � z) = 1 : (9.23)

74



Standard methods for solving ordinary di�eren tial equations, together with the initial condi-

tions t1 = t2 = 1, then yield the explicit solution

t(z) = (1 � z) � 1 exp((1 � z) � 1)
�
C +

Z 1

z
(1 � w) � 1 exp(� (1 � w) � 1)dw

�
; (9.24)

where

C = e� 1 �
Z 1

0
(1 � w) � 1 exp(� (1 � w) � 1)dw = 0:148495: : : : (9.25)

Oncethe explicit formula (9.24) for t(z) is obtained, the methodsof Section12give the estimate

tn � C(n � 1)!(e=� )1=2 exp(2n1=2)(2n1=4)� 1 as n ! 1 : (9.26)

It is easyto show that the absolute value of

(1 � z) � 1 exp((1 � z) � 1)
Z 1

z
(1 � w) � 1 exp(� (1 � w) � 1)dw (9.27)

is small for jzj < 1. Therefore the asymptotics of the t n are determined by the behavior of

coe�cien ts of

C(1 � z) � 1 exp((1 � z) � 1) ; (9.28)

and that can be obtained easily. The estimate (9.26) then follows.
�

To seejust how di�eren t the behavior of linear recurrenceswith polynomial coe�cien ts can

be from thosewith constant coe�cien ts, comparethe behavior of the sequencesin Example 9.3

above and Example 9.4 (given below). The existenceof such di�erences should not be too

surprising, sinceafter all even the �rst order recurrencean = nan� 1 for n � 2, a1 = 1, has the

obvious solution an = n!, which is not at all like the solutionsto constant coe�cien t recurrences.

However, when an = nan� 1, a simple change of variables, namely an = bnn!, transforms this

recurrenceinto the trivial one of bn = bn� 1 = � � � = b1 = 1 for all n. Such rescaling is among

the most fruitful methods for dealing with nonlinear recurrences,even though it is seldomas

simple as for an = n!.

Example 9.3 is typical in that a sequencesatisfying a linear recurrenceof the form

an =
rX

j =1

cj (n)an� j ; n � r ; (9.29)

where r is �xed and the cj (n) are rational functions (a P-recursive sequencein the notation

of Section 6.3) can always be transformed into a di�eren tial equation for a generating func-

tion. Whether anything can be done with that generating function depends strongly on the
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recurrenceand the form of the generating function. Example 9.3 is atypical in that there is an

explicit solution to the di�eren tial equation. Further, this explicit solution is a nice analytic

function. This is due to the special choice of the form of the generating function. An expo-

nential generating function seemsnatural to use in that example, since the recurrence(9.21)

shows immediately that tn � (2n � 2)(2n � 4) : : : 2 = 2n� 1(n � 1)!, and a slightly more involved

induction proves that tn grows at least as fast as a factorial. If we tried to use an ordinary

generating function

u(z) =
1X

n=1

tnzn ; (9.30)

then the recurrence(9.21) would yield the di�eren tial equation

z4u00(z) + z3u0(z) + (1 � 2z2)u(z) = z � z2 ; (9.31)

which is not as tractable. (This was to be expected, sinceu(z) is only a formal power series.)

Even when a good choiceof generatingfunction doesyield an analytic function, the di�eren tial

equation that results may be hard to solve. (One can always �nd a generating function that

is analytic, but the structure of the problem may not be reected in the resulting di�eren tial

equation, and there may not be anything nice about it.)

There is an extensive literature on analytic solutions of di�eren tial equations

(cf. [205, 206, 207, 272, 368, 372]), but it is not easy to apply in general. Singularities of

analytic functions that satisfy linear di�eren tial equations with analytic coe�cien ts are usu-

ally of only a few basic forms, and so the methods of Sections11 and 12 su�ce to determine

the asymptotic behavior of the coe�cien ts. The di�cult y is in locating the singularities and

determining their nature. We refer to [206, 207, 272, 368, 372] for methods for dealing with

this di�cult y, sincethey are involved and so far have beenseldomusedin combinatorial enu-

meration. There will be somefurther discussionof di�eren tial equations in Section 15.3.

Someaspects of the theory of linear recurrenceswith constant coe�cien ts do carry over

to the caseof varying coe�cien ts, even when the coe�cien ts are not rational functions. For

example, there will in general be r linearly independent solutions to the recurrence (9.29)

(corresponding to the di�eren t starting conditions). Also, if a solution an has the property

that an+1 =an tends to a limit � as n ! 1 , then 1=� is a limit of zerosof

1 �
rX

j =1

cj (n)zj ; (9.32)
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and therefore is often a root of

1 �
rX

j =1

�
lim

n!1
cj (n)

�
zj : (9.33)

Whether there are exactly r linearly independent solutions is a di�cult problem. Extensive

research was done on this topic 1920'sand 1930's[2, 29], culminating in the work of Birkho�

and Trjitzinsky [51, 52, 53, 366, 367]. This work appliesto recurrencesof the form (9.29) where

the cj (n) have Poincar�e asymptotic expansions

cj (n) � nk j =kf cj; 0 + cj; 1n� 1=k + cj; 2n� 2=k + � � �g as n ! 1 ; (9.34)

wherethe kj and k are integersand cj; 0 6= 0 if cj (n) is not identically 0 for all n. It follows from

this work that solutions to the recurrenceare expressibleas linear combinations of elements of

the form

(n!)p=q exp(P(n1=m))n� (log n)h ; (9.35)

where h; m; p, and q are integers,P(z) a polynomial, and � a complex number. An exposition

of this theory and how it applies to enumeration hasbeengiven by Wimp and Zeilberger [384].

(There is a slight complication in that most of the literature cited above is concernedwith

recurrencesfor functions of a real argument, not sequences,but this is not a major di�cult y.)

There is still a problem in identifying which linear combination provides the derived solution.

Wimp and Zeilberger point out that it is usually easy to show that the largest of the terms

of the form (9.35) doesshow up with a nonzerocoe�cien t, and so determinesthe asymptotics

of an up to a multiplicativ e constant. However, the Birkho�-T rjitzinsky method does not in

generalprovide any techniques for determining that constant.

The major objection to the useof the Birkho�-T rjitzinsky results is that they may not be

rigorous, sincegapsare allegedto exist in the complicated proofs [211, 383]. Furthermore, in

almost all combinatorial enumeration applications the coe�cien ts are rational, and so one can

usethe theory of analytic di�eren tial equations.

When there is no way to avoid linear recurrenceswith coe�cien ts that vary but are not

rational, one can sometimesuse the work of Kooman [243, 244], which developsthe theory of

secondorder linear recurrenceswith almost-constant coe�cien ts.

Example 9.4. An oscillating sequence. Let

an =
nX

k=0

�
n
k

�
(� 1)k

k!
; n = 0; 1; : : : : (9.36)
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Then an satis�es the linear recurrence

an+2 �
�

2 �
2
n

�
an+1 +

�
1 �

1
n

�
an = 0; n � 0 : (9.37)

The methods of [244] can be usedto show that for someconstants c and �

an = cn� 1=4 sin(2n1=2 + � ) + o(n � 1=4) as n ! 1 ; (9.38)

which is a much more preciseestimate than the crude one mentioned in Example 10.1.

Another, in some ways preferable method for obtaining asymptotic expansionsfor an is

mentioned in Example 12.8. It is based on an explicit form for the generating function of

an , f (z) =
P

anzn . An interchange of orders of summation (easily justi�ed for jzj small, say

jzj < 1=2) shows that

f (z) =
1X

k=0

(� 1)k

k!

1X

n= k

�
n
k

�
zn

=
1X

k=0

(� 1)k

k!
zk

(1 � z)k+1 =
1

1 � z
exp

�
�

z
1 � z

�
: (9.39)

The saddlepoint method can then be applied to obtain asymptotic expansionsfor an .
�

9.3. Linear recurrences in several variables

Linear recurrencesin several variables that have constant coe�cien ts can be attacked by

methods similar to those used in a single variable. If we have

am;n =
d dX X

i =0 i=0

i+ j > 0

ci;j am� i;n � j (9.40)

for m; n � d, say, then the generating function

f (x; y) =
1X

m=0

1X

n=0

am;n xmyn (9.41)
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satis�es the relation

f (x; y)

0

B
B
B
B
@

1 �
d dX X

i =0 i=0
i+ j > 0

ci;j x i yj

1

C
C
C
C
A

=
1 1X X

m=0 n=0
m>d or n>d

am;n xm yn

�
d dX X

i =0 i=0
i+ j > 0

cij x i yj
X

m;n
m � d� i

or n � d� i

am;n xmyn :

(9.42)

If am;n = 0 for 0 � m < d and n � d as well as for 0 � n < d and m � d (so that all the am;n

are fully determined by am;n for 0 � m < d, 0 � n < d), then f (x; y) is a rational function. If

this condition doesnot hold, f (x; y) can be complicated.

The paragraphabove shows that under commonconditions, constant coe�cien t recurrences

lead to generating functions that are rational even in several variables. However, even when

the rational function is determined, there is no equivalent of partial fraction decomposition to

yield elegant asymptotics of the coe�cien ts. Coe�cien ts of multiv ariate generating functions

are much harder to handle than those of univariate functions. There are tools (discussedin

Section 13), that are usually adequate to handle rational generating functions, but they are

not simple.

When the coe�cien ts of the multiv ariate recurrencesvary, available knowledgeis extremely

limited. Even if the coe�cien ts are polynomials, we obtain a partial di�eren tial equation for

the generating function. Sometimesthere are tricks that lead to a simple solution (cf. Exam-

ple 15.6), but this is not common.

9.4. Nonlinear recurrences

Nonlinear recurrencescome in a great variety of shapes, and the methods that are used

to solve them are diverse, depending on the nature of the problem. This section presents a

sampleof the most useful techniques that have beendeveloped.

Sometimesa nonlinear recurrencehas a simple solution becauseof a nice algebraic factor-

ization. For example, supposethat z0 is any given complex number, and

zn+1 = z2
n � 2 for n � 0 : (9.43)

If we set

w = (z0 + (z2
0 � 4)1=2)=2 ; (9.44)
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we have z0 = w + w� 1, and more generally

zn = w2n
+ w� 2n

for n � 0 : (9.45)

Eq. (9.45) is easilyestablishedthrough induction. However, this is an exceptional instance,and

already recurrencesof the type zn+1 = z2
n + c for c a complex constant lead to deepquestions

about the Mandelbrot set and chaotic behavior [91].

Sincelinear recurrencesarewell understood, the best that onecanhopefor whenconfronted

with a nonlinear recurrenceis that it might be reducible to a linear one. This works in many

situations.

Example 9.5. Planted plane trees. Let an;h be the number of planted plane trees with n

nodesand height � h [64, 177], and let

Ah(z) =
1X

n=0

an;h zn : (9.46)

Sincea tree of height � h + 1 has a root and any number of subtrees,each of height � h,

Ah+1 (z) = z(1 + Ah(z) + Ah(z)2 + � � �)

= z(1 � Ah(z)) � 1 : (9.47)

Iterating this recurrence,we obtain a �nite continued fraction that looks like

Ah+1 (z) =
z

1 � z
1� z

1:::

: (9.48)

The generaltheory of continuedfunctions represents a convergent asa quotient of two sequences

satisfying recurrencesinvolving the partial quotients. (For references,see[218, 319].) After

playing with this idea, one �nds that the substitution

Ah(z) =
zPh(z)
Ph+1 (z)

(9.49)

gives

Ph+1 (z) = Ph(z) � zPh� 1(z) ; h � 2 ;

where P0(z) = 0, P1(z) = 1. This is a linear recurrencewhen we regard z as �xed, and so the

theory presented before leadsto the explicit representation

Ph(z) = (1 � 4z) � 1=2

8
<

:

 
1 + (1 � 4z)1=2

2

! h

�

 
1 � (1 � 4z)1=2

2

! h
9
=

;
: (9.50)

De Bruijn, Knuth, and Rice [64] use this representation to determine the average height of

plane trees.
�
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Greeneand Knuth (p. 30 of [177]) note that the continued fraction method of replacing a

convergent by a quotient of elements of two sequencesin generalleadsnot to a singlesequence

of polynomials like the Ph(z) of Example 9.5, but to two sequences.This is only slightly harder

to handle, and allows one to linearize more complicated recurrences.

There are many additional ways to linearize a recurrence. (A small list is given on p. 31 of

[177].) For example, a purely multiplicativ e relation an = a2
n� 1=an� 2 is transformed into the

linear logan = 2logan� 1 � logan� 2 by taking logarithms. One of the most fruitful tricks of

this type is taking inverses.Thus an = an� 1=(1 + an� 1) is equivalent to

1
an

=
1

an� 1
+ 1 ; (9.51)

which has the obvious solution a� 1
n = a� 1

0 + n. (This assumesa0 6= � 1=k for any k 2 �

+ .)

Linearization works well, but is limited in applicabilit y. More widely applicable, but pro-

ducing answers that are not as clear, is approximate linearization, where a given nonlinear

recurrenceis closeto a linear one. The following examplecombines approximate linearization

with bootstrapping.

Example 9.6. A quadratic recurrence. The study of the average height of binary trees in

[132] involves the recurrence

an = an� 1(1 � an� 1) for n � 1 ; (9.52)

with a0 = 1=2. The an are monotone decreasing,so we try the inversetrick. We �nd

1
an

=
1

an� 1(1 � an� 1)
=

1
an� 1

+ 1 +
an� 1

1 � an� 1
: (9.53)

Iterating this recurrence (but applying it only to the �rst term on the right-hand side of

Eq. (9.53)) we obtain

1
an

=
1

an� 2
+ 2 +

an� 2

1 � an� 2
+

an� 1

1 � an� 1

= � � �

=
1
a0

+ n +
n� 1X

j =0

aj

1 � aj

= n + 2 +
n� 1X

j =0

aj

1 � aj
:

(9.54)

81



Equation (9.54) shows that a� 1
n > n, soan < 1=n. Applying this bound to aj for 2 � j � n � 1

in the sum on the right-hand side of Eq. (9.54), we �nd that

n � a� 1
n � n + O(log n) : (9.55)

When we substitute this into (9.54), we �nd that a� 1
n = n + logn + o(log n), and further

iterations produce even more accurate estimates.
�

Approximate linearization also works well for somerapidly growing sequences.

Example 9.7. Doubly exponential sequences. Many recurrencesare of the form

an+1 = a2
n + bn ; (9.56)

where bn is much smaller than a2
n (and may even depend on the an for k � n, as in bn = an or

bn = an� 1). Aho and Sloane[3] found that surprisingly simple solutions to such recurrencescan

often be found. The basic idea is to reduceto approximate linearization by taking logarithms.

We �nd that if a0 is the given initial value, and an > 0 for all n, then the transformation

un = logan ; (9.57)

� n = log(1 + bna� 2
n ) ; (9.58)

reduces(9.56) to

un+1 = 2un + � n ; n � 0 : (9.59)

Therefore

un = � n� 1 + 2un� 1 = � n� 1 + 2� n� 2 + 4un� 2

= : : :

=
nX

j =1

2j � 1� n� j + 2nu0

= 2n (u0 + � 0=2 + � 1=4 + � � � + � n� 1=2n ) : (9.60)

If we assumethat the � k are small, then

� = u0 +
1X

k=0

� k2� k� 1 (9.61)

exists, and

rn = un � 2n � = 2n
1X

k= n

� k2� k� 1 : (9.62)
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If the � k are su�cien tly small, the di�erence r n in (9.62) will be small, and

an = exp(un ) = exp(2n � � rn ) : (9.63)

The expression(9.63) might not seemsatisfactory, sinceboth an and r n are expressedin terms

of all the ak , for k < n and for k � n. The point of (9.63) is that for many recurrences,r n

is negligibly small, while � is given by the rapidly convergent series(9.61), so that only the

�rst few an are neededto obtain a good estimate for the asymptotic behavior of an . We next

discussa particularly elegant case.

Supposethat an � 1 and jbn j < an=4 for all n � 0. Then an+1 � an and j� n+1 j � j� n j for

n � 0, and so jr n j � j� n j. Hence

an exp(�j � n j) � exp(2n � ) � an exp(j� n j) (9.64)

and since
exp(j� n j) � 1 + jbn ja� 2

n < 1 + (4an )� 1 ;

exp(�j � n j) � (1 + (4an )� 1)� 1 � 1 � (3an )� 1 ;
(9.65)

we �nd that

jan � exp(2n � )j < (2an )� 1 � 1=2 : (9.66)

If an is an integer, then we can assert that it is the closestinteger to exp(2n � ).

The restriction jbn j < an=4 is severe. The basic method applies even without it, and the

expansion(9.63) is valid, for example,if weonly require that j� n+1 j � j� n j for n � n0. However,

we will not in generalobtain results as nice as (9.66) if we only imposetheseweak conditions.

The method outlined above can be applied to recurrencesthat appear to be of a slightly

di�eren t form. Sometimesonly a trivial transformation is required. For example, Golomb's

nonlinear recurrence,

an+1 = a0a1 � � � an + b; a0 = 1 ; (9.67)

for b a constant, is easily seento be equivalent to

an+1 = (an � b)an + b; a0 = 1; a1 = b+ 1 : (9.68)

The substitution

xn = an � b=2 (9.69)

transforms (9.68) into

xn+1 = x2
n + (2 � b)b=4 ; (9.70)
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which is of the form treated above. (If the xn are integers, the inequality (9.66) with xn

replacing an might not apply to the xn becausethe condition j(2 � b)b=4j < jxk j=4 might fail

for somek. The trick to usehere is to start the recurrencewith somex k , say xk0 , so that the

condition j(2 � b)b=4j < jxk j=4 applies for k � k0. The new � for which (9.66) holds will then

be de�ned in terms of xk0 ; xk0+1 ; : : : .)

In somesituations the results presented above cannot be applied, but the basic method

can still be extended. That is the casefor the recurrence

an+1 = anan� 1 + 1; a0; a1 � 1 (9.71)

of [3]. The result is that an is the nearest integer to

� Fn � Fn � 1 ; (9.72)

where � and � are positive constants, and the Fk are the Fibonacci numbers. What matters

is that the recurrenceleads to doubly exponential (and regular) growth of an . Example 15.3

shows how this principle can be applied even when the an are not numbers, but polynomials

whosecoe�cien ts needto be estimated.
�

9.5. Quasi-linear recurrences

This section mentions somemethods and results for studying recurrencesthat have lin-

earity properties, but are not linear. The most important of them are recurrencesinvolving

minimization or maximization. They arise frequently in problems that usedynamic program-

ming approachesand in divide and conquermethods. An important example, treated in [147],

is that of a sequencef n , given by f 0 = 1 and

f n+1 = gn+1 + min
0� k� n

(�f k + � f n� k) for n � 0 ; (9.73)

where �; � > 0, and gn is somegiven sequence.Fredman and Knuth showed that if gn = 0 for

n � 1 and � + � < 1, then

f n � cn1+1 = for some c = c(�; � ) > 0 ; (9.74)

where  is the solution to

� �  + � �  = 1 : (9.75)
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They proved that lim
n!1

f nn� 1� 1= exists if and only if (log � )=(log � ) is irrational. They also

presented analysesof this recurrencefor � + � � 1, as well as of several recurrencesthat have

di�eren t gn .

The value of the Fredman-Knuth paper is lessin the preciseresults they obtain for several

recurrencesof the type (9.73) than in the methods they develop, which allow one to analyze

related problems. A crucial role in their approach is played by the observation that for the gn

they consider, the minimum in (9.73) can be located rather precisely. The conditions for such

localization are applicable to many other sequencesas well.

Further work on the recurrence(9.73) was done by Kapoor and Reingold [220], who ob-

tained a complete solution under certain conditions. Their solution is complicated, expressed

in terms of the weighted external path length of a binary tree. It is su�cien tly explicit, though,

to give a completepicture of the continuit y, convexity, and oscillation properties of f n . In some

casestheir solution simpli�es dramatically.

Another classof quasi-linear recurrencesinvolves the greatest integer function. Following

[104], consider recurrencesof the form

a(0) = 1; a(n) =
sX

i =1

r i a(bn=mi c); n � 1; (9.76)

where r i > 0 for all i , and the m i are integers, m i � 2 for all i . Let � > 0 be the (unique)

solution to
sX

i =1

r i m� �
i = 1 : (9.77)

If there is an integer d and integersui such that m i = du i for 1 � i � s, then lim a(n)n � � as

n ! 1 doesnot exist, but the limit of a(dk )d� k� as k ! 1 doesexist. If there is no such d,

then the limit of a(n)n � � as n ! 1 does exist, and can readily be computed. For example,

when

a(n) = a(bn=2c) + a(bn=3c) + a(bn=6c) for n � 1 ;

this limit is 12(log432)� 1. Convergenceto the limit is extremely slow, asis shown in [104]. The

method of proof used in [104] is basedon renewal theory. Several other methods for dealing

with recurrencesof the type (9.76) are mentioned in [104] and the referenceslisted in that

paper. There are connectionsto other recurrencesthat are linear in two variables, such as

b(m; n) = b(m; n � 1) + b(m � 1; n) + b(m � 1; n � 1); m; n � 1 : (9.78)
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Consider an in�nite sequenceof integers2 � a1 < a2 < : : : such that
1X

j =1

a� 1
j logaj < 1 ;

and de�ne c(0) = 0,

c(n) =
1X

j =1

c(bn=aj c) + 1; n � 1 : (9.79)

If � is the (unique) positive solution to

1X

j =1

a� �
j = 1 ;

then Erd•os [103] showed that

c(n) � cn� as n ! 1 (9.80)

for a positive constant c. Although the recurrence(9.79) is similar to that of Eq. (9.76), the

results are di�eren t (no oscillations can occur for a recurrencegiven by Eq. (9.79)) and the

methods are dissimilar.

Karp [221] considersrecurrencesof the typeT(x) = a(x)+ T(h(x)), wherex is a nonnegative

real variable, a(x) � 0, and h(x) is a random variable, 0 � h(x) � x, with m(x) being the

expectation of h(x). Such recurrencesarise frequently in the analysisof algorithms, and Karp

provesseveral theoremsthat bound the probabilit y that T(x) is large. For example,he obtains

the following result.

Theorem 9.2. Suppose that a(x) is a nondecreasing continuous function that is strictly in-

creasing on f x : a(x) > 0g, and m(x) is a continuous function. Then for all x 2 �

+ and

k 2 �

+ ,

Prob (T(x) � u(x) + ka(x)) � (m(x)=x)k ;

where u(x) is the unique least nonnegative solution to the equation u(x) = a(x) + u(m(x)) .

Another result, proved in [176], is the following estimate.

Theorem 9.3. Suppose that r; a1; : : : ; aN 2 �

+ and that b � 0. For n > N , de�ne

an = 1 + max
1� k� n� 1

b+ an� 1 + an� 2 + � � � + an� k

k + r
: (9.81)

Then

an � (n=r)1=2 as n ! 1 : (9.82)

Theorem 9.3 is proved by an involved induction on the behavior of the an .
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10. Analytic generating functions

Combinatorialists use recurrence, generating functions, and such transformations as the

Vandermondeconvolution; others, to my horror, use contour integrals, di�er ential equations,

and other resources of mathematical analysis.

J. Riordan [336]

The use of analytic methods in combinatorics did horrify Riordan. They are widespread,

though, becauseof their utilit y, which even Riordan could not deny. About half of this chapter

is devoted to such methods, as they are extremely exible and give very preciseestimates.

10.1. In tro duction and general estimates

This section serves as an introduction to most of the remaining sections of the paper,

which are concerned largely with the use of methods of complex variables in asymptotics.

Many of the results to be presented later can be usedwith little or no knowledgeof analytic

functions. However, even someslight knowledge of complex analysis is helpful in getting an

understanding of the scope and limitations of the methods to be discussed.There are many

textb ooks on analytic functions, such as [205, 364]. This chapter assumesthat the reader

has someknowledge of this �eld, but not a deep one. It reviews the conceptsthat are most

relevant in asymptotic enumeration, and how they a�ect the estimatesthat can be obtained. It

is not a generalintroduction to the subject of complexanalysis,and the choicesof topics, their

ordering, and the decisionof when to include proofs wereall madewith the goal of illustrating

how to usecomplex analysis in asymptotics.

There are several de�nitions of analytic functions, all equivalent. For our purposes,it will

be most convenient to call a function f (z) of onecomplexvariable analytic in a connectedopen

set S � � if in a small neighborhood of every point w 2 S, f (z) has an expansionas a power

series

f (z) =
1X

n=0

an (z � w)n ; an = an (w); (10.1)

that converges. Practically all the functions encountered in asymptotic enumeration that are

analytic are analytic in a disk about the origin. A necessaryand su�cien t condition for f (z),

de�ned by a power series(6.1), to be analytic in a neighborhood of the origin is that jan j � Cn

for someconstant C > 0. Therefore there is an e�ectiv e dichotomy, with common generating

functions either not converging near 0 and being only formal power series,or elseconverging
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and being analytic.

A function f (z) is called meromorphic in S if it is analytic in S except at a (countable

isolated) subsetS0 � S, and in a small neighborhood of every w 2 S0, f (z) has an expansion

of the form

f (z) =
1X

n= � N (w)

an (z � w)n ; an = an (w) : (10.2)

Thus meromorphic functions can have poles, but nothing more. Alternativ ely, a function is

meromorphic in S if and only if it is the quotient of two functions analytic in S. In particular,

z� 5 is meromorphic throughout the complex plane, but sin(1=z) is not. In general, functions

given by nice expressionsare analytic away from obvious pathological points, since addition,

multiplication, division, and composition of analytic functions usually yield analytic or mero-

morphic functions in the proper domains. Thus sin(1=z) is analytic throughout � n f 0g, and

so is z� 5, while exp(1=(1 � z)) is analytic throughout � nf 1g, but is not meromorphic because

of the essential singularity at z = 1. Not all functions that might seemsmooth are analytic,

though, as neither f (z) = �z ( �z denoting the complex conjugate of z) nor f (z) = jzj is analytic

anywhere. The smoothnesscondition imposedby (10.1) is very stringent.

Analytic continuation is an important concept. A function f (z) may bede�ned and analytic

in S, but there may be another function g(z) that is analytic in S0 � S and such that g(z) =

f (z) for z 2 S. In that casewe say that g(z) provides an analytic continuation of f (z) to S0,

and it is a theorem that this extension is unique. A simple example is provided by

1X

n=0

zn =
1

1 � z
: (10.3)

The power serieson the left side convergesonly for jzj < 1, and de�nes an analytic function

there. On the other hand, (1 � z) � 1 is analytic throughout � nf 1g, and soprovides an analytic

continuation for the power series.This is a common phenomenonin asymptotic enumeration.

Typically a generating function will convergein a disk jzj < r , will have a singularity at r , but

will be continuable to a region of the form

f z : jzj < r + � ; jArg(z � r )j > � =2 � � g (10.4)

for � ; � > 0. When this happens,it can be exploited to provide better or easierestimatesof the

coe�cien ts, as is shown in Section 11.1. That section explains the reasonswhy continuation

to a region of the form (10.4) is so useful.
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If f (z) is analytic in S, z is on the boundary of S, but f (z) cannot beanalytically continued

to a neighborhood of z, we say that z is a singularity of f (z). Isolated singularities that are

not poles are called essential, so that z = 1 is an essential singularity of exp(1=(1 � z)), but

not of 1=(1 � z). (Note that z = 1 is an essential singularity of f (z) = (1 � z)1=2 even though

f (1) = 0.) Throughout the rest of this chapter we will often refer to large singularities and

small singularities. These are not preciseconcepts,and are meant only to indicate how fast

the function f (z) grows as z ! z0, where z0 is a singularity. If z0 = 1, we say that (1 � z)1=2,

log(1� z), (1� z) � 10 have small singularities, sincejf (z)j either decreasesor grows at most like

a negative power of j1� zj asz ! 1. On the other hand, exp(1=(1� z)) or exp((1� z) � 1=5) will

be said to have large singularities. Note that for z = 1+ iy , y 2 � , exp(1=(1 � z)) is bounded,

so the choice of path along which the singularity is approached is important. In determining

the sizeof a singularity z0, we will usually be concernedwith real z0 and generating functions

f (z) with nonnegative coe�cien ts, and then usually will need to look only at z real, z ! z �
0 .

When the function f (z) is entire (that is, analytic throughout � ), we will say that 1 is a

singularity of f (z) (unless f (z) is a constant), and will use the large vs. small singularity

classi�cation depending on how fast f (z) grows as jzj ! 1 . The distinction between small

and large singularities is important in asymptotics becausedi�eren t methods are used in the

two cases.

A simple closed contour � in the complex plane is given by a continuous mapping  :

[0; 1] ! � with the properties that  (0) =  (1), and that  (s) 6=  (t) whenever 0 � s < t � 1

and either s 6= 0 or t 6= 1. Intuitiv ely, � is a closedpath in the complex plane that does not

intersect itself. For most applications that will be madein this chapter, simple closedcontours

� will consistof line segments and sectionsof circles. For such contours it is easyto prove that

the complex plane is divided by the contour into two connectedcomponents, the inside and

the outside of the curve. This result is true for all simple closedcurves by the Jordan curve

theorem, but this result is surprisingly hard to prove.

In asymptotic enumeration, the basicresult about analytic functions is the Cauchy integral

formula for their coe�cien ts.

Theorem 10.1. If f (z) is analytic in an open set S containing 0, and

f (z) =
1X

n=0

anzn (10.5)
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in a neighborhood of 0, then for any n � 0,

an = [zn ]f (z) = (2� i ) � 1
Z

�
f (z)z� n� 1dz ; (10.6)

where � is any simple closed contour in S that contains the origin inside it and is positively

oriented (i.e., traversed in counterclockwise direction).

An obvious question is why should one use the integral formula (10.6) to determine the

coe�cien t an of f (z). After all, the series(10.5) shows that

n! an =
dn

dzn f (z)
�
�
�
z=0

: (10.7)

Unfortunately the di�eren tiation involved in (10.7) is hard to control. Derivatives involve

taking limits, and soeven small changesin a function can producehugechangesin derivatives,

especially high order ones. The special properties of analytic functions are not reected in the

formula (10.7), and for nonanalytic functions there is little that can be done. On the other

hand, Cauchy's integral formula (10.6) doesusespecial properties of analytic functions, which

allow the determination of the coe�cien ts of f (z) from the values of f (z) along any closed

path. This determination involves integration, so that even coarseinformation about the size

of f (z) can be usedwith it. The analytic methods that will be outlined exploit the freedomof

choice of the contour of integration to relate the behavior of the coe�cien ts to the behavior of

the function near just one or sometimesa few points.

If the power series(10.5) convergesfor jzj < R, and for the contour � we choosea circle

z = r exp(i� ), 0 � � � 2� , 0 < r < R, then the validit y of (10.6) is easily checked by direct

computation, sincethe power seriesconvergesabsolutely and uniformly soonecan interchange

integration and summation. The strength of Cauchy's formula is in the freedomto choosethe

contour � in di�eren t ways. This freedom yields most of the powerful results to be discussed

in the following sections,and later in this section we will outline how this is achieved. First

we discusssomesimple applications of Theorem 10.1 obtained by choosing � to be a circle

centered at the origin.

Theorem 10.2. If f (z) is analytic in jzj < R, then for any r with 0 < r < R and any n 2 Z ,

n � 0,

j[zn ]f (z)j � r � n max
jzj= r

jf (z)j : (10.8)

90



The choice of � in Theorem 10.1 to be the circle of radius r gives Theorem 10.2. If f (z),

de�ned by (10.5), has an � 0 for all n, then

jf (z)j �
1X

n=0

an jzjn = f (jzj)

and therefore we obtain Lemma 8.1 as an easycorollary to Theorem 10.2. The advantage of

Theorem 10.2 over Lemma 8.1 is that there is no requirement that an � 0. The bound of

Theorem 10.2 is usually weaker than the correct value by a small multiplicativ e factor such as

n1=2.

If f (z) is analytic in jzj < R, then for any � > 0, f (z) is bounded in jzj < R � � , and

so Theorem 10.2 shows that an = [zn ]f (z) satis�es jan j = O((R � � ) � n ). On the other hand,

if jan j = O(S� n ), then the power series(10.5) convergesfor jzj < S and de�nes an analytic

function in that disk. Thus we obtain the easyresult that if f (z) is analytic in a disk jzj < R

but in no larger disk, then

lim sup jan j1=n = R� 1 : (10.9)

Example 10.1. Oscillating sequence. Consider the sequence,discussedalready in Exam-

ple 9.4, given by

an =
nX

k=0

�
n
k

�
(� 1)k

k!
; n = 0; 1; : : : : (10.10)

The maximal term in the sum (10.10) is of order roughly exp(cn1=2), so an cannot be much

larger. However, the sum (10.10) does not show that an cannot be extremely small. Could

we have jan j � exp(� n) for all n, say? That this is impossibleis obvious from (9.39), though,

by the argument above. The generating function f (z), given by Eq. (9.39), is analytic in

jzj < 1, but has an essential singularity at z = 1, so we immediately seethat for any � > 0,

jan j < (1 + � )n for all su�cien tly large n, and that jan j > (1 � � )n for in�nitely many n.

(More powerful methods for dealing with analytic generating functions, such as the saddle

point method to be discussedin Section 12, can be usedto obtain the asymptotic relation for

an given in Example 9.4.)
�

There is substantial literature dealing with the growth rate of coe�cien ts of analytic func-

tions. The book of Evgrafov [110] is a good referencefor theseresults. However, the estimates

presented there are not too useful for us, sincethey apply to wide classesof often pathological

91



functions. In combinatorial enumeration we usually encounter much tamer generating func-

tions for which the crude bounds of [110] are obvious or easy to derive. Instead, we need to

usethe tractable nature of the functions we encounter to obtain much more delicate estimates.

The basic result, derived earlier, is that the power seriescoe�cien ts an of a generating

function f (z), de�ned by (10.5), grow in absolute value roughly like R � n , if f (z) is analytic

in jzj < R. A basic result about analytic functions says that if the Taylor series(10.5) of f (z)

convergesfor jzj < R but for every � > 0 there is a z with jzj = R + � such that the series

(10.5) divergesat z, then f (z) has a singularity z with jzj = R. Thus the exponential growth

rate of the an is determined by the distance from the origin of the nearestsingularity of f (z),

with closesingularities giving large coe�cien ts. Sometimesit is not obvious what R is. When

the coe�cien ts of f (z) are positive, as is common in combinatorial enumeration and analysis

of algorithms, there is a useful theorem of Pringsheim [364]:

Theorem 10.3. Suppose that f (z) is de�ned by Eq. (10.5) with an � 0 for all n � n0, and

that the series (10.5) for f (z) convergesfor jzj < R but not for any jzj > R. Then z = R is a

singularity of f (z).

As we remarked above, the exponential growth rate of the an is determined by the distance

from the origin of the nearestsingularity. Theorem 10.3says that if the coe�cien ts an are non-

negative, it su�ces to look along the positive real axis to determine the radius of convergence

R, which is also the desireddistance to the singularity. There can be other singularities at the

samedistance from the origin (for example, f (z) = (1 � z2)� 1 has singularities at z = � 1),

but Theorem 10.3 guaranteesthat none are closer to 0 than the positive real one.

Sincethe singularities of smallestabsolutevalueof a generatingfunction exert the dominant

inuence on the asymptotics of the corresponding sequence,they are called the dominant

singularities. In the most commoncasethere is just onedominant singularity, and it is almost

always real. However, we will sometimesspeak of a large set of singularities (such as the k

�rst order polesin Theorem 9.1, which are at di�eren t distancesfrom the origin) as dominant

ones. This allows somedominant singularities to be more inuen tial than others.

Many techniques, including the elementary methods of Section 8, obtain bounds for sum-

matory functions of coe�cien ts even when they cannot estimate the individual coe�cien ts.

Thesemethods succeedlargely becausethey create a dominant singularity. If f (z) =
P

f nzn

convergesfor jzj < 1, divergesfor jzj > 1, and has f n � 0, then the singularity at z = 1 is at
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least as large as any other. However, there could be other singularities on jzj = 1 that are just

as large. (This holds for the functions f 2(z) and f 3(z) de�ned by (8.2) and (8.4).) When we

consider the generating function of
P

k� n f k , though, we �nd that

h(z) =
1X

n=0

 
nX

k=0

f k

!

zn = (1 � z) � 1f (z) ; (10.11)

so that h(z) has a singularity at z = 1 that is much larger than any other one. That often

provides enough of an extra boost to push through the necessarytechnical details of the

estimates.

Most generatingfunctions f (z) have their coe�cien ts an = [zn ]f (z) real. If f (z) is analytic

at 0, and has real coe�cien ts, then f (z) satis�es the reection principle,

f (z) = f (z) : (10.12)

This implies that zerosand singularities of f (z) comein complex conjugate pairs.

The successof analytic methods in asymptotics comeslargely from the use of Cauchy's

formula (10.6) to estimate accurately the coe�cien ts an . At a more basic level, this success

comesbecausethe behavior of an analytic function f (z) reects precisely the behavior of the

coe�cien ts an . In the discussionof elementary methods in Section 8, we pointed out that the

behavior of a generating function for real arguments does not distinguish between functions

with di�eren t coe�cien ts. For example,the functions f 1(z) and f 3(z) de�ned by (8.1) and (8.4)

are almost indistinguishable for z 2 � . However, they di�er substantially in their behavior for

complex z. The function f 1(z) has only a �rst order pole at z = 1 and no other singularities,

while f 3(z) haspolesat z = 1, exp(2� i=3), and exp(4� i=3). The three polesat the three cubic

roots of unit y reect the modulo 3 periodicity of the coe�cien ts of f 3(z). This is a general

phenomenon,and in the next section we sketch the general principle that underlies it. (The

degreeto which coe�cien ts of an analytic function determine the behavior at the singularities

is the subject of Abelian theorems. We will not needto delve into this subject to its full depth.

For references,see[190, 364].)

Analytic methods are extremely powerful, and when they apply, they often yield estimates

of unparalleled precision. However, there are tricky situations where analytic methods seem

as if they ought to apply, but don't (at least not easily), whereassimpler approacheswork.
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Example 10.2. Set partitions with distinct block sizes. Let an be the number of partitions of

a set of n elements into blocks of distinct sizes.Then an = bn � n!, where bn = [zn ]f (z), with

f (z) =
1Y

k=1

�
1 +

zk

k!

�
: (10.13)

The function f (z) is entire and has nonnegative coe�cien ts, so it might appear as an ideal

candidate for an application of someof the methods for dealingwith large singularities (such as

the saddlepoint technique) that will be presented later. However, on circles jzj = (n + 1=2)=e,

n 2 �

+ , f (z) doesnot vary much, so there are technical problems in applying theseanalytic

methods. On the other hand, combinatorial estimates can be used to show [233] that the bn

behave in a \regularly irregular" way, so that, for example,

bm(m+1) =2� 1 � bm(m+1) =2 as m ! 1 ; (10.14)

bm(m+1) =2 � mbm(m+1) =2+1 as m ! 1 : (10.15)

Theseestimatesare obtained by expanding the product in Eq. (10.13) and noting that

bn =
X

r
1� k 1 < ��� <k rP

k i = n

1
rQ

i =1
ki !

: (10.16)

Sincefactorials grow rapidly, the only terms in the sum in (10.16) that are signi�cant are those

with small ki . The term bnzn for n = m(m + 1)=2 for example, comesalmost entirely from

the product of zk=k!, 1 � k � m, all other products contributing an asymptotically negligible

amount.
�

10.2. Subtraction of singularities

An important basic tool in asymptotics of coe�cien ts of analytic functions is that of

subtraction of singularities. If we wish to estimate [zn ]f (z), and we know [zn ]g(z), and the

singularities of f (z) � g(z) are smaller than those of f (z), then we can usually concludethat

[zn ]f (z) � [zn ]g(z) as n ! 1 . In practice, given a function f (z), we �nd the dominant singu-

larities of f (z) (usually poles), and construct a simple function g(z) with those singularities.

We illustrate this approach with several examples.The basicthemewill recur in other sections.

Example 10.3. Bernoulli numbers. The Euler-Maclaurin summation formula, introduced in

Section 5.3, involves the Bernoulli numbers B n with exponential generating function

f (z) =
1X

n=0

Bn
zn

n!
=

z
ez � 1

: (10.17)
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The denominator exp(z) � 1 has zerosat 0, � 2� i , � 4� i; : : : . The zero at 0 is canceledby the

zero of z, so f (z) is analytic for jzj < 2� , but has �rst order poles at z = � 2� i , � 4� i; : : : .

Consider

g(z) = 2� i
�

1
z � 2� i

�
1

z + 2� i

�
: (10.18)

Then f (z) � g(z) is analytic for jzj < 4� , so

j[zn ](f (z) � g(z)) j = O((4� � � ) � n ) as n ! 1 (10.19)

for every � > 0. On the other hand,

[zn ]g(z) =

(
0 n odd ;

2(2� ) � n n even :
(10.20)

This gives the leading term asymptotics of B n . By taking more complicated g(z), we can

subtract more of the singularities of f (z) and obtain more accurate expansionsfor B n . It is

even possibleto obtain an exponentially rapidly convergent seriesfor B n .
�

Example 10.4. Rational function asymptotics. As another example of the subtraction of

singularities principle, we sketch a proof of Theorem 9.1. Supposethat the hypothesesof that

theorem are satis�ed. Let

u(z) =
kX

j =1

� g(� j )
� j h0(� j )(1 � z=� j )

: (10.21)

Then f (z) � u(z) has no singularities in jzj � R, and for jzj = R,

jf (z) � u(z)j � jf (z)j + ju(z)j � W + � � 1
kX

j =1

jg(� j )=h0(� j )j : (10.22)

Hence,by Theorem 10.2,

�
�
�[zn ](f (z) � u(z))

�
�
� � W R� n + � � 1R� n

kX

j =1

jg(� j )=h0(� j )j : (10.23)

On the other hand,

[zn ]u(z) = �
kX

j =1

� � n� 1
j g(� j )=h0(� j ) : (10.24)

The last two estimatesyield Theorem 9.1.
�

The reader may have noticed that the proof of Theorem 9.1 presented above does not

depend on f (z) being rational. We have proved the following more general result.
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Theorem 10.4. Suppose that f (z) is meromorphic in an open set containing jzj � R, that it

is analytic at z = 0 and on jzj = R, and that the only polesof f (z) in jzj < R are at � 1; : : : ; � k ,

each of multiplicity 1. Suppose further that

max
jzj= R

jf (z)j � W (10.25)

and that R � j� j j � � for some� > 0 and 1 � j � k. Then
�
�
�
�
�
�
[zn ]f (z) +

kX

j =1

r j �
� n� 1
j

�
�
�
�
�
�

� W R� n + � � 1R� n
kX

j =1

jr j j ; (10.26)

where r j is the residueof f (z) at � j .

In the examplesabove, the dominant singularities wereseparatedfrom other ones,so their

contributions were larger than thoseof lower order terms by an exponential factor. Sometimes

the singularity that remains after subtraction of the dominant one is on the samecircle, and

only slightly smaller. Section 11 presents methods that deal with somecasesof this type, at

least when the singularity is not large. What makes those methods work is the subtraction

of singularities principle. Next we illustrate another application of this principle where the

singularity is large. (The generating function is entire, and so the singularity is at in�nit y.)

Example 10.5. Permutations without long increasing subsequences. Let uk (n) be the number

of permutations of f 1; 2; : : : ; ng that have no increasingsubsequenceof length > k. Logan and

Shepp [257] and Vershik and Kerov [370] establishedby calculus of variations and combina-

torics that the averagevalue of the longest increasingsubsequencein a random permutation is

asymptotic to 2n1=2. Frieze [149] has proved recently, using probabilistic methods, a stronger

result, namely that almost all permutations have longest increasing subsequencesof length

closeto 2n1=2. Here we considerasymptotics of uk (n) for k �xed and n ! 1 . The Schensted

correspondenceand the hook formula expressuk (n) in terms of Young diagrams with � k

columns. For k �xed, there are few diagrams and their inuence can be estimated explicitly

using Stirling's formula, although Selberg-type integrals are involved and the analysis is com-

plicated. This analysis was done by Regev [329], who proved more general results. Here we

sketch another approach to the asymptotics of uk (n) for k �xed. It is based on a result of

Gessel[161]. If

Uk (z) =
1X

n=0

uk(n)z2n

(n!)2 ; (10.27)
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then

Uk (z) = det(I j i � j j(2z))1� i;j � k ; (10.28)

where the I m (x) are Besselfunctions (Chapter 9 of [297]). H. Wilf and the author have noted

that onecan obtain the asymptotics of the uk (n) by using known asymptotic results about the

I m (x). Eq. (9.7.1) of [297] states that for every H 2 �

+ ,

I m (z) = (2� z) � 1=2ez

 
H � 1X

h=0

c(m; h)z� h + O(jzj � H )

!

; (10.29)

where this expansionis valid for jzj ! 1 with jArg(z)j � 3� =8, say. The c(m; h) are explicit

constants with c(m; 0) = 1. Let us consider k = 4 to be concrete. Then, taking H = 7 in

(10.29) (higher valuesof H are neededfor larger k) we �nd from (10.28) that

U4(z) = e8z(3(256� 2z8)� 1 + O(jzj � 9)) for jzj � 1 : (10.30)

It is alsoknown that I m (� z) = (� 1)m I m (z) and I m (z) is relatively small in the angular region

j� =2 � Arg(z)j < � =8. Therefore U4(� z) = U4(z), and one can show that

jU4(z)j = O(jzj � 1U4(jzj)) (10.31)

for z away from the real axis.

To apply the subtraction of singularities principle, we needan entire function f (z) that is

even, is large only near the real axis, and such that for x 2 � , x ! 1 ,

f (x) � 3(256� 2x8)� 1 exp(8x) : (10.32)

The function

f � (z) = 3(128� 2z8)� 1cosh(8z)

is even and has the desired asymptotic growth, but is not entire. We correct this defect by

subtracting the contribution of the pole at z = 0, and let

f (z) = 3(128� 2z8)� 1(cosh(8z) � 1 � 32z2 � 512z4=3 � 16384z6=45� 131072z8=315) : (10.33)

(It is not necessaryto know explicitly the �rst 8 terms in the Taylor expansion of cosh(8z)

that we wrote down above, as they do not a�ect the �nal answer.) With this de�nition

jU4(z) � f (z)j = O(jzj � 1f (jzj)) (10.34)

97



uniformly for all z with jzj � 1, say, and soif weapply Cauchy's theoremon the circle jzj = n=4,

say, we �nd that

[z2n ](U4(z) � f (z)) = O(n � 2ne2n 16n n� 9) : (10.35)

(The choice of jzj = n=4 is made to minimize the resulting estimate.) On the other hand, by

Stirling's formula,

[z2n ]f (z) = 3(128� 2)� 1 � ([z2n+8 ]cosh(8z))

= 3(128� 2)� 182n+8 =(2n + 8)!

� 1536� � 5=2n� 2n16n e2nn� 17=2 as n ! 1 : (10.36)

Comparing (10.35) and (10.36), we seethat

u4(n) = (n!)2[z2n ]U4(z) � (n!)21536� � 5=2n� 2n16ne2n n� 17=2

� 1536� � 3=2n� 15=216n as n ! 1 : (10.37)

�

Other methods can be applied to Gessel'sgenerating function to obtain asymptotics of

uk (n) for wider rangesof k ([306]).

The aboveexampleobtains a good estimatebecausethe remainder term in (10.30) is smaller

than the main term by a factor of jzj � 1. Had it beensmaller only by a factor of jzj � 1=2, the

resulting estimate would have been worthless, and it would have been necessaryto obtain a

fuller asymptotic expansionof U4(z) or elseusesmoothnessproperties of the remainder term.

This is due to the phenomenon,mentioned before,that crude absolutevalue estimatesin either

Cauchy's theorem, or the elementary approachesof Section8, usually losea factor of n 1=2 when

estimating the n-th coe�cien t.

The subtraction of singularities principle canbeapplied even when the generatingfunctions

seemto be more complicated than those of Example 10.5. If we consider the problem of that

example,but with k = 5, then we �nd that

U5(z) = 3exp(10z)(5 � 213 � � 5=2z25=2)� 1(1 + O(jzj � 1)) (10.38)

as jzj ! 1 , with jArg(z)j � 3� =8, U5(� z) = U5(z), and U5(z) is entire. We now need an

entire function with known coe�cien ts that grows as exp(10z)z � 25=2. This is not di�cult to

obtain, as

I 0(10z)z� 12 �
12X

j =1

cj z� j (10.39)
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for suitable coe�cien ts cj has the desiredproperties.

10.3. The residue theorem and sums as in tegrals

Sometimessumsthat arenot easilyhandledby other methods canbeconverted to integrals

that can be evaluated explicitly or estimated by the residuetheorem. If t(z) is a meromorphic

function that has �rst order polesat z = a, a + 1; : : : ; b, with a 2 Z , each with residue1, then
bX

n= a

f (n) =
1

2� i

Z

�
f (z)t(z)dz ; (10.40)

where � is a simple closedcontour enclosinga;a + 1; : : : ; b, provided f (z) is analytic inside �

and t(z) has no singularities inside � asidefrom the �rst order polesat a;a + 1; : : : ; b. If t(z)

is chosento have residue(� 1)n at z = n, then we obtain

bX

n= a

(� 1)n f (n) =
1

2� i

Z

�
f (z)t(z)dz : (10.41)

A useful example is given by the formula
nX

k=0

�
n
k

�
(� 1)k f (k) =

(� 1)n n!
2� i

Z

�

f (z)dz
z(z � 1) � � � (z � n)

: (10.42)

The advantage of (10.40) and (10.41) is that the integrals can often be manipulated to give

good estimates. This is especially valuable for alternating sums such as (10.41). An analytic

function f (z) is extremely regular, so a sum such as that in (10.40) can often be estimated by

methods such asthe Euler-Maclaurin summation formula (Section 5.3). However, that formula

cannot always be applied to alternating sumssuch as that of (10.41), becausethe sign change

destroys the regularity of f (n). (However, as is noted in Section 5.3, there are generalizations

of the Euler-Maclaurin formula that are sometimesuseful.) It is hard to write down general

rules for applying this method, asmost situations require appropriate choiceof t(z) and careful

handling of the integral. For a detailed discussionof this method, often referred to as Rice's

method, seeSection 4.9 of [205]. A pair of popular functions to useas t(z) are

t1(z) = � =(sin � z); t2(z) = � =(tan � z) : (10.43)

One can show (Theorem 4.9aof [205]) that if r (z) = p(z)=q(z) with p(z) and q(z) polynomials

such that degq(z) � degp(z) + 2, and q(n) 6= 0 for any n 2 Z , then
1X

n= �1

r (n) = �
X

Res(r (z)t1(z)) ; (10.44)

1X

n= �1

(� 1)n r (n) = �
X

Res(r (z)t2(z)) ; (10.45)
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where the sumson the right-hand sidesabove are over the zerosof q(z).

Examples of applications of thesemethods to asymptotics of data structures are given in

[141] and [360].

10.4. Lo cation of singularities, Rouc h�e's theorem, and unimo dalit y

A recurrent but only implicit theme throughout the discussionin this section is that of

isolation of zeros. For example, to apply Theorem 9.1 we need to know that the polynomial

h(z) has only k zeros,each of multiplicit y one, in jzj < R. Proofs of such results can often be

obtained with the help of Rouch�e's theorem [205, 364].

Theorem 10.5. Suppose that f 1(z) and f 2(z) are functions that are analytic inside and on

the boundary of a simple closed contour � . If

jf 2(z)j < jf 1(z)j for all z 2 � ; (10.46)

then f 1(z) and f 1(z) + f 2(z) have the samenumber of zeros (counted with multiplicity) inside

� .

Example 10.6. Sequences with forbidden subblocks. We consider again the topic of Exam-

ples 6.4, 6.8, and 9.2, and prove the results that were already used in Example 9.2. We again

set

h(z) = zk + (1 � 2z)CA (z) ; (10.47)

where the only fact about CA (z) we will use is that it is a polynomial of degree< k and

coe�cien ts 0 and 1, and CA (0) = 1. We wish to show that h(z) has only one zero in jzj � 0:6

if k is large. Write

CA (z) = 1 +
1
2

1X

j =1

zj +
1
2

1X

j =1

� j zj ; (10.48)

where � j = � 1 for each j . Then

CA (z) =
2 � z

2(1 � z)
+ u(z) ; (10.49)

where

ju(z)j �
jzj

2(1 � jzj)
:

For jzj = r < 1, we have ju(z)j � r =(2(1 � r )). On the other hand, z ! (2 � z)=(1 � z) maps

circles to circles, since it is a fractional linear transformation, so it takes the circle jzj = r to
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the circle with center on the real axis that goes through the two points (2 � r )=(1 � r ) and

(2 + r )=(1 + r ). Therefore for jzj = r < 1,

jCA (z)j �
2 + r

2(1 + r )
�

r
2(1 � r )

=
1 � r � r 2

1 � r 2 ; (10.50)

and so jCA (z)j � 1=16 for jzj = r � 0:6. Hence,if k � 9, then on jzj = 0:6,

j(1 � 2z)CA (z)j � 1=80 > (0:6)k ; (10.51)

and thus (1 � 2z)CA (z) and h(z) have the samenumber of zerosin jzj � 0:6. On the other

hand, CA (z) hasno zerosin jzj � 0:6 by (10.50), while 1� 2z hasone,sowe obtain the desired

result, at least for k � 9. (A more careful analysis shows that h(z) has only one root inside

jzj = 0:6 even for 4 � k < 9. For 1 � k � 3, there are caseswhere there is no zero inside

jzj � 0:6.) Example 6.7 shows how to obtain preciseestimatesof the single zero.

We note that (10.50) shows that for jzj = 0:55, k � 9

jh(z)j � j1 � 1:1j0:2 � (0:55)k � 0:02 � 0:01 � 1=100 ; (10.52)

a result that was usedin Example 9.2.
�

Example 10.7. Coins in a fountain. An (n; k) fountain is an arrangement of n coins in rows

such that there are k coins in the bottom row, and such that each coin in a higher row touches

exactly two coins in the next lower row. Let an;k be the number of (n; k) fountains, and

an =
P

k an;k the total number of fountains of n coins. The values of an for 1 � n � 6 are

1; 1; 2; 3; 5; 9. If we let a0 = 1 then it can be shown [313] that

f (z) =
1X

n=0

anzn =
1

1 � z
1� z 2

1� z 3
1:::

: (10.53)

This is a famous continued fraction of Ramanujan. (Other combinatorial interpretations of

this continued fraction are also known, see the referencesin [313]. For related results, see

[326, 327].) Although onecan derive the asymptotics of the an from the expansion(10.53), it is

more convenient to work with another expansion,known from previousstudiesof Ramanujan's

continued fraction:

f (z) =
p(z)
q(z)

; (10.54)
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where

p(z) =
X

r � 0

(� 1)r zr (r +1)

(1 � z)(1 � z2) : : : (1 � zr )
; (10.55)

q(z) =
X

r � 0

(� 1)r zr 2

(1 � z)(1 � z2) : : : (1 � zr )
: (10.56)

Clearly both p(z) and q(z) are analytic in jzj < 1, so f (z) is meromorphic there. We will show

that q(z) has a simple real zero x0, 0:57 < x0 < 0:58, and no other zerosin jzj < 0:62, while

p(x0) > 0. It will then follow from Theorem 10.4 that

an = cx� n
0 + O((5=3)n ) as n ! 1 ; (10.57)

where c = � p(x0)=(x0q0(x0)). Numerical computation shows that c = 0:31236: : :, x0 =

0:576148769: : : .

To establish the claim about x0, let pn(z) and qn (z) denote the n-th partial sums of the

series(10.55) and (10.56), respectively. Write a(z) = q3(z)(1 � z)(1 � z2)=(1 � z3), so that

a(z) = 1 � 2z � z2 + z3 + 3z4 + z5 � 2z6 � z7 � z9 ; (10.58)

and consider

b(z) =
9Y

j =1

(z � zj ) ;

where the zj are 0.57577, � 0:46997� i0:81792, 0:74833� i0:07523, � 1:05926� i0:36718,

0:49301� i1:58185, in that order. (The zj are approximations to the zerosof a(z), obtained

from numerical library subroutines. How they were derived is not important for the veri�-

cation of our proof.) An easy hand or machine computation shows that if a(z) =
P

k akzk ,

b(z) =
P

bkzk , then
9X

k=0

jak � bk j � 1:7 � 10� 4 ;

and so ja(z) � b(z)j � 1:7 � 10� 4 for all jzj � 1. Another computation shows that jb(z)j �

8 � 10� 4 for all jzj = 0:62.

On the other hand, for 0 � u � 0:62 and jzj = u, we have for k � 5
�
�
�
�
�
z(k+1) 2 � k2

1 � zk+1

�
�
�
�
�

�
u2k+1

1 � uk+1 �
u9

1 � u5 : (10.59)

Therefore �
�
�
�
�

1X

k=4

(� 1)k zk2

� k
j =4 (1 � zj )

�
�
�
�
�

�
u16

1 � u4

X

m� 0

�
u9

1 � u5

� m

� 6 � 10� 4 ; (10.60)
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and soby Rouch�e's theorem, q(z) and b(z) have the samenumber of zerosin jzj � 0:62, namely

1. Sinceq(z) has real coe�cien ts, its zero is real. This establishesthe existenceof x 0. An easy

computation shows that q(0:57) > 0, q(0:58) < 0, so 0:57 < x0 < 0:58.

To show that p(x0) > 0, note that successive summands in (10.55) decreasein absolute

magnitude for each �xed real z > 0, and p(z) > 1 � z2=(1 � z) > 0 for 0 < z < 0:6.
�

The method used in the above example is widely applicable to generating functions given

by continued fractions. Typically they are meromorphic in a disk centered at the origin, with

a single dominant pole of order 1. Usually there is no convenient representation of the form

(10.54) with explicit p(z) and q(z), and one has to work harder to establish the necessary

properties about location of poles.

It was mentioned in Section 6.4 that unimodalit y of a sequenceis often deduced from

information about the zerosof the associated polynomial. If the zerosof the polynomial

A(z) =
nX

k=0

akzk

are real and � 0, then the ak are unimodal, and even the ak
� n

k

� � 1 are log-concave. However,

weaker properties follow from weaker assumptionson the zeros. If all the zerosof A(z) are in

the wedge-shaped region centered on the negative real axis jArg( � z)j � � =4, and the ak are

real, then the ak are log-concave, but the ak
� n

k

� � 1 are not necessarilylog-concave. (This follows

by factoring A(z) into polynomials with real coe�cien ts that are either linear or quadratic, and

noting that all have log-concave coe�cien ts, so their product does too.) One can prove other

results that allow zerosto lie in larger regions,but then it is necessaryto imposerestrictions

on ratios of their distancesfrom the origin.

10.5. Implicit functions

Section6.2presented functions, such asf h� 1i (z), that are de�ned implicitly . In this section

we consider related problems that arise when a generating function f (z) satis�es a functional

equation f (z) = G(z; f (z)). Such equations arise frequently in graphical enumeration, and

there is a standard procedure invented by P�olya and developed by Otter that is almost algo-

rithmic [188, 189] and routinely leads to them. Typically G(z; w) is analytic in z and w in a

small neighborhood of (0; 0). Zerosof analytic functions in more than one dimension are not

isolated, and by the implicit function theorem G(z; w) = w is solvable for w as a function of
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z, except for those points where

Gw(z; w) =
@

@w
G(z; w) = 1 : (10.61)

Usually for z in a small neighborhood of 0 the solution w of G(z; w) = w will not satisfy

(10.61), and so w will be analytic in that neighborhood. As we enlarge the neighborhood

under consideration,though, a simultaneoussolution to G(z; w) = w and (10.61) will eventually

appear, and will usually be the dominant singularity of f (z) = w(z). The following theorem

covers many common enumeration problems.

Theorem 10.6. Suppose that

f (z) =
1X

n=1

f nzn (10.62)

is analytic at z = 0, that f n � 0 for all n, and that f (z) = G(z; f (z)) , where

G(z; w) =
X

m;n � 0

gm;n zm wn : (10.63)

Suppose that there exist real numbers � ; r; s > 0 such that

(i) G(z; w) is analytic in jzj < r + � and jwj < s + � ,

(ii) G(r; s) = s, Gw(r; s) = 1,

(iii) Gz(r; s) 6= 0 and Gww (r; s) 6= 0.

Suppose that gm;n 2 �

+ [ f 0g for all m and n, g0;0 = 0, g0;1 = 1, and gm;n > 0 for somem

and somen � 2. Assumefurther that there exist h > j > i � 1 such that f hf i f j 6= 0 while the

greatest common divisor of j � i and h � i is 1. Then f (z) convergesat z = r , f (r ) = s, and

f n = [zn ]f (z) � (r Gz(r; s)=(2� Gww (r; s))) 1=2n� 3=2r � n as n ! 1 : (10.64)

Example 10.8. Rooted labeled trees. As was shown in Example 6.1, the exponential generat-

ing function t(z) of rooted labeled trees satis�es t(z) = z exp(t(z)). Thus we have G(z; w) =

z exp(w), and Theorem 10.6 is easily seento apply with r = e� 1, s = 1. Therefore we obtain

the asymptotic estimate

tn=n! = [zn ]t(z) � (2� ) � 1=2n� 3=2en as n ! 1 : (10.65)

On the other hand, from Example 6.6 we know that t n = nn� 1, a much more satisfactory

answer, sothat the estimate (10.65) only providesus with another proof of Stirling's formula.
�
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The exampleabove involvesan extremely simple application of Theorem 10.6. More com-

plicated caseswill be presented in Section 15.1.

The statement of Theorem 10.6 is long, and the hypothesesstringent. All that is really

neededfor the asymptotic relation (10.64) to hold is that f (z) should be analytic on f z : jzj �

r; z 6= r g and that

f (z) = c(r � z)1=2 + o(jr � zj1=2) (10.66)

for jz � r j � � , jArg(r � z)j � � =2 � � for some � > 0. If these conditions are satis�ed,

then (10.64) follows immediately from either the transfer theorems of Section 11.1 or (with

stronger hypotheses)from Darboux's method of Section11.2. The purposeof Theorem 10.6 is

to present a general theorem that guarantees(10.66) holds, is widely applicable, and is stated

to the maximum extent possiblein terms of conditions on the coe�cien ts of f (z) and G(z; w).

Theorem 10.6 is based on Theorem 5 of [33] and Theorem 1 of [284]. The hypotheses

of Theorem 5 of [33] are simpler than those of Theorem 10.6, but, as was pointed out by

Can�eld [67], the proof is faulty and there are counterexamplesto the claims of that theorem.

The di�cult y is that Theorem 5 of [33] doesnot distinguish adequately betweenthe di�eren t

solutions w = w(z) of w = G(z; w), and the singularity of the combinatorially signi�cant

solution may not be the smallest among all singularities of all solutions. The result of Meir

and Moon [284] provides conditions that assuresuch pathological behavior does not occur.

(The statement of Theorem 10.6 incorporatessomecorrections to Theorem 1 of [284] provided

by the authors of that paper.) It would be desirable to prove results like (10.64) under a

simpler set of conditions.

In many problems the function G(z; w) is of the form

G(z; w) = g(z)� (w) + h(z) ; (10.67)

where g(z), � (w), and h(z) are analytic at 0. For this caseMeir and Moon have proved a

useful result (Theorem 2 of [284]) that implies an asymptotic estimate of the type (10.64).

The hypothesesof that result are often easier to verify than those of Theorem 10.6 above.

(As was noted by Meir and Moon, the last part of the conditions (4.12a) of [284] has to be

replaced by the condition that yi > hi , yj > hj , and yk > hk for somek > j > i � 1 with

gcd(j � i; k � i ) = 1.)

Whenever Theorem 10.6 applies, f n = [zn ]f (z) equalsthe quantit y on the right-hand side

of (10.64) to within a multiplicativ e factor of 1+ O(n � 1). One can derive fuller expansionsfor
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the ratio when needed.

11. Small singularities of analytic functions

In most combinatorial enumeration applications, the generating function has a single

dominant singularity. The methods usedto extract asymptotic information about coe�cien ts

split naturally into two main classes,depending on whether this singularity is large or small.

In somesituations the samegeneratingfunction can besaid to have either a largeor a small

singularity, depending on the range of coe�cien ts that we are interested in. This is illustrated

by the following example.

Example 11.1. Partitions with bounded part sizes. Let p(n; m) be the number of (unordered)

partitions of an integer n into integers � m. It is easyto seethat

Pm (z) =
1X

n=0

p(n; m)zn =
mY

k=1

(1 � zk )� 1 : (11.1)

The function Pm (z) is rational, but has to be treated in di�eren t ways depending on the

relationship of n and m. If n is large comparedto m, it turns out to be appropriate to say that

Pm (z) has a small singularity, and usemethods designedfor this type of problems. However,

if n is not too large compared to m, then the singularity of Pm (z) can be said to be large.

(Since the largest part in a partition of n is almost always O(n1=2 logn) [105], p(n; m) � p(n)

if m is much larger than n1=2 logn.)

Although Pm (z) hassingularities at all the k-th roots of unit y for all k � m, z = 1 is clearly

the dominant singularity, asjPm (r )j grows much faster asr ! 1� than jPm (z)j for z = r exp(i� )

for any � 2 (0; 2� ). If m is �xed, then the partial function decomposition can be usedto obtain

the asymptotics of p(n; m) as m ! 1 . We cannot useTheorem 9.1 directly, sincethe pole of

Pm (z) at z = 1 hasmultiplicit y 1. However, either by using the generalizationsof Theorem 9.1

that are mentioned in Section9.1, or by the subtraction of singularities principle, we can show

that for any �xed m,

p(n; m) � [zn ]

 
mY

k=1

k!

! � 1

(1 � z) � m �

 
mY

k=1

k!

! � 1

((m � 1)!)� 1 as n ! 1 : (11.2)

(See[23] for further details and estimates.) This approach canbeextendedfor m growing slowly

with n, and it can be shown without much e�ort that the estimate (11.2) holds for n ! 1 ,

m � log logn, say. However, for larger values of m this approach becomescumbersome,and

other methods, such as those of Section 12, are necessary.
�
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11.1. Transfer theorems

This sectionpresents someresults, drawn from [135], that allow oneto translate an asymp-

totic expansionof a generating function around its dominant singularity into an asymptotic

expansion for the coe�cien ts in a direct way. These results are useful in combinatorial enu-

meration, since the conditions for validit y are frequently satis�ed. The proofs, which we do

not present here,are basedon the subtraction of singularities principle, but are more involved

than in the casestreated in Section 10.2.

We start out with an application of the results to be presented later in this section.

Example 11.2. 2-regular graphs. The generating function for 2-regular graphs is known [81]

to be

f (z) = (1 � z) � 1=2 exp
�

�
1
2

z �
1
4

z2
�

: (11.3)

(A simpler proof can be obtained from the exponential formula, cf. Eq. (3.9.1) of [377].) We

seethat f (z) is analytic throughout the complex plane except for the slit along the real axis

from 1 to 1 , and that near z = 1 it has the asymptotic expansion

f (z) = e� 3=4
�

(1 � z) � 1=2 + (1 � z)1=2 +
1
4

(1 � z)3=2 + � � �
�

: (11.4)

Theorem 11.1 below then shows that as n ! 1 ,

[zn ]f (z) � e� 3=4
��

n � 1=2
n

�
+

�
n � 3=2

n

�
+

1
4

�
n � 5=2

n

�
+ � � �

�

�
e� 3=4
p

� n

�
1 �

5
8n

�
15

128n2 + � � �
�

:
�

(11.5)

The basic transfer results will be presented for generating functions that have a single

dominant singularity, but can be extended substantially beyond their circle of convergence.

For r , � > 0, and 0 < � < � =2, we de�ne the closeddomain � = �( r; �; � ) by

�( r; �; � ) = f z : jzj � r + � ; jArg(z � r )j � � g : (11.6)

In the main result below we will assumethat a generating function is analytic throughout

� nf r g. Later in this sectionwe will mention someresults that dispensewith this requirement.

We will also explain why analyticit y throughout � n f r g is helpful in obtaining results such as

those of Theorem 11.1 below.

One advantage to using Cauchy's theorem to recover information about coe�cien ts of gen-

erating functions is that it allows one to prove the intuitiv ely obvious result that small smooth
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changesin the generating function correspond to small smooth changesin the coe�cien ts. We

will usethe quantitativ e notion of a function of slow variation at 1 to describe thosefunctions

for which this notion can be made precise. (With more e�ort one can prove that the same

results hold with a lessrestrictiv e de�nition than that below.)

De�nition 11.1. A function L(u) is of slow variation at 1 if

i) There exist real numbers u0 and � 0 with u0 > 0, 0 < � 0 < � =2, suchthat L (u) is analytic

and 6= 0 in the domain

f u : jArg(u � u0)j � � � � 0g : (11.7)

ii) There exists a function � (x), de�ned for x � 0 with lim x!1 � (x) = 0, such that for all

� 2 [� (� � � 0); � � � 0] and u � u0, we have

�
�
�
�
L (uei� )

L (u)
� 1

�
�
�
� < � (u) (11.8)

and �
�
�
�
L (u log2 u)

L (u)
� 1

�
�
�
� < � (u) : (11.9)

Theorem 11.1. Assume that f (z) is analytic throughout the domain � n f r g, where � =

�( r; �; � ), r; � > 0, 0 < � < � =2, and that L (u) is a function of slow variation at 1 . If � is

any real number, then

A) If

f (z) = O
�

(z � r ) � L
�

1
r � z

��

uniformly for z 2 � n f r g, then

[zn ]f (z) = O(r � nn� � � 1L(n)) as n ! 1 :

B) If

f (z) = o
�

(z � r ) � L
�

1
r � z

��

uniformly as z ! r for z 2 � n f r g, then

[zn ]f (z) = o(r � nn� � � 1L(n)) as n ! 1 :
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C) If � 62f 0; 1; 2; : : :g and

f (z) � (r � z) � L
�

1
r � z

�

uniformly as z ! r for z 2 � n f r g, then

[zn ]f (z) �
r � nn� � � 1

�( � � )
L (n) :

The restriction that there be only one singularity on the circle of convergenceis easy to

relax. If there are several (corresponding to oscillatory behavior of the coe�cien ts), their

contributions to the coe�cien ts add. The crucial fact is that at each singularity the function

f (z) should be continuous except for an angular region similar to that of �( r; �; � ).

The requirement that the generatingfunction f (z) be analytic in the interior of �( r; �; � ) is

in generalharder to dispensewith, at least by the methods of [135]. However, if the singularity

at r is su�cien tly large, one can obtain the sameresults with weaker assumptionsthat only

require analyticit y inside the disk jzj < r . The following result is implicit in [135].

Theorem 11.2. Assumethat f (z) is analytic in the domainf z : jzj � r; z 6= r g and that L (u)

is a function of slow variation at 1 . If � is any �xed real number with � < � 1, then the

implications A), B), and C) of Theorem 11.1 are valid.

Example 11.3. Longest cycle in a random permutation. The average length of the longest

cycle in a permutation on n letters is [zn ]f (z), where

f (z) = (1 � z) � 1
X

k� 0

2

41 � exp

0

@�
X

j � k

j � 1zj

1

A

3

5 :

It is easyto seethat f (z) is analytic in jzj < 1, and a doubleapplication of the Euler-Maclaurin

summation formula shows that f (z) � G(1 � z) � 2 as z ! 1, uniformly for jzj � 1, z 6= 1,

where

G =
Z 1

0

�
1 � exp

�
�

Z 1

x
t � 1e� tdt

��
dx = 0:624 : : : : (11.10)

Therefore, by Theorem 11.2 with L(u) = 1,

[zn ]f (z) � Gn as n ! 1 ; (11.11)

a result �rst proved by Shepp and Lloyd [342] using Poissonapproximations and Tauberian

theorems. The derivation sketched above follows [134, 135]. The paper [134] contains many
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other applications of transfer theoremsto random mapping problems. Additional recent papers

on the cycle structure of random permutations are [19, 187]. They useprobabilistic methods,

not transfer theorems,and contain extensive referencesto other recent works.
�

In applying transfer theorems,it is useful to have explicit expansionsand estimatesfor the

coe�cien ts of somefrequently occurring functions. We state several asymptotic series:

[zn ](1 � z) � �
n� � � 1

�( � � )

0

@1 +
X

k� 1

e(� )
k n� k

1

A ; � 6= 0; 1; 2; : : : ; (11.12)

where

e(� )
k =

2kX

j = k

(� 1)j � k;j (� + 1)(� + 2) � � � (� + j ) ; (11.13)

and the � k;j are determined by

et (1 + vt) � 1� 1=v =
X

k;j � 0

� k;j vk t j : (11.14)

In particular,

e(� )
1 = � (� + 1)=2;

e(� )
2 = � (� + 1)(� + 2)(3� + 1)=24 :

Also, for �; � 62f 0; 1; 2; : : :g,

[zn ](1 � z) � (� z� 1 log(1 � z)) � �
n� � � 1

�( � � )
(log n) �

0

@1 +
X

k� 1

e(�;� )
k (log n) � k

1

A ; (11.15)

where

e(�;� )
k = (� 1)k

�
�
k

�
�( � � )

�
dk

dsk �( � s) � 1
�
�
�
s= �

�
: (11.16)

Further examplesof asymptotic expansionsare presented in [135].

Why is the analyticit y of a function f (z) throughout �( r; �; � ) n f r g so important? We

explain this using as an examplea function f (z) that satis�es

f (z) = (1 + o(1))(1 � z)1=2 (11.17)

as z ! 1 with z 2 � = �(1 ; � =8; 1). We write

f (z) = (1 � z)1=2 + g(z) ; (11.18)
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so that

jg(z)j = o(j1 � zj1=2) : (11.19)

Since[zn ](1 � z)1=2 grows like n � 3=2, we would like to show that

j[zn ]g(z)j = o(n � 3=2) as n ! 1 : (11.20)

If g(z) were analytic in a disk of radius 1 + � for some� > 0, then we could conclude that

j[zn ]g(z)j < (1 + � =2)� n for large n, a conclusionmuch stronger than (11.20). However, if all

we know is that g(z) satis�es (11.19) in jzj � 1, then we can only conclude from Cauchy's

theorem that [zn ]g(z) = O(1), since (11.19) implies that jg(z)j � C for all jzj < 1 and some

C > 0. Then Theorem 10.2 gives

j[zn ]g(z)j � Cr � n (11.21)

uniformly for all n � 0 and all r < 1, and hencej[zn ]g(z)j � C for all n, a result that is far

from what is required. If we know that g(z) can be continued to � n f r g and satis�es (11.19)

there, we can do a lot better. We choosethe contour � = � 1 [ � 2 [ � 3 [ � 4, pictured in Fig. 1,

with

� 1 = f z : jz � 1j = 1=n; jArg(z � 1)j � � =4g ; (11.22)

� 2 = f z : z = 1 + r exp(� i=4); 1=n � r � � g ; (11.23)

� 3 = f z : jzj = j1 + � exp(� i=4)j; jArg(z � 1)j � � =4g ; (11.24)

� 4 = f z : z = 1 + r exp(� � i=4); 1=n � r � � g ; (11.25)

where 0 < � < 1=2. We will show that the integrals

gj =
1

2� i

Z

� j

g(z)z� n� 1dz (11.26)

on the � j are small. On � 3, g(z) is bounded, so we trivially obtain the exponential upper

bound

jg3j = O((1 + � =2)� n ) : (11.27)

On � 1, jg(z)j = o(n � 1=2), jz� n� 1j � (1 � 1=n) � n� 1 = O(1), and the length of � 1 is � 2� =n, so

jg1j = o(n� 3=2) as n ! 1 : (11.28)

Next, on � 2, for z = 1 + r exp(� i=4),

jzj � n = j1 + r 2� 1=2 + ir 2� 1=2j� n = (1 + r 21=2 + r 2)� n=2

� (1 + r ) � n=2 � exp(� nr =10) (11.29)
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for 0 � r < 1. Sinceg(z) satis�es (11.19), for any � > 0 we have

jg(1 + r exp(� i=4))j � �r 1=2 (11.30)

if 0 < r � � for some� = � (� ) � � . Therefore

jg2j � �
Z �

0
r 1=2 exp(� nr =10)dr + O

� Z 1

�
exp(� nr =10)dr

�

� �n � 3=2
Z 1

0
r 1=2 exp(� r =10)dr + O(exp(� n� =10)) ; (11.31)

and so

jg2j = o(n� 3=2) : (11.32)

Sincejg4j = jg2j, inequalities (11.27), (11.28), and (11.32) show that (11.20) holds.

The critical factor in the derivation of (11.20) was the bound for (11.29) for jzj � n on the

segment z = 1 + r exp(� i=4). Integrating on the circle jzj = 1 or even on the line Re(z) = 1

does not give a bound for jzj � n that is anywhere as small, and the resulting bounds do not

approach (11.20) in strength. The use of the circular arc � 1 in the integral is only a minor

technical device usedto avoid the singularity at z = 1.

When one cannot continue a function to a region like � n f 1g, it is sometimespossible

to obtain good estimates for coe�cien ts by working with the generating function exclusively

in jzj � 1, provided somesmoothnessproperties apply. This method is outlined in the next

section.

11.2. Darb oux's theorem and other metho ds

A singularity of f (z) at z = w is called algebraic if f (z) can be written as the sum of a

function analytic in a neighborhood of w and a �nite number of terms of the form

(1 � z=w) � g(z) ; (11.33)

where g(z) is analytic near w, g(w) 6= 0, and � 62f 0; 1; 2; : : :g. Darboux's theorem [87] gives

asymptotic expansionsfor functions with algebraic singularities on the circle of convergence.

We state one form of Darboux's result, derived from Theorem 8.4 of [354].

Theorem 11.3. Suppose that f (z) is analytic for jzj < r , r > 0, and has only algebraic

singularities on jzj = r . Let a be the minimum of Re(� ) for the terms of the form (11.33) at
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the singularities of f (z) on jzj = r , and let wj , � j , and gj (z) be the w, � , and g(z) for those

terms of the form (11.33) for which Re(� ) = a. Then, as n ! 1 ,

[zn ]f (z) �
X

j

gj (wj )n� � j � 1

�( � � j )wn
j

+ o(r � nn� a� 1) : (11.34)

Jungen [219] has extended Darboux's theorem to functions that have a single dominant

singularity which is of a mixed algebraic and logarithmic form. His method can be applied

also to functions that have several such singularities on their circle of convergence.

We do not devote much attention to Darboux's and Jungen'stheoremsbecausethey can be

obtained from the transfer theoremsof Section11.1. The only reasonfor stating Theorem 11.3

is that it occurs frequently in the literature.

Somefunctions, such as

f (z) =
1Y

k=1

(1 + zk=k2) ; (11.35)

are analytic in jzj � 1, cannot be continued outside the unit circle, yet are nicely behaved

on jzj = 1. Therefore there is no dominant singularity that can be studied to determine the

asymptotics of [zn ]f (z). To minimize the size of the integrand, it is natural to move the

contour of integration in Cauchy's formula to the unit circle. Once that is done, it is possible

to exploit smoothness properties of f (z) to bound the coe�cien ts. The Riemann-Lebesgue

lemma implies that if f (z) is integrable on the unit circle, then as n ! 1 ,

[zn ]f (z) = (2� ) � 1
Z �

� �
f (ei� ) exp(� ni� )d� = o(1) : (11.36)

More can be said if the derivative of f (z) exists on the unit circle. When we apply integration

by parts to the integral in (11.36), we �nd

[zn ]f (z) = (2� n) � 1
Z �

� �
f 0(ei� ) exp(� (n � 1)i� )d� ; (11.37)

and soj[zn ]f (z)j = o(n � 1) if f 0(z) existsand is integrable on the unit circle. Existenceof higher

derivatives leadsto even better estimates. We do not attempt to state a generaltheorem, but

illustrate an application of this method with an example. The sametechnique can be used in

other situations, for example in obtaining better error terms in Darboux's theorem [87].

Example 11.4. Permutations with distinct cycle lengths. Example 8.5 showed that for the

function f (z) de�ned by Eq. (8.58), [zn ]f (z) � exp(�  ) as n ! 1 . This coe�cien t is the

probabilit y that a random permutation on n letters hasdistinct cyclelengths. The moreprecise
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estimate (8.59) was derived by Greeneand Knuth [177] by working with recurrencesfor the

coe�cien ts of f (z) and auxiliary functions. Another approach to deriving fuller asymptotic

expansionsfor [zn ]f (z) is to use the method outlined above. It su�ces to show that the

function g(z) de�ned by Eq. (8.62) has a nice expansionin the closeddisk jzj � 1. Since

g(z) = � z +
1X

m=2

(� 1)m� 1

m
f Li m (zm ) � zmg ; (11.38)

where the Li m (w) are the polylogarithm functions [251], onecan usethe theory of the Li m (w).

A simpler way to proceedis to note, for example, that

1X

k=2

z2k

k2 =
1X

k=2

z2k

k(k � 1)
+ r (z) ; (11.39)

where

r (z) = �
1X

k=2

z2k

k2(k � 1)
; (11.40)

and so r 0(z) is boundedand continuous for jzj � 1, as are the terms in (8.62) with m � 3. On

the other hand,
1X

k=2

z2k

k(k � 1)
= z2 + (1 � z2) log(1 � z2) ; (11.41)

so we can write g(z) = g1(z) + g2(z), whereg1(z) is an explicit function (given by Eq. (11.41))

such that the coe�cien ts of exp(g1(z)) can be estimated asymptotically using transfer methods

or other techniques,and g2(z) hasthe property that g0
2(z) is boundedand continuousin jzj � 1.

Continuing this process,we can �nd, for every K , an expansionfor the coe�cien ts of f (z) that

has error term O(n � K ). To do this, we write g(z) = G1(z) + G2(z). In this expansionG1(z)

will be explicitly given and analytic inside jzj < 1 and analytically continuable to someregion

that extendsbeyond the unit disk with the exception of cuts from a �nite number of points on

the unit circle out to in�nit y. Further, G2(z) will have the property that G(K )
2 (z) is bounded

and continuous in jzj � 1. This will then give the desired expansion for the coe�cien ts of

f (z).
�

12. Large singularities of analytic functions

This sectionpresents methods for asymptotic estimation of coe�cien ts of generating func-

tions whosedominant singularities are large.
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12.1. The saddle poin t metho d

The saddle point method, also referred to as the method of steepest descent, is by far

the most usefulmethod for obtaining asymptotic information about rapidly growing functions.

It is extremely exible and has been applied to a tremendous variety of problems. It is also

complicated, and there is no simple categorization of situations where it can be applied, much

lessof the results it produces.Given the purposeand limitations on the length of this chapter,

we do not present a full discussionof it. For a complete and insightful intro duction to this

technique, the reader is referred to [63]. Many other books, such as [110, 115, 315, 385] also

have extensive presentations. What this section does is to outline the method, show when

and how it can be applied and what kinds of estimates it produces. Examples of proper and

improper applications of the method are presented. Later subsectionsare then devoted to

general results obtained through applications of the saddle point method. These results give

asymptotic expansionsfor wide classesof functions without forcing the reader to go through

the details of the saddlepoint method.

The saddle point method is based on the freedom to shift contours of integration when

estimating integrals of analytic functions. The sameprinciple underliesother techniques,such

asthe transfer method of Section11.1,but the way it is applied hereis di�eren t. When dealing

with functions of slow growth near their principal singularity, ashappensfor transfer methods,

one attempts to push the contour of integration up to and in some ways even beyond the

singularity. The saddle point method is usually applied when the singularity is large, and it

keepsthe path of integration closeto the singularity.

In the remainder of this section we will assumethat f (z) is analytic in jzj < R � 1 . We

will also make the assumption that for someR0, if R0 < r < R, then

max
jzj= r

jf (z)j = f (r ) : (12.1)

This assumption is clearly satis�ed by all functions with real nonnegative coe�cien ts, which

are the most commononesin combinatorial enumeration. Further, we will supposethat z = r

is the unique point with jzj = r where the maximum value in (12.1) is assumed. When

this assumption is not satis�ed, we are almost always dealing with some periodicity in the

asymptotics of the coe�cien ts, and we can then usually reduceto the standard caseby either

changing variables or rewriting the generating function as a sum of several others, as was

discussedin Section 10. (Such a reduction cannot be applied to the function of Eq. (9.39),
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though.)

The �rst step in estimating [zn ]f (z) by the saddlepoint method is to �nd the saddlepoint.

Under our assumptions, that will be a point r 2 (R0; R) which minimizes r � n f (r ). We have

encountered this condition before, in Section 8.1. The minimizing r = r 0 will usually be

unique, at least for large n. (If there are several r 2 (R0; R) for which r � n f (r ) achieves its

minimum value, then f (z) is pathological, and the standard saddlepoint method will not be

applicable. For functions f (z) with nonnegative coe�cien ts, it is easyto show uniquenessof

the minimizing r , as was already discussedin Section 8.1.) Cauchy's formula (10.6) is then

applied with the contour jzj = r 0. The reasonfor this choice is that for many functions, on

this contour the integrand is large only near z = r 0, the contributions from the region near

z = r0 do not cancel each other, and remaining regions contribute little. This is in contrast

to the behavior of the integrand on other contours. By Cauchy's theorem, any simple closed

contour enclosingthe origin givesthe correct answer. However, on most of them the integrand

is large, and there is so much cancellation that it is hard to derive any estimates. The circle

going through the saddle point, on the other hand, yields an integral that can be controlled

well by techniques related to Laplace's method and the method of stationary phasethat were

mentioned in Section 5.5. We illustrate with an example, which is a totally self-contained

application of the saddlepoint method to an extremely simple situation.

Example 12.1. Stirling's formula. We estimate (n!) � 1 = [zn ] exp(z). The saddle point,

according to our de�nition above, is that r 2 �

+ that minimizes r � n exp(r ), which is clearly

r = n. Consider the contour jzj = n, and set z = n exp(i� ), � � � � � � . Then

[zn ] exp(z) =
1

2� i

Z

jzj= n

exp(z)
zn+1 dz

=
1

2�

Z �

� �
n� n exp(nei� � ni� )d� : (12.2)

Since j exp(z)j = exp(Re(z)), the absolute value of the integrand in (12.2) is n � n exp(n cos� ),

which is maximized for � = 0. Now

ei� = cos� + i sin � = 1 � � 2=2 + i� + O(j� j3) ;

so for any � 0 2 (0; � ),

Z � 0

� � 0

n� n exp(nei� � ni� )d� =
Z � 0

� � 0

n� n exp(n � n� 2=2 + O(nj� j3))d� : (12.3)
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(It is the cancellation of the ni� term coming from nei� and the � ni� term that came from

change of variables in z� n that is primarily responsible for the successof the saddle point

method.) The O(nj� j3) term in (12.3) could causeproblems if it becametoo large, so we will

select � 0 = n� 2=5, so that nj� j3 � n� 1=5 for j� j � � 0, and therefore

exp(n � n� 2=2 + O(nj� j3)) = exp(n � n� 2=2)(1 + O(n � 1=5)) : (12.4)

Hence
Z � 0

� � 0

n� n exp(nei� � ni� )d� = (1 + O(n � 1=5))n� nen
Z �

� � 0

exp(� n� 2=2)d� :

But
Z � 0

� � 0

exp(� n� 2=2)d� =
Z 1

�1
exp(� n� 2=2)d� � 2

Z 1

� 0

exp(� n� 2=2)d�

= (2� =n)1=2 � O(exp(� n1=5=2)) ;

so Z � 0

� � 0

n� n exp(nei� � ni� )d� = (1 + O(n � 1=5))(2� =n)1=2n� nen : (12.5)

On the other hand, for � 0 < j� j � � ,

cos� � cos� 0 = 1 � � 2
0=2 + O(� 4

0) ;

so

n cos� � n � n1=5=2 + O(n� 3=5) ;

and therefore for large n
�
�
�
�

Z �

� 0

n� n exp(nei� � ni� )d�

�
�
�
� � n� n exp(n � n1=5=3) ;

and similarly for the integral from � � to � � 0. Combining all theseestimateswe therefore �nd

that

(n!)� 1 = [zn ] exp(z) = (1 + O(n � 1=5))(2� n) � 1=2n� nen ; (12.6)

which is a weak form of Stirling's formula (4.3). (The full formula can be derived by using

more preciseexpansionsfor the integrand.)

Supposewe try to push through a similar argument using the contour jzj = 2n. This time,

instead of Eq. (12.2), we �nd

[zn ] exp(z) =
1

2�

Z �

� �
2� nn� n exp(2nei� � ni� )d� : (12.7)
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At � = 0, the integrand is 2� nn� n exp(2n), which is exp(n) times as large as the value of the

integrand in (12.2). Sincethe two integrals do producethe sameanswer, and from the analysis

above we seethat this answer is closeto n � n exp(n) in value, the integral in (12.7) must involve

tremendouscancellation. That is indeed what we seein the neighborhood of � = 0. We �nd

that

exp(2nei� � ni� ) = exp(2n � n� 2 + ni� + O(nj� j3)) ; (12.8)

and the exp(ni� ) term produceswild oscillations of the integrand even over small rangesof

� . Trying to work with the integral (12.7) and proving that it equalssomething exponentially

smaller than the maximal value of its integrand is not a promising approach. By contrast, the

saddlepoint contour used to produce Eq. (12.2) gives nice behavior of the integrand, so that

it can be evaluated.
�

The estimates for n! obtained in Example 10.1 came from a simple application of the

saddlepoint method. The motivation for the choice of the contour jzj = n is provided by the

discussionat the end of the example; other choiceslead to oscillating integrands that cannot

be approximated by a Gaussian,nor by any other nice function. The example above treated

only the exponential function, but it is easyto seethat this phenomenonis general;a rapidly

oscillating term exp(ni� ) for � 6= 0 is present unless the contour passesthrough the saddle

point. When we do use this contour, and the Gaussianapproximation is valid, we �nd that

for functions f (z) satisfying our assumptionswe have the following estimate.

Saddle poin t appro ximation

[zn ]f (z) � (2� b(r 0)) � 1=2f (r0)r � n
0 as n ! 1 ; (12.9)

where r 0 is the saddle point (where r � n f (r ) is minimized, so that r 0f 0(r0)=f (r 0) = n)

and

b(r ) = r
f 0(r )
f (r )

+ r 2 f 00(r )
f (r )

� r 2
�

f 0(r )
f (r )

� 2

= r
�

r
f 0(r )
f (r )

� 0

: (12.10)

Example 12.2. Bell numbers. Example 5.4 showed how to estimate the Bell number B n

by elementary methods, starting with the representation (5.38). The exponential generating

function

B (z) =
1X

n=0

Bn
zn

n!
(12.11)
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satis�es

B (z) = exp(exp(z) � 1) ;

as can be seenfrom (5.38) or by other methods (cf. [81]). The saddle point occurs at that

r0 > 0 that satis�es

r0 exp(r 0) = n ; (12.12)

and

b(r0) = r0(1 + r 0) exp(r 0) ; (12.13)

so the saddlepoint approximation says that as n ! 1 ,

Bn � n!(2� r 2
0 exp(r 0)) � 1=2 exp(exp(r 0) � 1)r � n

0 : (12.14)

The saddlepoint approximation can be justi�ed even more easily than for the Stirling estimate

of n!.
�

The above approximation is widely applicable and extremely useful, but care has to be

exercisedis applying it. This is shown by the next example.

Example 12.3. Invalid application of the saddle point method. Consider the trivial example

f (z) = (1 � z) � 1, so that [zn ]f (z) = 1 for all n � 0. Then f 0(r )=f (r ) = (1 � r ) � 1, and so

the saddle point is r 0 = n=(n + 1), and b(r 0) = r0=(1 � r 0)2 = n(n + 1). Therefore if the

approximation (12.9) were valid, it would give

[zn ]f (z) � (2� n(n + 1)) � 1=2(n + 1)
�

1 +
1
n

� n

� (2� ) � 1=2e as n ! 1 : (12.15)

Since(2� ) � 1=2e = 1:0844: : : 6= 1 = [zn ]f (z), something is wrong, and the estimate (12.9) does

not apply to this function.
�

The estimate (12.9) gave the wrong result in Example 12.3 becausethe Gaussianapproxi-

mation on the saddlepoint method contour usedsoe�ectiv ely in Example 12.1(and in almost

all caseswhere the saddle point method applies) does not hold over a su�cien tly large re-

gion for f (z) = (1 � z) � 1. In Example 12.1 we used without detailed explanation the choice

� 0 = n� 2=5, which gave the approximation (12.5) for j� j � � 0, and yet led to an estimate for the

integral over � 0 < j� j � � that was negligible. This was possiblebecausethe third order term
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(i.e., nj� j3) in Eq. (12.5) wassmall. When we try to imitate this approach for f (z) = (1� z) � 1,

we fail, becausethe third order term is too large. Instead of nei� � ni� , we now have

� log(1 � r 0ei� ) � ni� = � log(1 � r 0) �
1
2

n(n + 1)� 2 �
i
6

n2(n + 1)� 3 + � � � : (12.16)

More fundamentally, the saddlepoint method fails here becausethe function f (z) = (1 � z) � 1

doesnot have a large enoughsingularity at z = 1, so that when one traversesthe saddlepoint

contour jzj = r 0, the integrand does not drop o� rapidly enough for a small region near the

real axis to provide the dominant contribution.

When can oneapply the saddlepoint approximation (12.9)? Perhapsthe simplest, yet still

general, set of su�cien t conditions for the validit y of (12.9) is provided by requiring that the

function f (z) be Hayman-admissible. Hayman admissibility is described in De�nition 12.1, in

the following subsection. Generally speaking, though, for the saddlepoint method to apply we

need the function f (z) to have a large dominant singularity at R, so that f (r ) grows at least

as fast as exp((log(R � r )) 2) as r ! R� for R < 1 , and as fast as exp((log r )2) as r ! 1

for R = 1 . The faster the growth rate, the easierit usually is to apply the method, so that

exp(1=(1 � z)) or exp(exp(1=(1 � z))) can be treated easily.

In our application of the saddlepoint method to exp(z) in Example 12.1 we were content

to obtain a poor error term, 1 + O(n � 1=5), in Stirling's formula for n!. This was done to

simplify the presentation and concentrate only on the main factors that make the saddlepoint

method successful.With more care devoted to the integral one can obtain the full asymptotic

expansionof n!. (Only the range j� j � � 0 has to be consideredcarefully.) This is usually true

when the saddlepoint method is applicable.

This sectionprovided a sketchy introduction to the saddlepoint method. For a much more

thorough presentation, including a discussionof the topographical view of the integrand and

the \hill-clim bing" interpretation of the contour of integration, see[63].

12.2. Admissible functions

The saddlepoint method is a powerful and exible tool, but in its full generality it is often

cumbersometo apply. In many situations it is possible to apply general theorems derived

using the saddlepoint method that give asymptotic approximations that are not the sharpest

possible,but which allow one to avoid the drudgery of applying the method step by step. The

generaltheoremsthat we present were proved by Hayman [204] and by Harris and Schoenfeld
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[198]. Wenext describe the classesof functions to which thesetheoremsapply, and then present

the estimatesone obtains for them. It is not always easyto verify that thesede�nitions hold,

but it is almost always easierto do this than to apply the saddlepoint method from scratch.

It is worth mentioning, furthermore, that for many generating functions, there are conditions

that guarantee that they satisfy the hypothesesof the Hayman and the Harris-Schoenfeld

theorems. Theseconditions are discussedlater in this section.

The de�nition below is stated somewhatdi�eren tly than the original one in [204], but can

be shown to be equivalent to it.

De�nition 12.1. A function

f (z) =
1X

n=0

f nzn (12.17)

is admissiblein the senseof Hayman (or H -admissible) if

i) f (z) is analytic in jzj < R for some0 < R � 1 ,

ii) f (z) is real for z real, jzj < R,

iii) for R0 < r < R,

max
jzj= r

jf (z)j = f (r ) ; (12.18)

iv) for

a(r ) = r
f 0(r )
f (r )

; (12.19)

b(r ) = r a0(r ) = r
f 0(r )
f (r )

+ r 2 f 00(r )
f (r )

� r 2
�

f 0(r )
f (r )

� 2

; (12.20)

and for somefunction � (r ), de�ned in the rangeR0 < r < R to satisfy 0 < � (r ) < � , the

following three conditions hold:

a) f (r ei� ) � f (r ) exp(i� a(r ) � � 2b(r )=2)

as r ! R uniformly for j� j < � (r ); (12.21)

b) f (r ei� ) = o(f (r )b(r ) � 1=2)

as r ! R uniformly for j� j < � (r ); (12.22)

c) b(r ) ! 1 as r ! R: (12.23)
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For H -admissiblefunctions, Hayman [204] proved a basic result that givesthe asymptotics

of the coe�cien ts.

Theorem 12.1. If f (z), de�ned by Eq. (12.17), is H -admissiblein jzj < R, then

f n = (2� b(r )) � 1=2f (r )r � n
�

exp
�

�
(a(r ) � n)2

b(r )

�
+ o(1)

�
(12.24)

as r ! R, with the o(1) term uniform in n.

If we chooser = r n to be a solution to a(r n ) = n, then we obtain from Theorem 12.1 a

simpler result. (The uniquenessof r n follows from a result of Hayman [204] which shows that

a(r ) is positive increasingin somerange R1 < r < R, R1 > R0.)

Corollary 12.1. If f (z), de�ned by Eq. (12.17), is H -admissiblein jzj < R, then

f n � (2� b(r n )) � 1=2f (rn )r � n
n as n ! 1 ; (12.25)

where r n is de�ned uniquely for large n by a(r n ) = n, R0 < rn < R.

Corollary 12.1 is adequate for most situations. The advantage of Theorem 12.1 is that

it gives a uniform estimate over the approximate range ja(r ) � nj � b(r )1=2. (Note that the

estimate (12.24) is vacuousfor ja(r ) � nj b(r ) � 1=2 ! 1 .) Theorem 12.1 shows that the f nr n

are approximately Gaussianin the central region.

There are many direct applications of the above results.

Example 12.4. Stirling's formula. Let f (z) = exp(z). Then f (z) is H -admissiblefor R = 1 ;

conditions i){iii) of De�nition 12.1 are trivially satis�ed, while a(r ) = r , b(r ) = r , so iv) also

holds for R0 = 0, � (r ) = r � 1=3, say. Corollary 12.1 then shows that

f n =
1
n!

� (2� n) � 1=2enn� n as n ! 1 ; (12.26)

sincer n = n, which givesa weak form of Stirling's approximation to n!.
�

In many situations the conditions of H -admissibility are much harder to verify than for

f (z) = exp(z), and even in that casethere is a little work to be done to verify that condition

iv) holds. However, many of the generating functions one encounters are built up from other,

simpler generating functions, and Hayman [204] has shown that often the resulting functions

are guaranteed to be H -admissible. We summarizesomeof Hayman's results in the following

theorem.
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Theorem 12.2. Let f (z) and g(z) be H -admissiblefor jzj < R � 1 . Let h(z) be analytic in

jzj < R and real for real z. Let p(z) be a polynomial with real coe�cients.

i) If the coe�cients an of the Taylor seriesof exp(p(z)) are positive for all su�ciently large

n, then exp(p(z))) is H -admissiblein jzj < 1 .

ii) exp(f (z)) and f (z)g(z) are H -admissiblein jzj < R.

iii) If, for some� > 0, and R1 < r < R,

max
jzj= r

jh(z)j = O(f (r )1� � ) ; (12.27)

then f (z) + h(z) is H -admissible in jzj < R. In particular, f (z) + p(z) is H -admissible

in jzj < R and, if the leading coe�cient of p(z) is positive, p(f (z)) is H -admissible in

jzj < R.

Example 12.5. H -admissible functions. a) By i) Theorem 12.2, exp(z) is H -admissible, so

we immediately obtain the estimate (12.26), which yields Stirling's formula. b) Since exp(z)

is H -admissible,part iii) of Theorem 12.2shows that exp(z) � 1 is H -admissible. c) Applying

part ii) of Theorem 12.2, we next �nd that exp(exp(z) � 1) is H -admissible,which yields the

asymptotics of the Bell numbers.
�

Hayman's results give only �rst order approximations for the coe�cien ts of H -admissible

functions. In somecircumstancesit is desirable to obtain full asymptotic expansions.This is

possibleif we imposeadditional restrictions on the generating function. We next state some

results of Harris and Schoenfeld [198].

De�nition 12.2. A function f (z) de�ned by Eq. (12.17) is HS-admissibleprovided it is ana-

lytic in jzj < R, 0 < R � 1 , is real for real x, and satis�es the following conditions:

A) There is an R0, 0 < R0 < R and a function d(r ) de�ned for r 2 (R0; R) such that

0 < d(r ) < 1 ;
r f 1 + d(r )g < R ;

(12.28)

and such that f (z) 6= 0 for jz � r j < r d(r ).

B) If we de�ne, for k � 1,

A(z) =
f 0(z)
f (z)

; Bk(z) =
zk

k!
A (k� 1)(z); B (z) =

z
2

B1(z) ; (12.29)
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then we have

B (r ) > 0 for R0 < r < R and B1(r ) ! 1 as r ! R :

C) For su�ciently large R1 and n, there is a unique solution r = un to

B1(r ) = n + 1; R1 < r < R : (12.30)

Let

Cj (z; r ) =
� 1

B (r )

�
B j +2 (z) +

(� 1)j

j + 2
B1(r )

�
: (12.31)

There exist nonnegative D n , En , and n0 such that for n � n0,

jCj (un ; un )j � EnD j
n ; j = 1; 2; : : : : (12.32)

D) As n ! 1 ,
B (un )d(un )2 ! 1 ;

Dn EnB (un)d(un )3 ! 0 ;

Dn d(un ) ! 0 :

(12.33)

For HS-admissiblefunctions, Harris and Schoenfeldobtain completeasymptotic expansions.

Theorem 12.3. If f (z), de�ned by (12.17), is HS-admissible, then for any N � 0,

f n = 2(� � n )� 1=2f (un )u� n
n

(

1 +
NX

k=1

Fk (n)� � k
n + O(� N (n; d))

)

as n ! 1 ; (12.34)

where

� n = B (un ) ; (12.35)

Fk (n) =
(� 1)k
p

�

2kX

m=1

�( m + k + 1
2)

m!

X

j 1 + ��� + j m =2 k
j 1 ;:::;j m � 1

 j 1 (n) � � �  j m (n) ; (12.36)

 j (n) = Cj (un ; un ) ; (12.37)

and

� N (n; d) = maxf � (un ; d); E 0
n (Dn E 00

n � � 1=2
n )2N +2 g ;

124



with

E 0
n = min(1; En ); E 00

n = max(1; En ) ; (12.38)

� (r; d) = max
�

� (r ; d)B (r )1=2;
exp(� B (r )d(r )2)

d(r )B (r )1=2

�
; (12.39)

where � (r ; d) is the maximum value of jf 0(z)=f (z)j for z on the oriented path Q(r ) consisting

of the line segment from r + ir d(r ) to (1 � d(r )2)1=2 + ir d(r ) and of the circular arc from the

last point to ir to � r .

The conditions for HS-admissibility are often hard to verify. However, there is a theorem

[311] which guarantees that they do hold for a large classof interesting functions.

Theorem 12.4. If g(z) is H -admissible, then f (z) = exp(g(z)) is HS-admissible. Further-

more, the error term � N (n; d) of Theorem 12.3 is then o(� � N
n ) as n ! 1 for every �xed

N � 0.

Example 12.6. Bell numbers and H S-admissibility. Sinceexp(x) � 1 is H -admissible,as we

saw in Example 12.5, we �nd that exp(exp(z) � 1) is H S-admissible,and Theorem 12.3 yields

a complete asymptotic expansionof the Bell numbers.
�

Theorem 12.4 does not apply when g(z) is a polynomial. As is pointed out by Schmutz

[339], for g(z) = z4 � z3 + z2 the function f (z) = exp(g(z)) is HS-admissible, but Theo-

rem 12.3 doesnot give an asymptotic expansionbecausethe error term � N (n; d) is too large.

Schmutz [339] has obtained necessaryand su�cien t conditions for Theorem 12.3 to give an

asymptotic expansionfor the coe�cien ts of f (z) = exp(g(z)) when g(z) is a polynomial.

12.3. Other saddle poin t applications

Section12.1presented the basicsaddlepoint method and discussedits rangeof applicabil-

it y. Section12.2wasdevoted to results derived using this method that are generaland yet can

be applied in a cook-book style, without a deepunderstanding of the saddlepoint technique.

Such a cook-book approach is satisfactory in many situations. However, often one encounters

asymptotic estimation problems that are not covered by any of general results mentioned in

Section 12.2, but can be solved using the saddle point method. This section mentions sev-

eral such results of this type that illustrate the range of problems to which this method is

applicable. Additional applications will be presented in Section15, whereother techniquesare

combined with the saddlepoint method.
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Example 12.7. Stirling numbers. The Stirling numbersof the �rst kind, s(n; k), satisfy (6.5)

as well as [81]
nX

k=0

s(n; k)zk = z(z � 1) � � � (z � n + 1) : (12.40)

Since(� 1)n+ ks(n; k) > 0, (which is reected in the behavior of the generatingfunction (12.40),

which grows faster along the negative real axis than along the positive one), we rewrite it as

nX

k=0

(� 1)n+ ks(n; k)zk = z(z + 1) � � � (z + n � 1) : (12.41)

The function on the right-hand side behaves like a good candidate for an application of the

saddlepoint method. For details, see[295, 296].
�

The estimates mentioned in Example 12.7 are far from best possiblein either the size of

the error term or (more important) in the range of validit y. Referencesfor the best currently

known results about Stirling numbers of both the �rst and secondkind are given in [363].

Someof the results in the literature are not rigorous. For example, [363] presents elegant and

uniform estimates based on an application of the saddle point method. They are likely to

be correct, but the necessaryrigorous error analysis has not beenperformed yet, although it

seemsthat this should be doable. Other results, like those of [232] are obtained by methods

that there does not seemto be any hope of making rigorous in the near future. Someof the

results, though, such as the original onesof Moser and Wyman [295, 296], and the more recent

one of Wilf [378], are fully proved.

The saddlepoint method can be usedto obtain full asymptotic expansions.Theseexpan-

sionsare usually in powers of n � 1=2 when estimating [zn ]f (z), and they hardly ever converge,

but are asymptotic expansionsasde�ned by Poincar�e (as in Eq. (2.2)). The usual forms of the

saddlepoint method are incapable of providing expansionssimilar to the Hardy-Ramanujan-

Rademacher convergent seriesfor the partition function p(n) (Eq. (3.1)). However, the saddle

point method can be applied to estimate p(n). There are technical di�culties, since the gen-

erating function

f (z) =
1X

n=0

p(n)zn =
1Y

k=1

(1 � zk )� 1 (12.42)

has a large singularity at z = 1, but in addition has singularities at all other roots of

unit y. The contribution of the integral for z away from 1 can be crudely estimated to be

O(n� 1 exp(Cn1=2=2)) (the last term in Eq. (1.5)). A simple estimate of the integral near z = 1

yields the asymptotic expansion of Eq. (1.6). A more careful treatment of the integral, but
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one that follows the conventional saddle point technique, replacesthe 1 + O(n � 1=2) term in

Eq. (1.6) by an asymptotic (in the senseof Poincare, so nonconvergent) series
P

ckn� k=2. To

obtain Eq. (1.5), one needsto choosethe contour of integration near z = 1 carefully and use

preciseestimatesof f (z) near z = 1.

De Bruijn [63] alsodiscussesapplications of the saddlepoint method when the saddlepoint

is not on the real axis, and especially when there are several saddle points that contribute

comparableamounts. This usually occurswhen there are oscillations in the coe�cien ts. When

the oscillations are irregular, the tricks mentioned in Section 10 of changing variables do not

work, and the contributions of the multiple saddlepoints have to be evaluated.

Example 12.8. Oscillating sequence. Consider the sequencean of Examples 9.4 and 10.1.

As is shown in Example 9.4, its ordinary generating function is given by (9.39). It has an

essential singularity at z = 1, but is analytic every place else. This function is not covered by

our earlier discussion. For example, its maximal value is in generalnot taken on the positive

real axis. It can be shown that the Cauchy integral has two saddlepoints, at approximately

z = 1� (2n) � 1 � in � 1=2(1� (4n) � 1)1=2. Evaluating [zn ]f (z) by using Cauchy's theorem with the

contour chosento passthrough the two points in the correct way yields the estimate (9.38).
�

In applying the saddle point method, a general principle is that multiplying a generating

function f (z) with dominant singularity at R by another function g(z) which is analytic in

jzj < R and has much lower growth rate near z = R yields a function f (z)g(z) whosesaddle

point is closeto that of f (z). Usually one can obtain a relation of the form

[zn ](f (z)g(z)) � g(r 0)([zn ]f (z)) ; (12.43)

where r 0 is the saddle point for f (z). This principle (which is related to the one behind

Theorem 7.1) is useful, but has to be applied with caution, and proofs have to be provided for

each case.For fuller exposition of this principle and general results, see[157]. The advantage

of this approach is that often f (z) is easyto manipulate, sothe determination of a saddlepoint

for it is easy, whereasmultiplying it by g(z) producesa messyfunction, and the exact saddle

point for f (z)g(z) is di�cult to determine.

Example 12.9. Boolean lattice of subsetsof f 1; : : : ; ng. The number an of Booleansublattices

of the Boolean lattice of subsetsof f 1; : : : ; ng has the exponential generating function [162]

A(z) =
1X

n=0

an
zn

n!
= exp(2z + exp(z) � 1) : (12.44)
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We can write A(z) = exp(2z)B (z), where B (z) is the exponential generating function for the

Bell numbers (Example 12.2). SinceB (z) grows much faster than exp(2z), it is easyto show

that (12.43) applies, and so

an � exp(2r 0)Bn as n ! 1 ; (12.45)

where r 0 is the saddle point for B (z). Using the approximation (12.12) of Example 12.2, we

�nd that

an � (n= logn)2Bn as n ! 1 : (12.46)

�

The insensitivity of the saddle point approximation to slight perturbations is reected in

slightly di�eren t de�nitions of a saddlepoint that are used. The saddlepoint approximation

(12.9) for [zn ]f (z) is stated in terms of r 0, the point that minimizes f (r )r � n . The discussion

of the saddle point emphasizedminimization of the peak value of the integrand in Cauchy's

formula, which is the sameas minimizing f (r )r � n� 1, sincethe contour integral (10.6) involves

f (z)z� n� 1. Some sourcescall the point minimizing f (r )r � n� 1 the saddle point. It is not

important which de�nition is adopted. The asymptotic seriescoe�cien ts look slightly di�er-

ently in the two cases,but the �nal asymptotic series,when expressedin terms of n, are the

same. The reasonfor slightly preferring the de�nition that minimizes f (r )r � n is that when

the changeof variable z = r exp(i� ) is made in Cauchy's integral, there is no linear term in � ,

and the integrand involves exp(� cn� 2 + O(j� j3)). If we minimized f (r )r � n� 1, we would have

to deal with exp(� c0i� � c00n� 2 + O(j� j3)), which is not much more di�cult to handle but is

lesselegant.

The sameprinciple can be applied when the exact saddlepoint is hard to determine, and

it is awkward to work with an implicit de�nition of this point. When that happens, there

is often a point near the saddle point that is easy to handle, and for which the saddle point

approximation holds. We refer to [157] for examplesand discussionof this phenomenon.

12.4. The circle metho d and other techniques

As we mentioned in Section 12.3, the saddle point method is a powerful method that

estimatesthe contribution of the neighborhood of only a single point, or at most a few points.

The convergent seriesof Eq. (1.3) for the partition function p(n) (as well as the earlier non-

convergent but asymptotic and very accurateexpansionof Hardy and Ramanujan) is obtained
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by evaluating the contribution of the other singularities of f (z) to the integral. The m-th term

in Eq. (1.3) comesfrom the primitiv e m-th roots of unit y. To obtain this expansionone needs

to use a special contour of integration and detailed knowledge of the behavior of f (z). The

details of this technique, called the circle method, can be found in [13, 23].

Convergent seriescanbeobtained from the circle method only whenthe generatingfunction

is of a special form. For results and references,see[8, 10].

Nonconvergent but accurate asymptotic expansionscan be derived from the circle method

in a much wider variety of applications. It is especially usefulwhen there is no singledominant

singularity. For the partition function p(n), all the singularities away from z = 1 contribute

little, and it is z = 1 that createsthe dominant term and yields Eq. (1.6). For other functions

this is often false. For example,when dealing with additiv e problems of Waring's type, where

one studies Nk;m (n), the number of representations of a nonnegative integer n as

n =
mX

j =1

xk
j ; x j 2 �

+ [ f 0g for all j ; (12.47)

the natural generating function to study is
1X

n=0

Nk;m (n)zn = g(z)m ; (12.48)

where

g(z) =
1X

h=0

zhk
: (12.49)

The function g(z) hasa natural boundary at jzj = 1, but it again grows fastestasz approaches

a root of unit y from within jzj < 1, so it is natural to speak of g(z) having singularities at

the roots of unit y. The singularity at z = 1 is still the largest, but not by much, as other

roots of unit y contribute comparableamounts, with the contribution of other roots of unit y �

diminishing as the order of � increases.All the contributions can be estimated, and one can

obtain solutions to Waring's problem (which was to show that for every k, there is an integer

m such that Nk;m (n) > 0 for all n) and other additiv e problems. For details of this method see

[23]. We mention herethat for technical reasons,onenormally works with generatingfunctions

of the form Gn (z)m , where

Gn (z) =
bn1=k cX

h=0

zhk
; (12.50)

(so that the generating function dependson n), and analyzesthem for jzj = 1 (since they are

now polynomials), but the basic explanation above of why this processworks still applies.
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13. Multiv ariate generating functions

A major di�cult y in estimating the coe�cien ts of multiv ariate generating functions is

that the geometry of the problem is far more di�cult. It is harder to seewhat are the critical

regionswhere the behavior of the function determinesthe asymptotics of the coe�cien ts, and

those regions are more complicated. Singularities and zerosare no longer isolated, as in the

one-dimensionalcase,but instead form (k � 1)-dimensional manifolds in k variables. Even

rational multiv ariate functions are not easyto deal with.

One basic tool in one-dimensionalcomplex analysis is the residue theorem, which allows

one to move a contour of integration past a pole of the integrand. (We derived a form of the

residuetheorem in Section 10, in the discussionof polesof generating functions.) There is an

impressive generalizationby Leray [4, 250] of this theory to several dimensions. Unfortunately,

it is complicated, and with few exceptions(such as that of [252], seealso [49]) so far it has not

beenapplied successfullyto enumeration problems. On the other hand, there are somemuch

simpler tools that can frequently be usedto good e�ect.

An important tool in asymptotics of multiv ariate generating functions is the multidimen-

sional saddlepoint method.

Example 13.1. Alternating sumsof powers of binomial coe�cients. Consider

S(s;n) =
2nX

k=0

(� 1)k+ n
�

2n
k

� s

; (13.1)

where s and n are positive integers. It has been known for a long time that S(1; n) = 0,

S(2; n) = (2n)!(n!) � 2, S(3; n) = (3n)!(n!) � 3. However, no formula of this type hasbeenknown

for s > 3. De Bruijn (see Chapter 4 of [63]) showed that S(s;n) for integer s > 3 cannot

be expressedas a ratio of products of factorials. Although his proof is not presented as an

application of the multidimensional saddle point method, it is easy to translate it into those

terms. S(s;n) is easily seento equal the constant term in

F (z1; : : : ; zs� 1) = (� 1)n (1 + z1)2n : : : (1 + zs� 1)2n (1 � (z1 : : : zs� 1)� 1)2n ; (13.2)

and so

S(s;n) = (2� i ) � s+1
Z

� � �
Z

F (z1; : : : ; zs� 1)z� 1
1 : : : z� 1

s� 1dz1 : : : dzs� 1 ; (13.3)

where the integral is taken with each zj traversing a circle, say. De Bruijn's proof in e�ect

shows that for s �xed and n ! 1 , there are two saddlepoints at z1 = � � � = zs� 1 = exp(2i� ),
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with � = � (2s) � 1, and this leadsto the estimate

S(s;n) �
n

2cos
� �

2s

� o2ns+ s� 1
22� s(� n)(1� s)=2s� 1=2 as n ! 1 ; (13.4)

valid for any �xed integer s � 2. Sincecos(� (2s) � 1) is algebraic but irrational for s � 4, the

asymptotic estimate (13.4) shows that S(s;n) cannot be expressedasa ratio of �nite products

of (aj n)! for any �xed �nite set of integersaj .

In Chapter 6 of [63], deBruijn derivesthe asymptotics of S(s;n) asn ! 1 for generalreal s.

The approach sketched above no longer applies, and de Bruijn usesthe integral representation

S(s;n) =
Z

C

�
�(2 n + 1)

�( n + z + 1)�( n � z + 1)

� s dz
2i sin � z

;

where C is a simple closed curve that contains the points � n; � n + 1; : : : ; � 1; 0; 1; : : : ; n in

its interior and has no other integer points on the real axis in its closure. A complicated

combination of analytic techniques, including the one-dimensionalsaddlepoint method, then

leadsto the �nal asymptotic estimate of S(s;n).
�

The multidimensional saddlepoint method works best when applied to large singularities.

Just as for the basic one-dimensionalmethod, it does not work when applied to small singu-

larities, such as those of rational functions. Fortunately, there is a trick that often succeeds

in converting a small singularity in n dimensions into a large one in n � 1 dimensions. The

main idea is to expand the generating function with respect to one of the variables through

partial fraction expansionsor other methods. It is hard to write down a general theorem, but

the next example illustrates this technique.

Example 13.2. Alignments of k sequences. Let f (k; n) denote the number of k � m matrices

of 0's and 1's such that each column sum is � 1 and each row sum is exactly n. (The number

of columns, m, can vary, although obviously k � m � kn.) We considerk �xed, n ! 1 [178].

If we let N (r 1; : : : ; r k ) denote the number of 0; 1 matrices with k rows, no columns of all 0's,

and row sumsr 1; : : : ; r k , then it is easyto see[178] that

F (z1; : : : ; zk ) =
X

r 1 ;:::;r k � 0

N (r1; : : : ; r k )zr 1
1 � � � zr k

k =

0

@2 �
kY

j =1

(1 + zj )

1

A

� 1

: (13.5)

We have f (k; n) = N (n; : : : ; n), and so we needthe diagonal terms of F = F (z1; : : : ; zk ). The

function F is rational, so its singularity is small. Moreover, the singularities of F are di�cult
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to visualize. However, in any single variable F is simple. We take advantage of this feature.

Let

A(z) =
k� 1Y

j =1

(1 + zj ) ; (13.6)

where z stands for (z1; : : : ; zk� 1) 2 �

k� 1 , and expand

0

@2 �
kY

j =1

(1 + zj )

1

A

� 1

= (2 � A(z)(1 + zk )) � 1 =
1X

m=0

A(z)m zm
k

(2 � A(z))m+1 : (13.7)

Therefore

N (r1; : : : ; r k� 1; m) =
1

(2� i )k� 1

Z
� � �

Z
A(z)m

(2 � A(z))m+1

dz1

zr 1+1
1

� � �
dzk� 1

zr k � 1
k� 1

: (13.8)

The function whosecoe�cien ts we are trying to extract is now A(z)m =(2 � A(z))m+1 , which is

still rational. However, the interesting casefor us is m ! 1 , which transforms the singularity

into a large one. We are interested in the caser 1 = r2 = � � � = r k� 1 = r = n. Then the integral

in (13.8) can be shown to have a saddle point at zj = � , 1 � j � k � 1, where � = 21=k � 1,

and one obtains the estimate [178]

f (k; n) = r nn� (k� 1)=2f (�� (k� 1)=2k1=2)� 12(k2 � 1)=(2k) + O(n� 1=2)g as n ! 1 :
�

(13.9)

The examplesabove of applications of the multidimensional saddlepoint method all dealt

with problems in a �xed dimension as various other parameters increase. A much more chal-

lenging problem is to apply this method when the dimension varies. A noteworthy casewhere

this has been done successfullyis the asymptotic enumeration of graphs with a given degree

sequenceby McKay and Wormald [279].

Example 13.3. Simple labeled graphs of high degree. Let G(n; d1; : : : ; dn ) be the number of

labeled simple graphs on n vertices with degreesequenced1; d2; : : : ; dn . Then G(n; d1; : : : ; dn )

is the coe�cien t of zd1
1 zd2

2 � � � zdn
n in

F =
nY

j;k =1
j <k

(1 + zj zk ) ; (13.10)

and so by Cauchy's theorem

G(n; d1; : : : ; dN ) = (2� i ) � n
Z

� � �
Z

F z� d1 � 1
1 � � � z� dn � 1

n dz1 � � � dzn ; (13.11)
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whereeach integral is on a circle centered at the origin. Let all the radii beequal to somer > 0.

The integrand takeson its maximum absolutevalue on the product of thesecirclesat precisely

the two points z1 = z2 = � � � = zn = r and z1 = z2 = � � � = zn = � r . If d1 = d2 = � � � = dn , so

that we consideronly regular graphs, McKay and Wormald [279] show that for an appropriate

choiceof the radius r , thesetwo points are saddlepoints of the integrand, and succeedthrough

careful analysis in proving that if dn is even, and min(d;n � d � 1) > cn(log n) � 1 for some

c > 2=3, then

G(n; d;d; : : : ; d) = 21=2(2� n� d+1 (1 � � )n� d)� n=2 exp
�

� 1 + 10� � 10� 2

12� (1 � � )
+ O(n� � )

�
(13.12)

as n ! 1 for any � < min(1=4; 1=2 � 1=(3c)), where � = d=(n � 1).

McKay and Wormald [279] also succeedin estimating the number of irregular graphs,

provided that all the degreesdj are closeto a �xed d that satis�es conditions similar to those

above. The proof is more challenging becausedi�eren t radii are used for di�eren t variables

and the result is complicated to state.
�

.

The McKay-Wormald estimate of Example 13.3 is a true tour de force. The problem is

that the number of variables is n and so grows rapidly, whereasthe integrand grows only like

exp(cn2) at its peak. More precisely, after transformations that remove obvious symmetries

are applied the integrand near the saddlepoint drops o� like exp(� n
P

� 2
j ). This is just barely

to allow the saddle point method to work, and the symmetries in the problem are exploited

to push the estimates through. This approach can be applied to other problems (cf. [278]),

but it is hard to do. On the other hand, when the number of variables grows more slowly,

multidimensional saddlepoint contributions can be estimated without much trouble.

So far this section has beendevoted primarily to multiv ariate functions with large singu-

larities. However, there is also an extensive literature on small singularities. The main thread

connectingmost of theseworks is that of central and local limit theorems. Bender [32] initiated

this development in the setting of two-variable problems. We present someof his results, since

they are simpler than the later and more general onesthat will be mentioned at the end of

this section.

Consider a double sequenceof numbers an;k � 0. (Usually the an;k are 6= 0 only for

0 � k � n.) We will assumethat

An =
X

k

an;k < 1 (13.13)
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for all n, and de�ne the normalized double sequence

pn (k) = an;k =An : (13.14)

We will say that an;k satis�es a central limit theorem if there exist functions � n and � n such

that

lim
n!1

sup
x

�
�
�
�
�
�

X

k� � n x+ � n

pn (k) � (2� ) � 1=2
Z x

�1
exp(� t2=2)dt

�
�
�
�
�
�

= 0 : (13.15)

Equivalently, pn (k) is asymptotically normal with mean � n and variance � 2
n .

Theorem 13.1. [32]. Let an;k � 0, and set

f (z; w) =
X

n;k � 0

an;k zn wk : (13.16)

Supposethat there are (i) a function g(s) that is continuous and 6= 0 near s = 0, (ii) a function

r (s) with bounded third derivative near s = 0, (iii) an integer m � 0, and (iv) �; � > 0 such

that �
1 �

z
r (s)

� m

f (z; es) �
g(z)

1 � z=r(s)
(13.17)

is analytic and bounded for

jzj < �; jzj < jr (0)j + � : (13.18)

Let

� = � r 0(0)=r(0); � 2 = � 2 � r 00(0)=r(0) : (13.19)

If � 6= 0, then (13.15) holds with � n = n� and � 2
n = n� 2.

A central limit theorem is useful, but it only gives information about the cumulativ e sums

of the an;k . It is much better to have estimatesfor the individual an;k . We say that pn (k) (and

an;k ) satisfy a local limit theorem if

lim
n!1

sup
x

�
�
� � npn (b� nx + � nc) � (2� ) � 1=2 exp(� x2=2)

�
�
� = 0 : (13.20)

In general, we cannot derive (13.20) from (13.15) without someadditional conditions on the

an;k , such as unimodalit y (see[32]). The other approach onecan take is to derive (13.20) from

conditions on the generating function f (z; w).
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Theorem 13.2. [32]. Suppose that an:k � 0, and let f (z; w) be de�ned by (13.16). Let

�1 < a < b < 1 . De�ne

R(� ) = f z : a � Re(z) � b; jIm(z)j � � g : (13.21)

Suppose there exist � > 0, � > 0, an integer m � 0, and function g(s) and r (s) such that

(i) g(s) is continuous and 6= 0 for s 2 R(� ),

(ii) r (s) 6= 0 and has a bounded third derivative for s 2 R(� ),

(iii) for s 2 R(� ) and jzj � jr (s)j(1 + � ), the function de�ned by (13.17) is analytic and

bounded,

(iv) �
r 0(� )
r (� )

� 2

6=
r 00(� )
r (� )

for a � � � b ; (13.22)

(v) f (z; es) is analytic and bounded for

jzj � jr (Re(s)) j(1 + � ) and s � jIm(s)j � � :

Then

an;k �
nme� �k g(� )

m!r (� )m � � (2� )1=2
as n ! 1 (13.23)

uniformly for a � � � b, where

k
n

= �
r 0(� )
r (� )

; (13.24)

� 2
� =

�
k
n

� 2

�
r 00(� )
r (� )

: (13.25)

There have beenmany further developments of central and local limit theoremsfor asymp-

totic enumeration sinceBender's original work [32]. Currently the most powerful and general

results are those of Gao and Richmond [155]. They apply to general multiv ariate problems,

not only two-variable ones. Other papers that deal with central and local limit theorems or

other multiv ariate problems with small singularities are [38, 42, 65, 96, 142, 143, 183, 227].

14. Mellin and other in tegral transforms

When the best generating function that one can obtain is an in�nite sum, integral trans-

forms can sometimeshelp. There is a large variety of integral transforms, such as those of
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Fourier and Laplace. The one that is most commonly used in asymptotic enumeration and

analysis of algorithms is the Mellin transform, and it is the only one we will discussexten-

sively below. The other transforms do occur, though. For example, if f (x) =
P

anxn=n! is an

exponential generating function of the sequencean , then the ordinary generating function of

an can be derived from it using the Laplace transform
Z 1

0
f (xy) exp(� x)dx =

X

n

anyn(n!)� 1
Z 1

0
xn exp(� x)dx

=
X

n

anyn :
(14.1)

(This assumesthat the an are small enough to assurethe integrals above converge and the

interchange of summation and integration is valid.) Related integral transforms can be used

to transform generating functions into other forms. For example, to transform an ordinary

generating function F (u) =
P

anun into an exponential one, we can use

1
2� i

Z

juj= r
F (u) exp(w=u)du : (14.2)

The basic referencesfor asymptotics of integral transforms are [89, 95, 299, 347]. This

sectionwill only highlight someof the main properties of Mellin transforms and illustrate how

they are used. For a more detailed survey, especially to analysis of algorithms, see[137].

Let f (t) be a measurablefunction de�ned for real t � 0. The Mellin transform f � (z) of

f (t) is a function of the complex variable z de�ned by

f � (z) =
Z 1

0
f (t)tz� 1dt : (14.3)

If f (t) = O(t � ) ast ! 0+ and f (t) = O(t � ) ast ! 1 , then the integral in (14.3) convergesand

de�nes f � (z) to be an analytic function inside the \fundamental domain" � � < Re(z) < � � .

As an example, for f (t) = exp(� t), we have f � (z) = �( z) and � = 0, � = �1 . There is an

inversion formula for Mellin transforms which states that

f (t) =
1

2� i

Z c+ i1

c� i 1
f � (z)t � zdz ; (14.4)

and the integral is over the vertical line with Re(z) = c. The inversion formula (14.4) is valid

for � � < c < � � , but much of its strength in applications comesfrom the abilit y to shift the

contour of integration into wider domains to which f � (z) can be analytically continued.

The advantage of the Mellin transform is due largely to a simple property, namely that if

g(t) = af (bx) for b real, b > 0, then

g� (z) = ab� zf � (z) : (14.5)
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This readily extends to show that if

F (t) =
X

k

� k f (� k t) (14.6)

(where the � k and � k > 0 are such that the sum convergesand F (t) is well behaved), then

F � (z) =

 
X

k

� k � � z
k

!

f � (z) : (14.7)

In particular, if

F (t) =
1X

k=1

f (kt) ; (14.8)

then

F � (z) =

 
1X

k=1

k� z

!

f � (z) = � (z)f � (z) ; (14.9)

where � (z) is the Riemann zeta function.

Example 14.1. Runs of heads in coin tosses.What is Rn , the expected length of the longest

run of headsin n tossesof a fair coin? Let p(n; k) be the probabilit y that there is no run of k

headsin a coin tosses.Then

Rn =
nX

k=1

k(p(n; k + 1) � p(n; k)) : (14.10)

We now apply the estimatesof Example 9.2. To determine p(n; k), we take A = 00� � � 0, and

then CA (z) = zk� 1 + zk� 2 + � � � + z + 1, so CA (1=2) = 1 � 2� k . Hence(9.19) shows easily that

in the important rangeswhere k is of order logn, we have

p(n; k) �= exp(� n2� k) ; (14.11)

and there Rn is approximated well by

r (n) =
1X

k=0

k(exp(� n2� k� 1) � exp(� n2� k )) : (14.12)

The function r (t) is of the form (14.6) with

� k = k; � k = 2� k ; f (t) = exp(� t=2) � exp(� t) ; (14.13)

is easily seento be well behaved, and so for � 1 < Re(z) < 0,

r � (z) =

 
1X

k=0

k2kz

!

f � (z) = 2z(1 � 2z)� 2f � (z) : (14.14)
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Next, to determine f � (z), we note that for Re(z) > 0 we have

f � (z) =
Z 1

0
f (t)tz� 1dt =

Z 1

0
e� t=2tz� 1dt �

Z 1

0
e� t tz� 1dt

= (2z � 1)�( z) : (14.15)

By analytic continuation this relation holds for � 1 < Re(z), and we �nd that for � 1 < Re(z) <

0,

r � (z) = 2z(2z � 1)� 1�( z) : (14.16)

We now apply the inversion formula to obtain

r (t) =
1

2� i

Z � 1=2+ i1

� 1=2� i 1
2z(2z � 1)� 1�( z)t � zdz : (14.17)

The integrand is a meromorphic function in the whole complex plane that drops o� rapidly on

any vertical line. We move the contour of integration to the line Re(z) = 1. The new integral

is O(t � 1), and the residuesat the poles(all on Re(z) = 0) will give the main contribution to

r (t). There are �rst order poles at z = 2� im log2 for m 2 � n f 0g coming from 2z = 1, and

a single secondorder pole at z = 0, since �( z) has a �rst order pole there as well. A short

computation of the residuesgives

r (t) = log2 t �
1X

h= �1

(log 2)� 1�( � 2� ih (log 2)� 1) exp(2� ih log2 t) + O(t � 1) : (14.18)

�

There are other ways to obtain the sameexpansion(14.18) for r (t) (cf. [181]). The periodic

oscillating component in r (t) is common in problems involving recurrencesover powers of 2.

This happens, for example, in studies of register allocation and digital trees [136, 138, 141].

The periodic function is almost always the same as the one in Eq. (14.18), even when the

combinatorics of the problem varies. Technically this is easyto explain, becauseof the closely

related recurrencesleading to similar Mellin transforms for the generating functions.

Mellin transforms are useful in dealing with problems that combine combinatorial and

arithmetic aspects. For example, if S(n) denotesthe total number of 1's in the binary repre-

sentations of 1; 2; : : : ; n � 1, then it was shown by Delangethat

S(n) =
1
2

n log2 n + nu(log2 n) + o(n) as n ! 1 ; (14.19)

whereu(x) is a continuous, nowheredi�eren tiable function that satis�es u(x) = u(x + 1). The

Fourier coe�cien ts of u(x) are known explicitly . Perhapsthe best way to obtain theseresults

is by using Mellin transforms. See[129, 353] for further information and references.
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Mellin transforms are often combined with other techniques. For example, sums of the

form sn =
P

ak
� n

k

�
with oscillating ak lead to generating functions

s(z) =
X

k

akw(z)k : (14.20)

The asymptotic behavior of s(z) near its dominant singularity can sometimesbedeterminedby

applying Mellin transforms. For a detailed explanation of the approach, see[137]. Examples

of the application of this technique can be found in [13, 280].

15. Functional equations, recurrences, and combinations of metho ds

Most asymptotic enumeration results are obtained from combinations of techniques pre-

sented in the previous sections. However, it is only rarely that the basicasymptotic techniques

can be applied directly. This section describes a variety of methods and results that are not

easy to categorize. They use combinations of methods that have beenpresented before, and

sometimesdevelop them further. In most of the examplesthat will bepresented, somerelations

for generating functions are available, but no simple closed-formformulas, and the problem is

to deducewhere the singularities lie and how the generating functions behave in their neigh-

borhoods. Once that task is done, previous methods can be applied to obtain asymptotics of

the coe�cien ts.

15.1. Implicit functions, graphical enumeration, and related topics

Example 15.1. Rooted unlabeled trees. We sketch a proof that Tn , the number of rooted

unlabeledtreeswith n vertices,satis�es the asymptotic relation (1.9). The functional equation

(1.8) holds with T(z) regarded as a formal power series. The �rst step is to show that T(z)

is analytic in a neighborhood of 0. This can be done by working exclusively with Eq. (1.8).

(There is an argument of this type in Section 9.5 of [188].) Another way to prove analyticit y

of T(z) is to use combinatorics to obtain crude upper bounds for Tn . We use a combination

of theseapproaches. If a tree with n � 2 vertices has at least two subtreesat the root, we can

decompose it into two trees, the �rst consisting of one subtree at the root, the other of the

root and the remaining subtrees. This shows that

Tn � Tn� 1 +
n� 1X

k=1

TkTn� k ; n � 2 : (15.1)
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Therefore, if we de�ne a1 = 1, and

an = an� 1 +
n� 1X

k=1

akan� k ; n � 2 ; (15.2)

then we have Tn � an . Now if

A(z) =
1X

n=1

anzn ;

then the de�ning relation (15.2) yields the functional equation

A(z) � z = zA(z) + A(z)2 ; (15.3)

so that

A(z) = (1 � z � (1 � 6z + z2)1=2)=2 : (15.4)

SinceA(z) is analytic in jzj < 3 � 2
p

2 = 0:17157: : : , we have

0 � Tn � an = O(6n ) : (15.5)

It will alsobe convenient to have an exponential lower bound for Tn . Let bn be the number

of rooted unlabeledtrees in which every internal vertex has � 2 subtrees. Then b1 = 1, b2 = 1,

and

bn �
b(n� 1)=2cX

k=1

bkbn� k� 1 for n � 3 : (15.6)

We use this to show that bn � (6=5)n for n � 7. Direct computation establishesthis lower

bound for 7 � n � 14, and for n � 15 weuseinduction and bn � bkbn� k� 1 with k = b(n� 1)=2c.

Since Tn � bn � (6=5)n , T(z) convergesonly in jzj < r for some r with r < 1. Since

T(0) = 0, jT(z)j � C� jzj in jzj � r � � for every � > 0, and therefore

u(z) =
1X

k=2

T(zk )=k (15.7)

is analytic in jzj < r 1=2, and in particular at z = r . Therefore, although we know little about

r and u(z), we seethat T(z) satis�es G(z; T(z)) = T(z), where

G(z; w) = z exp(w + u(z)) (15.8)

is analytic in z and w for all w and for jzj < r 1=2.

We will apply Theorem 10.6. First, though, we need to establish additional properties of

T(z). We have

T(z) exp(� T(z)) = z exp(u(z)) ! r exp(u(r )) as z ! r � ; (15.9)
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and 0 < r exp(u(r )) < 1 . SinceT(z) is positive and increasing for 0 < z < r , T(r ), the limit

of T(z) as z ! r � must exist and be �nite.

We next show that T(r ) = 1. We have

@
@w

G(z; w) = G(z; w) : (15.10)

We know that G(z; T(z)) = T(z) for jzj < r , and in particular for somez arbitrarily closeto

r . If T(r ) 6= 1, then by (15.10)

@
@w

(G(z; w) � w)

�
�
�
�
w= T (z)

6= 0 (15.11)

in a neighborhood of z = r , and therefore T(z) could be continued analytically to a neighbor-

hood of z = r . This is impossible,since r is the radius of convergenceof T(z), and Tn � 0

implies by Theorem10.3that T(z) hasa singularity at z = r . Thereforewemust haveT(r ) = 1,

and Gw(r; T(r )) = 1.

We have now shown that conditions (i) and (ii) of Theorem 10.6 hold with the r of that

theorem the sameas the r we have de�ned and s = T(r ) = 1, � = r 1=2 � r . Condition (iii)

is easy to verify. Finally, the conditions on the coe�cien ts of T(z) and G(z; w) are clearly

satis�ed.

SinceTheorem 10.6applies,we do obtain an asymptotic expansionfor Tn of the form (1.9),

with C given by the formula (10.64). It still remains to determine r and C. No closed-form

expressionsare known for these constants. They are conjectured to be transcendental and

algebraically independent of standard constants such as � and e, but no proof is available.

Numerically, however, they are simple to compute. Note that

Gz(r; 1) = exp(1+ u(r ))(1 + r u0(r ))

= r � 1 + u0(r ) ; (15.12)

Gww (r; 1) = 1 ; (15.13)

so we only needto compute r and u0(r ). Thesequantities can be computed along with u(r ) in

the sameprocedure. The basic numerical procedureis to determine r as the positive solution

to T(r ) = 1. To determine T(x) for any positive x, we take any approximation to the T(x k),

k � 1 (starting initially with xk as an approximation to T(xk ), say), and combine it with (1.8)

(applied with z = xm , m � 1) to obtain improved approximations. This procedure can be

maderigorous. Upper boundsfor r , u(r ), and u0(r ) are especially easy. SinceT1 = 1, T(x) � x
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for 0 < x < 1, and therefore, T(xk) � xk for k � 1. Supposethat we start with a �xed value of

x and derive somelower bounds of the form T(xk ) � u(1)
k � 0 for k � 1. Then the functional

equation (1.8) implies

T(xm ) � u(2)
m = x exp

 
1X

k=1

ukm=k

!

m � 1 : (15.14)

This processcan be iterated several more times, and to keepthe computation manageable,we

can always set u(j )
k = 0 for k � k0. If we ever �nd a lower bound T(x) > 1 by this process,then

we know that r < x, sinceT(r ) = 1. Lower bounds for r are slightly more complicated.
�

We mention here that if Un denotes the number of unlabeled trees, then the ordinary

generating function U(z) =
P

Unzn satis�es

U(z) = T(z) � T(z)2=2 + T(z2)=2 : (15.15)

Using the results from Example 15.1about the analytic behavior of T(z), it can be shown that

Un � C0r � nn� 5=2 ; (15.16)

where r = 0:3383219: : : is the sameas before,while C0 = 0:5349485: : : .

Example 15.2. Leftist trees. Let an denote the number of leftist trees of sizen (i.e., rooted

planar treeswith n leaves,such that in any subtreeS, the leaf nearestto the root of S is in the

right subtree of S [237]). Then a1 = a2 = a3 = 1, a4 = 2, a5 = 4. No explicit formula for an is

known. Even the recurrencesfor the an are complicated, and involve auxiliary sequences.If

f (z) =
1X

n=1

anzn (15.17)

denotesthe ordinary generating function of an , then the combinatorially derived recurrences

for the an show that [224]

f (z) = z +
1
2

f (z)2 +
1
2

1X

m=1

gm (z)2 ; (15.18)

wherethe auxiliary generatingfunctions gm (z) (which enumerate leftist treeswith the leftmost

leaf at distance m � 1 from the root) satisfy

g1(z) = z; g2(z) = zf (z); gm+1 (z) = gm (z)

2

4 f (z) �
m� 1X

j =1

gj (z)

3

5 ; m � 2 ; (15.19)

142



and

f (z) =
1X

m=1

gm (z) : (15.20)

Thesegenerating function relations might not seempromising. If r is the smallest singularity

of f (z), then
P

gm (z)2 is not analytic at r , sowe cannot apply Theorem 10.6in the way it was

used in Example 15.1. However, Kemp [224] has sketched a proof that the analytic behavior

of f (z) is of the sametype as that involved in functions covered by Theorem 10.6, so that it

has a dominant squareroot singularity, and therefore

an = �c n n� 3=2 + O(cnn� 5=2) ; (15.21)

where

� = 0:250363429: : : ; c = 2:749487902: : : : (15.22)

The constants � and c arenot known explicitly in terms of other standard numberssuch as� or

e, but they can be computed e�cien tly. The �c n n� 3=2 term in (15.21) givesan approximation

to an that is accurate to within 4% for n = 10, and within 0.4%for n = 100. Thus asymptotic

methods yield an approximation to an which is satisfactory for many applications. Further

results about leftist trees can be found in [225].
�

15.2. Nonlinear iteration and tree parameters

Example 15.3. Heights of binary trees. A binary tree [DEK] is a rooted tree with unlabeled

nodes,in which each node has0 or 2 successors,and left and right successorsare distinguished.

The size of a binary tree is the number of internal nodes, i.e., the number of nodeswith two

successors. We let Bn denote the number of binary trees of size n, so that B 0 = 1 (by

convention), B1 = 1, B2 = 2, B3 = 5; : : : . Let

B (z) =
1X

n=0

Bnzn : (15.23)

Sinceeach nonempty binary tree consistsof the root and two binary trees (the left and right

subtrees),we obtain the functional equation

B (z) = 1 + zB (z)2 : (15.24)

This implies that

B (z) =
1 � (1 � 4z)1=2

2z
; (15.25)
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so that

Bn =
1

n + 1

�
2n
n

�
; (15.26)

and the Bn are the Catalan numbers. The formula (4.4) (easily derivable from Stirling's

formula (4.1)) shows that

Bn � � � 1=2n� 3=24n as n ! 1 : (15.27)

The height of a binary tree is the number of nodesalong the longest path from the root to

a leaf. The distribution of heights in binary trees of a given sizedoesnot have exact formulas

like that of (15.26) for the number of binary trees of a given size. There are several problems

on heights that have beenanswered only asymptotically, and with varying degreesof success.

The most versatile approach is through recurrenceson generating functions. Let B h;n be the

number of binary trees of sizen and height � h, and let

bh(z) =
1X

n=0

Bh;n zn : (15.28)

Then

b0(z) = 0; b1(z) = 1 ; (15.29)

and an extensionof the argument that led to the relation (15.24) yields

bh+1 (z) = 1 + zbh(z)2 ; h � 0 : (15.30)

The bh(z) are polynomials in z of degree2h� 1 � 1 for h � 1. Unfortunately there is no simple

formula for them like Eq. (15.25) for B (z), and one has to work with the recurrence(15.30)

to obtain many of the results about heights of binary trees. Di�eren t problems involve study

of the recurrencein di�eren t rangesof values of z, and the behavior of the recurrencevaries

drastically.

For any �xed z with jzj � 1=4, bh(z) ! B (z) ash ! 1 . For jzj > 1=4 the behavior of bh(z)

is more complicated, and is a subject of of nonlinear dynamics [91]. (It is closelyrelated to the

study of the Mandelbrot set.) For any real z with z > 1=4, bh(z) ! 1 as h ! 1 . To study

the distribution of the Bh;n as n varies for h �xed, but large, it is necessaryto investigate this

range of rapid growth. It can be shown [133] that for any � 1 and � 2 with 0 < � 1 < � 2 < 1=2,

Bh;n =
exp(2h� 1(� (r ) � r � 0(r ) log r ))

2(h� 1)=2(2� (r 2� 00(r ) + r � 0(r ))) 1=2
(1 + O(2� h=2)) (15.31)
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uniformly as h; n ! 1 with

� 1 < n=2h < � 2 ; (15.32)

where the function � (x) is de�ned for 1=4 < x < 1 by

� (x) = logx +
1X

j =1

2� j log
�

1 +
1

bj (x) � 1

�
; (15.33)

and r is the unique solution in (1=4; 1 ) to

r � 0(r ) = n2� h+1 : (15.34)

The formula (15.31) might appear circular, in that it describes the behavior of the coe�-

cients � h;n of the polynomial bh(z) in terms of the function � (z), which is de�ned by bh(z) and

all the other bj (z). However, the series(15.33) for � (z) convergesrapidly, so that only the �rst

few of the bh(z) matter in obtaining approximate answers, and computation using (15.33) is

e�cien t. The function � (z) is analytic in a region containing the real half-line x > 1=4, so the

behavior of the Bh;n is smooth. It is also known [133] that the behavior of B h;n as a function

of n is Gaussiannear the peak, which occurs at n � 2h� 1 � 0:628968: : : . The distribution of

Bh;n is not Gaussianthroughout the range (15.32), though.

The proof of the estimate (15.31) is derived from the estimate

bh(z) = exp(2h� 1� (z) � logz)(1 + O(exp(� � 2h))) ; (15.35)

valid in a region along the half-axis x > 1=4. The estimates for the coe�cien ts B h;n are

obtained by applying the saddle point method. Becauseof the doubly-exponential rate of

growth of bh(z) for z closeto the real axis, it is easyto show that on the circle of integration,

the region away from the real axis contributes a negligibleamount to B h;n . The relation (15.35)

is su�cien t, together with the smoothnessproperties of � (z), to estimate the contribution of

the integral near the real axis. To prove (15.35), one proceedsas in Example 9.7. However,

greater care is required becauseof the complex variables that occur and the needfor estimates

that are uniform in the variables. The basic recurrence(15.30) shows that

logbh+1 (z) = 2logbh(z) + logz + log
�

1 +
1

zbh(z)2

�

= 2logbh(z) + logz + log
�

1 +
1

bh+1 (z) � 1

�
:

(15.36)
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Iterating this relation, we �nd that for h � 1,

logbh+1 (z) = 2h+1 logb1(z) + (2h � 1) logz +
h� 1X

k=0

2k log
�

1 +
1

bh+1 � k(z) � 1

�

= 2h

8
<

:
logz +

h+1X

j =1

2� j log
�

1 +
1

bj (z) � 1

�
9
=

;
� logz :

(15.37)

The basic equation (15.35) then follows. The technical di�cult y is in establishing rigorous

bounds for the error terms in the approximations. Details are presented in [133].

Most of the binary trees of a given height h are large, with about 0:3 � 2h internal nodes.

This might give the misleading impression that most binary trees are closeto the full binary

tree of a similar size. However, if we consider all binary trees of a given size n, the average

height is on the order of n1=2, so that they are far from the full balanced binary trees. The

methods that are usedto study the averageheight are di�eren t from those usedfor trees of a

�xed height. The basic approach of [133] is to let

Hn =
X

T
j T j = n

ht (T) ;

where the sum is over the binary trees T of size n, and ht( T) is the height of T. Then the

averageheight is just H n=Bn .

The generating function for the H n is

H (z) =
1X

n=0

Hnzn =
X

h� 0

(B (z) � bh(z)) ; (15.38)

and the analysis of [133] proceedsby investigating the behavior of H (z) in a wedge-shaped

region of the type encountered in Section 11.1. If we let

� (z) = (1 � 4z)1=2 ; (15.39)

eh(z) = (B (z) � bh(z))=(2B (z)) ; (15.40)

then the recurrence(15.30) yields

eh+1 (z) = (1 � � (z))eh(z)(1 � eh(z)) ; e0(z) = 1=2 : (15.41)

Extensive analysis of this relation yields an approximation to eh(z) of the form

eh(z) �
� (z)(1 � � (z))h

1 � (1 � � (z))h ; (15.42)

146



valid for j� (z)j su�cien tly small, jArg � (z)j < � =4 + � for a �xed � > 0. (The preciseerror

terms in this approximation are complicated, and are given in [133].) This then leads to an

expansionfor H (z) in a sector jz � 1=4j < � , � =2 � � < jArg(z � 1=4)j < � =2 + � of the form

H (z) = � 2log(1 � 4z) + K + O(j1 � 4zjv) ; (15.43)

wherev is any constant, v < 1=4, and K is a �xed constant. Transfer theoremsof Section11.1

now yield the asymptotic estimate

Hn � 2n� 14n as n ! 1 : (15.44)

When we combine (15.44) with (15.27), we obtain the desired result that the averageheight

of a binary tree of sizen is � 2(� n)1=2 as n ! 1 .

Distribution results about heights of binary trees can be obtained by investigating the

generating functions
X

h� 0

hr (B (z) � bh(z)) : (15.45)

This procedure,carried out in [133] by using modi�cations of the approach sketched above for

the averageheight, obtains asymptotics of the moments of heights. The method mentioned in

Section6.5 then leadsto a determination of the distribution. However, the resulting estimates

do not say much about heights far away from the mean. A morecareful analysisof the behavior

of eh(z) can be used[126] to show that if x = h=(2n1=2), then

Bh;n � Bh� 1;n

Bn
� 2xn � 1=2

1X

m=1

m2(2m2x2 � 3)e� m2 x2
(15.46)

as n; h ! 1 , uniformly for x = o((log n)1=2), x � 1 = o((log n)1=2).

For extremely small and large heights, di�eren t methods are used. It follows from [126]

that
Bh;n � Bh� 1;n

Bn
� exp(� c(h2=n + n=h2)) (15.47)

for a constant c > 0, which shows that extreme heights are infrequent. (The estimatesin [126]

are more precise than (15.47).) Bounds of the above form for small heights are obtained in

[126] by studying the behavior of the bh(z) almost on the boundary betweenconvergenceand

divergence,using the methods of [399]. Let xh be the unique positive root of bh(z) = 2. Note

that B (1=4) = 2, and each coe�cien t of the bh(z) is nondecreasingas h ! 1 . Therefore

x2 > x3 > � � � > 1=4. More e�ort shows [126] that xh is approximately 1=4+ �h � 2 for a certain
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� > 0. This leadsto an upper bound for B h;n by Lemma 8.1. Bounds for treesof large heights

are even easierto obtain, since they only involve upper bounds for the bh(z) � bh� 1(z) inside

the disk of convergencejzj < 1=4.
�

In addition to the methods of [132, 133, 126] that were mentioned above, there are also other

techniquesfor studying heights of trees,such asthoseof [60, 331]. However, there are problems

about obtaining fully rigorous proofs that way. (Seethe remarks in [126] on this topic.) Most

of these methods can be extended to study related problems, such as those of diameters of

trees [357].

The results of Example 15.3can be extendedto other families of trees (cf. [132, 133, 126]).

What matters in obtaining results such as those of the above example are the form of the

recurrences,and especially the positivit y of the coe�cien ts.

Example 15.4. Enumeration of 2,3-trees [300]. Height-balanced trees satisfy di�eren t func-

tional equations than unrestricted trees, which results in di�eren t analytic behavior of the

generating functions, and di�eren t asymptotics. Consider2; 3-trees; i.e., rooted, oriented trees

such that each nonleaf node has either two or three successors,and in which all root-to-leaf

paths have the same length. If an is the number of 2; 3-trees with exactly n leaves, then

a1 = a2 = a3 = a4 = 1, a5 = 2; : : :, and the generating function

f (z) =
1X

n=1

anzn (15.48)

satis�es the functional equation

f (z) = z + f (z2 + z3) : (15.49)

Iteration of the recurrence(15.49) leadsto

f (z) =
1X

k=0

Qk(z) ; (15.50)

where Q0(z) = z, Qk+1 (z) = Qk (z2 + z3), provided the series(15.50) converges. The Taylor

series(15.48) convergesonly in jzj < � � 1, where � = (1 + 51=2)=2 is the \golden ratio." Study

of the polynomials Qk(z) shows that the expansion(15.50) convergesin a region

D = f z : jzj < � � 1 + � ; jArg(z � � � 1)j > � =2 � � g (15.51)
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for certain � , � > 0, and that inside D ,

f (z) = � clog(� � 1 � z) + w(log(� � 1 � z)) + O(j� � 1 � zj) ; (15.52)

where c = [� log(4 � � )] � 1, and w(t) is a nonconstant function, analytic in a strip jIm (t)j < �

for some� > 0, such that w(t + log(4 � � )) = w(t). The expression(15.52) only has to be

proved in a small vicinit y of � � 1 (intersectedwith D , of course). Since

Q(� � 1 + � ) = � � 1 + (4 � � )� + O(j� j2) (15.53)

(so that � � 1 is a repelling �xed point of Q), behavior like that of (15.52) is to be expected,

and with additional work can be rigorously shown to hold. Once the expansion (15.52) is

established,singularity analysis techniques can then be applied to deducethat

an �
� n

n
u(log n) as n ! 1 ; (15.54)

whereu(t) is a positive nonconstant continuous function that satis�es u(t) = u(t + log(4 � � )),

and has mean value (� log(4 � � )) � 1. For details, see[300].

The samemethods can be applied to related families of trees, such as those of B -trees.
�

The results of Example 15.3 and the generalizations mentioned above all apply only to

the standard counting models, in which all trees with a �xed value of somesimple property,

such as size or height, are equally likely. Often, especially in computer scienceapplications,

it is necessaryto study trees produced by some algorithm, and consider all outputs of this

algorithm as equally likely. For example, in sorting it is natural to consider all permutations

of n elements asequally probable. If random permutations are usedto construct binary search

trees, then the distribution of heights will be di�eren t from that in the standard model, and

the two trees of maximal height will have probabilit y of 2=n! of occurring. The averageheight

turns out to be � clogn as n ! 1 , for c = 4:311: : : a certain constant given as a solution to

a transcendental equation. This was shown by Devroye [92] (seealso [93]) by an application

of the theory of branching processes. For a detailed exposition of this method and other

applications to similar problems, see[270]. The basic generating function approach that we

have used in most of this chapter leadsto functional iterations which have not beensolved so

far.
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15.3. Di�eren tial and in tegral equations

Section9.2showed that di�eren tial equationsarisenaturally in analyzing linear recurrences

of �nite order with rational coe�cien ts. There are other settings when they arise even more

naturally. As is true of nonlinear iterations in the previoussectionand the functional equations

of the next one, di�eren tial and integral equations are typically used to extract information

about singularities of generating functions. We have already seenin Example 9.3 and other

casesthat di�eren tial equationscan yield an explicit formula for the generating function, from

which it is easy to deducewhat the singularities are and how they a�ect the asymptotics of

the coe�cien ts. Most di�eren tial equations do not have a closed-formsolution. However, it

is often still possibleto derive the necessaryinformation about analytic behavior even when

there is no explicit formula for the solution. We demonstrate this with a brief sketch of a

recent analysis of this type [131]. Other examplescan be found in [270].

Example 15.5. Search costs in quadtrees [131]. Quadtrees are a well-known data structure

for multidimensional data storage[168]. Considera d-dimensionaldata space,and let n points

be drawn independently from the uniform distribution in the d-dimensional unit cube. We

take d �xed and n ! 1 . Supposethat the �rst n � 1 points have already been inserted into

the quadtree, and let D n be the search cost (de�ned asthe number of internal nodestraversed)

in inserting the n-th item. The result of Flajolet and La�orgue [131] is that D n convergesin

distribution to a Gaussian law when n ! 1 . If � n and � n denote the mean and standard

deviation of Dn , respectively, then

� n � 2d� 1 logn; � n � d� 1(2 logn)1=2 as n ! 1 ; (15.55)

and for all real � < � , as n ! 1 ,

Pr (�� N < Dn � � n < � � n ) � (2� ) � 1=2
Z �

�
exp(� x2=2)dx : (15.56)

The results for � n and � n had beenknown before, and required much simpler techniques

for their solution, see[270]. It was only necessaryto study asymptotics of ordinary di�eren tial

equations in a single variable. To obtain distribution results for search costs, it was necessary

to study bivariate generating functions. The basic relation is

X

k

Pr f Dn = kguk = (2du � 1)� 1(� n (u) � � n� 1(u)) ; (15.57)
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where the polynomials � n (u) have the bivariate generating function

�( u; z) =
1X

n=0

� n (u)zn : (15.58)

which satis�es the integral equation

�( u; z) = 1 + 2du
Z z

0

dx1

x1(1 � x1)

Z x1

0

dx2

x2(1 � x2)

Z x2

0

dx3

x3(1 � x3)
� � �

Z xd� 2

0

dxd� 1

xd� 1(1 � xd� 1)

Z xd� 1

0
�( u; xd)

dxd

1 � xd
:

(15.59)

This integral equation can easily be reduced to an equivalent di�eren tial equation, which is

what is usedin the analysis. For d = 1 there is an explicit solution

�( u; z) = (1 � z) � 2u ; (15.60)

which shows that Dn canbeexpressedin terms of Stirling numbers. This is not surprising, since

for d = 1 the quadtree reducesto the binary search tree, for which these results were known

before. For d = 2, �( u; z) can be expressedin terms of standard hypergeometric functions.

However, for d � 3 there do not seemto be any explicit representations of �( u; z). Flajolet

and La�orgue use a singularity perturbation method to study the behavior of �( u; z). They

start out with the di�eren tial systemderivable in standard way from the di�eren tial equation

associated to (15.59) (i.e., a systemof d linear di�eren tial equations in z with coe�cien ts that

are rational in z). Sinceonly valuesof u closeto 1 are important for the distribution results,

they regard u as a perturbation parameter of this system. For every �xed u, they determine

the dominant singularity of the linear di�eren tial system in the variable z, using the indicial

equations that are standard in this setting. It turns out that the dominant singularity is a

regular one at z = 1, and

�( u; z) � c(u)(1 � z) � 2u1=d
; (15.61)

at least for z and u close to 1. This behavior of �( u; z) is then used (in its more precise

form, with explicit error terms) to deduce,through the transfer theorem methods explained in

Section 11, the behavior of � n (u):

� n (u) � c(u)�(2 u1=d)� 1n2u1=d � 1 : (15.62)

This form, again in a more preciseformulation, is then used to deducethat the behavior of

Dn is normal near its peak, and that the tails of the distribution are small.
�

151



15.4. Functional equations

One area that needsand undoubtedly will receive much more attention is that of com-

plicated nonlinear relations for generating functions. Even in a single variable our knowledge

is limited. Someof the work of Mahler [267, 268, 269], devoted to functions f (z) satisfying

equationsof the form p(f (z); f (zg)) = 0, wherep(u; v) is a polynomial, shows that it is possible

to extract information about the analytic behavior of f (z) near its singularities. This can then

be usedto study the coe�cien ts.

Sometimesseeminglycomplicated functional equationsdo have easysolutions.

Example 15.6. A pebblinggame. In a certain pebbling game[76], minimal con�gurations of

sizen are counted by Tn (0), whereTn (x) is a polynomial that satis�es Tn (x) = 0 for 0 � n � 2,

T3(x) = 4x + 2x2, and for n � 3,

Tn+1 (x) = x � 1(1 + x)2Tn (x) � x � 1Tn (0) + xT 0
n (0) + nx n : (15.63)

The coe�cien ts of Tn (x) are � 0, and

Tn+1 (1) � 4Tn (1) + Tn (1) + 1 � 6Tn (1) ; (15.64)

so clearly each coe�cien t of Tn (x) is � 6n , say. Let

f (x; y) =
1X

n=0

Tn (x)yn : (15.65)

The bound on Tn (1) shows that f (x; y) is analytic in x and y for jxj < 1, jyj < 1=6, say, with

x and y complex. Then the recurrence(15.63) leadsto the functional equation

(x � y(1 + x)2)f (x; y) = 2x2(2 + x)y3 + x2y2(1 � 2x2y2)(1 � xy) � 2

� yf (0; y) + x2yf x (0; y) ;
(15.66)

where f x (x; y) is the partial derivative of f (x; y) with respect to x. We now di�eren tiate the

equation (15.66) with respect to x and set x = 0. We �nd that

(1 � 2y)f (0; y) = yf x (0; y) ; (15.67)

and therefore

(x � y(1 + x)2)f (x; y) = 2x2(2 + x)y3 + x2y2(1 � 2x2y2)(1 � xy) � 2

� [y + (2y � 1)x2]f (0; y) :
(15.68)
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When

x = y(1 + x)2 ; (15.69)

the left sideof Eq. (15.68) vanishes,and Eq. (15.68) yields the value of f (0; y). Now Eq. (15.69)

holds for

x = (2y) � 1(1 � 2y � (1 � 4y)1=2) :

To ensurethat (15.69) holds for x and y both in a neighborhood of 0, we set

g(y) = (2y) � 1(1 � 2y � (1 � 4y)1=2) : (15.70)

Then g(y) = y(1 + g(y))2, g(y) is analytic for jyj small, and so substituting x = g(y) in

Eq. (15.68) yields

[y + (2y � 1)g(y)2]f (0; y) = 2g(y)2(2 + g(y))y3

+ y2g(y)2(1 � 2y2g(y)2)(1 � yg(y)) � 2 :
(15.71)

Thus f (0; y) is an algebraic function of y. Eq. (15.71) was proved only for jyj small, but it can

now be usedto continue f (0; y) analytically to the entire complex plane with the exception of

a slit from 1/4 to in�nit y along the positive real axis. There is a �rst order pole at y = 1=r,

with r = 4:1478990357: : : the positive root of

r 3 � 7r 2 + 14r � 9 = 0 ; (15.72)

and no other singularities in jyj < 1=4. Hencewe obtain

Tn (0) = [yn ]f (0; y) = crn + O((4 + � )n ) (15.73)

as n ! 1 , for every � > 0, where c is an algebraic number that can be given explicitly in

terms of r .

The value of f (0; y) is determined by Eq. (15.71), and together with Eq. (15.68) gives

f (x; y) explicitly as an algebraic function of x and y. The resulting expressioncan then be

usedto determine other coe�cien ts of the polynomials Tn (x).
�

Example 15.6waseasyto present becauseof the specialstructure of the functional equation.

The main trick was to work on the variety de�ned by Eq. (15.69), on which the main term

vanishes,so that one can analyze the remaining terms. The samebasic approach also works
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in more complicated situations. The analysis of certain double queue systemsleads to two-

variable generating functions for the equilibrium probabilities that satisfy equations such as

the following one, obtained by specializing the problem treated in [145]:

Q(z; w)f (z; w) = 2z(w � 1)f (z; 0) + 3w(z � 1)f (0; w) ; (15.74)

valid for complex z and w with jzj; jwj � 1, where

Q(z; w) = 6zw � 3w � 2z � z2w2 : (15.75)

The generating function f (z; w) is analytic in z and w. What makes this problem tractable

is that on the algebraic curve in two-dimensional complex space de�ned by Q(z; w) = 0,

the quantit y on the right-hand side of Eq. (15.74) has to vanish, and this imposesstringent

conditions on f (z; 0) and f (0; w), which leadsto their determination. Oncef (z; 0) and f (0; w)

are found, f (z; w) is de�ned by Eq. (15.74), and one can determine the asymptotics of its

coe�cien ts. Treatment of functional equations of the type (15.74) was started by Malyshev

[274]. For recent work and referencesto other papersin this area,see[144, 145]. This approach

hassofar beensuccessfulonly for two-variable problemswith Q(z; w) of low degree.Moreover,

the mathematics of the solution is far deeper than that usedin Example 15.6.

16. Other metho ds

This section mentions a variety of methods that are not covered elsewherein this chapter

but are useful in asymptotic enumeration. Most are discussedbriey , since they belong to

large and well developed �elds that are beyond the scope of this survey.

16.1. Permanen ts

Van der Waerden'sconjecture, proved by Falikman [113] and Egorychev [98], can be used

to obtain lower boundsfor certain enumeration problems. It states that if A is an n � n matrix

that is doubly stochastic (entries � 0, all row and column sumsequal to 1) then the permanent

of A satis�es per(A) � n � nn!. (For most asymptotic problems it is su�cien t to rely on an

earlier result of T. Bang [26] and S. Friedland [148] which givesa lower bound of per(A) � e� n

that is worseonly by a factor of n1=2.) There is also an upper bound for permanents. Minc's

conjecture, proved �rst by Bragman and in a simpler way by Schrijv er [340] states that an
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n � n matrix A with 0; 1 entries and row sumsr 1; : : : ; r n has

per(A) �
nY

j =1

(r j !)1=r j :

We now show how theseresults can be applied.

Example 16.1. Latin rectangles. Supposewe are given a k � n Latin rectangle,k < n, sothat

the symbols are 1; 2; : : : ; n, and no symbol appearstwice in any row or column. In how many

ways can we extend this rectangle to a (k + 1) � n Latin rectangle? To get a lower bound, form

an n � n matrix B = (bij ), with bij = 1 if i doesnot appear in column j of the rectangle, and

bij = 0 otherwise. Then the row and column sumsof B are all equal to n � k, so (n � k) � 1B

is doubly stochastic. Therefore per(B ), which equalsthe desirednumber of ways of extending

the rectangle, is � (n � k)nn� nn! by van der Waerden's conjecture. By Minc's conjecture,

we also have per(B ) � ((n � k)!) n=(n� k) . If we let L (k; n) denote the number of k � n Latin

rectangles,then L(1; n) = n!, and the bounds derived above for the number of ways to extend

any given rectangle give

L(k; n) �
k� 1Y

j =0

f (n � j )n n� nn!g = n� kn (n!)2n ((n � k)!) � n ; (16.1)

L (k; n) �
k� 1Y

j =0

f (n � j )!gn=(n� j ) : (16.2)

Sharper estimatesfor L (k; n) have beenobtained through more powerful and complicated

methods by Godsil and McKay [163]. They obtain an asymptotic relation for L (k; n) that is

valid for k = o(n6=7), and improved estimates for other k. (It is known that for any �xed k,

the sequenceL(k; n) satis�es a linear recurrencewith polynomial coe�cien ts [160].)
�

There are problems in which inequalities for permanents give the correct asymptotic esti-

mates. One such example is presented in [318] which discussesa variation on the \probl �eme

desrencontres."

16.2. Probabilit y theory and branc hing pro cess metho ds

Many combinatorial enumeration results can be phrased in probabilistic language, and

a few probabilistic techniques have appeared in the preceding sections. However, the stress

throughout this chapter hasbeenon elementary and generatingfunction approachesto asymp-

totic enumeration problems. Probabilistic methods provide another way to approach many of
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theseproblems. This has beenappreciatedmore in the former Soviet Union than in the West,

as can be seenin the books [240, 241, 338].

The last few years have seena great increasein the applications of probabilistic methods

to combinatorial enumeration and analysis of algorithms. Many powerful tools, such as mar-

tingales, branching processes,and Brownian motion asymptotics have been brought to bear

on this topic. General introductions and referencesto these topics can be found in Chapter ?

as well as in [5, 11, 20, 21, 27, 92, 93, 108, 258, 260, 262, 270].

16.3. Statistical physics

There is an extensive literature in mathematical physics concernedwith asymptotic enu-

meration, especially in Ising models of statistical mechanics and percolation methods. Many

of the methods are related to combinatorial enumeration. For an intro duction to them, see

Chapter ? or the books [30, 226].

16.4. Classical applied mathematics

There are many techniques, such as the ray method and the WKB method, that have

been developed for solving di�eren tial and integral equations in what we might call classical

applied mathematics. An introduction to them can be found in [31]. They are powerful, but

they have the disadvantage that most of them are not rigorous, since they make assumptions

about the form or the stabilit y of the solution that are likely to be true, but have not been

established. Therefore we have not presented such methods in this survey. For someexamples

of the nonrigorous applications of these methods to asymptotic enumeration, seethe papers

of Knessl and Keller [231, 232]. It is likely that with additional work, more of thesemethods

will be rigorized, which will increasetheir utilit y.

17. Algorithmic and automated asymptotics

Deriving asymptotic expansionsoften involvesa substantial amount of tedious work. How-

ever, much of it can now be done by computer symbolic algebra systemssuch as Macsyma,

Maple, and Mathematica. There are many widely available packagesthat can compute Taylor

seriesexpansions.Several canalsocomputecertain typesof limits, and somehave implemented

Gosper's inde�nite hypergeometricsummation algorithm [171]. They easethe burden of car-

rying out the necessarybut uninteresting parts of asymptotic analysis. They are especially
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useful in the exploratory part of research, when looking for identities, formulating conjectures,

or searching for counterexamples.

Much more powerful systemsare being developed. Given a sequence,there are algorithms

that attempt to guessthe generating function of that sequence[46, 162]. It is possible to

go much further than that. Many of the asymptotic results in this chapter are stated in

explicit forms. As an example,the asymptotics of a linear recurrenceis derived easily from the

characteristic polynomial and the initial conditions, as was shown in Section 9.1. One needs

to compute the roots of the characteristic polynomial, and that is precisely what computer

systemsdo well. It is therefore possible to write programs that will derive the asymptotics

behavior from the speci�cation of the recurrence. More generally, onecan analyzeasymptotics

of a much greater variety of generating functions. Flajolet, Salvy, and Zimmermann [124, 139]

have written a powerful program for just such computations. Their systemusesMaple to carry

out most of the basic analytic computations. It contains a remarkable amount of automated

expertise in recognizing generating functions, computing their singularities, and extracting

asymptotic information about their coe�cien ts. For example, if

f (z) = � log[1 + z log(1 � z2)] + (1 � z3)� 5 + exp(zez) ; (17.1)

then the Flajolet-Salvy-Zimmermann system can determine that the singularity of f (z) that

is closestto the origin is at z = � , where � is the smallest positive root of

1 = � � log(1 � � 2) ; (17.2)

and then can deducethat

[zn ]f (z) = n � 1� � n + O(n� 2� � n ) as n ! 1 : (17.3)

The Flajolet-Salvy-Zimmermann systemis even more powerful than indicated above, since

it does not always require an explicit presentation of the generating function. Instead, often

it can accept a formal description of an algorithm or data structure, derive the generating

function from that, and then obtain the desiredasymptotic information. For example, it can

show that the averagepath length in a generalplanar tree with n nodesis

1
2

� 1=2n3=2 +
1
2

n + O(n1=2) as n ! 1 : (17.4)

What makes systemssuch as that of [139] possibleis the phenomenon,already mentioned in

Section 6, that many common combinatorial operations on sets,such as unions and permuta-

tions, correspond in natural ways to operations on generating functions.

157



Further work extending that of [139] is undoubtedly going to be carried out. There are

somebasic limitations coming from the undecidability of even simple problems of arithmetic,

which are already known to imposea limitation on the theories of inde�nite integration. If we

approximate a sum by an integral Z b

a
x � � dx ; (17.5)

then as a next step we need to decide whether � = 1 or not, since if � = 1, this integral

is log(b=a) (assuming 0 < a < b < 1 ), whereas if � 6= 1, it is (b1� � � a1� � )=(1 � � ).

Deciding whether � = 1 or not, when � is given implicitly or by complicated expressions,can

be arbitrarily complicated. However, such di�culties are infrequent, and so one can expect

substantial increasein the applicabilit y of automated systemsfor asymptotic analysis.

The questionof decidability of asymptotic problemsand genericpropertiesof combinatorial

structures that canbespeci�ed in various logical frameworks hasbeentreated by Compton in a

seriesof papers[77, 78, 79]. There is the beautiful recent theory of 0-1 laws for random graphs,

which says that certain (so-called�rst-order) properties are true with probabilit y either 0 or 1

for random graphs. Compton proves that certain classesof asymptotic theories also have 0-1

laws, and describes general properties that have to hold for almost all random structures in

certain classes.His analysis usesTauberian theoremsand Hayman admissibility to determine

asymptotic behavior. For somefurther developments in this area, seealso [35].

18. Guide to the literature

This sectionpresents additional sourcesof information on asymptotic methods in enumer-

ation and analysis of algorithms. It is not meant to be exhaustive, but is intended to be used

as a guide in searching for methods and results. Many referenceshave beenpresented already

throughout this chapter. Here we describe only books that cover large areasrelevant to our

subject.

An excellent introduction to the basic asymptotic techniques is given in [175]. That book,

intended to be an undergraduate textb ook, is much more detailed than this chapter, and

assumesno knowledge of asymptotics, but covers fewer methods. A lesscomprehensive and

less elementary book that is oriented towards analysis of algorithms, but provides a good

introduction to many asymptotic enumeration methods, is [177].

The best sourcefrom which to learn the basicsof more advancedmethods, including many

of those covered in this chapter, is de Bruijn's book [63]. It was not intended particularly
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for those interested in asymptotic enumeration, but almost all the methods in it are relevant.

De Bruijn's volume is extremely clear, and provides insight into why and how various methods

work.

General presentations of asymptotic methods, although usually with emphasison applica-

tions to applied mathematics (di�eren tial equations,special functions, and soon) are available

in the books [54, 100, 114, 115, 315, 344, 354, 372, 382, 385]. Integral transforms are treated

extensively in [89, 95, 116, 299, 365]. Books that deal with asymptotics arising in the analysis

of algorithms or probabilistic methods include [11, 55, 108, 209, 223, 240, 241, 270, 338].

Nice general introductions to combinatorial identities, generating functions, and related

topics are presented in [81, 351, 377]. Further material can be found in

[13, 88, 99, 173, 188, 335, 336].

A very useful book is the compilation [168]. While it doesnot discussmethods in too much

detail, it lists a wide variety of enumerative results on algorithms and data structures, and

gives referenceswhere the proofs can be found.

Last, but not least in our listing, is Knuth's three-volume work [235, 236, 237]. While it

is devoted primarily to analysisof algorithms, it contains an enormousamount of material on

combinatorics, especially asymptotic enumeration.
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