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1. Introduction

Asymptotic enumeration methods provide quantitative information about the rate of

growth of functions that count combinatorial objects. Typical questions that these meth-

ods answer are: (1) How does the number of partitions of a set of n elements grow with n?

(2) How does this number compare to the number of permutations of that set?

There do exist enumeration results that leave nothing to be desired. For example, if an

denotes the number of subsets of a set with n elements, then we trivially have an = 2
n. This

answer is compact and explicit, and yields information about all aspects of this function. For

example, congruence properties of an reduce to well-studied number theory questions. (This

is not to say that all such questions have been answered, though!) The formula an = 2
n also

provides complete quantitative information about an. It is easy to compute for any value

of n, its behavior is about as simple as possible, and it holds uniformly for all n. However,

such examples are extremely rare. Usually, even when there is a formula for the function we

are interested in, it is a complicated one, involving summations or recurrences. The purpose

of asymptotic methods is to provide simple explicit formulas that describe the behavior of a

sequence for large values of indices. There is no satisfactory definition of what is meant by

“simple” or by “explicit.” However, we can illustrate this concept by some examples. The

number of permutations of n letters is given by bn = n!. This is a compact notation, but only

in the sense that factorials are so widely used that they have a special symbol. The symbol n!

stands for n · (n−1) · (n−2) · . . . ·2 ·1, and it is the latter formula that has to be used to answer
questions about the number of permutations. If one is after arithmetic information, such as the

highest power of 7, say, that divides n!, one can obtain it from the product formula, but even

then some work has to be done. For most quantitative purposes, however, n! = n·(n−1)·. . .·2·1
is inadequate. Since this formula is a product of n terms, most of them large, it is clear that

n! grows rapidly, but it is not obvious just how rapidly. Since all but the last term are ≥ 2, we
have n! ≥ 2n−1, and since all but the last two terms are ≥ 3, we have n! ≥ 3n−2, and so on.
On the other hand, each term is ≤ n, so n! ≤ nn. Better bounds can clearly be obtained with



greater care. The question such estimates raise is just how far can one go? Can one obtain an

estimate for n! that is easy to understand, compute, and manipulate? One answer provided by

asymptotic methods is Stirling’s formula: n! is asymptotic to (2πn)1/2(n/e)n as n→∞, which
means that the limit as n → ∞ of n!(2πn)−1/2(n/e)−n exists and equals 1. This formula is
concise and gives a useful representation of the growth rate of n!. It shows, for example, that

for n large, the number of permutations on n letters is considerably larger than the number of

subsets of a set with b 12n log nc elements.
Another simple example of an asymptotic estimate occurs in the “problème des rencontres”

[81]. The number dn of derangements of n letters, which is the number of ways of handing

back hats to n people so that no person receives his or her own hat, is given by

dn =
n
∑

k=0

(−1)kn!
k!
. (1.1)

This is a nice formula, yet to compute dn exactly with it requires substantial effort, since the

summands are large, and at first glance it is not obvious how large dn is. However, we can

obtain from (1.1) the asymptotic estimate

dn
n!
→ e−1 as n→∞ . (1.2)

To prove (1.2), we factor out n! from the sum in (1.1). We are then left with a sum of rapidly

decreasing terms that make up the initial segment of the series

e−1 =

∞
∑

k=0

(−1)k
k!

,

and (1.2) follows easily. It can even be shown that dn is the nearest integer to e
−1n! for all

n ≥ 1, see [81]. The estimate (1.2) does not allow us to compute dn, but combined with the
estimate for n! cited above it shows that dn grows like (2πn)

1/2nne−n−1. Further, (1.2) shows

that the fraction of all ways of handing out hats that results in every person receiving somebody

else’s hat is approximately 1/e. Results of this type are often exactly what is desired.

Asymptotic estimates usually provide information only about the behavior of a function

as the arguments get large. For example, the estimate for n! cited above says only that the

ratio of n! to (2πn)1/2(n/e)n tends to 1 as n gets large, and says nothing about the behavior

of this ratio for any specific value of n. There are much sharper and more precise bounds

for n!, and they will be presented in Section 3. However, it is generally true that the simpler

the estimate, the weaker and less precise it is. There seems to be an unavoidable tradeoff
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between conciseness and precision. Just about the simplest formula that exactly expresses n!

is n · (n− 1) · . . . · 2 · 1. (We have to be careful, since there is no generally accepted definition
of simplicity, and in many situations it is better to use other exact formulas for n!, such as the

integral formula n! =
∫∞
0 t

ne−tdt for the Γ-function. There are also methods for evaluating

n! that are somewhat more efficient than the straightforward evaluation of the product.) Any

other formula is likely to involve some loss of accuracy as a penalty for simplicity.

Sometimes, the tradeoffs are clear. Let p(n) denote the number of partitions of an integer

n. The Rademacher convergent series representation [13, 23] for p(n) is valid for any n ≥ 1:

p(n) = π−12−1/2
∞
∑

m=1

Am(n)m
1/2 d

dv
(λ−1v sinh(Cm

−1λv))
∣

∣

∣

v=n
, (1.3)

where

C = π(2/3)1/2, λv = (v − 1/24)1/2 , (1.4)

and the Am(n) satisfy

A1(n) = 1, A2(n) = (−1)n for all n ≥ 1 ,

|Am(n)| ≤ m, for all m,n ≥ 1 ,

and are easy to compute. Remarkably enough, the series (1.3) does yield the exact integer

value of p(n) for every n, and it converges rapidly. (Although this is not directly relevant, we

note that using this series to compute p(n) gives an algorithm for calculating p(n) that is close

to optimal, since the number of bit operations is not much larger than the number of bits of

p(n).) By taking more and more terms, we obtain better and better approximations. The first

term in (1.3) shows that

p(n) = π−12−1/2
d

dv
(λ−1v sinh(Cλv))

∣

∣

∣

v=n
+O(n−1 exp(Cn1/2/2)) , (1.5)

and if we don’t like working with hyperbolic sines, we can derive from (1.5) the simpler (but

less precise) estimate

p(n) =
1 +O(n−1/2)

4 · 31/2n eCn
1/2
, (1.6)

valid for all n ≥ 1. Unfortunately, exact and rapidly convergent series such as (1.3) occur
infrequently in enumeration, and in general we have to be content with poorer approximations.

The advantage of allowing parameters to grow large is that in surprisingly many cases, even

when there do exist explicit expressions for the functions we are interested in, this procedure

does yield simple asymptotic approximations, when the influence of less important factors falls
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off. The resulting estimates can then be used to compare numbers of different kinds of objects,

decide what the most common objects in some category are, and so on. Even in situations

where bounds valid for all parameter values are needed, asymptotic estimates can be used to

suggest what form those bounds should take. Usually the error terms in asymptotic estimates

can be made explicit (although good bounds often require substantial work), and can be used

together with computations of small values to obtain universal estimates. It is common that

already for n not much larger than 10 (where n is the basic parameter) the asymptotic estimate

is accurate to within a few percent, and for n ≥ 100 it is accurate to within a fraction of a
percent, even though known proofs do not guarantee results as good as this. Therefore the

value of asymptotic estimates is much greater than if they just provided a picture of what

happens at infinity.

Under some conditions, asymptotic results can be used to prove completely uniform results.

For example, if there were any planar maps that were not four-colorable, then almost every large

planar map would not be four-colorable, as it would contain one of those small pathological

maps. Therefore if it could be proved that most large planar maps are four-colorable, we would

obtain a new proof of the four-color theorem that would be more satisfactory to many people

than the original one of Haken and Appel. Unfortunately, while this is an attractive idea, no

proof of the required asymptotic estimate for the normal chromatic number of planar maps

has been found so far.

Asymptotic estimates are often useful in deciding whether an identity is true. If the growth

rates of the two functions that are supposed to be equal are different, then the coincidence of

initial values must be an accident. There are also more ingenious ways, such as that of Exam-

ple 13.1, for deducing nonexistence of identities in a wide class from asymptotic information.

Sometimes asymptotics is used in a positive way, to suggest what identities might hold.

Simplicity is an important advantage of asymptotic estimates. They are even more useful

when no explicit formulas for the function being studied are available, and one has to deal

with indirect relations. For example, let Tn be the number of rooted unlabeled trees with n

vertices, so that T0 = 0, T1 = T2 = 1, T3 = 2, T4 = 4, . . . . No explicit formula for the Tn is

known. However, if

T (z) =
∞
∑

n=1

Tnz
n (1.7)
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is the ordinary generating function of Tn, then Cayley and Pólya showed that

T (z) = z exp

(

∞
∑

k=1

T (zk)/k

)

. (1.8)

This functional equation can be derived using the general Pólya-Redfield enumeration method,

an approach that is sketched in Section 15. Example 15.1 shows how analytic methods can be

used to prove, starting with Eq. (1.8), that

Tn ∼ Cr−nn−3/2 as n→∞ , (1.9)

where

C = 0.4399237 . . . , r = 0.3383219 . . . , (1.10)

are constants that can be computed efficiently to high precision. For n = 20, Tn = 12, 826, 228,

whereas Cr−2020−3/2 = 1.274 . . .× 107, so asymptotic formula (1.9) is accurate to better than
1%. Thus this approximation is good enough for many applications. It can also be improved

easily by adding lower order terms.

Asymptotic enumeration methods are a subfield of the huge area of general asymptotic anal-

ysis. The functions that occur in enumeration tend to be of restricted form (often nonnegative

and of regular growth, for example) and therefore the repertoire of tools that are commonly

used is much smaller than in general asymptotics. This makes it possible to attempt a concise

survey of the most important techniques in asymptotic enumeration. The task is not easy,

though, as there has been tremendous growth in recent years in combinatorial enumeration

and the closely related field of asymptotic analysis of algorithms, and the sophistication of the

tools that are commonly used has been increasing rapidly.

In spite of its importance and growth, asymptotic enumeration has seldom been presented

in combinatorial literature at a level other than that of a research paper. There are several

books that treat it [43, 81, 175, 177, 235, 236, 237, 377], but usually only briefly. The only

comprehensive survey that is available is the excellent and widely quoted paper of Bender [33].

Unfortunately it is somewhat dated. Furthermore, the last two decades have also witnessed

a flowering of asymptotic analysis of algorithms, which was pioneered and popularized by

Knuth. Combinatorial enumeration and analysis of algorithms are closely related, in that both

deal with counting of particular structures. The methods used in the two fields are almost

the same, and there has been extensive cross-fertilization between them. The literature on

theoretical computer science, especially on average case analysis of algorithms, can therefore
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be used fruitfully in asymptotic enumeration. One notable survey paper in that area is that

of Vitter and Flajolet [371]. There are also presentations of relevant methods in the books

[177, 209, 235, 236, 237, 223]. Section 18 is a guide to the literature on these topics.

The aim of this chapter is to survey the most important tools of asymptotic enumeration,

point out references for the results and methods that are discussed, and to mention additional

relevant papers that have other techniques that might be useful. It is intended for a reader

who has already used combinatorial, algebraic, or probabilistic methods to reduce a problem to

that of estimating sums, coefficients of a generating function, integrals, or terms in a sequence

satisfying some recursion. How such a reduction is to be accomplished will be dealt with

sparingly, since it is a large subject that is already covered extensively in other chapters,

especially [?]. We will usually assume that this task has been done, and will discuss only the

derivation of asymptotic estimates.

The emphasis in this chapter is on elementary and analytic approaches to asymptotic

problems, relying extensively on explicit generating functions. There are other ways to solve

some of the problems we will discuss, and probabilistic methods in particular can often be

used instead. We will only make some general remarks and give references to this approach in

Section 16.

The only methods that will be discussed in detail are fully rigorous ones. There are also

methods, mostly from classical applied mathematics (cf. [31]) that are powerful and often give

estimates when other techniques fail. However, we do not treat them extensively (aside from

some remarks in Section 16.4) since many of them are not rigorous.

Few proofs are included in this chapter. The stress is on presentation of basic methods, with

discussions of their range of applicability, statements of general estimates derivable from them,

and examples of their applications. There is some repetitiveness in that several functions,

such as n!, are estimated several times. The purpose of doing this is to show how different

methods compare in their power and ease of use. No attempt is made to present derivations

starting from first principles. Some of the examples are given with full details of the asymptotic

analysis, to explain the basic methods. Other examples are barely more than statements of

results with a brief explanation of the method of proof and a reference to where the proof can

be found. The reader might go through this chapter, possibly in a random order, looking for

methods that might be applicable to a specific problem, or can look for a category of methods

that might fit the problem and start by looking at the corresponding sections.
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There are no prerequisites for reading most of this chapter, other than acquaintance with

advanced calculus and elementary asymptotic estimates. Many of the results are presented

so that they can be used in a cookbook fashion. However, many of the applications require

knowledge of complex variables.

Section 2 presents the basic notation used throughout the chapter. It is largely the standard

one used in the literature, but it seemed worthwhile summarizing it in one place. Section 3 is

devoted to a brief discussion of identities and related topics. While asymptotic methods are

useful and powerful, they can often be either augmented or entirely replaced by identities, and

this section points out how to use them.

Section 4 summarizes the most important and most useful estimates in combinatorial enu-

meration, namely those related to factorials and binomial coefficients. Section 5 is the first

one to feature an in-depth discussion of methods. It deals with estimates of sums in terms

of integrals, summation formulas, and the inclusion-exclusion principle. However, it does not

present the most powerful tool for estimation of sums, namely generating functions. These are

introduced in Section 6, which presents some of the basic properties of, and tools for dealing

with generating functions. While most generating functions that are used in combinatorial

enumeration converge at least in some neighborhood of the origin, there are also many non-

convergent ones. Section 7 discusses some estimates that apply to all formal series, but are

especially useful for nonconvergent ones.

Section 8 is devoted to estimates for convergent power series that do not use complex

variables. While not as powerful as the analytic methods presented later, these techniques are

easy to use and suffice in many applications.

Section 9 presents a variety of techniques for determining the asymptotics of recurrence

relations. Many of these methods are based on generating functions, and some use analytic

methods that are discussed later in the chapter. They are presented at this point because they

are basic to combinatorial enumeration, and they also provide an excellent illustration of the

power of generating functions.

Section 10 is an introduction to the analytic methods for estimating generating functions.

Many of the results mentioned here are common to all introductory complex analysis courses.

However, there are also many, especially those in Sections 10.4 and 10.5, are not as well known,

and are of special value in asymptotics.

Sections 11 and 12 present the main methods used in estimation of coefficients of analytic
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functions in a single variable. The basic principle is that the singularities of the generating

function that are closest to the origin determine the growth rate of the coefficients. If the func-

tion does not grow too fast as it approaches those singularities, the methods of Section 11 are

usually applicable, while if the growth rate is high, methods of Section 12 are more appropriate.

Sections 13–15 discuss extensions of the basic methods of Sections 10–12 to multivariate

generating functions, integral transforms, and problems that involve a combination of methods.

Section 16 is a collection of miscellaneous methods and results that did not easily fit into any

other section, yet are important in asymptotic enumeration. Section 17 discusses the extent

to which computer algebra systems can be used to derive asymptotic information. Finally,

Section 18 is a guide to further reading on asymptotics, since this chapter does not provide

complete coverage of the topic.

2. Notation

The symbols O, o, and ∼ will have the usual meaning throughout this paper:

f(z) = O(g(z)) as z → w means f(z)/g(z) is bounded as z → w ;

f(z) = o(g(z)) as z → w means f(z)/g(z)→ 0 as z → w ;

f(z) ∼ g(z) as z → w means f(z)/g(z)→ 1 as z → w .

When an asymptotic relation is stated for an integer variable n instead of z, it will implicitly

be taken to apply only for integer values of n → w, and then we will always have w = ∞ or
w = −∞. An introduction to the use of this notation can be found in [175]. Only a slight
acquaintance with it is assumed, enough to see that (1 + O(n−1/3))n = exp(O(n2/3)) and

log(n+ n1/2) = log(n) + n−1/2 − (2n)−1 +O(n−3/2).
The notation x→ w− for real w means that x tends to w only through values x < w.
Some asymptotic estimates refer to uniform convergence. As an example, the statement

that f(z) ∼ (1 − z)−2 as z → 1 uniformly in |Arg(1 − z)| < 2π/3 means that for every ε > 0,
there is a δ < 0 such that

|f(z)(1 − z)2 − 1| ≤ ε

for all z with 0 < |1 − z| < δ, |Arg(1 − z)| < 2π/3. This is an important concept, since lack
of uniform convergence is responsible for many failures of asymptotic methods to yield useful

results.
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Generating functions will usually be written in the form

f(z) =

∞
∑

n=0

fnz
n , (2.1)

and we will use the notation [zn]f(z) for the coefficient of zn in f(z), so that if f(z) is defined

by (2.1), [zn]f(z) = fn. For multivariate generating functions, [x
myn]f(x, y) will denote the

coefficient of xmyn, and so on. If an denotes a sequence whose asymptotic behavior is to be

studied, then in combinatorial enumeration one usually uses either the ordinary generating

function f(z) defined by (2.1) with fn = an, or else the exponential generating function f(z)

defined by (2.1) with fn = an/n!. In this chapter we will not be concerned with the question

of which type of generating function is best in a given context, but will assume that a gener-

ating function is given, and will concentrate on methods of extracting information about the

coefficients from the form we have.

Asymptotic series, as defined by Poincaré, are written as

fn ∼
∞
∑

k=0

akn
−k , (2.2)

and mean that for every K ≥ 0,

fn =

K
∑

k=0

akn
−k +O(n−K−1) as n→∞ . (2.3)

The constant implied by the O-notation may depend on K. It is unfortunate that the same

symbol is used to denote an asymptotic series as well as an asymptotic relation, defined in

the first paragraph of this section. Confusion should be minimal, though, since asymptotic

relations will always be written with an explicit statement of the limit of the argument.

The notation f(z) ≈ g(z) will be used to indicate that f(z) and g(z) are in some vague
sense close together. It is used in this chapter only in cases where a precise statement would

be cumbersome and would not help in explaining the essence of the argument.

All logarithms will be natural ones to base e unless specified otherwise, so that log 8 =

2.0794 . . ., log2 8 = 3. The symbol bxc denotes the greatest integer ≤ x. The notation x→ 1−

means that x tends to 1, but only from the left, and similarly, x→ 0+ means that x tends to
0 only from the right, through positive values.

3. Identities, indefinite summations, and related approaches

Asymptotic estimates are useful, but often they can be avoided by using other methods.

For example, the asymptotic methods presented later yield estimates for
(n
k

)

2k as k and n vary,
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which can be used to estimate accurately the sum of
(

n
k

)

2k for n fixed and k running over the

full range from 0 to n. That is a general and effective process, but somewhat cumbersome. On

the other hand, by the binomial theorem,

n
∑

k=0

(

n

k

)

2k = (1 + 2)n = 3n . (3.1)

This is much more satisfactory and simpler to derive than what could be obtained from applying

asymptotic methods to estimate individual terms in the sum. However, such identities are

seldom available. There is nothing similar that can be applied to

∑

k≤n/5

(

n

k

)

2k , (3.2)

and we are forced to use asymptotic methods to estimate this sum.

Recognizing when some combinatorial identity might apply is not easy. The literature on

this subject is huge, and some of the references for it are [172, 174, 186, 216, 336]. Many of the

books listed in the references are useful for this purpose. Generating functions (see Section 6)

are one of the most common and powerful tools for proving identities. Here we only mention

two recent developments that are of significance for both theoretical and practical reasons. One

is Gosper’s algorithm for indefinite hypergeometric summation [171, 175]. Given a sequence

a1, a2, . . ., Gosper’s algorithm determines whether the sequence of partial sums

bn =

n
∑

k=1

ak , n = 1, 2, . . . (3.3)

has the property that bn/bn−1 is a rational function of n, and if it is, it gives an explicit form

for bn. We note that if bn/bn−1 is a rational function of n, then so is

an
an−1

=
bn/bn−1 − 1
1− bn−2/bn−1

. (3.4)

Therefore Gosper’s algorithm should be applied only when an/an−1 is rational.

The other recent development is the Wilf-Zeilberger method for proving combinatorial

identities [379, 380]. Given a conjectured identity, it provides an algorithmic procedure for

verifying it. This method succeeds in a surprisingly wide range of cases. Typically, to prove

an identity of the form
∑

k

U(n, k) = S(n) , n ≥ 0 , (3.5)
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where S(n) 6= 0, Wilf and Zeilberger define F (n, k) = U(n, k)/S(n) and search for a rational
function R(n, k) such that if G(n, k) = R(n, k)F (n, k − 1), then

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k) (3.6)

holds for all integers n, k with n ≥ 0, and such that

1) for each integer k, the limit

fk = lim
n→∞

F (n, k) (3.7)

exists and is finite.

2) for each integer n ≥ 0, limk→±∞G(n, k) = 0.

3) limk→−∞
∑∞
n=0G(n, k) = 0.

If all these conditions are satisfied, and Eq. (3.5) holds for n = 0, then it holds for all n ≥ 0.

Example 3.1. Dixon’s binomial sum identity. This identity states that

∑

k

(−1)k
(

n+ b

n+ k

)(

b+ c

b+ k

)(

n+ c

c+ k

)

=
(n+ b+ c)!

n! b! c!
. (3.8)

This can be proved by the Wilf-Zeilberger method by taking

R(n, k) =
(b+ 1− k)(c+ 1− k)
2(n+ k)(n+ b+ c+ 1)

(3.9)

and verifying that the conditions above hold.
�

The Wilf-Zeilberger method requires finding a rational function R(n, k) that satisfies the

properties listed above. This is often hard to do, especially by hand. Gosper’s algorithm leads

to a systematic procedure for constructing such R(n, k).

To conclude this section, we mention that a useful resource when investigating sequences

arising in combinatorial settings is the book of Sloane [345, 346], which lists several thousand

sequences and gives references for them. Section 17 mentions some software systems that are

useful in asymptotics.
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4. Basic estimates: factorials and binomial coefficients

No functions in combinatorial enumeration are as ubiquitous and important as the facto-

rials and the binomial coefficients. In this section we state some estimates for these quantities,

which will be used throughout this chapter and are of widespread applicability. Several different

proofs of some of these estimates will be sketched later.

The basic estimate, from which many others follow, is that for the factorial. As was

mentioned in the introduction, the basic form of Stirling’s formula is

n! ∼ (2πn)1/2nne−n as n→∞ . (4.1)

This is sufficient for many enumeration problems. However, when necessary one can draw on

much more accurate estimates. For example Eq. 6.1.38 in [297] gives

n! = (2πn)1/2nn exp(−n+ θ/(12n)) (4.2)

for all n ≥ 1, where θ = θ(n) satisfies 0 < θ < 1. More generally, there is Stirling’s asymptotic
expansion:

log{n!(2πn)−1/2n−nen} ∼ 1

12n
− 1

360n3
+ · · · . (4.3)

(This is an asymptotic series in the sense of Eq. (2.2), and there is no convergent expansion

for log{n!(2πn)−1/2n−nen} as a power series in n−1.) Further terms in the expansion (4.3)
can be obtained, and they involve Bernoulli numbers. In most references, such as Eq. 6.1.37

or 6.1.40 of [297], Stirling’s formula is presented for Γ(x), where Γ is Euler’s gamma function.

Expansions for Γ(x) translate readily into ones for n! because n! = Γ(n+ 1).

Stirling’s approximation yields the expansion

(

2n

n

)

=
4n

(πn)1/2

{

1− 1
8n
+

1

128n2
+

5

1024n3
+O(n−4)

}

. (4.4)

A less precise but still useful estimate is

(

n

bn/2c

)

∼
(

2

πn

)1/2

2n as n→∞ . (4.5)

This estimate is used frequently. The binomial coefficients are symmetric, so that
(n
k

)

=
( n
n−k

)

and unimodal, so that for a fixed n and k varying, the
(n
k

)

increase monotonically up to a peak

at k = bn/2c (which is unique for n even and has two equal high points at k = (n± 1)/2 for
n odd) and then decrease.
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More important than Eq. (4.5) are expansions for general binomial coefficients. Eq. (4.2)

shows that for 1 ≤ k ≤ n− 1,
(

n

k

)

=
n!

k!(n− k)! =
{

n

2πk(n− k)

}1/2 nn

kk(n− k)n−k exp
(

O

(

1

k
+

1

n− k

))

=

{

n

2πk(n− k)

}1/2

exp

(

nH

(

k

n

)

+O

(

1

k
+

1

n− k

))

, (4.6)

where

H(x) = −x log x− (1− x) log(1− x) (4.7)

is the entropy function. (We set H(0) = H(1) = 0 to make H(x) continuous for 0 ≤ x ≤ 1.)
Simplifying further, we obtain

(

n

k

)

= exp(nH(k/n) +O(log n)) , (4.8)

an estimate that is valid for all 0 ≤ k ≤ n. In many situations it suffices to use the weaker but
simpler bound

(

n

k

)

≤
(ne

k

)k
, 0 ≤ k ≤ n . (4.9)

Approximations of this form are used frequently in information theory and other fields.

A general estimate that can be derived by totally elementary methods, without recourse

to Stirling’s formula, is

(

n

k

)(

n

bn/2c

)−1

= exp(−2(k − n/2)2/n+O(|k − n/2|3/n2)) , (4.10)

valid for |k − n/2| ≤ n/4, say. It is most useful for |k − n/2| = o(n2/3), since the error term is
small then. Similarly,

(

n

k + r

)

∼
(

n

k

)(

n− k
k

)r

as n→∞ , (4.11)

uniformly in k provided r (which may be negative) satisfies r2 = o(k) and r2 = o(n − k).
Further, we have

(n+ k)! ∼ nk exp(k2/(2n))n! as n→∞ , (4.12)

again uniformly in k provided k = o(n2/3).

5. Estimates of sums and other basic techniques

When encountering a combinatorial sum, the first reaction should always be to check

whether it can be simplified by use of some identity. If no identity for the sum is found, the
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next step should be to try to transform the problem to eliminate the sum. Usually we are

interested not in single isolated sums, but parametrized families of them, such as

bn =
∑

k

an(k) , (5.1)

and it is the asymptotic behavior of the bn as n → ∞ that is desired. A standard and well-
known technique (named the “snake-oil” method by Wilf [377]) for handling such cases is to

form a generating function f(z) for the bn, use the properties of the an(k) to obtain a simple

form for f(z), and then obtain the asymptotics of the bn from the properties of f(z). This

method will be presented briefly in Section 6. In this section we discuss what to do if those

two approaches fail. Sometimes the methods to be discussed can also be used in a preliminary

phase to obtain a rough estimate for the sum. This estimate can then be used to decide which

identities might be true, or what generating functions to form.

There are general methods for dealing with sums (cf. [234]), many of which are used in

asymptotic enumeration. A basic technique of this type is summation by parts. Often sums

to be evaluated can be expressed as

n
∑

j=1

ajbj or
∞
∑

j=1

ajbj ,

where the bj , say, are known explicitly or behave smoothly, while the aj by themselves might

not be known well, but the asymptotics of

A(k) =

k
∑

j=1

aj (5.2)

are known. Summation by parts relies on the identity

n
∑

j=1

ajbj =
n−1
∑

k=1

A(k)(bk − bk+1) +A(n)bn . (5.3)

Example 5.1. Sum of primes. Let

Sn =
∑

p≤n

p , (5.4)

where p runs over the primes ≤ n. The Prime Number Theorem [23] states that the function

π(x) =
∑

p≤x

1 (5.5)
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satisfies

π(x) ∼ x

log x
as x→∞ . (5.6)

(More precise estimates are available, but we will not use them.) We rewrite

Sn =

n
∑

j=1

ajbj , (5.7)

where

aj =







1 j is prime ,

0 otherwise ,
(5.8)

and bj = j for all j. Then A(k) = π(k) and summation by parts yields

Sn =

n−1
∑

k=1

−π(k) + π(n)n . (5.9)

Since
n−1
∑

k=1

π(k) ∼
n−1
∑

k=2

k

log k
∼ n2

2 log n
as n→∞ , (5.10)

we have

Sn ∼
n2

2 log n
as n→∞ . (5.11)

�

Summation by parts is used most commonly in situations like those of Example 5.1, to

obtain an estimate for one sum from that of another.

Summation by parts is often easiest to carry out, both conceptually and notationally, by

using integrals. If we let

A(x) =
∑

k≤x

ak , (5.12)

then A(x) = A(n) for n ≤ x < n+ 1. Suppose that bk = b(k) for some continuously differen-
tiable function b(x). Then

bk − bk+1 = −
∫ k+1

k
b′(x)dx , (5.13)

and we can rewrite Eq. (5.3) as

n
∑

j=1

ajbj = A(n)b(n)−
∫ n

1
A(x)b′(x)dx . (5.14)

(One can apply similar formulas even when the bj are not smooth, but this usually requires

Riemann-Stieltjes integrals, cf. [14].) The approximation of sums by integrals that appears in

(5.14) is common, and will be treated at length later.
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5.1. Sums of positive terms

Sums of positive terms are extremely common. They can usually be handled with only a

few basic tools. We devote substantial space to this topic because it is important and because

the simplicity of the methods helps in illustrating some of the basic principles of asymptotic

estimation, such as approximation by integrals, neglecting unimportant terms, and uniform

convergence. For readers not familiar with asymptotic methods, working through the examples

of this section is a good exercise that will make it easier to learn other techniques later.

Typical sums are of the form

bn =
∑

k

an(k) , an(k) ≥ 0 , (5.15)

where k runs over some range of summation, often 0 ≤ k ≤ n or 0 ≤ k < ∞, and the
an(k) may be given either explicitly or only through an asymptotic approximation. What

is desired is the asymptotic behavior of bn as n → ∞. Usually the an(k) for n fixed are
unimodal, so that either i) an(k) ≤ an(k + 1) for all k in the range, or ii) an(k) ≥ an(k + 1)
for all k, or iii) an(k) ≤ an(k + 1) for k ≤ k0, and an(k) ≥ an(k + 1) for k > k0. The
single most important task in estimating bn is usually to find the maximal an(k). This can be

done either by combinatorial means (involving knowledge of where the an(k) come from), by

asymptotic estimation of the an(k), or (most common when the an(k) are expressed in terms

of factorials or binomial coefficients) by finding where the ratio an(k + 1)/an(k) is close to 1.

If an(k + 1)/an(k) < 1 for all k, then we are in case ii) above, and if an(k + 1)/an(k) > 1 for

all k, we are in case i). If there is a k0 in the range of summation such that an(k0 +1) is close

to an(k0), then we are almost certainly in case iii) and the peak occurs at some k close to k0.

The different cases are illustrated in the examples presented later in this section.

Once max an(k) = an(k0) has been found, the next task is to show that most of the terms

in the sum are insignificant. For example, if the sum in Eq. (5.15) is over 0 ≤ k ≤ n, and if
an(0) = 1 is the largest term, then

n
∑

k=0
an(k)<n−2

an(k) < n
−1 ,

which is negligible if we are only after a rough approximation to bn, say of the form bn ∼ cn
as n → ∞, or even bn = cn(1 + O(n−1)) as n → ∞. Once the small terms have been
discarded, we are usually left with a short range of summation. It can happen that this range
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is extremely short, and the maximal term an(k0) is much larger than any of its neighbors to

the extent that bn ∼ an(k0) as n→∞. More commonly, the number of terms that contribute
significantly to bn does grow as n→∞, but slowly. Their contribution, relative to that of the
maximal term an(k0), can usually be estimated by some simple function of k−k0, and the sum
of all of them approximated by an explicit integral. This method is sometimes referred to as

Laplace’s method for sums (in analogy to Laplace’s method for estimating integrals, mentioned

in Section 5.5, which proceeds in a similar spirit). There is extensive discussion of this method

in [63].

Example 5.2. Sums of the partition function. We estimate

Un =

n
∑

k=1

p(k)k , (5.16)

where p(k) is the number of partitions of k. Since any partition of m−1, say one with cj parts
of size j, can be transformed into a partition of m with c1 + 1 parts of size 1, and cj of size

j for j ≥ 2, we have p(m) ≥ p(m − 1) for all m ≥ 2. Therefore the largest term in the sum
in (5.16) is the one with k = n. If the only estimate for p(k) that we have is the one given by

(1.6), then

p(n)n = exp(Cn3/2 − n log(4 · 31/2n) +O(n1/2)) . (5.17)

Since the constant implied by the O-symbol is not specified, this estimate is potentially larger

than p(n)n by a factor of exp(cn1/2), so we can only obtain asymptotics of log p(n)n, not

of p(n)n itself. This also means that rough estimates of Un follow easily from (5.17). Since

p(k)k ≤ p(n)n for all k < n, and there are n terms in the sum, we have p(n)n ≤ Un ≤ np(n)n,
and because of the large error term in (5.17), we obtain

Un = exp(Cn
3/2 − n log(4 · 31/2n) +O(n1/2)) . (5.18)

Thus the use of the poor estimate (1.6) for p(n) means that we can obtain only a crude estimate

for Un, and there is no need for careful analysis.

Instead of (1.6) we can use the more refined estimate (1.5). Let qn denote first term on the

right side of (1.5). Then we have

p(n) = qn +O(n
−1 exp(Cn1/2/2)) = qn(1 +O(exp(−Cn1/2/2))) , (5.19)

so

p(n)n = qnn(1 +O(n exp(−Cn1/2/2))) = qnn(1 +O(exp(−Cn1/2/3))) , (5.20)
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say. Also, for some ε > 0 we find from Eq. (1.5) (or Eq. 1.6) that for large n

qn−1 < qn − εn−1/2qn .

Thus for large n,
qn−1n−1 < qn−1n (1− εn−1/2)n−1

< qnn exp(−εn1/2/2) ,
and therefore

n−1
∑

k=1

p(k)k ≤ (n− 1)p(n− 1)n−1 < qnn exp(−εn1/2/3) .

Thus we obtain

Un = q
n
n(1 +O(exp(−δn1/2))) (5.21)

for some δ > 0.

The estimates of Un presented above relied on the observation that the last term in the sum

(5.16) defining Un is much larger than the sum of all the other terms. This does not happen

often. A more typical example is presented by

Tn =
n
∑

k=1

p(k) . (5.22)

As was noted before, p(n) is larger than any of the other terms, but not by enough to dominate

the sum. We therefore try the other approaches that were listed at the beginning of this section.

We use only the estimate (1.6). Since (1−x)1/2 < 1−x/2 for 0 ≤ x ≤ 1, we find that for large
n,

∑

k<n−n2/3

p(k) ≤ np(n− dn2/3e)

≤ exp(C(n− dn2/3e)1/2)

≤ exp(Cn1/2 − Cn1/6/2)

= O(p(n) exp(−Cn1/6/3)) .

(5.23)

Thus most of the values of k contribute a negligible amount to the sum. For k = n − j,
0 ≤ j ≤ n2/3, we find that

p(n− j)/p(n) = (1 +O(n−1/3)) exp(C(n− j)1/2 − Cn1/2) .

Since
(n− j)1/2 = n1/2 − jn−1/2/2 +O(j2n−3/2) ,

p(n− j)/p(n) = exp(−Cjn−1/2/2 +O(n−1/6))

= (1 +O(n−1/6)) exp(−Cjn−1/2/2) .

(5.24)

18



Thus the ratios p(n− j)/p(n) decrease geometrically, and so

p(n)−1
∑

0≤j≤n2/3

p(n− j) = (1 +O(n−1/6))

1− exp(−Cn−1/2/2) = 2C
−1n1/2(1 +O(n−1/6)) . (5.25)

Therefore, combining all the estimates,

Tn =

n
∑

k=1

p(k) =
1 +O(n−1/6)

2 · C · 31/2 · n1/2 e
Cn1/2 . (5.26)

The O(n−1/6) error term above can easily be improved with a little more care to O(n−1/2),

even if we continue to rely only on (1.6).
�

Before presenting further examples, we discuss some of the problems that can arise even

in the simple setting of estimating positive sums. We then introduce the basic technique of

approximating sums by integrals.

The lack of uniform convergence is a frequent cause of incorrect estimates. If an(k) ∼ cn(k)
for each k as n→∞, it does not necessarily follow that

bn =
∑

k

an(k) ∼
∑

k

cn(k) as n→∞ . (5.27)

A simple counterexample is given by an(k) =
(n
k

)

and cn(k) =
(n
k

)

(1 + k/n). To conclude

that (5.27) holds, it is usually necessary to know that an(k) ∼ cn(k) as n → ∞ uniformly in
k. Such uniform convergence does hold if we replace cn(k) in the counterexample above by

c′n(k) =
(

n
k

)

(1 + k/n2), for example.

There is a general principle that sums of terms that vary smoothly with the index of

summation should be replaced by integrals, so that for α > 0, say,

n
∑

k=1

kα ∼
∫ n+1

1
uαdu as n→∞ . (5.28)

The advantage of replacing a sum by an integral is that integrals are usually much easier to

handle. Many more closed-form expressions are available for definite and indefinite integrals

than for sums. We will discuss extensions of this principle of replacing sums by integrals further

in Section 5.3, when we present the Euler-Maclaurin summation formula. Usually, though, we

do not need anything sophisticated, and the application of the principle to situations like that

of (5.28) is easy to justify. If an = g(n) for some function g(x) of a real argument x, then

∣

∣

∣

∣

g(n) −
∫ n+1

n
g(u)du

∣

∣

∣

∣

≤ max
n≤u≤n+1

|g(u)− g(n)| , (5.29)
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and so
∣

∣

∣

∣

∣

∑

n

g(n)−
∫

g(u)du

∣

∣

∣

∣

∣

≤
∑

n

max
n≤u≤n+1

|g(u) − g(n)| , (5.30)

where the integral is over [a, b+1] if the sum is over a ≤ n ≤ b, a, b ∈ Z. If g(u) is continuously
differentiable, then |g(u) − g(n)| ≤ maxn≤v≤n+1 |g′(v)| for n ≤ u ≤ n + 1. This gives the
estimate

∣

∣

∣

∣

∣

b
∑

n=a

g(n)−
∫ b+1

a
g(u)du

∣

∣

∣

∣

∣

≤
b
∑

n=a

max
n≤v≤n+1

|g′(v)| . (5.31)

Often one can find a simple explicit function h(w) such that |g ′(v)| ≤ h(w) for any v and w
with |v − w| ≤ 1, in which case Eq. (5.31) can be replaced by

∣

∣

∣

∣

∣

b
∑

n=a

g(n)−
∫ b+1

a
g(u)du

∣

∣

∣

∣

∣

≤
∫ b+1

a
h(v)dv . (5.32)

For good estimates to be obtained from integral approximations to sums, it is usually necessary

for individual terms to be small compared to the sum.

Example 5.3. Sum of exp(−αk2). In the final stages of an asymptotic approximation one
often encounters sums of the form

h(α) =

∞
∑

k=−∞

exp(−αk2) , α > 0 . (5.33)

There is no closed form for the indefinite integral of exp(−αu2) (it is expressible in terms of
the Gaussian error function only), but there is the famous evaluation of the definite integral

∫ ∞

−∞
exp(−αu2)du = (π/α)1/2 . (5.34)

Thus it is natural to approximate h(α) by (π/α)1/2. If g(u) = exp(−αu2), then g′(u) =
−2αug(u), and so for n ≥ 0,

max
n≤v≤n+1

|g′(v)| ≤ 2α(n+ 1)g(n) . (5.35)

For the integral in Eq. (5.30) to yield a good approximation to the sum we must show that

the error term is smaller than the integral. The largest term in the sum occurs at n = 0 and

equals 1. The error bound (5.35) that comes from approximating g(0) = 1 by the integral of

g(u) over 0 ≤ u ≤ 1 is 2α. Therefore we cannot expect to obtain a good estimate unless α→ 0.
We find that

2α(n+ 1)g(n) ≤ 4αug(u/2) for n ≥ 1, n ≤ u ≤ n+ 1 ,

20



so (integral approximation again!)

∞
∑

n=1

2α(n+ 1)g(n) ≤ 4α

∫ ∞

1
ug(u/2)du

(5.36)

≤ 4α

∫ ∞

0
ug(u/2)du = (8α)1/2 .

Therefore, taking into account the error for n = 0 which was not included in the bound (5.36),

we have

h(α) =

∞
∑

n=−∞

exp(−αn2) =
∫ ∞

−∞
exp(−αu2)du+O(α1/2 + α)

(5.37)

= (π/α)1/2 +O(α1/2) as α→ 0+ .

For this sum much more precise estimates are available, as will be shown in Example 5.9. For

many purposes, though, (5.37) is sufficient.
�

Example 5.3 showed how to use the basic tool of approximating a sum by an integral.

Moreover, the estimate (5.37) that it provides is ubiquitous in asymptotic enumeration, since

many approximations reduce to it. This is illustrated by the following example.

Example 5.4. Bell numbers (cf. [63]). The Bell number, B(n), counts the partitions of an

n-element set. It is given by [81]

B(n) = e−1
∞
∑

k=1

kn

k!
. (5.38)

In this sum no single term dominates. The ratio of the (k + 1)-st to the k-th term is

(k + 1)n

(k + 1)!
· k!
kn
=

1

k + 1

(

1 +
1

k

)n

. (5.39)

As k increases, this ratio strictly decreases. We search for the point where it is about 1. For

k ≥ 2,
(

1 +
1

k

)n

= exp

(

n log

(

1 +
1

k

))

= exp(n/k +O(n/k2)) , (5.40)

so the ratio is close to 1 for n/k close to log(k + 1). We choose k0 to be the closest integer to

w, the solution to

n = w log(w + 1) . (5.41)
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For k = k0 + j, 1 ≤ j ≤ k0/2, we find, since log(1 + i/k0) = i/k0 − i2/(2k20) +O(i3/k30),
kn

k!
=
kn0
k0!

(1 + j/k0)
n

kj0Π
j
i=1(1 + i/k0)

=
kn0
k0!
exp

(

jn/k0 − j log k0 − j2(n+ k0)/(2k20) +O(nj3/k30 + j/k0)
)

.

(5.42)

The same estimate applies for −k0/2 ≤ j ≤ 0. The term jn/k0 − j log k0 is small, since
|k0 − w| ≤ 1/2 and w satisfies (5.41). We find

n/k0 − log k0 = n/w − log(w + 1) +O(n/w2 + 1/w)

= O(n/w2 + 1/w) .
(5.43)

By (5.41), w ∼ n/ log n as n→∞. We now further restrict j to |j| ≤ n1/2 log n. Then (5.42)
and (5.43) yield

kn

k!
=
kn0
k0!
exp(−j2(n+ k0)/(2k20) +O((log n)6n−1/2)) . (5.44)

Approximating the sum by an integral, as in Example 5.3, shows that

∑

k

|j|≤n1/2 log n

kn

k!
=
kn0
k0!
k0(2π)

1/2(n+ k0)
−1/2(1 +O((log n)6n−1/2)) . (5.45)

(An easy way to obtain this is to apply the estimate of Example 5.3 to the sum from −∞ to
∞, and show that the range |j| > n1/2 log n contributes little.) To estimate the contribution of
the remaining summands, with |j| > n1/2 log n, we observe that the ratio of successive terms
is ≤ 1, so the range 1 ≤ k ≤ k0 − bn1/2 log nc contributes at most k0 (the number of terms)
times the largest term, which arises for k = k0 − bn1/2 log nc. By (5.44), this largest term is

O(kn0 (k0!)
−1 exp(−(log n)3)) .

For k ≥ k1 ≥ k0 + bn1/2 log nc, we find that the ratio of the (k + 1)-st to the k-th term is, for
large n,

≤ 1

k1 + 1

(

1 +
1

k1

)n

= exp(n/k1 − log(k1 + 1)− n/(2k21) +O(n/k31))

≤ exp(−(k1 − k0)n/k21 +O(n/k31))

≤ exp(−2n−1/2) ≤ 1− n−1/2 ,

(5.46)

and so the sum of these terms, for k1 ≤ k < ∞, is bounded above by n1/2 times the term for
k = k1. Therefore the estimate on the right-hand side of (5.45) applies even when we sum on

all k, 1 ≤ k <∞.
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To obtain an estimate for B(n), it remains only to estimate kn0 /k0!. To do this, we apply

Stirling’s formula and use the property that |k0 − w| ≤ 1/2 to deduce that

B(n) ∼ (logw)1/2wn−wew as n→∞ , (5.47)

where w is given by (5.41).

There is no explicit formula for w in terms of n, and substituting various asymptotic

approximations to w, such as

w =
n

log n
+O

(

n

(log n)2

)

(5.48)

(see Example 5.10) yields large error terms in (5.47), so for accuracy it is usually better to

use (5.47) as is. There are other approximations to B(n) in the literature (see, for example,

[33, 63]). They differ slightly from (5.47) because they estimate B(n) in terms of roots of

equations other than (5.41).

Other methods of estimating B(n) are presented in Examples 12.5 and 12.6.
�

5.2. Alternating sums and the principle of inclusion-exclusion

At the beginning of Section 5, the reader was advised in general to search for identities and

transformations when dealing with general sums. This advice is even more important when

dealing with sums of terms that have alternating or irregularly changing coefficients. Finding

the largest term is of little help when there is substantial cancellation among terms. Several

general approaches for dealing with this difficulty will be presented later. Generating function

methods for dealing with complicated sums are discussed in Section 6. Contour integration

methods for alternating sums are mentioned in Section 10.3. The summation formulas of the

next section can sometimes be used to estimate sums with regularly varying coefficients as

well. In this section we present some basic elementary techniques that are often sufficient.

Sometimes it is possible to obtain estimates of sums with positive and negative summands

by approximating separately the sums of the positive and of the negative summands. Methods

of the preceding section or of the next section are useful in such situations. However, this

approach is to be avoided as much as possible, because it often requires extremely precise

estimates of the two sums to obtain even rough bounds on the desired sums. One method that

often works and is much simpler consists of a simple pairing of adjacent positive and negative

terms.
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Example 5.5. Alternating sum of square roots. Let

Sn =

n
∑

k=1

(−1)kk1/2 . (5.49)

We have

(2m)1/2 − (2m− 1)1/2 = (2m)1/2

{

1−
(

1− 1

2m

)1/2
}

= (2m)1/2
{

1−
(

1− 1

4m
+O(m−2)

)}

(5.50)

= (8m)−1/2 +O(m−3/2) ,

so

2bn/2c
∑

k=1

(−1)kk1/2 =
bn/2c
∑

m=1

(8m)−1/2 +O(1)

(5.51)

= n1/2/2 +O(1) .

Hence

Sn =







n1/2/2 +O(1) if n is even ,

−n1/2/2 +O(1) if n is odd .
(5.52)

�

In Example 5.5, the sums of the positive terms and of the negative terms can easily be

estimated accurately (for example, by using the Euler-Maclaurin formula of the next section)

to obtain (5.52). In other cases, though, the cancellation is too extensive for such an approach

to work. This is especially true for sums arising from the principle of inclusion-exclusion.

Suppose that X is some set of objects and P is a set of properties. For R ⊆ P , let N=(R)
be the number of objects in X that have exactly the properties in R and none of the properties

in P \ R. We let N≥(R) denote the number of objects in X that have all the properties in R
and possibly some of those in P \R. The principle of inclusion-exclusion says that

N=(R) =
∑

R⊆Q⊆P

(−1)|Q\R|N≥(Q) . (5.53)

(This is a basic version of the principle. For more general results, proofs, and references, see

[81, 173, 351].)
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Example 5.6. Derangements of n letters. Let X be the set of permutations of n letters, and

suppose that Pi, 1 ≤ i ≤ n, is the property that the i-th letter is fixed by a permutation, and
P = {P1, . . . , Pn}. Then dn, the number of derangements of n letters, equals N=(φ), where φ
is the empty set, and so by (5.53)

dn =
∑

Q⊆P

(−1)|Q|N≥(Q) . (5.54)

However, N≥(Q) is just the number of permutations that leave all letters specified by Q fixed,

and thus
dn =

∑

Q⊆P

(−1)|Q|(n− |Q|)!

=

n
∑

k=0

(−1)k(n− k)!
(

n

k

)

=

n
∑

k=0

(−1)kn!
k!
,

(5.55)

which is Eq. (1.1).
�

The formula (1.1) for derangements is easy to use because the terms decrease rapidly.

Moreover, this formula is exceptionally simple, largely because N≥(Q) depends only on |Q|. In
general, the inclusion-exclusion principle produces complicated sums that are hard to estimate.

A frequently helpful tool is provided by the Bonferroni inequalities [81, 351]. One form of these

inequalities is that for any integer m ≥ 0,

N=(R) ≥
∑

Q
R⊆Q⊆P
|Q\R|≤2m

(−1)|Q\R|N≥(Q) (5.56)

and

N=(R) ≤
∑

Q
R⊆Q⊆P

|Q\R|≤2m+1

(−1)|Q\R|N≥(Q) . (5.57)

Thus in general

∣

∣

∣
N=(R)−

∑

Q
R⊆Q⊆P
|Q\R|≤k

(−1)|Q\R|N≥(Q)
∣

∣

∣
≤

∑

Q
R⊆Q⊆P
|Q\R|≤k+1

N≥(Q) . (5.58)

These inequalities are frequently applied for n = |X| increasing. Typically one chooses k
that increases much more slowly than n, so that the individual terms N≥(Q) in (5.58) can

be estimated asymptotically, as the interactions of the different properties counted by N≥(Q)

is not too complicated to estimate. Bender [33] presents some useful general principles to be

used in such estimates (especially the asymptotically Poisson distribution that tends to occur

when the method is successful). We present an adaptation of an example from [33].
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Example 5.7. Balls and cells. Given n labeled cells and m labeled balls, let ah(m,n) be

the number of ways to place the balls into cells so that exactly h of the cells are empty. We

consider h fixed. Let X be the ways of placing the balls into the cells (nm in total), and

P = {P1, . . . , Pn}, where Pi is the property that the i-th cell is empty. If R = {P1, . . . , Ph},
then ah(m,n) =

(n
h

)

N=(R). Now

N≥(Q) = (n− |Q|)m , (5.59)

so
∑

Q
R⊆Q⊆P
|Q\R|=t

N≥(Q) =
(n−h
t

)

(n− h− t)m

= nme−mh/n(ne−m/n)t(t!)−1(1 +O((t2 + 1)mn−2 + (t2 + 1)n−1)) ,
(5.60)

provided t2 ≤ n and mt2n−2 ≤ 1, say. In the range 0 ≤ t ≤ log n, n log n ≤ m ≤ n2(log n)−3,
we find that the right-hand side of (5.60) is

nme−mh/n(ne−m/n)t(t!)−1(1 +O(mn−2(log n)2)) .

We now apply (5.58) with k = blog nc, and obtain

ah(m,n) =
(n
h

)

N=(R) ∼
(n
h

)

nm exp(−mh/n− ne−m/n)

∼ nm(h!)−1(ne−m/n)h exp(−ne−m/n)
(5.61)

as m,n→∞, provided n log n ≤ m ≤ n2(log n)−3. Since ah(m,n)n−m is the probability that
there are exactly h empty cells, the relation (5.61) (which we have established only for fixed h)

shows that this probability is asymptotically distributed like a Poisson random variable with

parameter n exp(−m/n).
Many additional results on random distributions of balls into cells, and references to the

extensive literature on this subject can be found in [241].
�

Bonferroni inequalities include other methods for estimating N=(R) by linear combinations

of the N≥(Q). Recent approaches and references (phrased in probabilistic terms) can be found

in [152]. For bivariate Bonferroni inequalities (where one asks for the probability that at least

one of two sets of events occurs) see [153, 249].

The Chen-Stein method [75] is a powerful technique that is often used in place of the

principle of inclusion-exclusion, especially in probabilistic literature. Recent references are

[17, 27].
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5.3. Euler-Maclaurin and Poisson summation formulas

Section 5.0 showed that sums can be successfully approximated by integrals if the sum-

mands are all small compared to the total sum and vary smoothly as functions of the summation

index. The approximation (5.29), though crude, is useful in a wide variety of cases. Sometimes,

though, more accurate approximations are needed. An obvious way is to improve the bound

(5.29). If g(x) is really smooth, we can expect that the difference

an −
∫ n+1

n
g(u)du

will vary in a regular way with n. This is indeed the case, and it is exploited by the Euler-

Maclaurin summation formula. It can be found in many books, such as [63, 175, 297, 298].

There are many formulations, but they do not differ much.

Euler-Maclaurin summation formula. Suppose that g(x) has 2m continuous derivatives

in [a, b], a, b ∈ Z. Then
b
∑

k=a

g(k) =

∫ b

a
g(x)dx +

m
∑

r=1

B2r
(2r)!

{

g(2r−1)(b)− g(2r−1)(a)
}

(5.62)

+
1

2
{g(a) + g(b)} +Rm ,

where

Rm = −
∫ b

a
g(2m)(x)

B2m(x− bxc)
(2m)!

dx , (5.63)

and so

|Rm| ≤
∫ b

a
|g(2m)(x)| |B2m(x− bxc)|

(2m)!
dx . (5.64)

In the above formulas, the Bn(x) denote the Bernoulli polynomials, defined by

zexz

ez − 1 =
∞
∑

n=0

Bn(x)
zn

n!
. (5.65)

The Bn are the Bernoulli numbers, defined by

z

ez − 1 =
∞
∑

n=0

Bn
zn

n!
, (5.66)

so that Bn = Bn(0), and

B0 = 1 , B1 = − 1/2 , B2 = 1/6 ,

B3 = B5 = B7 = · · · = 0 , (5.67)

B4 = −1/30 , B6 = 1/42 , B8 = − 1/30, . . . .
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It is known that

|B2m(x− bxc)| ≤ |B2m| , (5.68)

so we can simplify (5.64) to

|Rm| ≤ |B2m|((2m)!)−1
∫ b

a
|g(2m)(x)|dx . (5.69)

There are many applications of the Euler-Maclaurin formula. One of the most frequently

cited ones is to estimate factorials.

Example 5.8. Stirling’s formula. We transform the product in the definition of n! into a sum

by taking logarithms, and find that for g(x) = log x and m = 1 we have

log n! =
n
∑

k=1

log k =

∫ n

1
(log x)dx+

1

2
log n+

1

2
B2

{

1

n
− 1
}

+R1 , (5.70)

where

R1 =

∫ n

1

B2(x− bxc)
2x2

dx = C +O(n−1) (5.71)

for

C =

∫ ∞

1

B2(x− bxc)
2x2

dx . (5.72)

Therefore

log n! = n log n− n+ 1
2
log n+ C + 13/12 +O(n−1) , (5.73)

which gives

n! ∼ C ′n1/2nne−n as n→∞ . (5.74)

To obtain Stirling’s formula (4.1), we need to show that C ′ = (2π)1/2. This can be done in

several ways (cf. [63]). In Examples 12.1, 12.4, and 12.5 we will see other methods of deriving

(4.1).
�

There is no requirement that the function g(x) in the Euler-Maclaurin formula be positive.

That was not even needed for the crude approximation of a sum by an integral given in

Section 5.0. The function g(x) can even take complex values. (After all, Eq. (5.62) is an

identity!) However, in most applications this formula is used to derive an asymptotic estimate

with a small error term. For that, some high order derivatives have to be small, which means

that g(x) cannot change sign too rapidly. In particular, the Euler-Maclaurin formula usually

is not very useful when the g(k) alternate in sign. In those cases one can sometimes use
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the differencing trick (cf. Example 5.5) and apply the Euler-Maclaurin formula to h(k) =

g(2k) + g(2k + 1). There is also Boole’s summation formula for alternating sums that can be

applied. (See Chapter 2, §3 and Chapter 6, §6 of [298], for example.) Generalizations to other
periodic patterns in the coefficients have been derived by Berndt and Schoenfeld [47].

The bounds for the error term Rm in the Euler-Maclaurin formula that were stated above

can often be improved by using special properties of the function g(x). For example, when

g(x) is analytic in x, there are contour integrals for Rm that sometimes give good estimates

(cf. [315]).

The Poisson summation formula states that

∞
∑

n=−∞

f(n+ a) =
∞
∑

m=−∞

exp(2πima)

∫ ∞

−∞
f(y) exp(−2πimy)dy (5.75)

for “nice” functions f(x). The functions for which (5.75) holds include all continuous f(x) for

which
∫

|f(x)|dx <∞, which are of bounded variation, and for which ∑n f(n+ a) converges
for all a. For weaker conditions that ensure validity of (5.75), we refer to [63, 365]. The

Poisson summation formula often converts a slowly convergent sum into a rapidly convergent

one. Generally it is not as widely applicable as the Euler-Maclaurin formula as it requires

extreme regularity for the Fourier coefficients to decrease rapidly. On the other hand, it can

be applied in some situations that are not covered by the Euler-Maclaurin formula, including

some where the coefficients vary in sign.

Example 5.9. Sum of exp(−αk2). We consider again the function h(α) of Example 5.3. We
let f(x) = exp(−αx2), a = 0. Eq. (5.15) then gives

h(α) =

∞
∑

n=−∞

exp(−αn2) = (π/α)1/2
∞
∑

m=−∞

exp(−π2m2/α) . (5.76)

This is an identity, and the sum on the right-hand side above converges rapidly for small

α. Many applications require the evaluation of the sum on the left in which α tends to 0.

Eq. (5.76) offers a method of converting a slowly convergent sum into a tractable one, whose

asymptotic behavior is explicit.
�

5.4. Bootstrapping and other basic methods

Bootstrapping is a useful technique that uses asymptotic information to obtain improved

estimates. Usually we start with some rough bounds, and by combining them with the relations

defining the function or sequence that we are studying, we obtain better bounds.
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Example 5.10. Approximation of Bell numbers. Example 5.4 obtained the asymptotics of

the Bell numbers Bn, but only in terms of w, the solution to Eq. (5.41). We now show how

to obtain asymptotic expansions for w. As n increases, so does w. Therefore log(w + 1) also

increases, and so w < n for large n. Thus

n = w log(w + 1) < w log(n+ 1) ,

and so

n(log(n+ 1))−1 < w < n . (5.77)

Therefore

log(w + 1) = log n+O(log log n) , (5.78)

and so

w =
n

log(w + 1)
=
n

log n
+O

(

n log log n

(log n)2

)

. (5.79)

To go further, note that by (5.79),

log(w + 1) = log

(

n

log n

(

1 +O

(

log log n

log n

)))

= log n− log log n+O((log log n)(log n)−1) ,
(5.80)

and so by applying this estimate in Eq. (5.41), we obtain

w =
n

log n
+
n log log n

(log n)2
+
n(log log n)2

(log n)3
+O

(

n log log n

(log n)3

)

. (5.81)

This procedure can be iterated indefinitely to obtain expansions for w with error terms

O(n(log n)−α) for as large a value of α as desired.
�

In the above example, w can also be estimated by other methods, such as the Lagrange-

Bürmann inversion formula (cf. Example 6.7). However, the bootstrapping method is much

more widely applicable and easy to apply. It will be used several times later in this chapter.

5.5. Estimation of integrals

In some of the examples in the preceding sections integrals were used to approximate

sums. The integrals themselves were always easy to evaluate. That is true in most asymptotic

enumeration problems, but there do occur situations where the integrals are more complicated.

Often the hard integrals are of the form

f(x) =

∫ β

α
g(t) exp(xh(t))dt , (5.82)
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and it is necessary to estimate the behavior of f(x) as x→∞, with the functions g(t), h(t) and
the limits of integration α and β held fixed. There is a substantial theory of such integrals, and

good references are [54, 63, 100, 315]. The basic technique is usually referred to as Laplace’s

method, and consists of approximating the integrand by simpler functions near its maxima.

This approach is similar to the one that is discussed at length in Section 5.1 for estimating

sums. The contributions of the approximations are then evaluated, and it is shown that the

remaining ranges of integration, away from the maxima, contribute a negligible amount. By

breaking up the interval of integration we can write the integral (5.82) as a sum of several

integrals of the same type, with the property that there is a unique maximum of the integrand

and that it occurs at one of the endpoints. When α > 0, the maximum of the integrand occurs

for large x at the maximum of h(t) (except in rare cases where g(t) = 0 for that t for which

h(t) is maximized). Suppose that the maximum occurs at t = α > 0. It often happens that

h(t) = h(α) − c(t− α)2 +O(|t− α|3) (5.83)

for α ≤ t ≤ β and c = −h′′(α)/2 > 0, and then one obtains the approximation

f(x) ∼ g(α) exp(xh(α))[−π/(4xh′′(α))]1/2 as x→∞ , (5.84)

provided g(α) 6= 0. For precise statements of even more general and rigorous results, see for
example Chapter 3, §7 of [315]. Those results cover functions h(t) that behave near t = α like
h(α) − c(t− α)µ for any µ > 0.
When the integral is highly oscillatory, as happens when h(t) = iu(t) for a real-valued

function u(t), still other techniques (such as the stationary phase method), are used. We

will not present them here, and refer to [54, 63, 100, 315] for descriptions and applications.

In Section 12.1 we will discuss the saddle point method, which is related to both Laplace’s

method and the stationary phase method.

Laplace integrals

F (x) =

∫ ∞

0
f(t) exp(−xt)dt (5.85)

can often be approximated by integration by parts. We have (under suitable conditions on

f(t))

F (x) = x−1f(0) + x−1
∫ ∞

0
f ′(t) exp(−xt)dt

= x−1f(0) + x−2f ′(0) + x−2
∫ ∞

0
f ′′(t) exp(−xt)dt , (5.86)
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and so on. There are general results, usually associated with the name of Watson’s Lemma,

for deriving such expansions. For references, see [100, 315].

6. Generating functions

6.1. A brief overview

Generating functions are a wonderfully powerful and versatile tool, and most asymptotic

estimates are derived from them. The most common ones in combinatorial enumeration are

the ordinary and exponential generating functions. If a0, a1, . . ., is any sequence of real or

complex numbers, the ordinary generating function is

f(z) =
∞
∑

n=0

anz
n , (6.1)

while the exponential generating function is

f(z) =
∞
∑

n=0

anz
n

n!
. (6.2)

Doubly-indexed arrays, for example an,k, 0 ≤ n <∞, 0 ≤ k ≤ n, are encoded as two-variable
generating functions. Depending on the array, sometimes one uses

f(x, y) =

∞
∑

n=0

n
∑

k=0

an,kx
kyn , (6.3)

and sometimes other forms that might even mix ordinary and exponential types, as in

f(x, y) =

∞
∑

n=0

yn

n!

n
∑

k=0

an,kx
k . (6.4)

For example, the Stirling numbers of the first kind, s(n, k) ((−1)n+ks(n, k) is the number of
permutations on n letters with k cycles) have the generating function (see pp. 50, 212–213,

and 234–235 in [81])

1 +
∞
∑

n=1

yn

n!

n
∑

k=1

s(n, k)xk = (1 + y)x . (6.5)

In general, a generating function is just a formal power series, and questions of convergence

do not arise in the definition. However, some of the main applications of generating functions

in asymptotic enumeration do rely on analyticity or other convergence properties of those

functions, and there the domain of convergence is important.

A generating function is just another form for the sequence that defines it. There are many

reasons for using it. One is that even for complicated sequences, generating functions are
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frequently simple. This might not be obvious for the partition function p(n), which has the

ordinary generating function

f(z) =

∞
∑

n=0

p(n)zn =

∞
∏

k=1

(1− zk)−1 . (6.6)

The sequence p(n), which is complicated, is encoded here as an infinite product. The terms in

the product are simple and vary in a regular way with the index, but it is not clear at first what

is gained by this representation. In other cases, though, the advantages of generating functions

are clearer. For example, the exponential generating function for derangements (Eq. (1.1) and

Example 5.6) is

f(z) =
∞
∑

n=0

dn
n!
zn =

∞
∑

n=0

zn

n!

n
∑

n=0

(−1)k n!
k!

=

∞
∑

k=0

(−1)k
k!

∞
∑

n=k

zn =
e−z

1− z , (6.7)

which is extremely compact.

Reasons for using generating functions go far beyond simplicity. The one that matters

most for this chapter in that generating functions can be used to obtain information about the

asymptotic behavior of sequences they encode, information that often cannot be obtained in

any other way, or not as easily. Methods such as those of Section 10.2 can be used to obtain

immediately from Eq. (6.7) the asymptotic estimate dn ∼ e−1n! as n→∞. This estimate can
also be derived easily by elementary methods from Eq. (1.1), so here the generating function is

not essential. In other cases, though, such as that of the partition function p(n), all the sharp

estimates, such as that of Hardy and Ramanujan given in (1.5), are derived by exploiting the

properties of the generating function. If there is any main theme to this chapter, it is that

generating functions are usually the easiest, most versatile, and most powerful way to study

asymptotic behavior of sequences. Especially when the generating function is analytic, its

behavior at the dominant singularities (a term that will be defined in Section 10) determines

the asymptotics of the sequence. When the generating function is simple, and often even when

it is not simple, the contribution of the dominant singularity can often be determined easily,

although the sequence itself is complicated.

There are many applications of generating functions, some related to asymptotic questions.

Averages can often be studied using generating functions. Suppose, for example, that an,k,

0 ≤ k ≤ n, 0 ≤ n <∞, is the number of objects in some class of size n, which have weight k
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(for some definition of size and weight), and that we know, either explicitly or implicitly, the

generating function f(x, y) of an,k given by (6.4). Then

g(y) = f(1, y) =

∞
∑

n=0

yn

n!

n
∑

k=0

an,k (6.8)

is the exponential generating function of the number of objects of size n, while

h(y) =
∂

∂x
f(x, y)

∣

∣

∣

x=1
=

∞
∑

n=0

yn

n!

n
∑

k=0

kan.k (6.9)

is the exponential generating function of the sum of the weights of objects of size n. Therefore

the average weight of an object of size n is

[yn]h(y)

[yn]g(y)
. (6.10)

The wide applicability and power of generating functions come primarily from the struc-

tured way in which most enumeration problems arise. Usually the class of objects to be counted

is derived from simpler objects through basic composition rules. When the generating func-

tions are chosen to reflect appropriately the classes of objects and composition rules, the final

generating function is derivable in a simple way from those of the basic objects. Suppose,

for example, that each object of size n in class C can be decomposed uniquely into a pair of

objects of sizes k and n− k (for some k) from classes A and B, and each pair corresponds to
an object in C. Then cn, the number of objects of size n in C, is given by the convolution

cn =

n
∑

k=0

akbn−k , (6.11)

(where ak is the number of objects of size k in A, etc.). Hence if A(z) =
∑

anz
n, B(z) =

∑

bnz
n, C(z) =

∑

cnz
n are the ordinary generating functions, then

C(z) = A(z)B(z) . (6.12)

Thus ordered pairing of objects corresponds to multiplication of ordinary generating functions.

If A(z) =
∑

anz
n and

bn =
n
∑

k=0

ak ,

then B(z) =
∑

bnz
n is given by

B(z) =
A(z)

1− z , (6.13)
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so that the ordinary generating function of cumulative sums of coefficients is obtained by

dividing by 1 − z. There are many more such general correspondences between operations
on combinatorial objects and on the corresponding generating functions. They are present,

implicitly or explicitly, in most books that cover combinatorial enumeration, such as [81, 173,

351, 377]. The most systematic approach to developing and using general rules of this type has

been carried out by Flajolet and his collaborators [139]. They develop ways to see immediately

(cf. [134]) that if we consider mappings of a set of n labeled elements to itself, so that all nn

distinct mappings are considered equally likely, then the generating function for the longest

path length is given by

f(z) =
∞
∑

k=0

(

1

1− t(z) − e
vk(z)

)

, (6.14)

where

vk(z) = tk−1(z) +
1

2
tk−2(z)

2 + · · · + 1
k
t0(k)

k , (6.15)

with

t0(z) = z , th+1(z) = z exp(th(z)) , (6.16)

and t(z) = lim
h→∞

th(z) (in the sense of formal power series, so convergence is that of coefficients).

Furthermore, as is mentioned in Section 17, many of these rules for composition of objects and

generating functions can be implemented algorithmically, automating some of the chores of

applying them.

We illustrate some of the basic generating function techniques by deriving the generating

function for rooted labeled trees, which will occur later in Examples 6.6 and 10.8. (The rooted

unlabeled trees, with generating function given by (1.8), are harder.)

Example 6.1. Rooted labeled trees. Let tn be the number of rooted labeled trees on n vertices,

so that t1 = 1, t2 = 2, t3 = 9. (It will be shown in Example 6.6 that tn = n
n−1.) Let

t(z) =

∞
∑

n=1

tn
zn

n!
(6.17)

be the exponential generating function. If we remove the root of a rooted labeled tree with n

vertices, we are left with k ≥ 0 rooted labeled trees that contain a total of n− 1 vertices. The
total number of ways of arranging an ordered selection of k rooted trees with a total of n− 1
vertices is

[zn−1]t(z)k .
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Since the order of the trees does not matter, we have

1

k!
[zn−1]t(z)k

different trees of size n that have exactly k subtrees, and so

tn =

∞
∑

k=0

1

k!
[zn−1]t(z)k

= [zn−1]

∞
∑

k=0

t(z)k/k! = [zn]z exp(t(z)) , (6.18)

which gives

t(z) = z exp(t(z)) . (6.19)

As an aside, the function th(z) of Eq (6.16) is the exponential generating function of rooted

labeled trees of height ≤ h. �

The key to the successful use of generating functions is to use a generating function that is

of the appropriate form for the problem at hand. There is no simple rule that describes what

generating function to use, and sometimes two are used simultaneously. In combinatorics

and analysis of algorithms, the most useful forms are the ordinary and exponential generating

functions, which reflects how the classes of objects that are studied are constructed. Sometimes

other forms are used, such as the double exponential form

f(z) =

∞
∑

n=0

anz
n

(n!)2
(6.20)

that occurs in Section 7, or the Newton series

f(z) =
∞
∑

n=0

anz(z − 1) · · · (z − n+ 1) . (6.21)

Also frequently encountered are various q-analog generating functions, such as the Eulerian

f(z) =

∞
∑

n=1

anz
n

(1− q)(1 − q2) · · · (1− qn) . (6.22)

In multiplicative number theory, the most common are Dirichlet series

f(z) =

∞
∑

n=1

ann
−z , (6.23)

which reflect the multiplicative structure of the integers. If an is a multiplicative function (so

that amn = aman for all relatively prime positive integers m and n) then the function (6.23)
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has an Euler product representation

f(z) =
∏

p

(1 + app
−z + ap2p

−2z + · · ·) , (6.24)

where p runs over the primes. This allows new tools to be used to study f(z) and through it

an. Additive problems in combinatories and number theory often are handled using functions

such as functions such as

f(z) =

∞
∑

n=1

zak , (6.25)

where 0 ≤ a1 < a2 < · · · is a sequence of integers. Addition of two such sequences then
corresponds to a multiplication of the generating functions of the form (6.25).

We next mention the “snake oil method.” This is the name given by Wilf [377] to the

use of generating functions for proving identities, and comes from the surprising power of this

technique. The typical application is to evaluation of sequences given by sums of the type

an =
∑

k

bn,k . (6.26)

The standard procedure is to form a generating function of the an and manipulate it through

interchanges of summation and other tricks to obtain the final answer. The generating function

can be ordinary, exponential, or (less commonly) of another type, depending on what gives the

best results. We show a simple application of this principle that exhibits the main features of

the method.

Example 6.2. A binomial coefficient sum [377]. Let

an =

n
∑

k=0

(

n+ k

2k

)

2n−k , n ≥ 0 . (6.27)

We define A(z) to be the ordinary generating function of an. We find that

A(z) =

∞
∑

n=0

anz
n =

∞
∑

n=0

zn
n
∑

k=0

(

n+ k

2k

)

2n−k

=

∞
∑

k=0

2−k
∞
∑

n=k

2nzn
(

n+ k

2k

)

=

∞
∑

k=0

2−k(2z)−k
∞
∑

n=0

(

n+ k

2k

)

(2z)n+k

=

∞
∑

k=0

2−k(2z)−k
(2z)2k

(1− 2z)2k+1 =
1

1− 2z

∞
∑

k=0

(

z

1− 2z

)k

=
1− 2z

(1− 4z)(1 − z) =
2

3(1 − 4z) +
1

3(1− z) . (6.28)
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Therefore we immediately find the explicit form

an = (2
2n+1 + 1)/3 for n ≥ 0 . (6.29)

�

We next present some additional examples of how generating functions are derived. We

start by considering linear recurrences with constant coefficients.

The first step in solving a linear recurrence is to obtain its generating function. Suppose

that a sequence a0, a1, a2, . . . satisfies the recurrence

an =

d
∑

i=1

cian−i, n ≥ d . (6.30)

Then

f(z) =
∞
∑

n=0

anz
n =

d−1
∑

n=0

anz
n +

∞
∑

n=d

zn
d
∑

i=1

cian−i (6.31)

=

d−1
∑

n=0

anz
n +

d
∑

i=1

ciz
i
∞
∑

n=d

an−iz
n−i

=

d−1
∑

n=0

anz
n +

d
∑

i=1

ciz
i

(

f(z)−
d−i−1
∑

n=0

anz
n

)

,

and so

f(z) =
g(z)

1−∑di=1 cizi
, (6.32)

where

g(z) =

d−1
∑

n=0

anz
n −

d
∑

i=1

ciz
i
d−i−1
∑

n=0

anz
n (6.33)

is a polynomial of degree ≤ d− 1. Eq. (6.32) is the fundamental relation in the study of linear
recurrences, and 1−∑ cizi is called the characteristic polynomial of the recursion.

Example 6.3. Fibonacci numbers. We let F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2, and

F (z) =

∞
∑

n=0

Fnz
n .

Then by (6.32) and (6.33),

F (z) =
z

1− z − z2 .
�

(6.34)
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Often there is no obvious recurrence for the sequence an being studied, but there is one

involving some other auxiliary function. Usually if one can obtain at least as many recurrences

as there are sequences, one can obtain their generating functions by methods similar to those

used for a single sequence. The main additional complexity comes from the need to solve a

system of linear equations with polynomial coefficients. We illustrate this with the following

example.

Example 6.4. Sequences with forbidden subwords. Let A = a1a2 · · · ak be a binary string of
length k. Define fA(n) to be the number of binary strings of length n that do not contain A

as a subword of k adjacent characters. (Subsequences do not count, so that if A = 1110, then

A is contained in 1101110010, but not in 101101.) We introduce the correlation polynomial

CA(z) of A:

CA(z) =

k−1
∑

j=0

cA(j)z
j , (6.35)

where cA(0) = 1 and for 1 ≤ j ≤ k − 1,

cA(j) =

{

1 if a1a2 · · · ak−j = aj+1aj+2 · · · ak ,
0 otherwise .

(6.36)

As examples, we note that if A = 1000, then CA(z) = 1, whereas CA(z) = 1 + z + z
2 + z3 if

A = 1111. The generating function

FA(z) =

∞
∑

n=0

fA(n)z
n (6.37)

then satisfies

FA(z) =
CA(z)

zk + (1− 2z)CA(z)
. (6.38)

To prove this, define gA(n) to be the number of binary sequences b1b2 · · · bn of length n such
that b1b2 · · · bk = A, but such that bjbj+1 · · · bj+k−1 6= A for any j with 2 ≤ j ≤ n− k + 1; i.e.,
sequences that start with A but do not contain it any place else. We then have gA(n) = 0 for

n < k, and gA(k) = 1. We also define

GA(z) =

∞
∑

n=0

gA(n)z
n . (6.39)

We next obtain a relation between GA(z) and FA(z) that will enable us to determine both.

If b1b2 · · · bn is counted by fA(n), then for x either 0 or 1, the string xb1b2 · · · bn either does
not contain A at all, or if it does contain it, then A = xb1b2 · · · bk−1. Therefore for n ≥ 0,

2fA(n) = fA(n+ 1) + gA(n+ 1) (6.40)
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and multiplying both sides of Eq. (6.40) by zn and summing on n ≥ 0 yields

2FA(z) = z
−1(FA(z) − 1) + z−1GA(z) . (6.41)

We need one more relation, and to obtain it we consider any string B = b1b2 · · · bn that
does not contain A any place inside. If we let C be the concatenation of A and B, so that

C = a1a2 · · · akb1b2 · · · bn, then C starts with A, and may contain other occurrences of A, but
only at positions that overlap with the initial A. Therefore we obtain,

fA(n) =

k
∑

j=1
cA(k−j)=1

gA(n+ j) for n ≥ 0 , (6.42)

and this gives the relation

FA(z) = z
−kCA(z)GA(z) . (6.43)

Solving the two equations (6.41) and (6.43), we find that FA(z) satisfies (6.38), while

GA(z) =
zk

zk + (1− 2z)CA(z)
. (6.44)

The proof above follows that in [182], except that [182] uses generating functions in z−1, so

the formulas look different. Applications of the formulas (6.38) and (6.44) will be found later

in this chapter, as well as in [182, 130]. Other approaches to string enumeration problems are

referenced there as well. Other approaches and applications of string enumerations are given

in the references to [182] and in papers such as [18].
�

The above example can be generalized to provide generating functions that enumerate

sequences in which any of a given set of patterns are forbidden [182].

Whenever one has a finite system of linear recurrences with constant coefficients that in-

volve several sequences, say a
(i)
n , 1 ≤ i ≤ k, n ≥ 0, one can translate these recurrences into

linear equations with polynomial coefficients in the generating functions A(i)(z) =
∑

a
(i)
n zn for

these sequences. To obtain the A(i)(z), one then needs to solve the resulting system. Such so-

lutions will exist if the matrix of polynomial coefficients is nonsingular over the field of rational

functions in z. In particular, one needs at least as many equations (i.e., recurrence relations)

as k, the number of sequences, and if there are exactly as many equations as sequences, then

the determinant of the matrix of the coefficients has to be a nonzero polynomial.

One interesting observation is that when a system of recurrences involving several sequences

is solved by the above method, each of the generating functions A(i)(z) is a rational function
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in z. What this means is that each of the sequences a
(i)
n , 1 ≤ i ≤ k, satisfies a linear recurrence

with constant coefficients that does not involve any of the other a
(j)
n sequences! In principle,

therefore, that recurrence could have been found right at the beginning by combinatorial

methods. However, usually the degree of the recurrence for an isolated a
(j)
n sequence is high,

typically about k times as large as the average degree of the k recurrences involving all the

a
(j)
n . Thus the use of several sequences a

(j)
n leads to much simpler and combinatorially more

appealing relations.

That generating functions can significantly simplify combinatorial problems is shown by

the following example. It is taken from [349], and is a modification of a result of Klarner [229]

and Pólya [321]. This example also shows a more complicated derivation of explicit generating

functions than the simple ones presented so far.

Example 6.5. Polyomino enumeration [349]. Let an be the number of n-square polyominoes

P that are inequivalent under translation, but not necessarily under rotation or reflection, and

such that each row of P is an unbroken line of squares. Then a1 = 1, a2 = 2, a3 = 6. We

define a0 = 0. It is easily seen that

an =
∑

(m1 +m2 − 1)(m2 +m3 − 1) · · · (ms−1 +ms − 1) , (6.45)

where the sum is over all ordered partitions m1 + · · ·+ms = n of n into positive integers mi.
Let ar,n be the sum of terms in (6.45) with m1 = r, where we set an,n = 1, and ar,n = 0 if

r > n or n < 0. Then

an =

∞
∑

r=1

ar,n , (6.46)

ar,n =
∞
∑

i=1

(r + i− 1)ai,n−r , r < n . (6.47)

Define

A(x, y) =
∞
∑

n=1

∞
∑

r=1

ar,nx
ryn , (6.48)

so that

A(1, y) =
∞
∑

n=1

any
n (6.49)

is the generating function of the an, which are what we need to estimate.

By (6.47), we find that

A(x, y) =

∞
∑

n=1

xnyn +

∞
∑

n=1

∞
∑

r=1

∞
∑

i=1

(r + i− 1)ai(n− r)xryn
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(6.50)

=
xy

1− xy +
x2y2

(1− xy)2A(1, y) +
xy

1− xyG(x, y) , (6.51)

where

G(y) =
∞
∑

n=1

∞
∑

i=1

iai,ny
n =

∂

∂x
A(x.y)

∣

∣

∣

∣

x=1

, (6.52)

We now set x = 1 in (6.50) and obtain an equation involving A(1, y) and G(y), namely

A(1, y) =
y

1− y +
y2

(1− y)2A(1, y) +
y

1− yG(y) . (6.53)

We next differentiate (6.50) with respect to x, and set x = 1. This gives us a second equation,

G(y) =
y

(1− y)2 +
2y2

(1− y)3A(1, y) +
y

(1− y)2G(y) . (6.54)

We now eliminate G(y) from (6.53) and (6.54) to obtain

A(1, y) =
y(1− y)3

1− 5y + 7y2 − 4y3 . (6.55)

This formula shows that

an+3 = an+2 − 7an+1 + 4an for n ≥ 2 . (6.56)

Using the results of Section 10 we can easily obtain from (6.55) an asymptotic estimate

an ∼ cαn as n→∞ , (6.57)

where c is a certain constant and α = 3.205569 . . . is the inverse of the smallest zero of

1− 5y + 7y2 − 4y3. �

For other methods and results related to polyomino enumeration, see [326, 327].

6.2. Composition and inversion of power series

So far we have only discussed simple operations on generating functions, such as multipli-

cation. What happens when we do something more complicated? There are several frequently

occurring operations on generating functions whose results can be described explicitly.

Faà di Bruno’s formula [81]. Suppose that

A(z) =
∞
∑

m=0

am
zm

m!
, B(z) =

∞
∑

n=0

bn
zn

n!
, (6.58)
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are two exponential generating functions with b0 = 0. Then the formal composition C(z) =

A(B(z)) is well-defined, and

C(z) =

∞
∑

n=0

cn
zn

n!
(6.59)

with

c0 = 0, cn =

n
∑

k=1

akBn,k(b1, b2, . . . , bn−k+1) , (6.60)

where the Bn,k are the exponential Bell polynomials defined by

∞
∑

n,k=0

Bn,k(x1, . . . , xn−k+1)
tnuk

n!
= exp

(

u

∞
∑

m=1

xm
tm

m!

)

, (6.61)

with the xj independent variables.

Faà di Bruno’s formula makes it possible to compute successive derivatives of functions

such as logA(z) in terms of the derivatives of A(z). For further examples, see [81, 335, 336].

Faà di Bruno’s formula is derivable in a straightforward way from the multinomial theorem.

Composition of generating functions occurs frequently in combinatorics and analysis of

algorithms. When it yields the desired generating function as a composition of several known

generating functions, the basic problem is solved, and one can work on the asymptotics of the

coefficients using Faà di Bruno’s formula or other methods. A more frequent event is that

the composition yields a functional equation for the generating function, as in Example 6.1,

where the exponential generating function t(z) for labeled rooted trees was shown to satisfy

t(z) = z exp(t(z)). General functional equations are hard to deal with. (Many examples

will be presented later.) However, there is a class of them for which an old technique, the

Lagrange-Bürmann inversion formula, works well. We start by noting that if

f(z) =

∞
∑

n=0

fnz
n (6.62)

is a formal power series with f0 = 0, f1 6= 0, then there is an inverse formal power series
f 〈−1〉(z) such that

f(f 〈−1〉(z)) = f 〈−1〉(f(z)) = z . (6.63)

The coefficients of f 〈−1〉(z) can be expressed explicitly in terms of the coefficients of f(z). More

generally, we have the following result.

Lagrange-Bürmann inversion formula. Suppose that f(z) is a formal power series

with [z0]f(z) = 0, [z1]f(z) 6= 0, and that g(z) is any formal power series. Then for n ≥ 1,

[zn]{g(f 〈−1〉)(z)} = n−1[zn−1]{g′(z)(f(z)/z)−n} . (6.64)
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In particular, for g(z) = z, we have

[zn]f 〈−1〉(z) = n−1[zn−1](f(z)/z)−n . (6.65)

Example 6.6. Rooted labeled trees. As was shown in Example 6.1, the exponential gener-

ating function of rooted labeled trees satisfies t(z) = z exp(t(z)). If we rewrite it as z =

t(z) exp(−t(z)), we see that t(z) = f 〈−1〉(z), where f(z) = z exp(−z). Therefore Eq. (6.65)
yields

[zn]t(z) = n−1[zn−1] exp(−nz)

(6.66)

= n−1nn−1/(n− 1)! = nn−1/n! ,

which shows that tn, the number of rooted labeled trees on n nodes, is n
n−1.

�

Proof of a form of the Lagrange-Bürmann theorem is given in Chapter ?. Extensive dis-

cussion, proofs, and references are contained in [81, 173, 205, 375]. Some additional recent

references are [159, 208]. There exist generalizations of the Lagrange-Bürmann formula to

several variables [173, 169, 208].

The Lagrange-Bürmann formula, as stated above, is valid for general formal power series. If

f(z) is analytic in a neighborhood of the origin, then so are f 〈−1〉(z) and g(f 〈−1〉)(z), provided

g(z) is also analytic near 0 and f ′(0) 6= 0, f(0) = 0. Most of the presentations of this inversion
formula in the literature assume analyticity. However, that is not a real restriction. To prove

(6.65), say, in full generality, it suffices to prove it for any n. Given n, if we let

F (z) =
n
∑

k=0

fkz
k , G(z) =

n
∑

k=0

gkz
k ,

then we see that

[zn]{g(f 〈−1〉)(z)} = [zn]G(F 〈−1〉)(z) , (6.67)

and F (z) and G(z) are analytic, so the formula (6.65) can be applied. Thus combinatorial

proofs of the Lagrange-Bürmann formula do not offer greater generality than analytic ones.

While the analytic vs. combinatorial distinction in the proofs of the Lagrange-Bürmann

formula does not matter, it is possible to use analyticity of the functions f(z) and g(z) to

obtain useful information. Example 6.6 above was atypical in that a simple explicit formula
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was derived. Often the quantity on the right-hand side of (6.64) is not explicit enough to make

clear its asymptotic behavior. When that happens, and g(z) and f(z) are analytic, one can

use the contour integral representation

[zn−1]{g′(z)(f(z)/z)−n} = 1

2πi

∫

Γ
g′(z)f(z)−ndz , (6.68)

where Γ is a positively oriented simple closed contour enclosing the origin that lies inside the

region of analyticity of both g(z) and f(z). This representation, which is discussed in Sec-

tion 10, can often be used to obtain asymptotic information about coefficients [zn]g(f 〈−1〉)(z)

(cf. [273]).

The Lagrange-Bürmann formula can provide numerical approximations to roots of equa-

tions and even convergent infinite series representations for such roots. An important case is

the trinomial equation y = z(1 + yr), and there are many others.

Example 6.7. Dominant zero for forbidden subword generating functions. The generating

functions FA(z) and GA(z) of Example 6.4 both have denominators

h(z) = zk + (1− 2z)C(z) , (6.69)

where C(z) is a polynomial of degree ≤ k, with coefficients 0 and 1, and with C(0) = 1. It will
be shown later that h(z) has only one zero ρ of small absolute value, and that this zero is the

dominant influence on the asymptotic behavior of the coefficients of FA(z) and GA(z). Right

now we obtain accurate estimates for ρ.

For simplicity, we will consider only large k. Since C(z) has nonnegative coefficients and

C(0) = 1, h(3/4) ≤ (3/4)k − 1/2 < 0 for k ≥ 3. On the other hand, h(1/2) = 2−k. Therefore
h(z) has a real zero ρ with 1/2 < ρ < 3/4. As k →∞, ρ→ 1/2, since

ρk = (2ρ− 1)C(ρ) , (6.70)

and ρk → 0 as k →∞ for 1/2 < ρ < 3/4, while 2ρ− 1 and C(ρ) are bounded. We can deduce
from (6.69) that

2ρ− 1 ∼ 2−kC(1/2)−1 as k →∞ , (6.71)

uniformly for all polynomials C(z) of the prescribed type. By applying the bootstrapping

technique (see Section 5.4) we can find even better approximations. By (6.71),

C(ρ) = C(1/2) +O(|ρ− 1/2|) = C(1/2) +O(2−k) , (6.72)

ρk = 2−k(1 +O(2−k))k = 2−k(1 +O(k2−k)) , (6.73)
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so (6.70) now yields

ρ = 1/2 + 2−k−1C(1/2)−1 +O(k2−2k) . (6.74)

Even better approximations can be obtained by repeating the process using (6.74). At the

next stage we would apply the expansion

C(ρ) = C(1/2) + (ρ− 1/2)C ′(1/2) +O((ρ− 1/2)2)

(6.75)

= C(1/2) + 2−k−1C ′(1/2) +O(k2−2k)

and a similar one for ρk.

A more systematic way to obtain a rapidly convergent series for ρ is to use the inversion

formula. If we set u = ρ− 1/2, then (6.70) can be rewritten as w(u) = 1, where

w(u) = 2uC(1/2 + u)(1/2 + u)−k =

∞
∑

j=1

aju
j , (6.76)

with

a1 = 2
k+1C(1/2) 6= 0 . (6.77)

Hence u = w〈−1〉(1), and the Lagrange-Bürmann inversion formula (6.65) yields the coefficients

of w〈−1〉(z). In particular, we find that

ρ = 1/2+u ≈ 1/2+2−k−1C(1/2)−1+k2−2k−1C(1/2)−2−2−2k−2C ′(1/2)C(1/2)−3+ · · · (6.78)

as a Poincaré asymptotic series. With additional work one can show that the series (6.78)

converges, and that

ρ = 1/2 + 2−k−1C(1/2)−1 + k2−2k−1C(1/2)−2

− 2−2k−2C ′(1/2)C(1/2)−3 +O(k22−3k) ,
(6.79)

for example. The same estimate can be obtained by the bootstrapping technique.
�

6.3. Differentiably finite power series

Homogeneous recurrences with constant coefficients are the nicest large set of sequences

one can imagine, with rational generating functions, and well-understood asymptotic behavior.

The next class in complexity consists of the polynomially-recursive or, P -recursive sequences,

a0, a1, . . ., which satisfy recurrences of the form

pd(n)an+d + pd−1(n)an+d−1 + · · · + p0(n)an = 0, n ≥ 0 , (6.80)
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where d is fixed and p0(n), . . . , pd(n) are polynomials in n. Such sequences are common in

combinatorics, with an = n! a simple example. Normally P -recursive sequences do not have

explicit forms for their generating functions. In this section we briefly summarize some of

their main properties. Asymptotic properties of P -recursive sequences will be discussed in

Section 9.2. The main references for the results quoted here are [254, 350].

A formal power series

f(z) =

∞
∑

k=0

akz
k (6.81)

is called differentiably finite, or D-finite, if the derivatives f (n)(z) = dnf(z)
dzn , n ≥ 0, span a

finite-dimensional vector space over the field of rational functions with complex coefficients.

The following three conditions are equivalent for a formal power series f(z):

i) f(z) is D-finite.

ii) There exist finitely many polynomials q0(z), . . . , qk(z) and a polynomial q(z), not all 0,

such that

qk(z)f
(k)(z) + · · ·+ q0(z)f(z) = q(z) . (6.82)

iii) There exist finitely many polynomials p0(z), . . . , pm(z), not all 0, such that

pm(z)f
(m)(z) + · · ·+ p0(z)f(z) = 0 . (6.83)

The most important result for combinatorial enumeration is that a sequence a0, a1, . . ., is

P -recursive if and only if its ordinary generating function f(z), defined by (6.81), is D-finite.

This makes it possible to apply results that are more easily proved for D-finite power series.

If f(z) is D-finite, then so is the power series obtained by changing a finite number of the

coefficients of f(z). If f(z) is algebraic (i.e., there exist polynomials q0(z), . . . , qd(z), not all

0, such that qd(z)f(z)
d + · · · + q0(z)f(z) + q0(z) = 0), then f(z) is D-finite. The product

of two D-finite power series is also D-finite, as is any linear combination with polynomial

coefficients. Finally, the Hadamard product of two D-finite series is D-finite. The proofs rely

on elementary linear algebra constructions. An important feature of the theory is that identity

between D-finite series is decidable.

The concept of a D-finite power series can be extended to several variables [254, 405], and

there are generalizations of P -recursiveness [254, 405]. (See also [161].) Zeilberger [405] has

used the word holonomic to describe corresponding sequences and generating functions.
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When we investigate a sequence {an}, sometimes the combinatorial context yields only
relations for more complicated object with several indices. While we might like to obtain the

generating function f(z) =
∑

anz
n, we might instead find a formula for a generating function

F (z1, z2, . . . , zk) =
∑

n1,...,nk

bn1 , . . . , nkz
n1
1 , . . . , z

nk
k , (6.84)

where an = bn,n,...,n, say. When this happens, we say that f(z) is a diagonal of F (z1, . . . , zk).

(There are more general definitions of diagonals in [90, 253, 254, 255], which are recent refer-

ences for this topic.) Diagonals of D-finite power series in any number of variables are D-finite.

Diagonals of two-variable rational functions are algebraic, but there are three-variable rational

functions whose diagonals are not algebraic [151].

6.4. Unimodality and log-concavity

A finite sequence a0, a1, . . . , an of real numbers is called unimodal if for some index k,

a0 ≤ a1 ≤ · · · ≤ ak and ak ≥ ak+1 ≥ · · · ≥ an. A sequence a0, . . . , an of nonnegative
elements is called log-concave (short for logarithmically concave) if a2j ≥ aj−1aj+1 holds for
1 ≤ j ≤ n − 1. Unimodal and log-concave sequences occur frequently in combinatorics and
are objects of intensive study. We present a brief review of some of their properties because

asymptotic methods are often used to prove unimodality and log-concavity. Furthermore,

knowledge that a sequence is log-concave or unimodal is often helpful in obtaining asymptotic

information. For example, some methods provide only asymptotic estimates for summatory

functions of sequences, and unimodality helps in obtaining from those estimates bounds on

individual coefficients. This approach will be presented in Section 13, in the discussion of

central and local limit theorems.

The basic references for unimodality and log-concavity are [222, 352]. For recent results,

see also [56] and the references given there. All the results listed below can be found in those

sources and the references they list.

In the rest of this subsection we will consider only sequences of nonnegative elements.

A sequence a0, . . . , an will be said to have no internal zeros if there is no triple of integers

0 ≤ i < j < k ≤ n such that aj = 0, aiak 6= 0. It is easy to see that a log-concave
sequence with no internal zeros is unimodal, but there are sequences of positive elements that

are unimodal but not concave. The convolution of two unimodal sequences does not have to

be unimodal. However, it is unimodal if each of the two unimodal sequences is also symmetric.
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Convolution of two log-concave sequences is log-concave. The convolution of a log-concave and

a unimodal sequence is unimodal. A log-concave sequence is even characterized by the property

that its convolution with any unimodal sequence is unimodal. This last property is related

to the variation-diminishing character of log-concave sequences (see [222]), which we will not

discuss at greater length here except to note that there are more restrictive sets of sequences

(the Pólya frequency classes, see [56, 222]) which have stronger convolution properties.

The binomial coefficients
(

n
k

)

, 0 ≤ k ≤ n, are log-concave, and therefore unimodal. The
q-binomial coefficients

[n
k

]

q
are log-concave for any q ≥ 1. On the other hand, if we write a

single coefficient
[n
k

]

q
for fixed n and k as a polynomial in q, the sequence of coefficients is

unimodal, but does not have to be log-concave.

The most frequently used method for showing that a sequence a0, . . . , an is log-concave is

to show that all the zeros of the polynomial

A(z) =

n
∑

k=0

akz
k (6.85)

are real and ≤ 0. In that case not only are the ak log-concave, but so are ak
(n
k

)−1
. Absolute

values of the Stirling numbers of both kinds were first shown to be log-concave by this method

[195]. There are many unsolved conjectures about log-concavity of combinatorial sequences,

such as the Read-Hoggar conjecture that coefficients of chromatic polynomials are log-concave

(cf. [57]).

A variety of combinatorial, algebraic, and geometric methods have been used to prove

unimodality of sequences, and we refer the reader to [352] for a comprehensive and insightful

survey. In Section 12.3 we will discuss briefly some proofs of unimodality and log-concavity

that use asymptotic methods. The basic philosophy is that since the Gaussian distribution is

log-concave and unimodal (when we extend the definition of these concepts to continuous dis-

tributions), these properties should also hold for sequences that by the central limit theorem or

its variants are asymptotic to the Gaussian. Therefore one can expect high-order convolutions

of sequences to be log-concave at least in their central region, and there are theorems that

prove this under certain conditions.

6.5. Moments and distributions

The second moment method is a frequently used technique in probabilistic arguments, as

is shown in Chapter ? and [55, 108, 348]. It is based on Chebyshev’s inequality, which says
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that if X is a real-valued random variable with finite second moment E(X 2), then

Prob (|X −E(X)| ≥ α|E(X)|) ≤ E(X
2)−E(X)2
α2E(X)2

. (6.86)

An easy corollary of inequality (6.86) that is often used is

Prob (X = 0) ≤ E(X
2)−E(X)2
E(X)2

. (6.87)

(There is a slightly stronger version of the inequality (6.87), in which E(X)2 in the denominator

is replaced by E(X2).) The inequalities (6.86) and (6.87) are usually applied for X = Y1 +

· · · + Yn, where the Yj are other random variables. The helpful feature of the inequalities is
that they require only knowledge of the pairwise dependencies among the Yj, which is easier

to study than the full joint distribution of the Yj. For other bounds on distributions that can

be obtained from partial information about moments, see [343].

The reason moment bounds are mentioned at all in this chapter is that asymptotic methods

are often used to derive them. Generating functions are a common and convenient method for

doing this.

Example 6.8. Waiting times for subwords. In a continuation and application of Example 6.4,

let A be a binary string of length k. How many tosses of a fair coin (with sides labeled 0 and

1) are needed on average before A appears as a block of k consecutive outcomes? By a general

observation of probability theory, this is just the sum over n ≥ 0 of the probability that A does
not appear in the first n coin tosses, and thus equals

∞
∑

n=0

fA(n)2
−n = FA(1/2) = 2

kCA(1/2) , (6.88)

where the last equality follows from Eq. (6.38). Another, more general, way to derive this is

to use GA(z). Note that gA(n)2
−n is the probability that A appears in the first n coin tosses,

but not in the first n− 1. Hence the r-th moment of the time until A appears is
∞
∑

n=0

nrgA(n)2
−n =

(

z
d

dz

)r

GA(z)

∣

∣

∣

∣

z=1/2

. (6.89)

If we take r = 1, we again obtain the expected waiting time given by (6.88). When we take

r = 2, we find that the second moment of the time until the appearance of A is

∞
∑

n=0

n2gA(n)2
−n = 22k+1CA(1/2)

2 − (2k − 1)2kCA(1/2) + 2kC ′A(1/2) , (6.90)
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and therefore the variance is

22kCA(1/2)
2 − (2k − 1)2kCA(1/2) + 2kC ′A(1/2)

= 22kCA(1/2)
2 +O(k2k) ,

(6.91)

since 1 ≤ CA(1/2) ≤ 2. Higher moments can be used to obtain more detailed information.
A better approach is to use the method of Example 9.2, which gives precise estimates for the

tails as well as the mean of the distribution.
�

Information about moments of distribution functions can often be used to obtain the lim-

iting distribution. If Fn(x) is a sequence of distribution functions such that for every integer

k ≥ 0, the k-th moment
µn(k) =

∫

xkdFn(x) (6.92)

converges to µ(k) as n→∞, then there is a limiting measure with distribution function F (x)
whose k-th moment is µ(k). If the moments µ(k) do not grow too rapidly, then they determine

the distribution function F (x) uniquely, and the Fn(x) converge to F (x) (in the weak star sense

[50]). A sufficient condition for the µ(k) to determine F (x) uniquely is that the generating

function

U(x) =

∞
∑

k=0

µ(2k)xk

(2k)!
(6.93)

should converge for some x > 0. In particular, the standard normal distribution with

F (x) = (2π)−1/2
∫ x

−∞
exp(−u2/2)du (6.94)

has µ(2k) = 1 · 3 · 5 · 7 · . . . · (2k − 1) (and µ(2k + 1) = 0), so it is determined uniquely by its
moments. On the other hand, there are some frequently encountered distributions, such as the

log-normal one, which do not have this property.

7. Formal power series

This section discusses generating functions f(z) that might not converge in any interval

around the origin. Sequences that grow rapidly are common in combinatorics, with an = n!

the most obvious example for which

f(z) =

∞
∑

n=0

anz
n (7.1)

does not converge for any z 6= 0. The usual way to deal with the problem of a rapidly growing
sequence an is to study the generating function of an/bn, where bn is some sequence with
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known asymptotic behavior. When bn = n!, the ordinary generating function of an/bn is then

the exponential generating function of an. For derangements (Eqs. (1.1) and (6.7)) this works

well, as the exponential generating function of dn converges in |z| < 1 and has a nice form.
Unfortunately, while we can always find a sequence bn that will make the ordinary generating

function f(z) of an/bn converge (even for all z), usually we cannot do it in a way that will

yield any useful information about f(z). The combinatorial structure of a problem almost

always severely restricts what forms of generating function can be used to take advantage of

the special properties of the problem. This difficulty is common, for example, in enumeration

of labeled graphs. In such cases one often resorts to formal power series that do not converge

in any neighborhood of the origin. For example, if c(n, k) is the number of connected labeled

graphs on n vertices with k edges, then it is well known (cf. [349]) that

∞
∑

n=0

∞
∑

k=0

c(n, k)
xkyn

n!
= log

(

∞
∑

m=0

(1 + x)(
m
2 )ym

m!

)

. (7.2)

While the series inside the log in (7.2) does converge for −2 ≤ x ≤ 0, and any y, it diverges
for any x > 0 as long as y 6= 0, and so this is a relation of formal power series.
There are few methods for dealing with asymptotics of formal power series, at least when

compared to the wealth of techniques available for studying analytic generating functions.

Fortunately, combinatorial enumeration problems that do require the use of formal power series

often involve rapidly growing sequences of positive terms, for which some simple techniques

apply. We start with an easy general result that is applicable both to convergent and purely

formal power series.

Theorem 7.1. ([33]) Suppose that a(z) =
∑

anz
n and b(z) =

∑

bnz
n are power series with

radii of convergence α > β ≥ 0, respectively. Suppose that bn−1/bn → β as n → ∞. If
a(β) 6= 0, and

∑

cnz
n = a(z)b(z), then

cn ∼ a(β)bn as n→∞ . (7.3)

The proof of Theorem 7.1, which can be found in [33], is simple. The condition α > β is

important, and cannot be replaced by α = β. We can have β = 0, and that is indeed the only

possibility if the series for b(z) does not converge in a neighborhood of z = 0.

Example 7.1. Double set coverings [33, 80]. Let vn be the number of choices of subsets

S1, . . . , Sr of an n-element set T such that each t ∈ T is in exactly two of the Si. There is
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no restriction on r, the number of subsets, and some of the Si can be repeated. Let cn be

the corresponding number when the Si are required to be distinct. We let C(z) =
∑

cnz
n/n!,

V (z) =
∑

vnz
n/n! be the exponential generating functions. Then it can be shown that

C(z) = exp(−1− (ez − 1)/2)A(z) , (7.4)

V (z) = exp(−1 + (ez − 1)/2)A(z) , (7.5)

where

A(z) =

∞
∑

k=0

exp(k(k − 1)z/2)/k! . (7.6)

We see immediately that A(z) does not converge in any neighborhood of the origin. We have

an = [z
n]A(z) = 2−n

∞
∑

k=2

kn(k − 1)n
k!

. (7.7)

By considering the ratio of consecutive terms in the sum in (7.7), we find that the largest term

occurs for k = k0 with k0 log k0 ∼ 2n, and by the methods of Section 5.1 we find that

an ∼
π1/2kn0 (k0 − 1)n
n1/22n(k0 − 1)!

as n→∞ . (7.8)

Therefore an−1/an → 0 as n→∞, and Theorem 7.1 tells us that

cn ∼ vn ∼ e−1n!an as n→∞ . (7.9)

�

Usually formal power series occur in more complicated relations than those covered by

Theorem 7.1. For example, if fn is the number of connected graphs on n labeled vertices

which have some property, and Fn is the number of graphs on n labeled vertices each of whose

connected components has that property, then (cf. [394])

1 +

∞
∑

n=1

Fn
xn

n!
= exp

(

∞
∑

n=1

fn
xn

n!

)

. (7.10)

Theorem 7.2. ([34]) Suppose that

a(x) =
∞
∑

n=1

anx
n , F (x, y) =

∑

h,k≥0

fhkx
hyk ,

(7.11)

b(x) =
∞
∑

n=0

bnx
n = F (x, a(x)) , D(x) = Fy(x, a(x)) ,

where Fy(x, y) is the partial derivative of F (x, y) with respect to y. Assume that an 6= 0 and

53



(i)

an−1 = o(an) as n→∞ , (7.12)

(ii)
n−r
∑

k=r

|akan−k| = O(an−r) for some r > 0 , (7.13)

(iii) for every δ > 0 there are M(δ) and K(δ) such that for n ≥M(δ) and h+ k > r + 1,

|fhkan−h−k+1| ≤ K(δ)δh+k |an−r| . (7.14)

Then

bn =
r−1
∑

k=0

dkan−k +O(an−r) . (7.15)

Condition (iii) of Theorem 7.2 is often hard to verify. Theorem 2 of [34] shows that this

condition holds under certain simpler hypotheses. It follows from that result that (iii) is

valid if F (x, y) is analytic in x and y in a neighborhood of (0, 0). Hence, if F (x, y) = exp(y) or

F (x, y) = 1+y, then Theorem 7.2 becomes easy to apply. One can also deduce from Theorem 2

of [34] that Theorem 7.2 applies when (i) and (ii) hold, b0 = 0, bn ≥ 0, and

1 + a(z) = exp

(

∞
∑

k=1

b(zk)/k

)

, (7.16)

another relation that is common in graph enumeration (cf. Example 15.1). There are also

some results weaker than Theorem 7.2 that are easier to apply [393].

Example 7.2. Indecomposable permutations [81]. For every permutation σ of {1, . . . , n), let
{1, . . . , n} = ∪Ih, where the Ih are the smallest intervals such that σ(Ih) = Ih for all h.
For example, σ = (134)(2)(56) corresponds to I1 = {1, 2, 3, 4}, I2 = {5, 6}, and the identity
permutation has n components. A permutation is said to be indecomposable if it has one

component. For example, if σ has the 2-cycle (1n), it is indecomposable. Let cn be the number

of indecomposable permutations of {1, . . . , n}. Then [81]
∞
∑

n=1

cnz
n = 1− 1

1 +
∑∞
n=1 n!z

n
. (7.17)

We apply Theorem 7.2 with an = n! for n ≥ 1 and F (x, y) = 1− (1 + y)−1. We easily obtain

cn ∼ n! as n→∞ , (7.18)

so that almost all permutations are indecomposable.
�
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Some further useful expansions for functional inverses and computations of formal power

series have been obtained by Bender and Richmond [40].

8. Elementary estimates for convergent generating functions

The word “elementary” in the title of this section is a technical term that means the proofs

do not use complex variables. It does not necessarily imply that the proofs are simple. While

some, such as those of Section 8.1, are easy, others are more complicated. The main advantage

of elementary methods is that they are much easier to use, and since they impose much weaker

requirements on the generating functions, they are more widely applicable. Usually they only

impose conditions on the generating function f(z) for z ∈ � + .
The main disadvantage of elementary methods is that the estimates they give tend to be

much weaker than those derived using analytic function approaches. It is easy to explain why

that is so by considering the two generating functions

f1(z) =

∞
∑

n=0

zn = (1− z)−1 (8.1)

and

f2(z) = 3/2 +
∞
∑

n=1

2z2n = 3/2 + 2z2(1− z2)−1 . (8.2)

Both series converge for |z| < 1 and diverge for |z| > 1, and both blow up as z → 1. However,

f1(z)− f2(z) = −
1− z
2(1 + z)

→ 0 as z → 1 . (8.3)

Thus these two functions behave almost identically near z = 1. Since f1(z) and f2(z) are both

∼ (1− z)−1 as z → 1−, z ∈ � + , and their difference is O(|z − 1|) for z ∈ � + , it would require
exceptionally delicate methods to detect the differences in the coefficients of the fj(z) just from

their behavior for z ∈ � + . There is a substantial difference in the behavior of f1(z) and f2(z)
for real z if we let z → −1, so our argument does not completely exclude the possibility of
obtaining detailed information about the coefficients of these functions using methods of real

variables only. However, if we consider the function

f3(z) = 2 +

∞
∑

n=1

3z3n = 2 + 3z3(1− z3)−1 , (8.4)

then f1(z) and f3(z) are both ∼ (1− z)−1 as z → 1−, z ∈ � + , yet now

|f1(z)− f3(z)| = O(|z − 1|) for all z ∈ � .
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This difference is comparable to what would be obtained by modifying a single coefficient of one

generating function. To determine how such slight changes in the behavior of the generating

functions affect the behavior of the coefficients we would need to know much more about

the functions if we were to use real variable methods. On the other hand, analytic methods,

discussed in Section 10 and later, are good at dealing with such problems. They require less

precise knowledge of the behavior of a function on the real line. Instead, they impose weak

conditions on the function in a wider domain, namely that of the complex numbers.

For reasons discussed above, elementary methods cannot be expected to produce precise

estimates of individual coefficients. They often do produce good estimates of summatory

functions of the coefficients, though. In the examples above, we note that

N
∑

n=1

[zn]fj(z) ∼ N as N →∞ (8.5)

for 1 ≤ j ≤ 3. This holds because the fj(z) have the same behavior as z → 1−, and is part of
a more general phenomenon. Good knowledge of the behavior of the generating function on

the real axis combined with weak restrictions on the coefficients often leads to estimates for

the summatory function of the coefficients.

There are cases where elementary methods give precise bounds for individual coefficients.

Typically when we wish to estimate fn, with ordinary generating function f(z) =
∑

fnz
n that

converges for |z| < 1 but not for |z| > 1, we apply the methods of this section to

gn = fn − fn−1 for n ≥ 1, g0 = f0 (8.6)

with generating function

g(z) =

∞
∑

n=0

gnz
n = (1− z)f(z) . (8.7)

Then
n
∑

k=0

gk = fn , (8.8)

and so estimates of the summatory function of the gk yield estimates for fn. The difficulty with

this approach is that now g(z) and not f(z) has to satisfy the hypotheses of the theorems,

which requires more knowledge of the fn. For example, most of the Tauberian theorems

apply only to power series with nonnegative coefficients. Hence to use the differencing trick

above to obtain estimates for fn we need to know that fn−1 ≤ fn for all n. In some cases
(such as that of fn = pn, the number of ordinary partitions of n) this is easily seen to hold
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through combinatorial arguments. In other situations where one might like to apply elementary

methods, though, fn−1 ≤ fn is either false or else is hard to prove. When that happens, other
methods are required to estimate fn.

8.1. Simple upper and lower bounds

A trivial upper bound method turns out to be widely applicable in asymptotic enumeration,

and is surprisingly powerful. It relies on nothing more than the nonnegativity of the coefficients

of a generating function.

Lemma 8.1. Suppose that f(z) is analytic in |z| < R, and that [zn]f(z) ≥ 0 for all n ≥ 0.
Then for any x, 0 < x < R, and any n ≥ 0,

[zn]f(z) ≤ x−nf(x) . (8.9)

Example 8.1. Lower bound for factorials. Let f(z) = exp(z). Then Lemma 8.1 yields

1

n!
= [zn]ez ≤ x−nex (8.10)

for every x > 0. The logarithm of x−nex is x− n log x, and differentiating and setting it equal
to 0 shows that the minimum value is attained at x = n. Therefore

1

n!
= [zn]ez ≤ n−nen , (8.11)

and so n! ≥ nne−n. This lower bound holds uniformly for all n, and is off only by an asymptotic
factor of (2πn)1/2 from Stirling’s formula (4.1).

�

Suppose that f(z) =
∑

fnz
n. Lemma 8.1 is proved by noting that for 0 < x < R, the n-th

term, fnx
n, in the power series expansion of f(x), is ≤ f(x). As we will see in Section 10, it

is often possible to derive a similar bound on the coefficients fn even without assuming that

they are nonnegative. However, the proof of Lemma 8.1 shows something more, namely that

f0x
−n + f1x

−n+1 + · · ·+ fn−1x−1 + fn ≤ x−nf(x) (8.12)

for 0 < x < R. When x ≤ 1, this yields an upper bound for the summatory function of the
coefficients. Because (8.12) holds, we see that the bound of Lemma 8.1 cannot be sharp in

general. What is remarkable is that the estimates obtainable from that lemma are often not

far from best possible.
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Example 8.2. Upper bound for the partition function. Let p(n) denote the partition function.

It has the ordinary generating function

f(z) =

∞
∑

n=0

p(n)zn =

∞
∏

k=1

(1− zk)−1 . (8.13)

Let g(s) = log f(e−s), and consider s > 0, s → 0. There are extremely accurate estimates of
g(s). It is known [13, 23], for example, that

g(s) = π2/(6s) + (log s)/2− (log 2π)/2 − s/24 +O(exp(−4π2/s)) . (8.14)

If we use (8.14), we find that x−nf(x) is minimized at x = exp(−s) with

s = π/(6n)1/2 − 1/(4n) +O(n−3/2) , (8.15)

which yields

p(1) + p(2) + · · ·+ p(n) ≤ 2−3/4e−1/4n−1/4(1 + o(1)) exp(2π6−1/2n1/2) . (8.16)

Comparing this to the asymptotic formula for the sum that is obtainable from (1.6) (see

Example 5.2), we see that the bound of (8.16) is too high by a factor of n1/4. If we use (8.16)

to bound p(n) alone, we obtain a bound that is too large by a factor of n3/4.

The application of Lemma 8.1 outlined above depended on the expansion (8.14), which is

complicated to derive, involving modular transformation properties of p(n) that are beyond

the scope of this survey. (See [13, 23] for derivations.) Weaker estimates that are still useful

are much easier to derive. We obtain one such bound here, since the arguments illustrate some

of the methods from the preceding sections.

Consider

g(s) =
∞
∑

k=1

− log(1− e−ks) . (8.17)

If we replace the sum by the integral

I(s) =

∫ ∞

1
− log(1− e−us)du , (8.18)

we find on expanding the logarithm that

I(s) =

∫ ∞

1

(

∞
∑

m=1

m−1e−mus

)

du = s−1
∞
∑

m=1

m−2e−ms , (8.19)
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since the interchange of summation and integration is easy to justify, as all the terms are

positive. Therefore as s→ 0+,

sI(s)→
∞
∑

m=1

m−2 = π2/6 , (8.20)

so that I(s) ∼ π2/(6s) as s→ 0+. It remains to show that I is indeed a good approximation
to g(s). This follows easily from the bound (5.32), since it shows that

g(s) = I(s) +O

(
∫ ∞

1

se−vs

1− e−vs dv
)

. (8.21)

We could estimate the integral in (8.21) carefully, but we only need rough upper bounds for

it, so we write it as

∫ ∞

1

se−vs

1− e−vs dv =
∫ ∞

s

e−u

1− e−udu

=

∫ 1

s

e−u

1− e−udu+
∫ ∞

1

e−u

1− e−udu (8.22)

=

∫ 1

s

du

eu − 1 + c ≤
∫ 1

s

du

u
+ c = c− log s

for some constant c. Thus we find that

g(s) = I(s) +O(log(s−1)) as s→ 0+ . (8.23)

Combining (8.23) with (8.20) we see that

g(s) ∼ π2/(6s) as s→ 0+ . (8.24)

Therefore, choosing s = π/(6n)1/2, x = exp(−s) in Lemma 8.1, we obtain a bound of the form

p(n) ≤ exp((1 + o(1))π(2/3)1/2n1/2) as n→∞ . �
(8.25)

Lemma 8.1 yields a lower bound for n! that is only a factor of about n1/2 away from

optimal. That is common. Usually, when the function f(z) is reasonably smooth, the best

bound obtainable from Lemma 8.1 will only be off from the correct value by a polynomial

factor of n, and often only by a factor of n1/2.

The estimate of Lemma 8.1 can often be improved with some additional knowledge about

the fn. For example, if fn+1 ≥ fn for all n ≥ 0, then we have

x−nf(x) ≥ fn + fn+1x+ fn+2x2 + · · · ≥ fn(1− x)−1 . (8.26)
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For fn = p(n), the partition function, then yields an upper bound for p(n) that is too large by

a factor of n1/4.

To optimize the bound of Lemma 8.1, one should choose x ∈ (0, R) carefully. Usually there
is a single best choice. In some pathological cases the optimal choice is obtained by letting

x→ 0+ or x→ R−. However, usually we have limx→R− f(x) =∞, and [zm]f(z) > 0 for some
m with 0 ≤ m < n as well as for some m > n. Under these conditions it is easy to see that

lim
x→0+

x−nf(x) = lim
x→R−

x−nf(x) =∞ . (8.27)

Thus it does not pay to make x too small or too large. Let us now consider

g(x) = log(x−nf(x)) = log f(x)− n log x . (8.28)

Then

g′(x) =
f ′

f
(x)− n

x
, (8.29)

and the optimal choice must be at a point where g ′(x) = 0. For most commonly encountered

functions f(x), there exists a constant x0 > 0 such that

(

f ′

f

)′

(x) > 0 (8.30)

for x0 < x < R, and so g
′′(x) > 0 for all x ∈ (0, R) if n is large enough. For such n there

is then a unique choice of x that minimizes the bound of Lemma 8.1. However, one major

advantage of Lemma 8.1 is that its bound holds for all x. To apply this lemma, one can use

any x that is convenient to work with. Usually if this choice is not too far from the optimal

one, the resulting bound is fairly good.

We have already remarked above that the bound of Lemma 8.1 is usually close to best

possible. It is possible to prove general lower bounds that show this for a wide class of functions.

The method, originated in [277] and developed in [305], relies on simple elementary arguments.

However, the lower bounds it produces are substantially weaker than the upper bounds of

Lemma 8.1. Furthermore, to apply them it is necessary to estimate accurately the minimum of

x−nf(x), instead of selecting any convenient values of x. A more general version of the bound

below is given in [305].

Theorem 8.1. Suppose that f(x) =
∑

fnx
n converges for |x| < 1, fn ≥ 0 for all n, fm0 > 0

for some m0, and
∑

fn = ∞. Then for n ≥ m0, there is a unique x0 = x0(n) ∈ (0, 1) that
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minimizes x−nf(x). Let s0 = − log x0, and

A =
∂2

∂s2
log f(e−s)

∣

∣

∣

s=s0
. (8.31)

If A ≥ 106 and for all t with
s0 ≤ t ≤ s0 + 20A−1/2 (8.32)

we have
∣

∣

∣

∣

∂3

∂s3
log f(e−s)

∣

∣

∣

s=t

∣

∣

∣

∣

≤ 10−3A3/2 , (8.33)

then
n
∑

k=0

fk ≥ x−n0 f(x0) exp(−30s0A1/2 − 100) . (8.34)

As is usual for Tauberian theorems, Theorem 8.1 only provides bounds on the sum of

coefficients of f(z). As we mentioned before, this is unavoidable when one relies only on

information about the behavior of f(z) for z a positive real number. The conditions that

Theorem 8.1 imposes on the derivatives are usually satisfied in combinatorial enumeration

applications and are easy to verify.

Example 8.3. Lower bound for the partition function. Let f(z) and g(s) be as in Example 8.2.

We showed there that g(s) satisfies (8.24) and similar rough estimates show that g ′(s) ∼
−π2/(6s2), g′′(s) ∼ π2/(3s3), and g′′′(s) ∼ −π2/s4 as s → 0+. Therefore the hypotheses of
Theorem 8.1 are satisfied, and we obtain a lower bound for p(0)+ p(1)+ · · ·+ p(n). If we only
use the estimate (8.24) for g(s), then we can only conclude that for x = e−s,

log(x−nf(x)) = ns+ g(s) ∼ ns+ π2/(6s) as s→ 0 , (8.35)

and so the minimum value occurs at s ∼ π/(6n)1/2 as n→∞. This only allows us to conclude
that for every ε > 0 and n large enough,

log(p(0) + · · ·+ p(n)) ≥ (1− ε)π(2/3)1/2n1/2 . (8.36)

However, we can also conclude even without further computations that this lower bound will

be within a multiplicative factor of exp(cn1/4) of the best upper bound that can be obtained

from Lemma 8.1 for some c > 0 (and therefore within a multiplicative factor of exp(cn1/4) of

the correct value). In particular, if we use the estimate (8.14) for g(s), we find that for some

c′ > 0,

p(0) + · · ·+ p(n) ≥ exp(π(2/3)1/2n1/2 − c′n1/4) . (8.37)
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Since p(k) ≤ p(k + 1), the quantity on the right-hand side of (8.37) is also a lower bound for
p(n) if we increase c′, since (n+ 1)p(n) ≥ p(0) + · · ·+ p(n). �

The differencing trick described at the introduction to Section 8 could also be used to

estimate p(n), since Theorem 8.1 can be applied to the generating function of p(n+1)− p(n).
However, since the error term is a multiplicative factor of exp(cn1/4), it is simpler to use the

approach above, which bounds p(n) below by (p(0) + · · · + p(n))/(n+ 1).
Brigham [58] has proved a general theorem about asymptotics of partition functions that

can be derived from Theorem 8.1. (For other results and references for partition asymptotics,

see [13, 23, 150].)

Theorem 8.2. Suppose that

f(z) =

∞
∏

k=1

(1− zk)−b(k) =
∞
∑

n=0

a(n)zn , (8.38)

where the b(k) ∈ Z, b(k) ≥ 0 for all k, and that for some C > 0, u > 0, we have
∑

k≤x

b(k) ∼ Cxu(log x)v as x→∞ . (8.39)

Then
log
(

∑

n≤m a(n)
)

∼ u−1{CuΓ(u+ 2)ζ(u+ 1)}1/(u+1)

· (u+ 1)(u−v)/(u+1)mu/(u+1)(logm)v/(u+1)
(8.40)

as m→∞.

If b(k) = 1 for all k, a(n) is pn, the ordinary partition function. If b(k) = k for all k, a(n) is

the number of plane partitions of n. Thus Brigham’s theorem covers a wide class of interesting

partition functions. The cost of this generality is that we obtain only the asymptotics of the

logarithm of the summatory function of the partitions being enumerated. (For better estimates

of the number of plane partitions, for example, see [9, 170, 387]. For ordinary partitions, we

have the expansion (1.3).)

Brigham’s proof of Theorem 8.2 first shows that

f(e−w) ∼ Cw−u(− logw)vΓ(u+ 1)ζ(u+ 1) as w → 0+ (8.41)

and then invokes the Hardy-Ramanujan Tauberian theorem [328]. Instead, one can obtain a

proof from Theorem 8.1. The advantage of using Theorem 8.1 is that it is much easier to

generalize. Hardy and Ramanujan proved their Tauberian theorem only for functions whose
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growth rates are of the form given by (8.41). Their approach can be extended to other functions,

but this is complicated to do. In contrast, Theorem 8.1 is easy to apply. The conditions of

Theorem 8.1 on the derivatives are not restrictive. For a function f(z) defined by (8.38) we

have B → ∞ if ∑ b(k) = ∞, and the condition (8.33) can be shown to hold whenever there
are constants c1 and c2 such that for all w > 1, and all sufficiently large m,

∑

k≤mw

b(k) ≤ c1wc2
∑

k≤m

b(k) , (8.42)

say. The main difficulty in applying Theorem 8.1 to generalizations of Brigham’s theorem is

in accurately estimating the minimal value in Lemma 8.1.

There are many other applications of Lemma 8.1 and Theorem 8.1. For example, they can

be used to prove the results of [158] on volumes of spheres in the Lee metric.

Lemma 8.1 can be generalized in a straightforward way to multivariate generating functions.

If

f(x, y) =
∑

m,n≥0

am,nx
myn (8.43)

and am,n ≥ 0 for all m and n, then for any x, y > 0 for which the sum in (8.43) converges we
have

am,n ≤ x−my−nf(x, y) . (8.44)

Generalizations of the lower bound of Theorem 8.1 to multivariate functions can also be derived,

but are again harder than the upper bound [289].

8.2. Tauberian theorems

The Brigham Tauberian theorem for partitions [58], based on the Hardy-Ramanujan

Tauberian theorem [328], was quoted already in Section 8.1. It applies to certain generat-

ing functions that have (in notation to be introduced in Section 10) a large singularity and

gives estimates only for the logarithm of the summatory function of the coefficients. Another

theorem that is often more precise, but is again designed to deal with rapidly growing par-

tition functions, is that of Ingham [212], and will be discussed at the end of this section.

Most of the Tauberian theorems in the literature apply to functions with small singularities

(i.e., ones that do not grow rapidly as the argument approaches the circle of convergence) and

give asymptotic relations for the sum of coefficients. References for Tauberian theorems are

[117, 154, 190, 212, 325]. Their main advantage is generality and ease of use, as is shown
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by the applications made to 0-1 laws in [77, 78, 79]. They can often be applied when the

information about generating functions is insufficient to use the methods of Sections 11 and

12. This is especially true when the circle inside which the generating function converges is a

natural boundary beyond which the function cannot be continued.

One Tauberian theorem that is often used in combinatorial enumeration is that of Hardy,

Littlewood, and Karamata. We say a function L(t) varies slowly at infinity if, for every u > 0,

L(ut) ∼ L(t) as t→∞.

Theorem 8.3. Suppose that ak ≥ 0 for all k, and that

f(x) =

∞
∑

k=0

akx
k

converges for 0 ≤ x < r. If there is a ρ ≥ 0 and a function L(t) that varies slowly at infinity
such that

f(x) ∼ (r − x)−ρL
(

1

r − x

)

as x→ r − , (8.45)

then
n
∑

k=0

akr
k ∼ (n/r)ρL(n)/Γ(ρ+ 1) as n→∞ . (8.46)

Example 8.4. Cycles of permutations ([33]). If S is a set of positive integers, and fn the

probability that a random permutation on n letters will have all cycle lengths in S (i.e.,

fn = an/n!, where an is the number of permutations with cycle length in S), then

f(z) =

∞
∑

n=0

fnz
n =

∏

k∈S

exp(zk/k) = (1− z)−1
∏

k 6∈S

exp(−zk/k) . (8.47)

If | � + \ S| <∞, then the methods of Sections 10.2 and 11 apply easily, and one finds that

fn ∼ exp



−
∑

k 6∈S

1/k



 as n→∞ . (8.48)

This estimate can also be proved to apply for | � + \S| =∞, provided |{1, . . . ,m} \S| does not
grow too rapidly when m→∞. If |S| <∞ (or when |{1, . . . ,m} ∩ S| does not grow rapidly),
the methods of Section 12 apply. When S = {1, 2}, one obtains, for example, the result of
Moser and Wyman [292] that the number of permutations of order 2 is

∼ (n/e)n/22−1/2 exp(n1/2 − 1/4) as n→∞ . (8.49)
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(For sharper and more general results, see [292, 376].) The methods used in these cases are

different from the ones we are considering in this section.

We now consider an intermediate case, with

|{1, . . . ,m} ∩ S| ∼ ρm as m→∞ . (8.50)

for some fixed ρ, 0 ≤ ρ ≤ 1. This case can be handled by Tauberian techniques. To apply
Theorem 8.3, we need to show that L(t) = f(1 − t−1)t−ρ varies slowly at infinity. This is
equivalent to showing that for any u ∈ (0, 1),

f(1− t−1) ∼ f(1− t−1u)uρ as t→∞ . (8.51)

Because of (8.47), it suffices to prove that

∑

k∈S

k−1{(1− t−1)k − (1− t−1u)k} = ρ log u+ o(1) as t→∞ , (8.52)

but this is easy to deduce from (8.50) using summation by parts (Section 5). Therefore we

find from Theorem 8.3 that

m
∑

n=0

fn ∼ f(1− 1/n)Γ(ρ+ 1)−1 as n→∞ . (8.53)

(For additional results and references on this problem see [317].)
�

As the above example shows, Tauberian theorems yield estimates under weak assumptions.

These theorems do have some disadvantages. Not only do they usually estimate only the

summatory function of the coefficients, but they normally give no bounds for the error term.

(See [154] for some Tauberian theorems with remainder terms.) Furthermore, they usually

apply only to functions with nonnegative coefficients. Sometimes, as in the following theorem

of Hardy and Littlewood, one can relax the nonnegativity condition slightly.

Theorem 8.4. Suppose that ak ≥ −c/k for some c > 0,

f(z) =

∞
∑

k=1

akx
k , (8.54)

and that f(x) converges for 0 < x < 1, and that

lim
x→1−

f(x) = A . (8.55)

Then

lim
n→∞

n
∑

k=1

ak = A . (8.56)
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Some condition such as ak ≥ −c/k on the ak is necessary, or otherwise the theorem would
not hold. For example, the function

f(x) =
1− x
1 + x

= 1− 2x+ 2x2 · · · (8.57)

satisfies (8.55) with A = 0, but (8.56) fails.

We next present an example that shows an application of the above results in combination

with other asymptotic methods that were presented before.

Example 8.5. Permutations with distinct cycle lengths. The probability that a random per-

mutation on n letters will have cycles of distinct lengths is [zn]f(z), where

f(z) =
∞
∏

k=1

(

1 +
zk

k

)

. (8.58)

Greene and Knuth [177] note that this is also the limit as p → ∞ of the probability that a
polynomial of degree n factors into irreducible polynomials of distinct degrees modulo a prime

p. It is shown in [177] that

[zn]f(z) = e−γ(1 + n−1) +O(n−2 log n) as n→∞ , (8.59)

where γ = 0.577 . . . is Euler’s constant. A simplified version of the argument of [177] will be

presented that shows that

[zn]f(z) ∼ e−γ as n→∞ . (8.60)

Methods for obtaining better expansions, even more precise than that of (8.59), are discussed

in Section 11.2. For related results obtained by probabilistic methods, see [20].

We have, for |z| < 1,

f(z) = (1 + z) exp

(

∞
∑

k=2

log(1 + zk/k)

)

= (1 + z) exp

(

∞
∑

k=2

zk/k + g(z)

)

= (1 + z)(1− z)−1 exp(g(z)) ,

(8.61)

where

g(z) = −z +
∞
∑

m=2

(−1)m−1
m

∞
∑

k=2

zmk

km
. (8.62)
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Since the coefficients of g(z) are small, the double sum in (8.62) converges for z = 1, and we

have

g(1) = lim
z→1−

g(z) = −1 +
∞
∑

k=2

∞
∑

m=2

(−1)m−1
m

k−m

= −1 +
∞
∑

k=2

{log(1 + k−1)− k−1}

= − log 2 + lim
n→∞

(log(n+ 1)−Hn) = − log 2− γ ,

(8.63)

where Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n is the n-th harmonic number. Therefore, by (8.61), we
find from Theorem 8.4 that if fn = [z

n]f(z), then

f0 + f1 + · · ·+ fn ∼ ne−γ as n→∞ . (8.64)

To obtain asymptotics of fn, we note that if hn = [z
n] exp(g(z)), then by (8.61),

fn = 2h0 + 2h1 + · · ·+ 2hn−1 + hn . (8.65)

We next obtain an upper bound for |hn|. There are several ways to proceed. The method used
below gives the best possible result |hn| = O(n−2).
Since g(z) has the power series expansion (8.62), and hn = [z

n] exp(g(z)), comparison of

terms in the full expansion of exp(g(z)) and exp(v(z)) shows that |hn| ≤ [zn] exp(v(z)), where
v(z) is any power series such that |[zn]g(z)| ≤ [zn]v(z). For n ≥ 2,

[zn]g(z) =
∑

m|n
m ≥ 2
m < n

(−1)m−1
m

(m

n

)m
. (8.66)

The term (m/n)m is monotone decreasing for 1 ≤ m ≤ n/e, since its derivative with respect
to m is ≤ 0 in that range. Therefore

|[zn]g(z)| ≤ 1
2

(

2

n

)2

+
∑

3≤m≤n/3

1

m

(

3

n

)3

+
2

n
2−n/2 ≤ 10n−2 , (8.67)

say. Hence we can take

v(z) = 10

∞
∑

n=1

n−2zn , (8.68)

and then we need to estimate

wn = [z
n] exp(v(z)) . (8.69)
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We let w(z) = exp(v(z)), and note that

w′(z) = v′(z)w(z) , (8.70)

so for n ≥ 1,

nwn = 10

n−1
∑

k=0

wk(n− k)−1 . (8.71)

Further, since v(1) < ∞, and wn ≥ 0 for all n, we have wn ≤ A = w(1) = exp(v(1)) for all
n. Let B = 106A and note that wn ≤ Bn−2 for 1 ≤ n ≤ 103. Suppose now that wm ≤ Bm−2

for 1 ≤ m < n for some n ≥ 103. We will prove that wn ≤ Bn−2, and then by induction this
inequality will hold for all n ≥ 1. We apply Eq. (8.70). For 0 ≤ k ≤ 100, we use wk ≤ A,
(n− k)−1 ≤ 2n−1. For 100 < k ≤ n/2,

wk(n− k)−1 ≤ Bk−2(n− k)−1 ≤ 2Bk−2n−1 , (8.72)

and so
∑

100≤k≤n/2

wk(n− k)−1 ≤ B(40n)−1 . (8.73)

Finally,
∑

n/2<k≤n−1

wk(n− k)−1 ≤ 4Bn−2
∑

n/2<k≤n−1

(n− k)−1 ≤ 4Bn−2Hn . (8.74)

Therefore, by (8.71),

nwn ≤ 2000An−1 +B(4n)−1 + 4BHnn−2 ≤ Bn−1 , (8.75)

which completes the induction step and proves that wn ≤ Bn−2 for all n ≥ 1.
�

There are Tauberian theorems that apply to generating functions with rapidly growing

coefficients but are more precise than Brigham’s theorem or the estimates obtainable with the

methods of Section 8.1. One of the most useful is Ingham’s Tauberian theorem for partitions

[212]. The following result is a corollary of the more general Theorem 2 of [212].

Theorem 8.5. Let 1 ≤ u1 < u2 < . . . be positive integers such that

|{uj : uj ≤ x}| = Bxβ +R(x) , (8.76)

where B > 0, β > 0, and

∫ y

1
x−1R(x)dx = b log y + c+ o(1) as y →∞ . (8.77)
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Let

a(z) =

∞
∑

n=1

anz
n =

∞
∏

j=1

(1− zuj )−1 , (8.78)

a∗(z) =
∞
∑

n=1

a∗nz
n =

∞
∏

j=1

(1 + zuj ) . (8.79)

Then, as m→∞,
m
∑

n=1

an ∼ (2π)−1/2(1− α)1/2ecV −α(b+1/2)m(b+1/2)(1−α)−1/2 exp(α−1(V m)α) , (8.80)

m
∑

n=1

a∗n ∼ (2π)−1/2(1− α)1/22b(V ∗m)−α/2 exp(α−1(V ∗m)α) , (8.81)

where

α = β(β + 1)−1, V = {BβΓ(β + 1)ζ(β + 1)}1/β , V ∗ = (1− 2−β)1/βV . (8.82)

If u1 = 1, then as n→∞

an ∼ (2π)−1/2(1− α)1/2ecV −α(b−1/2)n(b−1/2)(1−α)−1/2 exp(α−1(V n)α) , (8.83)

and if 1, 2, 4, 8, . . . all belong to {uj}, then

a∗n ∼ (2π)−1/2(1− α)1/22b(V ∗)α/2nα/2−1 exp(α−1(V ∗n)α) . (8.84)

Theorem 8.5 provides more precise information than Brigham’s Theorem 8.2, but under

more restrictive conditions. It is derived from Ingham’s main result, Theorem 1 of [212],

which can be applied to wider classes of functions. However, that theorem cannot be used to

derive Theorem 8.2. The disadvantage of Ingham’s main theorem is that it requires knowledge

of the behavior of the generating function in the complex plane, not just on the real axis.

On the other hand, the region where this behavior has to be known is much smaller than

it is for the analytic methods that give more accurate answers, and which are presented in

Sections 10–12. Only behavior of the generating functions Π(1 − zλj )−1 or Π(1 + zλj ) in an
angle |Arg|(1− z)| ≤ π/2− δ for some δ > 0 needs to be controlled.
Ingham’s paper [212] contains an extended discussion of the relations between different

Tauberian theorems and of the necessity for various conditions.
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9. Recurrences

This section presents some basic methods for handling recurrences. The title is slightly

misleading, since almost all of this chapter is devoted to methods that are useful in this area.

Almost all asymptotic estimation problems concern quantities that are defined through implicit

or explicit recurrences. Furthermore, the most common and most effective method of solving

recurrences is often to determine its generating function and then apply the methods presented

in the other sections. However, there are many recurrences, and those discussed in Sections 9.4

and 9.5 require special methods that do not fit into other sections. These methods deserve to

be included, so it seems preferable to explain them after treating some of the more common

types of recurrences, even though those could have been covered elsewhere in this chapter.

Since generating functions are the most powerful tool for handling combinatorial recur-

rences, all the books listed in Section 18 that help in dealing with combinatorial identities and

generating functions are also useful in handling recurrences. Methods for recurrences that are

not amenable to generating function methods are presented in [175, 177]. Lueker [264] is an

introductory survey to some recurrence methods.

Wimp’s book [382] is concerned primarily with numerical stability problems in computing

with recurrences. Such problems are important in computing values of orthogonal polynomials,

for example, but seldom arise in combinatorial enumeration. However, there are sections of

[382] that are relevant to our topic, for example to the discussion of differential equations in

Section 9.2.

9.1. Linear recurrences with constant coefficients

The most famous sequence that satisfies a linear recurrence with constant coefficients is

that of the Fibonacci numbers, defined by F0 = F1 = 1, Fn = Fn−1+Fn−2 for n ≥ 2. There are
many others that are only slightly less well known. Fortunately, the theory of such sequences

is well developed, and from the standpoint of asymptotic enumeration their behavior is well

understood. (For a survey of number theoretic results, together with a list of many unsolved

problems about such sequences that arise in that area, see [73].) There are even several different

approaches to solving linear recurrences with constant coefficients. The one we emphasize here

is that of generating functions, since it fits in best with the rest of this chapter. For other

approaches, see [287, 298], for example.

Suppose that we have a linear recurrence or a system of recurrences and have found that

70



the generating function f(z) we are interested in has the form

f(z) =
G(z)

h(z)
, (9.1)

where G(z) and h(z) are polynomials. The basic tool for obtaining asymptotic information

about [zn]f(z) is the partial fraction expansion of a rational function [205]. Dividing G(z) by

h(z) we obtain

f(z) = p(z) +
g(z)

h(z)
, (9.2)

where p(z), g(z), and h(z) are all polynomials in z and deg g(z) < deg h(z). We can assume

that h(0) 6= 0, since if that were not the case, we would have g(0) = 0 (as in the opposite case
f(z) would not be a power series in z, but would have terms such as z−1 or z−2) and we could

cancel a common factor of z from g(z) and h(z). Therefore, if d = deg h(z), we can write

h(z) = h(0)
d′
∏

j=1

(

1− z
zj

)mj

, (9.3)

where zj , 1 ≤ j ≤ d′ are the distinct roots of h(z) = 0, zj has multiplicity mj ≥ 1, and
∑

mj = d. Hence we find [175, 205] that for certain constants cj,k,

f(z) = p(z) +
d′
∑

j=1

mj
∑

k=1

cj,k
(1− z/zj)k

= p(z) +
d′
∑

j=1

mj
∑

k=1

cj,k

∞
∑

h=0

(

h+ k − 1
k − 1

)

zhz−hj . (9.4)

Thus

an = [z
n]p(z) +

d′
∑

j=1

mj
∑

k=1

cj,k

(

h+ k − 1
k − 1

)

z−nj . (9.5)

When mj = 1,

cj,1 =
−g(zj)
zjh′(zj)

, (9.6)

and explicit formulas for the cj,k when mj > 1 can also be derived [175], but are unwieldy and

seldom used.

Example 9.1. Fibonacci numbers. As was noted in Example 6.3,

F (z) =

∞
∑

n=0

Fnz
n =

z

1− z − z2 .

Now

h(z) = 1− z − z2 = (1 + φ−1z)(1 − φz) , (9.7)
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where φ = (1 + 51/2)/2 is the golden ratio. Therefore

F (z) =
1√
5

(

1

1− φz −
1

1 + φ−1z

)

(9.8)

and for n ≥ 0,
Fn = [z

n]F (z) = 5−1/2(φn − (−φ)−n) . (9.9)

�

The partial fraction expansion (9.4) shows that the first-order asymptotics of sequence an

satisfying a linear recurrence of the form (6.30) are determined by the smallest zeros of the

characteristic polynomial h(z). The full asymptotic expansion is given by (9.5), and involves

all the zeros. In practice, using (9.5) presents some difficulties, in that multiplicities of zeros

are not always easy to determine, and the coefficients cj,k are often even harder to deal with.

Eventually, for large n, their influence becomes negligible, but when uniform estimates are

required they present a problem. In such cases the following theorem is often useful.

Theorem 9.1. Suppose that f(z) = g(z)/h(z), where g(z) and h(z) are polynomials, h(0) 6=
0, deg g(z) < deg h(z), and that the only zeros of h(z) in |z| < R are ρ1, . . . , ρk, each of
multiplicity 1. Suppose further that

max
|z|=R

|f(z)| ≤W , (9.10)

and that R− |ρj | ≥ δ for some δ > 0 and 1 ≤ j ≤ k. Then
∣

∣

∣

∣

∣

∣

[zn]f(z) +
k
∑

j=1

g(ρj)

h′(ρj)
ρ−n−1j

∣

∣

∣

∣

∣

∣

≤WR−n + δ−1R−n
k
∑

j=1

|g(ρj)/h′(ρj)| . (9.11)

Theorem 9.1 is derived using methods of complex variables, and a proof is sketched in

Section 10. That section also discusses how to locate all the zeros ρ1, . . . , ρk of a polynomial

h(z) in a disk |z| < R. In general, the zero location problem is not a serious one in enumeration
problems. Usually there is a single positive real zero that is closer to the origin than any other,

it can be located accurately by simple methods, and R is chosen so that |z| < R encloses only
that zero.

Example 9.2. Sequences with forbidden subblocks. We continue with the problem presented

in Examples 6.4 and 6.8. Both FA(z) and GA(z) have as denominators

h(z) = zk + (1− 2z)CA(z) , (9.12)
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which is a polynomial of degree exactly k. Later, in Example 10.6, we will show that for k ≥ 9,
h(z) has exactly one zero ρ in |z| ≤ 0.6, and that for |z| = 0.55, |h(z)| ≥ 1/100. Furthermore,
by Example 6.7, ρ→ 1/2 as k →∞. On |z| = 0.55,

|FA(z)| ≤ 100 · (0.55)k . (9.13)

Theorem 9.1 then shows, for example, that for n > k ≥ k0,
∣

∣

∣

∣

[zn]FA(z) +
CA(ρ)ρ

−n−1

h′(ρ)

∣

∣

∣

∣

≤ 100(0.55)k−n + 40(0.55)−n|h′(ρ)|−1

(9.14)

≤ 50(0.55)−n ,

since by Example 6.7, as k →∞,

h′(ρ) = kρk−1 − 2CA(ρ) + (1− 2ρ)C ′A(ρ) ∼ −2CA(ρ) ∼ −ρ−1 . (9.15)

The estimate (9.14), when combined with the expansions of Example 6.7, gives accurate

approximations for pn, the probability that A does not appear as a block among the first n

coin tosses. We have

pn = 2−n[zn]Fz(z)

= −2−nCA(ρ)ρ−n−1(h′(ρ))−1 +O(exp(−0.09n)) .
(9.16)

We now estimate h′(ρ) as before, in (9.15), but more carefully, putting in the approximation

for ρ from Example 6.7. We find that

h′(ρ) = −ρ−1 +O(k2−k) , (9.17)

and

ρ−n = 2n exp(−n(2kCA(1/2))−1 +O(nk2−2k)) . (9.18)

Therefore

pn = exp(−n(2kCA(1/2))−1 +O(nk2−2k)) +O(exp(−n/12)) . (9.19)

This shows that pn has a sharp transition. It is close to 1 for n = o(2
k), and then, as

n increases through 2k, drops rapidly to 0. (The behavior on the two sides of 2k is not

symmetric, as the drop towards 0 beyond 2k is much faster than the increases towards 1

on the other side.) For further results and applications of such estimates, see [180, 181].

Estimates such as (9.19) yield results sharper than those of Example 6.8. They also prove (see
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Example 14.1) that the expected lengths of the longest run of 0’s in a random sequence of

length n is log2 n+ u(log2 n) + o(1) as n→∞, where u(x) is a continuous function that is not
constant and satisfies u(x+ 1) = u(x). (See also the discussion of carry propagation in [236].)

For other methods and results in this area, see [18].
�

Inhomogeneous recurrences with constant coefficients, say,

an =
d
∑

i=1

cian−i + bn, n ≥ d , (9.20)

are not covered by the techniques discussed above. One can still use the basic generating

function approach to derive the ordinary generating function of an, but this time it is in terms

of the ordinary generating function of bn. If bn does not grow too rapidly, the “subtraction of

singularities” method of Section 10.2 can be used to derive the asymptotics of an in a form

similar to that given by (9.26).

9.2. Linear recurrences with varying coefficients

Linear recurrences with constant coefficients have a nice and complete theory. That is no

longer the case when one allows coefficients that vary with the index. This is not a fault of

mathematicians in not working hard enough to derive elegant results, but reflects the much

more complicated behavior that can occur. The simplest case is when the recurrence has a

finite number of terms, and the coefficients are polynomials in n.

Example 9.3. Two-sided generalized Fibonacci sequences. Let tn be the number of integer

sequences (bj , . . . , b2, b1, 1, 1, a1, a2, . . . , ak) with j + k + 2 = n in which each bi is the sum of

one or more contiguous terms immediately to its right, and each ai is likewise the sum of one

or more contiguous terms immediately to its left. It was shown in [120] that t1 = t2 = 1 and

that

tn+1 = 2ntn − (n− 1)2tn−1 for n ≥ 2 . (9.21)

If we let

t(z) =
∞
∑

n=1

tnz
n−1

(n− 1)! (9.22)

be a modified exponential generating function, then the recurrence (9.21) shows that

t′(z)(1 − z)2 − t(z)(2 − z) = 1 . (9.23)
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Standard methods for solving ordinary differential equations, together with the initial condi-

tions t1 = t2 = 1, then yield the explicit solution

t(z) = (1− z)−1 exp((1 − z)−1)
[

C +

∫ 1

z
(1− w)−1 exp(−(1− w)−1)dw

]

, (9.24)

where

C = e−1 −
∫ 1

0
(1− w)−1 exp(−(1− w)−1)dw = 0.148495 . . . . (9.25)

Once the explicit formula (9.24) for t(z) is obtained, the methods of Section 12 give the estimate

tn ∼ C(n− 1)!(e/π)1/2 exp(2n1/2)(2n1/4)−1 as n→∞ . (9.26)

It is easy to show that the absolute value of

(1− z)−1 exp((1− z)−1)
∫ 1

z
(1− w)−1 exp(−(1− w)−1)dw (9.27)

is small for |z| < 1. Therefore the asymptotics of the tn are determined by the behavior of
coefficients of

C(1− z)−1 exp((1− z)−1) , (9.28)

and that can be obtained easily. The estimate (9.26) then follows.
�

To see just how different the behavior of linear recurrences with polynomial coefficients can

be from those with constant coefficients, compare the behavior of the sequences in Example 9.3

above and Example 9.4 (given below). The existence of such differences should not be too

surprising, since after all even the first order recurrence an = nan−1 for n ≥ 2, a1 = 1, has the
obvious solution an = n!, which is not at all like the solutions to constant coefficient recurrences.

However, when an = nan−1, a simple change of variables, namely an = bnn!, transforms this

recurrence into the trivial one of bn = bn−1 = · · · = b1 = 1 for all n. Such rescaling is among
the most fruitful methods for dealing with nonlinear recurrences, even though it is seldom as

simple as for an = n!.

Example 9.3 is typical in that a sequence satisfying a linear recurrence of the form

an =

r
∑

j=1

cj(n)an−j , n ≥ r , (9.29)

where r is fixed and the cj(n) are rational functions (a P -recursive sequence in the notation

of Section 6.3) can always be transformed into a differential equation for a generating func-

tion. Whether anything can be done with that generating function depends strongly on the
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recurrence and the form of the generating function. Example 9.3 is atypical in that there is an

explicit solution to the differential equation. Further, this explicit solution is a nice analytic

function. This is due to the special choice of the form of the generating function. An expo-

nential generating function seems natural to use in that example, since the recurrence (9.21)

shows immediately that tn ≤ (2n−2)(2n−4) . . . 2 = 2n−1(n−1)!, and a slightly more involved
induction proves that tn grows at least as fast as a factorial. If we tried to use an ordinary

generating function

u(z) =
∞
∑

n=1

tnz
n , (9.30)

then the recurrence (9.21) would yield the differential equation

z4u′′(z) + z3u′(z) + (1− 2z2)u(z) = z − z2 , (9.31)

which is not as tractable. (This was to be expected, since u(z) is only a formal power series.)

Even when a good choice of generating function does yield an analytic function, the differential

equation that results may be hard to solve. (One can always find a generating function that

is analytic, but the structure of the problem may not be reflected in the resulting differential

equation, and there may not be anything nice about it.)

There is an extensive literature on analytic solutions of differential equations

(cf. [205, 206, 207, 272, 368, 372]), but it is not easy to apply in general. Singularities of

analytic functions that satisfy linear differential equations with analytic coefficients are usu-

ally of only a few basic forms, and so the methods of Sections 11 and 12 suffice to determine

the asymptotic behavior of the coefficients. The difficulty is in locating the singularities and

determining their nature. We refer to [206, 207, 272, 368, 372] for methods for dealing with

this difficulty, since they are involved and so far have been seldom used in combinatorial enu-

meration. There will be some further discussion of differential equations in Section 15.3.

Some aspects of the theory of linear recurrences with constant coefficients do carry over

to the case of varying coefficients, even when the coefficients are not rational functions. For

example, there will in general be r linearly independent solutions to the recurrence (9.29)

(corresponding to the different starting conditions). Also, if a solution an has the property

that an+1/an tends to a limit α as n→∞, then 1/α is a limit of zeros of

1−
r
∑

j=1

cj(n)z
j , (9.32)
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and therefore is often a root of

1−
r
∑

j=1

(

lim
n→∞

cj(n)
)

zj . (9.33)

Whether there are exactly r linearly independent solutions is a difficult problem. Extensive

research was done on this topic 1920’s and 1930’s [2, 29], culminating in the work of Birkhoff

and Trjitzinsky [51, 52, 53, 366, 367]. This work applies to recurrences of the form (9.29) where

the cj(n) have Poincaré asymptotic expansions

cj(n) ∼ nkj/k{cj,0 + cj,1n−1/k + cj,2n−2/k + · · ·} as n→∞ , (9.34)

where the kj and k are integers and cj,0 6= 0 if cj(n) is not identically 0 for all n. It follows from
this work that solutions to the recurrence are expressible as linear combinations of elements of

the form

(n!)p/q exp(P (n1/m))nα(log n)h , (9.35)

where h,m, p, and q are integers, P (z) a polynomial, and α a complex number. An exposition

of this theory and how it applies to enumeration has been given by Wimp and Zeilberger [384].

(There is a slight complication in that most of the literature cited above is concerned with

recurrences for functions of a real argument, not sequences, but this is not a major difficulty.)

There is still a problem in identifying which linear combination provides the derived solution.

Wimp and Zeilberger point out that it is usually easy to show that the largest of the terms

of the form (9.35) does show up with a nonzero coefficient, and so determines the asymptotics

of an up to a multiplicative constant. However, the Birkhoff-Trjitzinsky method does not in

general provide any techniques for determining that constant.

The major objection to the use of the Birkhoff-Trjitzinsky results is that they may not be

rigorous, since gaps are alleged to exist in the complicated proofs [211, 383]. Furthermore, in

almost all combinatorial enumeration applications the coefficients are rational, and so one can

use the theory of analytic differential equations.

When there is no way to avoid linear recurrences with coefficients that vary but are not

rational, one can sometimes use the work of Kooman [243, 244], which develops the theory of

second order linear recurrences with almost-constant coefficients.

Example 9.4. An oscillating sequence. Let

an =

n
∑

k=0

(

n

k

)

(−1)k
k!

, n = 0, 1, . . . . (9.36)
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Then an satisfies the linear recurrence

an+2 −
(

2− 2
n

)

an+1 +

(

1− 1
n

)

an = 0, n ≥ 0 . (9.37)

The methods of [244] can be used to show that for some constants c and φ

an = cn
−1/4 sin(2n1/2 + φ) + o(n−1/4) as n→∞ , (9.38)

which is a much more precise estimate than the crude one mentioned in Example 10.1.

Another, in some ways preferable method for obtaining asymptotic expansions for an is

mentioned in Example 12.8. It is based on an explicit form for the generating function of

an, f(z) =
∑

anz
n. An interchange of orders of summation (easily justified for |z| small, say

|z| < 1/2) shows that

f(z) =

∞
∑

k=0

(−1)k
k!

∞
∑

n=k

(

n

k

)

zn

=
∞
∑

k=0

(−1)k
k!

zk

(1− z)k+1 =
1

1− z exp
(

− z

1− z

)

. (9.39)

The saddle point method can then be applied to obtain asymptotic expansions for an.
�

9.3. Linear recurrences in several variables

Linear recurrences in several variables that have constant coefficients can be attacked by

methods similar to those used in a single variable. If we have

am,n =

d d
∑∑

i=0 i=0

i+j>0

ci,jam−i,n−j (9.40)

for m,n ≥ d, say, then the generating function

f(x, y) =
∞
∑

m=0

∞
∑

n=0

am,nx
myn (9.41)
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satisfies the relation

f(x, y)













1−
d d
∑∑

i=0 i=0
i+j>0

ci,jx
iyj













=
∞ ∞
∑ ∑

m=0 n=0
m>d or n>d

am,nx
myn

−
d d
∑∑

i=0 i=0
i+j>0

cijx
iyj

∑

m,n
m≤d−i
or n≤d−i

am,nx
myn .

(9.42)

If am,n = 0 for 0 ≤ m < d and n ≥ d as well as for 0 ≤ n < d and m ≥ d (so that all the am,n
are fully determined by am,n for 0 ≤ m < d, 0 ≤ n < d), then f(x, y) is a rational function. If
this condition does not hold, f(x, y) can be complicated.

The paragraph above shows that under common conditions, constant coefficient recurrences

lead to generating functions that are rational even in several variables. However, even when

the rational function is determined, there is no equivalent of partial fraction decomposition to

yield elegant asymptotics of the coefficients. Coefficients of multivariate generating functions

are much harder to handle than those of univariate functions. There are tools (discussed in

Section 13), that are usually adequate to handle rational generating functions, but they are

not simple.

When the coefficients of the multivariate recurrences vary, available knowledge is extremely

limited. Even if the coefficients are polynomials, we obtain a partial differential equation for

the generating function. Sometimes there are tricks that lead to a simple solution (cf. Exam-

ple 15.6), but this is not common.

9.4. Nonlinear recurrences

Nonlinear recurrences come in a great variety of shapes, and the methods that are used

to solve them are diverse, depending on the nature of the problem. This section presents a

sample of the most useful techniques that have been developed.

Sometimes a nonlinear recurrence has a simple solution because of a nice algebraic factor-

ization. For example, suppose that z0 is any given complex number, and

zn+1 = z
2
n − 2 for n ≥ 0 . (9.43)

If we set

w = (z0 + (z
2
0 − 4)1/2)/2 , (9.44)
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we have z0 = w + w
−1, and more generally

zn = w
2n + w−2

n
for n ≥ 0 . (9.45)

Eq. (9.45) is easily established through induction. However, this is an exceptional instance, and

already recurrences of the type zn+1 = z
2
n + c for c a complex constant lead to deep questions

about the Mandelbrot set and chaotic behavior [91].

Since linear recurrences are well understood, the best that one can hope for when confronted

with a nonlinear recurrence is that it might be reducible to a linear one. This works in many

situations.

Example 9.5. Planted plane trees. Let an,h be the number of planted plane trees with n

nodes and height ≤ h [64, 177], and let

Ah(z) =

∞
∑

n=0

an,hz
n . (9.46)

Since a tree of height ≤ h+ 1 has a root and any number of subtrees, each of height ≤ h,

Ah+1(z) = z(1 +Ah(z) +Ah(z)
2 + · · ·)

= z(1−Ah(z))−1 . (9.47)

Iterating this recurrence, we obtain a finite continued fraction that looks like

Ah+1(z) =
z

1− z
1− z

1...

. (9.48)

The general theory of continued functions represents a convergent as a quotient of two sequences

satisfying recurrences involving the partial quotients. (For references, see [218, 319].) After

playing with this idea, one finds that the substitution

Ah(z) =
zPh(z)

Ph+1(z)
(9.49)

gives

Ph+1(z) = Ph(z)− zPh−1(z) , h ≥ 2 ,

where P0(z) = 0, P1(z) = 1. This is a linear recurrence when we regard z as fixed, and so the

theory presented before leads to the explicit representation

Ph(z) = (1− 4z)−1/2






(

1 + (1− 4z)1/2
2

)h

−
(

1− (1− 4z)1/2
2

)h






. (9.50)

De Bruijn, Knuth, and Rice [64] use this representation to determine the average height of

plane trees.
�
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Greene and Knuth (p. 30 of [177]) note that the continued fraction method of replacing a

convergent by a quotient of elements of two sequences in general leads not to a single sequence

of polynomials like the Ph(z) of Example 9.5, but to two sequences. This is only slightly harder

to handle, and allows one to linearize more complicated recurrences.

There are many additional ways to linearize a recurrence. (A small list is given on p. 31 of

[177].) For example, a purely multiplicative relation an = a
2
n−1/an−2 is transformed into the

linear log an = 2 log an−1 − log an−2 by taking logarithms. One of the most fruitful tricks of
this type is taking inverses. Thus an = an−1/(1 + an−1) is equivalent to

1

an
=
1

an−1
+ 1 , (9.51)

which has the obvious solution a−1n = a
−1
0 + n. (This assumes a0 6= −1/k for any k ∈ � +.)

Linearization works well, but is limited in applicability. More widely applicable, but pro-

ducing answers that are not as clear, is approximate linearization, where a given nonlinear

recurrence is close to a linear one. The following example combines approximate linearization

with bootstrapping.

Example 9.6. A quadratic recurrence. The study of the average height of binary trees in

[132] involves the recurrence

an = an−1(1− an−1) for n ≥ 1 , (9.52)

with a0 = 1/2. The an are monotone decreasing, so we try the inverse trick. We find

1

an
=

1

an−1(1− an−1)
=
1

an−1
+ 1 +

an−1
1− an−1

. (9.53)

Iterating this recurrence (but applying it only to the first term on the right-hand side of

Eq. (9.53)) we obtain

1

an
=

1

an−2
+ 2 +

an−2
1− an−2

+
an−1
1− an−1

= · · ·

=
1

a0
+ n+

n−1
∑

j=0

aj
1− aj

= n+ 2 +
n−1
∑

j=0

aj
1− aj

.

(9.54)
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Equation (9.54) shows that a−1n > n, so an < 1/n. Applying this bound to aj for 2 ≤ j ≤ n−1
in the sum on the right-hand side of Eq. (9.54), we find that

n ≤ a−1n ≤ n+O(log n) . (9.55)

When we substitute this into (9.54), we find that a−1n = n + log n + o(log n), and further

iterations produce even more accurate estimates.
�

Approximate linearization also works well for some rapidly growing sequences.

Example 9.7. Doubly exponential sequences. Many recurrences are of the form

an+1 = a
2
n + bn , (9.56)

where bn is much smaller than a
2
n (and may even depend on the an for k ≤ n, as in bn = an or

bn = an−1). Aho and Sloane [3] found that surprisingly simple solutions to such recurrences can

often be found. The basic idea is to reduce to approximate linearization by taking logarithms.

We find that if a0 is the given initial value, and an > 0 for all n, then the transformation

un = log an , (9.57)

δn = log(1 + bna
−2
n ) , (9.58)

reduces (9.56) to

un+1 = 2un + δn , n ≥ 0 . (9.59)

Therefore

un = δn−1 + 2un−1 = δn−1 + 2δn−2 + 4un−2

= . . .

=

n
∑

j=1

2j−1δn−j + 2
nu0

= 2n(u0 + δ0/2 + δ1/4 + · · ·+ δn−1/2n) . (9.60)

If we assume that the δk are small, then

α = u0 +

∞
∑

k=0

δk2
−k−1 (9.61)

exists, and

rn = un − 2nα = 2n
∞
∑

k=n

δk2
−k−1 . (9.62)
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If the δk are sufficiently small, the difference rn in (9.62) will be small, and

an = exp(un) = exp(2
nα− rn) . (9.63)

The expression (9.63) might not seem satisfactory, since both an and rn are expressed in terms

of all the ak, for k < n and for k ≥ n. The point of (9.63) is that for many recurrences, rn
is negligibly small, while α is given by the rapidly convergent series (9.61), so that only the

first few an are needed to obtain a good estimate for the asymptotic behavior of an. We next

discuss a particularly elegant case.

Suppose that an ≥ 1 and |bn| < an/4 for all n ≥ 0. Then an+1 ≥ an and |δn+1| ≤ |δn| for
n ≥ 0, and so |rn| ≤ |δn|. Hence

an exp(−|δn|) ≤ exp(2nα) ≤ an exp(|δn|) (9.64)

and since
exp(|δn|) ≤ 1 + |bn|a−2n < 1 + (4an)

−1 ,

exp(−|δn|) ≥ (1 + (4an)
−1)−1 ≥ 1− (3an)−1 ,

(9.65)

we find that

|an − exp(2nα)| < (2an)−1 ≤ 1/2 . (9.66)

If an is an integer, then we can assert that it is the closest integer to exp(2
nα).

The restriction |bn| < an/4 is severe. The basic method applies even without it, and the
expansion (9.63) is valid, for example, if we only require that |δn+1| ≤ |δn| for n ≥ n0. However,
we will not in general obtain results as nice as (9.66) if we only impose these weak conditions.

The method outlined above can be applied to recurrences that appear to be of a slightly

different form. Sometimes only a trivial transformation is required. For example, Golomb’s

nonlinear recurrence,

an+1 = a0a1 · · · an + b, a0 = 1 , (9.67)

for b a constant, is easily seen to be equivalent to

an+1 = (an − b)an + b, a0 = 1, a1 = b+ 1 . (9.68)

The substitution

xn = an − b/2 (9.69)

transforms (9.68) into

xn+1 = x
2
n + (2− b)b/4 , (9.70)
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which is of the form treated above. (If the xn are integers, the inequality (9.66) with xn

replacing an might not apply to the xn because the condition |(2 − b)b/4| < |xk|/4 might fail
for some k. The trick to use here is to start the recurrence with some xk, say xk0 , so that the

condition |(2 − b)b/4| < |xk|/4 applies for k ≥ k0. The new α for which (9.66) holds will then
be defined in terms of xk0 , xk0+1, . . . .)

In some situations the results presented above cannot be applied, but the basic method

can still be extended. That is the case for the recurrence

an+1 = anan−1 + 1, a0, a1 ≥ 1 (9.71)

of [3]. The result is that an is the nearest integer to

αFnβFn−1 , (9.72)

where α and β are positive constants, and the Fk are the Fibonacci numbers. What matters

is that the recurrence leads to doubly exponential (and regular) growth of an. Example 15.3

shows how this principle can be applied even when the an are not numbers, but polynomials

whose coefficients need to be estimated.
�

9.5. Quasi-linear recurrences

This section mentions some methods and results for studying recurrences that have lin-

earity properties, but are not linear. The most important of them are recurrences involving

minimization or maximization. They arise frequently in problems that use dynamic program-

ming approaches and in divide and conquer methods. An important example, treated in [147],

is that of a sequence fn, given by f0 = 1 and

fn+1 = gn+1 + min
0≤k≤n

(αfk + βfn−k) for n ≥ 0 , (9.73)

where α, β > 0, and gn is some given sequence. Fredman and Knuth showed that if gn = 0 for

n ≥ 1 and α+ β < 1, then

fn ≥ cn1+1/γ for some c = c(α, β) > 0 , (9.74)

where γ is the solution to

α−γ + β−γ = 1 . (9.75)
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They proved that lim
n→∞

fnn
−1−1/γ exists if and only if (log α)/(log β) is irrational. They also

presented analyses of this recurrence for α+ β ≥ 1, as well as of several recurrences that have
different gn.

The value of the Fredman-Knuth paper is less in the precise results they obtain for several

recurrences of the type (9.73) than in the methods they develop, which allow one to analyze

related problems. A crucial role in their approach is played by the observation that for the gn

they consider, the minimum in (9.73) can be located rather precisely. The conditions for such

localization are applicable to many other sequences as well.

Further work on the recurrence (9.73) was done by Kapoor and Reingold [220], who ob-

tained a complete solution under certain conditions. Their solution is complicated, expressed

in terms of the weighted external path length of a binary tree. It is sufficiently explicit, though,

to give a complete picture of the continuity, convexity, and oscillation properties of fn. In some

cases their solution simplifies dramatically.

Another class of quasi-linear recurrences involves the greatest integer function. Following

[104], consider recurrences of the form

a(0) = 1, a(n) =

s
∑

i=1

ria(bn/mic), n ≥ 1, (9.76)

where ri > 0 for all i, and the mi are integers, mi ≥ 2 for all i. Let τ > 0 be the (unique)
solution to

s
∑

i=1

rim
−τ
i = 1 . (9.77)

If there is an integer d and integers ui such that mi = d
ui for 1 ≤ i ≤ s, then lim a(n)n−τ as

n→∞ does not exist, but the limit of a(dk)d−kτ as k →∞ does exist. If there is no such d,
then the limit of a(n)n−τ as n → ∞ does exist, and can readily be computed. For example,
when

a(n) = a(bn/2c) + a(bn/3c) + a(bn/6c) for n ≥ 1 ,

this limit is 12(log 432)−1. Convergence to the limit is extremely slow, as is shown in [104]. The

method of proof used in [104] is based on renewal theory. Several other methods for dealing

with recurrences of the type (9.76) are mentioned in [104] and the references listed in that

paper. There are connections to other recurrences that are linear in two variables, such as

b(m,n) = b(m,n− 1) + b(m− 1, n) + b(m− 1, n− 1), m, n ≥ 1 . (9.78)
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Consider an infinite sequence of integers 2 ≤ a1 < a2 < . . . such that
∞
∑

j=1

a−1j log aj <∞ ,

and define c(0) = 0,

c(n) =

∞
∑

j=1

c(bn/ajc) + 1, n ≥ 1 . (9.79)

If ρ is the (unique) positive solution to

∞
∑

j=1

a−ρj = 1 ,

then Erdös [103] showed that

c(n) ∼ cnρ as n→∞ (9.80)

for a positive constant c. Although the recurrence (9.79) is similar to that of Eq. (9.76), the

results are different (no oscillations can occur for a recurrence given by Eq. (9.79)) and the

methods are dissimilar.

Karp [221] considers recurrences of the type T (x) = a(x)+T (h(x)), where x is a nonnegative

real variable, a(x) ≥ 0, and h(x) is a random variable, 0 ≤ h(x) ≤ x, with m(x) being the
expectation of h(x). Such recurrences arise frequently in the analysis of algorithms, and Karp

proves several theorems that bound the probability that T (x) is large. For example, he obtains

the following result.

Theorem 9.2. Suppose that a(x) is a nondecreasing continuous function that is strictly in-

creasing on {x : a(x) > 0}, and m(x) is a continuous function. Then for all x ∈ � + and
k ∈ � +,

Prob (T (x) ≥ u(x) + ka(x)) ≤ (m(x)/x)k ,

where u(x) is the unique least nonnegative solution to the equation u(x) = a(x) + u(m(x)).

Another result, proved in [176], is the following estimate.

Theorem 9.3. Suppose that r, a1, . . . , aN ∈ � + and that b ≥ 0. For n > N , define

an = 1 + max
1≤k≤n−1

b+ an−1 + an−2 + · · ·+ an−k
k + r

. (9.81)

Then

an ∼ (n/r)1/2 as n→∞ . (9.82)

Theorem 9.3 is proved by an involved induction on the behavior of the an.
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10. Analytic generating functions

Combinatorialists use recurrence, generating functions, and such transformations as the

Vandermonde convolution; others, to my horror, use contour integrals, differential equations,

and other resources of mathematical analysis.

J. Riordan [336]

The use of analytic methods in combinatorics did horrify Riordan. They are widespread,

though, because of their utility, which even Riordan could not deny. About half of this chapter

is devoted to such methods, as they are extremely flexible and give very precise estimates.

10.1. Introduction and general estimates

This section serves as an introduction to most of the remaining sections of the paper,

which are concerned largely with the use of methods of complex variables in asymptotics.

Many of the results to be presented later can be used with little or no knowledge of analytic

functions. However, even some slight knowledge of complex analysis is helpful in getting an

understanding of the scope and limitations of the methods to be discussed. There are many

textbooks on analytic functions, such as [205, 364]. This chapter assumes that the reader

has some knowledge of this field, but not a deep one. It reviews the concepts that are most

relevant in asymptotic enumeration, and how they affect the estimates that can be obtained. It

is not a general introduction to the subject of complex analysis, and the choices of topics, their

ordering, and the decision of when to include proofs were all made with the goal of illustrating

how to use complex analysis in asymptotics.

There are several definitions of analytic functions, all equivalent. For our purposes, it will

be most convenient to call a function f(z) of one complex variable analytic in a connected open

set S ⊆ � if in a small neighborhood of every point w ∈ S, f(z) has an expansion as a power
series

f(z) =
∞
∑

n=0

an(z − w)n, an = an(w), (10.1)

that converges. Practically all the functions encountered in asymptotic enumeration that are

analytic are analytic in a disk about the origin. A necessary and sufficient condition for f(z),

defined by a power series (6.1), to be analytic in a neighborhood of the origin is that |an| ≤ Cn

for some constant C > 0. Therefore there is an effective dichotomy, with common generating

functions either not converging near 0 and being only formal power series, or else converging
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and being analytic.

A function f(z) is called meromorphic in S if it is analytic in S except at a (countable

isolated) subset S ′ ⊆ S, and in a small neighborhood of every w ∈ S ′, f(z) has an expansion
of the form

f(z) =
∞
∑

n=−N(w)

an(z − w)n , an = an(w) . (10.2)

Thus meromorphic functions can have poles, but nothing more. Alternatively, a function is

meromorphic in S if and only if it is the quotient of two functions analytic in S. In particular,

z−5 is meromorphic throughout the complex plane, but sin(1/z) is not. In general, functions

given by nice expressions are analytic away from obvious pathological points, since addition,

multiplication, division, and composition of analytic functions usually yield analytic or mero-

morphic functions in the proper domains. Thus sin(1/z) is analytic throughout � \ {0}, and
so is z−5, while exp(1/(1− z)) is analytic throughout � \ {1}, but is not meromorphic because
of the essential singularity at z = 1. Not all functions that might seem smooth are analytic,

though, as neither f(z) = z̄ (z̄ denoting the complex conjugate of z) nor f(z) = |z| is analytic
anywhere. The smoothness condition imposed by (10.1) is very stringent.

Analytic continuation is an important concept. A function f(z) may be defined and analytic

in S, but there may be another function g(z) that is analytic in S ′ ⊃ S and such that g(z) =
f(z) for z ∈ S. In that case we say that g(z) provides an analytic continuation of f(z) to S ′,
and it is a theorem that this extension is unique. A simple example is provided by

∞
∑

n=0

zn =
1

1− z . (10.3)

The power series on the left side converges only for |z| < 1, and defines an analytic function
there. On the other hand, (1−z)−1 is analytic throughout � \{1}, and so provides an analytic
continuation for the power series. This is a common phenomenon in asymptotic enumeration.

Typically a generating function will converge in a disk |z| < r, will have a singularity at r, but
will be continuable to a region of the form

{z : |z| < r + δ, |Arg(z − r)| > π/2 − ε} (10.4)

for δ, ε > 0. When this happens, it can be exploited to provide better or easier estimates of the

coefficients, as is shown in Section 11.1. That section explains the reasons why continuation

to a region of the form (10.4) is so useful.
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If f(z) is analytic in S, z is on the boundary of S, but f(z) cannot be analytically continued

to a neighborhood of z, we say that z is a singularity of f(z). Isolated singularities that are

not poles are called essential, so that z = 1 is an essential singularity of exp(1/(1 − z)), but
not of 1/(1 − z). (Note that z = 1 is an essential singularity of f(z) = (1− z)1/2 even though
f(1) = 0.) Throughout the rest of this chapter we will often refer to large singularities and

small singularities. These are not precise concepts, and are meant only to indicate how fast

the function f(z) grows as z → z0, where z0 is a singularity. If z0 = 1, we say that (1− z)1/2,
log(1−z), (1−z)−10 have small singularities, since |f(z)| either decreases or grows at most like
a negative power of |1−z| as z → 1. On the other hand, exp(1/(1−z)) or exp((1−z)−1/5) will
be said to have large singularities. Note that for z = 1+ iy, y ∈ � , exp(1/(1− z)) is bounded,
so the choice of path along which the singularity is approached is important. In determining

the size of a singularity z0, we will usually be concerned with real z0 and generating functions

f(z) with nonnegative coefficients, and then usually will need to look only at z real, z → z−0 .
When the function f(z) is entire (that is, analytic throughout � ), we will say that ∞ is a
singularity of f(z) (unless f(z) is a constant), and will use the large vs. small singularity

classification depending on how fast f(z) grows as |z| → ∞. The distinction between small
and large singularities is important in asymptotics because different methods are used in the

two cases.

A simple closed contour Γ in the complex plane is given by a continuous mapping γ :

[0, 1] → � with the properties that γ(0) = γ(1), and that γ(s) 6= γ(t) whenever 0 ≤ s < t ≤ 1
and either s 6= 0 or t 6= 1. Intuitively, Γ is a closed path in the complex plane that does not
intersect itself. For most applications that will be made in this chapter, simple closed contours

Γ will consist of line segments and sections of circles. For such contours it is easy to prove that

the complex plane is divided by the contour into two connected components, the inside and

the outside of the curve. This result is true for all simple closed curves by the Jordan curve

theorem, but this result is surprisingly hard to prove.

In asymptotic enumeration, the basic result about analytic functions is the Cauchy integral

formula for their coefficients.

Theorem 10.1. If f(z) is analytic in an open set S containing 0, and

f(z) =
∞
∑

n=0

anz
n (10.5)
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in a neighborhood of 0, then for any n ≥ 0,

an = [z
n]f(z) = (2πi)−1

∫

Γ
f(z)z−n−1dz , (10.6)

where Γ is any simple closed contour in S that contains the origin inside it and is positively

oriented (i.e., traversed in counterclockwise direction).

An obvious question is why should one use the integral formula (10.6) to determine the

coefficient an of f(z). After all, the series (10.5) shows that

n! an =
dn

dzn
f(z)

∣

∣

∣

z=0
. (10.7)

Unfortunately the differentiation involved in (10.7) is hard to control. Derivatives involve

taking limits, and so even small changes in a function can produce huge changes in derivatives,

especially high order ones. The special properties of analytic functions are not reflected in the

formula (10.7), and for nonanalytic functions there is little that can be done. On the other

hand, Cauchy’s integral formula (10.6) does use special properties of analytic functions, which

allow the determination of the coefficients of f(z) from the values of f(z) along any closed

path. This determination involves integration, so that even coarse information about the size

of f(z) can be used with it. The analytic methods that will be outlined exploit the freedom of

choice of the contour of integration to relate the behavior of the coefficients to the behavior of

the function near just one or sometimes a few points.

If the power series (10.5) converges for |z| < R, and for the contour Γ we choose a circle
z = r exp(iθ), 0 ≤ θ ≤ 2π, 0 < r < R, then the validity of (10.6) is easily checked by direct
computation, since the power series converges absolutely and uniformly so one can interchange

integration and summation. The strength of Cauchy’s formula is in the freedom to choose the

contour Γ in different ways. This freedom yields most of the powerful results to be discussed

in the following sections, and later in this section we will outline how this is achieved. First

we discuss some simple applications of Theorem 10.1 obtained by choosing Γ to be a circle

centered at the origin.

Theorem 10.2. If f(z) is analytic in |z| < R, then for any r with 0 < r < R and any n ∈ Z,
n ≥ 0,

|[zn]f(z)| ≤ r−nmax
|z|=r

|f(z)| . (10.8)
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The choice of Γ in Theorem 10.1 to be the circle of radius r gives Theorem 10.2. If f(z),

defined by (10.5), has an ≥ 0 for all n, then

|f(z)| ≤
∞
∑

n=0

an|z|n = f(|z|)

and therefore we obtain Lemma 8.1 as an easy corollary to Theorem 10.2. The advantage of

Theorem 10.2 over Lemma 8.1 is that there is no requirement that an ≥ 0. The bound of
Theorem 10.2 is usually weaker than the correct value by a small multiplicative factor such as

n1/2.

If f(z) is analytic in |z| < R, then for any δ > 0, f(z) is bounded in |z| < R − δ, and
so Theorem 10.2 shows that an = [z

n]f(z) satisfies |an| = O((R − δ)−n). On the other hand,
if |an| = O(S−n), then the power series (10.5) converges for |z| < S and defines an analytic
function in that disk. Thus we obtain the easy result that if f(z) is analytic in a disk |z| < R
but in no larger disk, then

lim sup |an|1/n = R−1 . (10.9)

Example 10.1. Oscillating sequence. Consider the sequence, discussed already in Exam-

ple 9.4, given by

an =
n
∑

k=0

(

n

k

)

(−1)k
k!

, n = 0, 1, . . . . (10.10)

The maximal term in the sum (10.10) is of order roughly exp(cn1/2), so an cannot be much

larger. However, the sum (10.10) does not show that an cannot be extremely small. Could

we have |an| ≤ exp(−n) for all n, say? That this is impossible is obvious from (9.39), though,
by the argument above. The generating function f(z), given by Eq. (9.39), is analytic in

|z| < 1, but has an essential singularity at z = 1, so we immediately see that for any ε > 0,
|an| < (1 + ε)n for all sufficiently large n, and that |an| > (1 − ε)n for infinitely many n.
(More powerful methods for dealing with analytic generating functions, such as the saddle

point method to be discussed in Section 12, can be used to obtain the asymptotic relation for

an given in Example 9.4.)
�

There is substantial literature dealing with the growth rate of coefficients of analytic func-

tions. The book of Evgrafov [110] is a good reference for these results. However, the estimates

presented there are not too useful for us, since they apply to wide classes of often pathological
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functions. In combinatorial enumeration we usually encounter much tamer generating func-

tions for which the crude bounds of [110] are obvious or easy to derive. Instead, we need to

use the tractable nature of the functions we encounter to obtain much more delicate estimates.

The basic result, derived earlier, is that the power series coefficients an of a generating

function f(z), defined by (10.5), grow in absolute value roughly like R−n, if f(z) is analytic

in |z| < R. A basic result about analytic functions says that if the Taylor series (10.5) of f(z)
converges for |z| < R but for every ε > 0 there is a z with |z| = R + ε such that the series
(10.5) diverges at z, then f(z) has a singularity z with |z| = R. Thus the exponential growth
rate of the an is determined by the distance from the origin of the nearest singularity of f(z),

with close singularities giving large coefficients. Sometimes it is not obvious what R is. When

the coefficients of f(z) are positive, as is common in combinatorial enumeration and analysis

of algorithms, there is a useful theorem of Pringsheim [364]:

Theorem 10.3. Suppose that f(z) is defined by Eq. (10.5) with an ≥ 0 for all n ≥ n0, and
that the series (10.5) for f(z) converges for |z| < R but not for any |z| > R. Then z = R is a
singularity of f(z).

As we remarked above, the exponential growth rate of the an is determined by the distance

from the origin of the nearest singularity. Theorem 10.3 says that if the coefficients an are non-

negative, it suffices to look along the positive real axis to determine the radius of convergence

R, which is also the desired distance to the singularity. There can be other singularities at the

same distance from the origin (for example, f(z) = (1 − z2)−1 has singularities at z = ±1),
but Theorem 10.3 guarantees that none are closer to 0 than the positive real one.

Since the singularities of smallest absolute value of a generating function exert the dominant

influence on the asymptotics of the corresponding sequence, they are called the dominant

singularities. In the most common case there is just one dominant singularity, and it is almost

always real. However, we will sometimes speak of a large set of singularities (such as the k

first order poles in Theorem 9.1, which are at different distances from the origin) as dominant

ones. This allows some dominant singularities to be more influential than others.

Many techniques, including the elementary methods of Section 8, obtain bounds for sum-

matory functions of coefficients even when they cannot estimate the individual coefficients.

These methods succeed largely because they create a dominant singularity. If f(z) =
∑

fnz
n

converges for |z| < 1, diverges for |z| > 1, and has fn ≥ 0, then the singularity at z = 1 is at
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least as large as any other. However, there could be other singularities on |z| = 1 that are just
as large. (This holds for the functions f2(z) and f3(z) defined by (8.2) and (8.4).) When we

consider the generating function of
∑

k≤n fk, though, we find that

h(z) =
∞
∑

n=0

(

n
∑

k=0

fk

)

zn = (1− z)−1f(z) , (10.11)

so that h(z) has a singularity at z = 1 that is much larger than any other one. That often

provides enough of an extra boost to push through the necessary technical details of the

estimates.

Most generating functions f(z) have their coefficients an = [z
n]f(z) real. If f(z) is analytic

at 0, and has real coefficients, then f(z) satisfies the reflection principle,

f(z) = f(z) . (10.12)

This implies that zeros and singularities of f(z) come in complex conjugate pairs.

The success of analytic methods in asymptotics comes largely from the use of Cauchy’s

formula (10.6) to estimate accurately the coefficients an. At a more basic level, this success

comes because the behavior of an analytic function f(z) reflects precisely the behavior of the

coefficients an. In the discussion of elementary methods in Section 8, we pointed out that the

behavior of a generating function for real arguments does not distinguish between functions

with different coefficients. For example, the functions f1(z) and f3(z) defined by (8.1) and (8.4)

are almost indistinguishable for z ∈ � . However, they differ substantially in their behavior for
complex z. The function f1(z) has only a first order pole at z = 1 and no other singularities,

while f3(z) has poles at z = 1, exp(2πi/3), and exp(4πi/3). The three poles at the three cubic

roots of unity reflect the modulo 3 periodicity of the coefficients of f3(z). This is a general

phenomenon, and in the next section we sketch the general principle that underlies it. (The

degree to which coefficients of an analytic function determine the behavior at the singularities

is the subject of Abelian theorems. We will not need to delve into this subject to its full depth.

For references, see [190, 364].)

Analytic methods are extremely powerful, and when they apply, they often yield estimates

of unparalleled precision. However, there are tricky situations where analytic methods seem

as if they ought to apply, but don’t (at least not easily), whereas simpler approaches work.
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Example 10.2. Set partitions with distinct block sizes. Let an be the number of partitions of

a set of n elements into blocks of distinct sizes. Then an = bn · n!, where bn = [zn]f(z), with

f(z) =
∞
∏

k=1

(

1 +
zk

k!

)

. (10.13)

The function f(z) is entire and has nonnegative coefficients, so it might appear as an ideal

candidate for an application of some of the methods for dealing with large singularities (such as

the saddle point technique) that will be presented later. However, on circles |z| = (n+1/2)/e,
n ∈ � +, f(z) does not vary much, so there are technical problems in applying these analytic
methods. On the other hand, combinatorial estimates can be used to show [233] that the bn

behave in a “regularly irregular” way, so that, for example,

bm(m+1)/2−1 ∼ bm(m+1)/2 as m→∞ , (10.14)

bm(m+1)/2 ∼ mbm(m+1)/2+1 as m→∞ . (10.15)

These estimates are obtained by expanding the product in Eq. (10.13) and noting that

bn =
∑

r
1≤k1<···<kr∑

ki=n

1
r
∏

i=1
ki!

. (10.16)

Since factorials grow rapidly, the only terms in the sum in (10.16) that are significant are those

with small ki. The term bnz
n for n = m(m + 1)/2 for example, comes almost entirely from

the product of zk/k!, 1 ≤ k ≤ m, all other products contributing an asymptotically negligible
amount.

�

10.2. Subtraction of singularities

An important basic tool in asymptotics of coefficients of analytic functions is that of

subtraction of singularities. If we wish to estimate [zn]f(z), and we know [zn]g(z), and the

singularities of f(z)− g(z) are smaller than those of f(z), then we can usually conclude that
[zn]f(z) ∼ [zn]g(z) as n→∞. In practice, given a function f(z), we find the dominant singu-
larities of f(z) (usually poles), and construct a simple function g(z) with those singularities.

We illustrate this approach with several examples. The basic theme will recur in other sections.

Example 10.3. Bernoulli numbers. The Euler-Maclaurin summation formula, introduced in

Section 5.3, involves the Bernoulli numbers Bn with exponential generating function

f(z) =
∞
∑

n=0

Bn
zn

n!
=

z

ez − 1 . (10.17)
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The denominator exp(z)− 1 has zeros at 0, ±2πi, ±4πi, . . . . The zero at 0 is canceled by the
zero of z, so f(z) is analytic for |z| < 2π, but has first order poles at z = ±2πi, ±4πi, . . . .
Consider

g(z) = 2πi

(

1

z − 2πi −
1

z + 2πi

)

. (10.18)

Then f(z)− g(z) is analytic for |z| < 4π, so

|[zn](f(z)− g(z))| = O((4π − ε)−n) as n→∞ (10.19)

for every ε > 0. On the other hand,

[zn]g(z) =

{

0 n odd ,

2(2π)−n n even .
(10.20)

This gives the leading term asymptotics of Bn. By taking more complicated g(z), we can

subtract more of the singularities of f(z) and obtain more accurate expansions for Bn. It is

even possible to obtain an exponentially rapidly convergent series for Bn.
�

Example 10.4. Rational function asymptotics. As another example of the subtraction of

singularities principle, we sketch a proof of Theorem 9.1. Suppose that the hypotheses of that

theorem are satisfied. Let

u(z) =

k
∑

j=1

−g(ρj)
ρjh′(ρj)(1− z/ρj)

. (10.21)

Then f(z)− u(z) has no singularities in |z| ≤ R, and for |z| = R,

|f(z)− u(z)| ≤ |f(z)|+ |u(z)| ≤W + δ−1
k
∑

j=1

|g(ρj)/h′(ρj)| . (10.22)

Hence, by Theorem 10.2,

∣

∣

∣[zn](f(z)− u(z))
∣

∣

∣ ≤WR−n + δ−1R−n
k
∑

j=1

|g(ρj)/h′(ρj)| . (10.23)

On the other hand,

[zn]u(z) = −
k
∑

j=1

ρ−n−1j g(ρj)/h
′(ρj) . (10.24)

The last two estimates yield Theorem 9.1.
�

The reader may have noticed that the proof of Theorem 9.1 presented above does not

depend on f(z) being rational. We have proved the following more general result.
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Theorem 10.4. Suppose that f(z) is meromorphic in an open set containing |z| ≤ R, that it
is analytic at z = 0 and on |z| = R, and that the only poles of f(z) in |z| < R are at ρ1, . . . , ρk,
each of multiplicity 1. Suppose further that

max
|z|=R

|f(z)| ≤W (10.25)

and that R− |ρj | ≥ δ for some δ > 0 and 1 ≤ j ≤ k. Then
∣

∣

∣

∣

∣

∣

[zn]f(z) +

k
∑

j=1

rjρ
−n−1
j

∣

∣

∣

∣

∣

∣

≤WR−n + δ−1R−n
k
∑

j=1

|rj | , (10.26)

where rj is the residue of f(z) at ρj.

In the examples above, the dominant singularities were separated from other ones, so their

contributions were larger than those of lower order terms by an exponential factor. Sometimes

the singularity that remains after subtraction of the dominant one is on the same circle, and

only slightly smaller. Section 11 presents methods that deal with some cases of this type, at

least when the singularity is not large. What makes those methods work is the subtraction

of singularities principle. Next we illustrate another application of this principle where the

singularity is large. (The generating function is entire, and so the singularity is at infinity.)

Example 10.5. Permutations without long increasing subsequences. Let uk(n) be the number

of permutations of {1, 2, . . . , n} that have no increasing subsequence of length > k. Logan and
Shepp [257] and Vershik and Kerov [370] established by calculus of variations and combina-

torics that the average value of the longest increasing subsequence in a random permutation is

asymptotic to 2n1/2. Frieze [149] has proved recently, using probabilistic methods, a stronger

result, namely that almost all permutations have longest increasing subsequences of length

close to 2n1/2. Here we consider asymptotics of uk(n) for k fixed and n→∞. The Schensted
correspondence and the hook formula express uk(n) in terms of Young diagrams with ≤ k
columns. For k fixed, there are few diagrams and their influence can be estimated explicitly

using Stirling’s formula, although Selberg-type integrals are involved and the analysis is com-

plicated. This analysis was done by Regev [329], who proved more general results. Here we

sketch another approach to the asymptotics of uk(n) for k fixed. It is based on a result of

Gessel [161]. If

Uk(z) =
∞
∑

n=0

uk(n)z
2n

(n!)2
, (10.27)
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then

Uk(z) = det(I|i−j|(2z))1≤i,j≤k , (10.28)

where the Im(x) are Bessel functions (Chapter 9 of [297]). H. Wilf and the author have noted

that one can obtain the asymptotics of the uk(n) by using known asymptotic results about the

Im(x). Eq. (9.7.1) of [297] states that for every H ∈ � +,

Im(z) = (2πz)
−1/2ez

(

H−1
∑

h=0

c(m,h)z−h +O(|z|−H)
)

, (10.29)

where this expansion is valid for |z| → ∞ with |Arg(z)| ≤ 3π/8, say. The c(m,h) are explicit
constants with c(m, 0) = 1. Let us consider k = 4 to be concrete. Then, taking H = 7 in

(10.29) (higher values of H are needed for larger k) we find from (10.28) that

U4(z) = e
8z(3(256π2z8)−1 +O(|z|−9)) for |z| ≥ 1 . (10.30)

It is also known that Im(−z) = (−1)mIm(z) and Im(z) is relatively small in the angular region
|π/2−Arg(z)| < π/8. Therefore U4(−z) = U4(z), and one can show that

|U4(z)| = O(|z|−1U4(|z|)) (10.31)

for z away from the real axis.

To apply the subtraction of singularities principle, we need an entire function f(z) that is

even, is large only near the real axis, and such that for x ∈ � , x→∞,

f(x) ∼ 3(256π2x8)−1 exp(8x) . (10.32)

The function

f∗(z) = 3(128π2z8)−1cosh(8z)

is even and has the desired asymptotic growth, but is not entire. We correct this defect by

subtracting the contribution of the pole at z = 0, and let

f(z) = 3(128π2z8)−1(cosh(8z)− 1− 32z2 − 512z4/3− 16384z6/45− 131072z8/315) . (10.33)

(It is not necessary to know explicitly the first 8 terms in the Taylor expansion of cosh(8z)

that we wrote down above, as they do not affect the final answer.) With this definition

|U4(z)− f(z)| = O(|z|−1f(|z|)) (10.34)
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uniformly for all z with |z| ≥ 1, say, and so if we apply Cauchy’s theorem on the circle |z| = n/4,
say, we find that

[z2n](U4(z) − f(z)) = O(n−2ne2n16nn−9) . (10.35)

(The choice of |z| = n/4 is made to minimize the resulting estimate.) On the other hand, by
Stirling’s formula,

[z2n]f(z) = 3(128π2)−1 · ([z2n+8]cosh(8z))

= 3(128π2)−182n+8/(2n+ 8)!

∼ 1536π−5/2n−2n16ne2nn−17/2 as n→∞ . (10.36)

Comparing (10.35) and (10.36), we see that

u4(n) = (n!)
2[z2n]U4(z) ∼ (n!)21536π−5/2n−2n16ne2nn−17/2

∼ 1536π−3/2n−15/216n as n→∞ . (10.37)

�

Other methods can be applied to Gessel’s generating function to obtain asymptotics of

uk(n) for wider ranges of k ([306]).

The above example obtains a good estimate because the remainder term in (10.30) is smaller

than the main term by a factor of |z|−1. Had it been smaller only by a factor of |z|−1/2, the
resulting estimate would have been worthless, and it would have been necessary to obtain a

fuller asymptotic expansion of U4(z) or else use smoothness properties of the remainder term.

This is due to the phenomenon, mentioned before, that crude absolute value estimates in either

Cauchy’s theorem, or the elementary approaches of Section 8, usually lose a factor of n1/2 when

estimating the n-th coefficient.

The subtraction of singularities principle can be applied even when the generating functions

seem to be more complicated than those of Example 10.5. If we consider the problem of that

example, but with k = 5, then we find that

U5(z) = 3 exp(10z)(5 · 213 · π5/2z25/2)−1(1 +O(|z|−1)) (10.38)

as |z| → ∞, with |Arg(z)| ≤ 3π/8, U5(−z) = U5(z), and U5(z) is entire. We now need an
entire function with known coefficients that grows as exp(10z)z−25/2 . This is not difficult to

obtain, as

I0(10z)z
−12 −

12
∑

j=1

cjz
−j (10.39)
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for suitable coefficients cj has the desired properties.

10.3. The residue theorem and sums as integrals

Sometimes sums that are not easily handled by other methods can be converted to integrals

that can be evaluated explicitly or estimated by the residue theorem. If t(z) is a meromorphic

function that has first order poles at z = a, a+1, . . . , b, with a ∈ Z, each with residue 1, then
b
∑

n=a

f(n) =
1

2πi

∫

Γ
f(z)t(z)dz , (10.40)

where Γ is a simple closed contour enclosing a, a+ 1, . . . , b, provided f(z) is analytic inside Γ

and t(z) has no singularities inside Γ aside from the first order poles at a, a+ 1, . . . , b. If t(z)

is chosen to have residue (−1)n at z = n, then we obtain
b
∑

n=a

(−1)nf(n) = 1

2πi

∫

Γ
f(z)t(z)dz . (10.41)

A useful example is given by the formula
n
∑

k=0

(

n

k

)

(−1)kf(k) = (−1)
nn!

2πi

∫

Γ

f(z)dz

z(z − 1) · · · (z − n) . (10.42)

The advantage of (10.40) and (10.41) is that the integrals can often be manipulated to give

good estimates. This is especially valuable for alternating sums such as (10.41). An analytic

function f(z) is extremely regular, so a sum such as that in (10.40) can often be estimated by

methods such as the Euler-Maclaurin summation formula (Section 5.3). However, that formula

cannot always be applied to alternating sums such as that of (10.41), because the sign change

destroys the regularity of f(n). (However, as is noted in Section 5.3, there are generalizations

of the Euler-Maclaurin formula that are sometimes useful.) It is hard to write down general

rules for applying this method, as most situations require appropriate choice of t(z) and careful

handling of the integral. For a detailed discussion of this method, often referred to as Rice’s

method, see Section 4.9 of [205]. A pair of popular functions to use as t(z) are

t1(z) = π/(sin πz), t2(z) = π/(tan πz) . (10.43)

One can show (Theorem 4.9a of [205]) that if r(z) = p(z)/q(z) with p(z) and q(z) polynomials

such that deg q(z) ≥ deg p(z) + 2, and q(n) 6= 0 for any n ∈ Z, then
∞
∑

n=−∞

r(n) = −
∑

Res(r(z)t1(z)) , (10.44)

∞
∑

n=−∞

(−1)nr(n) = −
∑

Res(r(z)t2(z)) , (10.45)
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where the sums on the right-hand sides above are over the zeros of q(z).

Examples of applications of these methods to asymptotics of data structures are given in

[141] and [360].

10.4. Location of singularities, Rouché’s theorem, and unimodality

A recurrent but only implicit theme throughout the discussion in this section is that of

isolation of zeros. For example, to apply Theorem 9.1 we need to know that the polynomial

h(z) has only k zeros, each of multiplicity one, in |z| < R. Proofs of such results can often be
obtained with the help of Rouché’s theorem [205, 364].

Theorem 10.5. Suppose that f1(z) and f2(z) are functions that are analytic inside and on

the boundary of a simple closed contour Γ. If

|f2(z)| < |f1(z)| for all z ∈ Γ , (10.46)

then f1(z) and f1(z) + f2(z) have the same number of zeros (counted with multiplicity) inside

Γ.

Example 10.6. Sequences with forbidden subblocks. We consider again the topic of Exam-

ples 6.4, 6.8, and 9.2, and prove the results that were already used in Example 9.2. We again

set

h(z) = zk + (1− 2z)CA(z) , (10.47)

where the only fact about CA(z) we will use is that it is a polynomial of degree < k and

coefficients 0 and 1, and CA(0) = 1. We wish to show that h(z) has only one zero in |z| ≤ 0.6
if k is large. Write

CA(z) = 1 +
1

2

∞
∑

j=1

zj +
1

2

∞
∑

j=1

εjz
j , (10.48)

where εj = ±1 for each j. Then

CA(z) =
2− z
2(1− z) + u(z) , (10.49)

where

|u(z)| ≤ |z|
2(1− |z|) .

For |z| = r < 1, we have |u(z)| ≤ r/(2(1 − r)). On the other hand, z → (2− z)/(1 − z) maps
circles to circles, since it is a fractional linear transformation, so it takes the circle |z| = r to
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the circle with center on the real axis that goes through the two points (2 − r)/(1 − r) and
(2 + r)/(1 + r). Therefore for |z| = r < 1,

|CA(z)| ≥
2 + r

2(1 + r)
− r

2(1 − r) =
1− r − r2
1− r2 , (10.50)

and so |CA(z)| ≥ 1/16 for |z| = r ≤ 0.6. Hence, if k ≥ 9, then on |z| = 0.6,

|(1− 2z)CA(z)| ≥ 1/80 > (0.6)k , (10.51)

and thus (1 − 2z)CA(z) and h(z) have the same number of zeros in |z| ≤ 0.6. On the other
hand, CA(z) has no zeros in |z| ≤ 0.6 by (10.50), while 1−2z has one, so we obtain the desired
result, at least for k ≥ 9. (A more careful analysis shows that h(z) has only one root inside
|z| = 0.6 even for 4 ≤ k < 9. For 1 ≤ k ≤ 3, there are cases where there is no zero inside
|z| ≤ 0.6.) Example 6.7 shows how to obtain precise estimates of the single zero.
We note that (10.50) shows that for |z| = 0.55, k ≥ 9

|h(z)| ≥ |1− 1.1|0.2 − (0.55)k ≥ 0.02 − 0.01 ≥ 1/100 , (10.52)

a result that was used in Example 9.2.
�

Example 10.7. Coins in a fountain. An (n, k) fountain is an arrangement of n coins in rows

such that there are k coins in the bottom row, and such that each coin in a higher row touches

exactly two coins in the next lower row. Let an,k be the number of (n, k) fountains, and

an =
∑

k an,k the total number of fountains of n coins. The values of an for 1 ≤ n ≤ 6 are
1, 1, 2, 3, 5, 9. If we let a0 = 1 then it can be shown [313] that

f(z) =

∞
∑

n=0

anz
n =

1

1− z

1− z2

1− z
3
1...

. (10.53)

This is a famous continued fraction of Ramanujan. (Other combinatorial interpretations of

this continued fraction are also known, see the references in [313]. For related results, see

[326, 327].) Although one can derive the asymptotics of the an from the expansion (10.53), it is

more convenient to work with another expansion, known from previous studies of Ramanujan’s

continued fraction:

f(z) =
p(z)

q(z)
, (10.54)
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where

p(z) =
∑

r≥0

(−1)r zr(r+1)

(1− z)(1 − z2) . . . (1− zr) , (10.55)

q(z) =
∑

r≥0

(−1)r zr
2

(1− z)(1 − z2) . . . (1− zr) . (10.56)

Clearly both p(z) and q(z) are analytic in |z| < 1, so f(z) is meromorphic there. We will show
that q(z) has a simple real zero x0, 0.57 < x0 < 0.58, and no other zeros in |z| < 0.62, while
p(x0) > 0. It will then follow from Theorem 10.4 that

an = cx
−n
0 +O((5/3)

n) as n→∞ , (10.57)

where c = −p(x0)/(x0q′(x0)). Numerical computation shows that c = 0.31236 . . ., x0 =
0.576148769 . . . .

To establish the claim about x0, let pn(z) and qn(z) denote the n-th partial sums of the

series (10.55) and (10.56), respectively. Write a(z) = q3(z)(1 − z)(1 − z2)/(1− z3), so that

a(z) = 1− 2z − z2 + z3 + 3z4 + z5 − 2z6 − z7 − z9 , (10.58)

and consider

b(z) =

9
∏

j=1

(z − zj) ,

where the zj are 0.57577, −0.46997 ± i0.81792, 0.74833 ± i0.07523, −1.05926 ± i0.36718,
0.49301 ± i1.58185, in that order. (The zj are approximations to the zeros of a(z), obtained
from numerical library subroutines. How they were derived is not important for the verifi-

cation of our proof.) An easy hand or machine computation shows that if a(z) =
∑

k akz
k,

b(z) =
∑

bkz
k, then

9
∑

k=0

|ak − bk| ≤ 1.7× 10−4 ,

and so |a(z) − b(z)| ≤ 1.7 × 10−4 for all |z| ≤ 1. Another computation shows that |b(z)| ≥
8× 10−4 for all |z| = 0.62.
On the other hand, for 0 ≤ u ≤ 0.62 and |z| = u, we have for k ≥ 5

∣

∣

∣

∣

∣

z(k+1)
2−k2

1− zk+1

∣

∣

∣

∣

∣

≤ u2k+1

1− uk+1 ≤
u9

1− u5 . (10.59)

Therefore
∣

∣

∣

∣

∣

∞
∑

k=4

(−1)k zk
2

Πkj=4(1− zj)

∣

∣

∣

∣

∣

≤ u16

1− u4
∑

m≥0

(

u9

1− u5
)m

≤ 6× 10−4 , (10.60)
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and so by Rouché’s theorem, q(z) and b(z) have the same number of zeros in |z| ≤ 0.62, namely
1. Since q(z) has real coefficients, its zero is real. This establishes the existence of x0. An easy

computation shows that q(0.57) > 0, q(0.58) < 0, so 0.57 < x0 < 0.58.

To show that p(x0) > 0, note that successive summands in (10.55) decrease in absolute

magnitude for each fixed real z > 0, and p(z) > 1− z2/(1 − z) > 0 for 0 < z < 0.6. �

The method used in the above example is widely applicable to generating functions given

by continued fractions. Typically they are meromorphic in a disk centered at the origin, with

a single dominant pole of order 1. Usually there is no convenient representation of the form

(10.54) with explicit p(z) and q(z), and one has to work harder to establish the necessary

properties about location of poles.

It was mentioned in Section 6.4 that unimodality of a sequence is often deduced from

information about the zeros of the associated polynomial. If the zeros of the polynomial

A(z) =

n
∑

k=0

akz
k

are real and ≤ 0, then the ak are unimodal, and even the ak
(n
k

)−1
are log-concave. However,

weaker properties follow from weaker assumptions on the zeros. If all the zeros of A(z) are in

the wedge-shaped region centered on the negative real axis |Arg(−z)| ≤ π/4, and the ak are
real, then the ak are log-concave, but the ak

(n
k

)−1
are not necessarily log-concave. (This follows

by factoring A(z) into polynomials with real coefficients that are either linear or quadratic, and

noting that all have log-concave coefficients, so their product does too.) One can prove other

results that allow zeros to lie in larger regions, but then it is necessary to impose restrictions

on ratios of their distances from the origin.

10.5. Implicit functions

Section 6.2 presented functions, such as f 〈−1〉(z), that are defined implicitly. In this section

we consider related problems that arise when a generating function f(z) satisfies a functional

equation f(z) = G(z, f(z)). Such equations arise frequently in graphical enumeration, and

there is a standard procedure invented by Pólya and developed by Otter that is almost algo-

rithmic [188, 189] and routinely leads to them. Typically G(z, w) is analytic in z and w in a

small neighborhood of (0, 0). Zeros of analytic functions in more than one dimension are not

isolated, and by the implicit function theorem G(z, w) = w is solvable for w as a function of
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z, except for those points where

Gw(z, w) =
∂

∂w
G(z, w) = 1 . (10.61)

Usually for z in a small neighborhood of 0 the solution w of G(z, w) = w will not satisfy

(10.61), and so w will be analytic in that neighborhood. As we enlarge the neighborhood

under consideration, though, a simultaneous solution toG(z, w) = w and (10.61) will eventually

appear, and will usually be the dominant singularity of f(z) = w(z). The following theorem

covers many common enumeration problems.

Theorem 10.6. Suppose that

f(z) =
∞
∑

n=1

fnz
n (10.62)

is analytic at z = 0, that fn ≥ 0 for all n, and that f(z) = G(z, f(z)), where

G(z, w) =
∑

m,n≥0

gm,nz
mwn . (10.63)

Suppose that there exist real numbers δ, r, s > 0 such that

(i) G(z, w) is analytic in |z| < r + δ and |w| < s+ δ,

(ii) G(r, s) = s, Gw(r, s) = 1,

(iii) Gz(r, s) 6= 0 and Gww(r, s) 6= 0.

Suppose that gm,n ∈ � + ∪ {0} for all m and n, g0,0 = 0, g0,1 = 1, and gm,n > 0 for some m
and some n ≥ 2. Assume further that there exist h > j > i ≥ 1 such that fhfifj 6= 0 while the
greatest common divisor of j − i and h− i is 1. Then f(z) converges at z = r, f(r) = s, and

fn = [z
n]f(z) ∼ (rGz(r, s)/(2πGww(r, s)))1/2n−3/2r−n as n→∞ . (10.64)

Example 10.8. Rooted labeled trees. As was shown in Example 6.1, the exponential generat-

ing function t(z) of rooted labeled trees satisfies t(z) = z exp(t(z)). Thus we have G(z, w) =

z exp(w), and Theorem 10.6 is easily seen to apply with r = e−1, s = 1. Therefore we obtain

the asymptotic estimate

tn/n! = [z
n]t(z) ∼ (2π)−1/2n−3/2en as n→∞ . (10.65)

On the other hand, from Example 6.6 we know that tn = n
n−1, a much more satisfactory

answer, so that the estimate (10.65) only provides us with another proof of Stirling’s formula.
�
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The example above involves an extremely simple application of Theorem 10.6. More com-

plicated cases will be presented in Section 15.1.

The statement of Theorem 10.6 is long, and the hypotheses stringent. All that is really

needed for the asymptotic relation (10.64) to hold is that f(z) should be analytic on {z : |z| ≤
r, z 6= r} and that

f(z) = c(r − z)1/2 + o(|r − z|1/2) (10.66)

for |z − r| ≤ ε, |Arg(r − z)| ≥ π/2 − ε for some ε > 0. If these conditions are satisfied,
then (10.64) follows immediately from either the transfer theorems of Section 11.1 or (with

stronger hypotheses) from Darboux’s method of Section 11.2. The purpose of Theorem 10.6 is

to present a general theorem that guarantees (10.66) holds, is widely applicable, and is stated

to the maximum extent possible in terms of conditions on the coefficients of f(z) and G(z, w).

Theorem 10.6 is based on Theorem 5 of [33] and Theorem 1 of [284]. The hypotheses

of Theorem 5 of [33] are simpler than those of Theorem 10.6, but, as was pointed out by

Canfield [67], the proof is faulty and there are counterexamples to the claims of that theorem.

The difficulty is that Theorem 5 of [33] does not distinguish adequately between the different

solutions w = w(z) of w = G(z, w), and the singularity of the combinatorially significant

solution may not be the smallest among all singularities of all solutions. The result of Meir

and Moon [284] provides conditions that assure such pathological behavior does not occur.

(The statement of Theorem 10.6 incorporates some corrections to Theorem 1 of [284] provided

by the authors of that paper.) It would be desirable to prove results like (10.64) under a

simpler set of conditions.

In many problems the function G(z, w) is of the form

G(z, w) = g(z)φ(w) + h(z) , (10.67)

where g(z), φ(w), and h(z) are analytic at 0. For this case Meir and Moon have proved a

useful result (Theorem 2 of [284]) that implies an asymptotic estimate of the type (10.64).

The hypotheses of that result are often easier to verify than those of Theorem 10.6 above.

(As was noted by Meir and Moon, the last part of the conditions (4.12a) of [284] has to be

replaced by the condition that yi > hi, yj > hj , and yk > hk for some k > j > i ≥ 1 with
gcd(j − i, k − i) = 1.)
Whenever Theorem 10.6 applies, fn = [z

n]f(z) equals the quantity on the right-hand side

of (10.64) to within a multiplicative factor of 1+O(n−1). One can derive fuller expansions for
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the ratio when needed.

11. Small singularities of analytic functions

In most combinatorial enumeration applications, the generating function has a single

dominant singularity. The methods used to extract asymptotic information about coefficients

split naturally into two main classes, depending on whether this singularity is large or small.

In some situations the same generating function can be said to have either a large or a small

singularity, depending on the range of coefficients that we are interested in. This is illustrated

by the following example.

Example 11.1. Partitions with bounded part sizes. Let p(n,m) be the number of (unordered)

partitions of an integer n into integers ≤ m. It is easy to see that

Pm(z) =

∞
∑

n=0

p(n,m)zn =

m
∏

k=1

(1− zk)−1 . (11.1)

The function Pm(z) is rational, but has to be treated in different ways depending on the

relationship of n and m. If n is large compared to m, it turns out to be appropriate to say that

Pm(z) has a small singularity, and use methods designed for this type of problems. However,

if n is not too large compared to m, then the singularity of Pm(z) can be said to be large.

(Since the largest part in a partition of n is almost always O(n1/2 log n) [105], p(n,m) ∼ p(n)
if m is much larger than n1/2 log n.)

Although Pm(z) has singularities at all the k-th roots of unity for all k ≤ m, z = 1 is clearly
the dominant singularity, as |Pm(r)| grows much faster as r → 1− than |Pm(z)| for z = r exp(iθ)
for any θ ∈ (0, 2π). If m is fixed, then the partial function decomposition can be used to obtain
the asymptotics of p(n,m) as m→∞. We cannot use Theorem 9.1 directly, since the pole of
Pm(z) at z = 1 has multiplicity 1. However, either by using the generalizations of Theorem 9.1

that are mentioned in Section 9.1, or by the subtraction of singularities principle, we can show

that for any fixed m,

p(n,m) ∼ [zn]
(

m
∏

k=1

k!

)−1

(1− z)−m ∼
(

m
∏

k=1

k!

)−1

((m− 1)!)−1 as n→∞ . (11.2)

(See [23] for further details and estimates.) This approach can be extended form growing slowly

with n, and it can be shown without much effort that the estimate (11.2) holds for n → ∞,
m ≤ log log n, say. However, for larger values of m this approach becomes cumbersome, and
other methods, such as those of Section 12, are necessary.

�
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11.1. Transfer theorems

This section presents some results, drawn from [135], that allow one to translate an asymp-

totic expansion of a generating function around its dominant singularity into an asymptotic

expansion for the coefficients in a direct way. These results are useful in combinatorial enu-

meration, since the conditions for validity are frequently satisfied. The proofs, which we do

not present here, are based on the subtraction of singularities principle, but are more involved

than in the cases treated in Section 10.2.

We start out with an application of the results to be presented later in this section.

Example 11.2. 2-regular graphs. The generating function for 2-regular graphs is known [81]

to be

f(z) = (1− z)−1/2 exp
(

−1
2
z − 1
4
z2
)

. (11.3)

(A simpler proof can be obtained from the exponential formula, cf. Eq. (3.9.1) of [377].) We

see that f(z) is analytic throughout the complex plane except for the slit along the real axis

from 1 to ∞, and that near z = 1 it has the asymptotic expansion

f(z) = e−3/4
{

(1− z)−1/2 + (1− z)1/2 + 1
4
(1− z)3/2 + · · ·

}

. (11.4)

Theorem 11.1 below then shows that as n→∞,

[zn]f(z) ∼ e−3/4
{(

n− 1/2
n

)

+

(

n− 3/2
n

)

+
1

4

(

n− 5/2
n

)

+ · · ·
}

∼ e−3/4√
πn

{

1− 5
8n
− 15

128n2
+ · · ·

}

.
�

(11.5)

The basic transfer results will be presented for generating functions that have a single

dominant singularity, but can be extended substantially beyond their circle of convergence.

For r, η > 0, and 0 < φ < π/2, we define the closed domain ∆ = ∆(r, φ, η) by

∆(r, φ, η) = {z : |z| ≤ r + η, |Arg(z − r)| ≥ φ} . (11.6)

In the main result below we will assume that a generating function is analytic throughout

∆\{r}. Later in this section we will mention some results that dispense with this requirement.
We will also explain why analyticity throughout ∆ \ {r} is helpful in obtaining results such as
those of Theorem 11.1 below.

One advantage to using Cauchy’s theorem to recover information about coefficients of gen-

erating functions is that it allows one to prove the intuitively obvious result that small smooth
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changes in the generating function correspond to small smooth changes in the coefficients. We

will use the quantitative notion of a function of slow variation at∞ to describe those functions
for which this notion can be made precise. (With more effort one can prove that the same

results hold with a less restrictive definition than that below.)

Definition 11.1. A function L(u) is of slow variation at ∞ if

i) There exist real numbers u0 and φ0 with u0 > 0, 0 < φ0 < π/2, such that L(u) is analytic

and 6= 0 in the domain
{u : |Arg(u− u0)| ≤ π − φ0} . (11.7)

ii) There exists a function ε(x), defined for x ≥ 0 with limx→∞ ε(x) = 0, such that for all
θ ∈ [−(π − φ0), π − φ0] and u ≥ u0, we have

∣

∣

∣

∣

L(ueiθ)

L(u)
− 1
∣

∣

∣

∣

< ε(u) (11.8)

and
∣

∣

∣

∣

L(u log2 u)

L(u)
− 1
∣

∣

∣

∣

< ε(u) . (11.9)

Theorem 11.1. Assume that f(z) is analytic throughout the domain ∆ \ {r}, where ∆ =
∆(r, φ, η), r, η > 0, 0 < φ < π/2, and that L(u) is a function of slow variation at ∞. If α is
any real number, then

A) If

f(z) = O

(

(z − r)αL
(

1

r − z

))

uniformly for z ∈ ∆ \ {r}, then

[zn]f(z) = O(r−nn−α−1L(n)) as n→∞ .

B) If

f(z) = o

(

(z − r)αL
(

1

r − z

))

uniformly as z → r for z ∈ ∆ \ {r}, then

[zn]f(z) = o(r−nn−α−1L(n)) as n→∞ .
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C) If α 6∈ {0, 1, 2, . . .} and
f(z) ∼ (r − z)αL

(

1

r − z

)

uniformly as z → r for z ∈ ∆ \ {r}, then

[zn]f(z) ∼ r
−nn−α−1

Γ(−α) L(n) .

The restriction that there be only one singularity on the circle of convergence is easy to

relax. If there are several (corresponding to oscillatory behavior of the coefficients), their

contributions to the coefficients add. The crucial fact is that at each singularity the function

f(z) should be continuous except for an angular region similar to that of ∆(r, φ, η).

The requirement that the generating function f(z) be analytic in the interior of ∆(r, φ, η) is

in general harder to dispense with, at least by the methods of [135]. However, if the singularity

at r is sufficiently large, one can obtain the same results with weaker assumptions that only

require analyticity inside the disk |z| < r. The following result is implicit in [135].

Theorem 11.2. Assume that f(z) is analytic in the domain{z : |z| ≤ r, z 6= r} and that L(u)
is a function of slow variation at ∞. If α is any fixed real number with α < −1, then the
implications A), B), and C) of Theorem 11.1 are valid.

Example 11.3. Longest cycle in a random permutation. The average length of the longest

cycle in a permutation on n letters is [zn]f(z), where

f(z) = (1− z)−1
∑

k≥0



1− exp



−
∑

j≥k

j−1zj







 .

It is easy to see that f(z) is analytic in |z| < 1, and a double application of the Euler-Maclaurin
summation formula shows that f(z) ∼ G(1 − z)−2 as z → 1, uniformly for |z| ≤ 1, z 6= 1,
where

G =

∫ ∞

0

[

1− exp
(

−
∫ ∞

x
t−1e−tdt

)]

dx = 0.624 . . . . (11.10)

Therefore, by Theorem 11.2 with L(u) = 1,

[zn]f(z) ∼ Gn as n→∞ , (11.11)

a result first proved by Shepp and Lloyd [342] using Poisson approximations and Tauberian

theorems. The derivation sketched above follows [134, 135]. The paper [134] contains many
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other applications of transfer theorems to random mapping problems. Additional recent papers

on the cycle structure of random permutations are [19, 187]. They use probabilistic methods,

not transfer theorems, and contain extensive references to other recent works.
�

In applying transfer theorems, it is useful to have explicit expansions and estimates for the

coefficients of some frequently occurring functions. We state several asymptotic series:

[zn](1− z)α ≈ n
−α−1

Γ(−α)



1 +
∑

k≥1

e
(α)
k n

−k



 , α 6= 0, 1, 2, . . . , (11.12)

where

e
(α)
k =

2k
∑

j=k

(−1)jλk,j(α+ 1)(α + 2) · · · (α+ j) , (11.13)

and the λk,j are determined by

et(1 + vt)−1−1/v =
∑

k,j≥0

λk,jv
ktj . (11.14)

In particular,

e
(α)
1 = α(α + 1)/2,

e
(α)
2 = α(α + 1)(α+ 2)(3α + 1)/24 .

Also, for α, β 6∈ {0, 1, 2, . . .},

[zn](1− z)α(−z−1 log(1− z))β ≈ n
−α−1

Γ(−α)(log n)
β



1 +
∑

k≥1

e
(α,β)
k (log n)−k



 , (11.15)

where

e
(α,β)
k = (−1)k

(

β

k

)

Γ(−α)
(

dk

dsk
Γ(−s)−1

∣

∣

∣

s=α

)

. (11.16)

Further examples of asymptotic expansions are presented in [135].

Why is the analyticity of a function f(z) throughout ∆(r, φ, η) \ {r} so important? We
explain this using as an example a function f(z) that satisfies

f(z) = (1 + o(1))(1 − z)1/2 (11.17)

as z → 1 with z ∈ ∆ = ∆(1, π/8, 1). We write

f(z) = (1− z)1/2 + g(z) , (11.18)
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so that

|g(z)| = o(|1− z|1/2) . (11.19)

Since [zn](1− z)1/2 grows like n−3/2, we would like to show that

|[zn]g(z)| = o(n−3/2) as n→∞ . (11.20)

If g(z) were analytic in a disk of radius 1 + δ for some δ > 0, then we could conclude that

|[zn]g(z)| < (1 + δ/2)−n for large n, a conclusion much stronger than (11.20). However, if all
we know is that g(z) satisfies (11.19) in |z| ≤ 1, then we can only conclude from Cauchy’s
theorem that [zn]g(z) = O(1), since (11.19) implies that |g(z)| ≤ C for all |z| < 1 and some
C > 0. Then Theorem 10.2 gives

|[zn]g(z)| ≤ Cr−n (11.21)

uniformly for all n ≥ 0 and all r < 1, and hence |[zn]g(z)| ≤ C for all n, a result that is far
from what is required. If we know that g(z) can be continued to ∆ \ {r} and satisfies (11.19)
there, we can do a lot better. We choose the contour Γ = Γ1 ∪Γ2 ∪Γ3 ∪Γ4, pictured in Fig. 1,
with

Γ1 = {z : |z − 1| = 1/n, |Arg(z − 1)| ≥ π/4} , (11.22)

Γ2 = {z : z = 1 + r exp(πi/4), 1/n ≤ r ≤ δ} , (11.23)

Γ3 = {z : |z| = |1 + δ exp(πi/4)|, |Arg(z − 1)| ≥ π/4} , (11.24)

Γ4 = {z : z = 1 + r exp(−πi/4), 1/n ≤ r ≤ δ} , (11.25)

where 0 < δ < 1/2. We will show that the integrals

gj =
1

2πi

∫

Γj

g(z)z−n−1dz (11.26)

on the Γj are small. On Γ3, g(z) is bounded, so we trivially obtain the exponential upper

bound

|g3| = O((1 + δ/2)−n) . (11.27)

On Γ1, |g(z)| = o(n−1/2), |z−n−1| ≤ (1− 1/n)−n−1 = O(1), and the length of Γ1 is ≤ 2π/n, so

|g1| = o(n−3/2) as n→∞ . (11.28)

Next, on Γ2, for z = 1 + r exp(πi/4),

|z|−n = |1 + r2−1/2 + ir2−1/2|−n = (1 + r21/2 + r2)−n/2

≤ (1 + r)−n/2 ≤ exp(−nr/10) (11.29)
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for 0 ≤ r < 1. Since g(z) satisfies (11.19), for any ε > 0 we have

|g(1 + r exp(πi/4))| ≤ εr1/2 (11.30)

if 0 < r ≤ η for some η = η(ε) ≤ δ. Therefore

|g2| ≤ ε

∫ η

0
r1/2 exp(−nr/10)dr +O

(∫ ∞

η
exp(−nr/10)dr

)

≤ εn−3/2
∫ ∞

0
r1/2 exp(−r/10)dr +O(exp(−nη/10)) , (11.31)

and so

|g2| = o(n−3/2) . (11.32)

Since |g4| = |g2|, inequalities (11.27), (11.28), and (11.32) show that (11.20) holds.
The critical factor in the derivation of (11.20) was the bound for (11.29) for |z|−n on the

segment z = 1 + r exp(πi/4). Integrating on the circle |z| = 1 or even on the line Re (z) = 1
does not give a bound for |z|−n that is anywhere as small, and the resulting bounds do not
approach (11.20) in strength. The use of the circular arc Γ1 in the integral is only a minor

technical device used to avoid the singularity at z = 1.

When one cannot continue a function to a region like ∆ \ {1}, it is sometimes possible
to obtain good estimates for coefficients by working with the generating function exclusively

in |z| ≤ 1, provided some smoothness properties apply. This method is outlined in the next
section.

11.2. Darboux’s theorem and other methods

A singularity of f(z) at z = w is called algebraic if f(z) can be written as the sum of a

function analytic in a neighborhood of w and a finite number of terms of the form

(1− z/w)αg(z) , (11.33)

where g(z) is analytic near w, g(w) 6= 0, and α 6∈ {0, 1, 2, . . .}. Darboux’s theorem [87] gives
asymptotic expansions for functions with algebraic singularities on the circle of convergence.

We state one form of Darboux’s result, derived from Theorem 8.4 of [354].

Theorem 11.3. Suppose that f(z) is analytic for |z| < r, r > 0, and has only algebraic
singularities on |z| = r. Let a be the minimum of Re (α) for the terms of the form (11.33) at
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the singularities of f(z) on |z| = r, and let wj, αj, and gj(z) be the w, α, and g(z) for those
terms of the form (11.33) for which Re (α) = a. Then, as n→∞,

[zn]f(z)−
∑

j

gj(wj)n
−αj−1

Γ(−αj)wnj
+ o(r−nn−a−1) . (11.34)

Jungen [219] has extended Darboux’s theorem to functions that have a single dominant

singularity which is of a mixed algebraic and logarithmic form. His method can be applied

also to functions that have several such singularities on their circle of convergence.

We do not devote much attention to Darboux’s and Jungen’s theorems because they can be

obtained from the transfer theorems of Section 11.1. The only reason for stating Theorem 11.3

is that it occurs frequently in the literature.

Some functions, such as

f(z) =

∞
∏

k=1

(1 + zk/k2) , (11.35)

are analytic in |z| ≤ 1, cannot be continued outside the unit circle, yet are nicely behaved
on |z| = 1. Therefore there is no dominant singularity that can be studied to determine the
asymptotics of [zn]f(z). To minimize the size of the integrand, it is natural to move the

contour of integration in Cauchy’s formula to the unit circle. Once that is done, it is possible

to exploit smoothness properties of f(z) to bound the coefficients. The Riemann-Lebesgue

lemma implies that if f(z) is integrable on the unit circle, then as n→∞,

[zn]f(z) = (2π)−1
∫ π

−π
f(eiθ) exp(−niθ)dθ = o(1) . (11.36)

More can be said if the derivative of f(z) exists on the unit circle. When we apply integration

by parts to the integral in (11.36), we find

[zn]f(z) = (2πn)−1
∫ π

−π
f ′(eiθ) exp(−(n− 1)iθ)dθ , (11.37)

and so |[zn]f(z)| = o(n−1) if f ′(z) exists and is integrable on the unit circle. Existence of higher
derivatives leads to even better estimates. We do not attempt to state a general theorem, but

illustrate an application of this method with an example. The same technique can be used in

other situations, for example in obtaining better error terms in Darboux’s theorem [87].

Example 11.4. Permutations with distinct cycle lengths. Example 8.5 showed that for the

function f(z) defined by Eq. (8.58), [zn]f(z) ∼ exp(−γ) as n → ∞. This coefficient is the
probability that a random permutation on n letters has distinct cycle lengths. The more precise
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estimate (8.59) was derived by Greene and Knuth [177] by working with recurrences for the

coefficients of f(z) and auxiliary functions. Another approach to deriving fuller asymptotic

expansions for [zn]f(z) is to use the method outlined above. It suffices to show that the

function g(z) defined by Eq. (8.62) has a nice expansion in the closed disk |z| ≤ 1. Since

g(z) = −z +
∞
∑

m=2

(−1)m−1
m

{Lim(zm)− zm} , (11.38)

where the Lim(w) are the polylogarithm functions [251], one can use the theory of the Lim(w).

A simpler way to proceed is to note, for example, that

∞
∑

k=2

z2k

k2
=

∞
∑

k=2

z2k

k(k − 1) + r(z) , (11.39)

where

r(z) = −
∞
∑

k=2

z2k

k2(k − 1) , (11.40)

and so r′(z) is bounded and continuous for |z| ≤ 1, as are the terms in (8.62) with m ≥ 3. On
the other hand,

∞
∑

k=2

z2k

k(k − 1) = z
2 + (1− z2) log(1− z2) , (11.41)

so we can write g(z) = g1(z) + g2(z), where g1(z) is an explicit function (given by Eq. (11.41))

such that the coefficients of exp(g1(z)) can be estimated asymptotically using transfer methods

or other techniques, and g2(z) has the property that g
′
2(z) is bounded and continuous in |z| ≤ 1.

Continuing this process, we can find, for every K, an expansion for the coefficients of f(z) that

has error term O(n−K). To do this, we write g(z) = G1(z) +G2(z). In this expansion G1(z)

will be explicitly given and analytic inside |z| < 1 and analytically continuable to some region
that extends beyond the unit disk with the exception of cuts from a finite number of points on

the unit circle out to infinity. Further, G2(z) will have the property that G
(K)
2 (z) is bounded

and continuous in |z| ≤ 1. This will then give the desired expansion for the coefficients of
f(z).

�

12. Large singularities of analytic functions

This section presents methods for asymptotic estimation of coefficients of generating func-

tions whose dominant singularities are large.
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12.1. The saddle point method

The saddle point method, also referred to as the method of steepest descent, is by far

the most useful method for obtaining asymptotic information about rapidly growing functions.

It is extremely flexible and has been applied to a tremendous variety of problems. It is also

complicated, and there is no simple categorization of situations where it can be applied, much

less of the results it produces. Given the purpose and limitations on the length of this chapter,

we do not present a full discussion of it. For a complete and insightful introduction to this

technique, the reader is referred to [63]. Many other books, such as [110, 115, 315, 385] also

have extensive presentations. What this section does is to outline the method, show when

and how it can be applied and what kinds of estimates it produces. Examples of proper and

improper applications of the method are presented. Later subsections are then devoted to

general results obtained through applications of the saddle point method. These results give

asymptotic expansions for wide classes of functions without forcing the reader to go through

the details of the saddle point method.

The saddle point method is based on the freedom to shift contours of integration when

estimating integrals of analytic functions. The same principle underlies other techniques, such

as the transfer method of Section 11.1, but the way it is applied here is different. When dealing

with functions of slow growth near their principal singularity, as happens for transfer methods,

one attempts to push the contour of integration up to and in some ways even beyond the

singularity. The saddle point method is usually applied when the singularity is large, and it

keeps the path of integration close to the singularity.

In the remainder of this section we will assume that f(z) is analytic in |z| < R ≤ ∞. We
will also make the assumption that for some R0, if R0 < r < R, then

max
|z|=r

|f(z)| = f(r) . (12.1)

This assumption is clearly satisfied by all functions with real nonnegative coefficients, which

are the most common ones in combinatorial enumeration. Further, we will suppose that z = r

is the unique point with |z| = r where the maximum value in (12.1) is assumed. When
this assumption is not satisfied, we are almost always dealing with some periodicity in the

asymptotics of the coefficients, and we can then usually reduce to the standard case by either

changing variables or rewriting the generating function as a sum of several others, as was

discussed in Section 10. (Such a reduction cannot be applied to the function of Eq. (9.39),
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though.)

The first step in estimating [zn]f(z) by the saddle point method is to find the saddle point.

Under our assumptions, that will be a point r ∈ (R0, R) which minimizes r−nf(r). We have
encountered this condition before, in Section 8.1. The minimizing r = r0 will usually be

unique, at least for large n. (If there are several r ∈ (R0, R) for which r−nf(r) achieves its
minimum value, then f(z) is pathological, and the standard saddle point method will not be

applicable. For functions f(z) with nonnegative coefficients, it is easy to show uniqueness of

the minimizing r, as was already discussed in Section 8.1.) Cauchy’s formula (10.6) is then

applied with the contour |z| = r0. The reason for this choice is that for many functions, on
this contour the integrand is large only near z = r0, the contributions from the region near

z = r0 do not cancel each other, and remaining regions contribute little. This is in contrast

to the behavior of the integrand on other contours. By Cauchy’s theorem, any simple closed

contour enclosing the origin gives the correct answer. However, on most of them the integrand

is large, and there is so much cancellation that it is hard to derive any estimates. The circle

going through the saddle point, on the other hand, yields an integral that can be controlled

well by techniques related to Laplace’s method and the method of stationary phase that were

mentioned in Section 5.5. We illustrate with an example, which is a totally self-contained

application of the saddle point method to an extremely simple situation.

Example 12.1. Stirling’s formula. We estimate (n!)−1 = [zn] exp(z). The saddle point,

according to our definition above, is that r ∈ � + that minimizes r−n exp(r), which is clearly
r = n. Consider the contour |z| = n, and set z = n exp(iθ), −π ≤ θ ≤ π. Then

[zn] exp(z) =
1

2πi

∫

|z|=n

exp(z)

zn+1
dz

=
1

2π

∫ π

−π
n−n exp(neiθ − niθ)dθ . (12.2)

Since | exp(z)| = exp(Re(z)), the absolute value of the integrand in (12.2) is n−n exp(n cos θ),
which is maximized for θ = 0. Now

eiθ = cos θ + i sin θ = 1− θ2/2 + iθ +O(|θ|3) ,

so for any θ0 ∈ (0, π),
∫ θ0

−θ0

n−n exp(neiθ − niθ)dθ =
∫ θ0

−θ0

n−n exp(n− nθ2/2 +O(n|θ|3))dθ . (12.3)
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(It is the cancellation of the niθ term coming from neiθ and the −niθ term that came from
change of variables in z−n that is primarily responsible for the success of the saddle point

method.) The O(n|θ|3) term in (12.3) could cause problems if it became too large, so we will
select θ0 = n

−2/5, so that n|θ|3 ≤ n−1/5 for |θ| ≤ θ0, and therefore

exp(n− nθ2/2 +O(n|θ|3)) = exp(n− nθ2/2)(1 +O(n−1/5)) . (12.4)

Hence

∫ θ0

−θ0

n−n exp(neiθ − niθ)dθ = (1 +O(n−1/5))n−nen
∫ θ

−θ0

exp(−nθ2/2)dθ .

But

∫ θ0

−θ0

exp(−nθ2/2)dθ =
∫ ∞

−∞
exp(−nθ2/2)dθ − 2

∫ ∞

θ0

exp(−nθ2/2)dθ

= (2π/n)1/2 −O(exp(−n1/5/2)) ,

so
∫ θ0

−θ0

n−n exp(neiθ − niθ)dθ = (1 +O(n−1/5))(2π/n)1/2n−nen . (12.5)

On the other hand, for θ0 < |θ| ≤ π,

cos θ ≤ cos θ0 = 1− θ20/2 +O(θ40) ,

so

n cos θ ≤ n− n1/5/2 +O(n−3/5) ,

and therefore for large n
∣

∣

∣

∣

∫ π

θ0

n−n exp(neiθ − niθ)dθ
∣

∣

∣

∣

≤ n−n exp(n− n1/5/3) ,

and similarly for the integral from −π to −θ0. Combining all these estimates we therefore find
that

(n!)−1 = [zn] exp(z) = (1 +O(n−1/5))(2πn)−1/2n−nen , (12.6)

which is a weak form of Stirling’s formula (4.3). (The full formula can be derived by using

more precise expansions for the integrand.)

Suppose we try to push through a similar argument using the contour |z| = 2n. This time,
instead of Eq. (12.2), we find

[zn] exp(z) =
1

2π

∫ π

−π
2−nn−n exp(2neiθ − niθ)dθ . (12.7)
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At θ = 0, the integrand is 2−nn−n exp(2n), which is exp(n) times as large as the value of the

integrand in (12.2). Since the two integrals do produce the same answer, and from the analysis

above we see that this answer is close to n−n exp(n) in value, the integral in (12.7) must involve

tremendous cancellation. That is indeed what we see in the neighborhood of θ = 0. We find

that

exp(2neiθ − niθ) = exp(2n− nθ2 + niθ +O(n|θ|3)) , (12.8)

and the exp(niθ) term produces wild oscillations of the integrand even over small ranges of

θ. Trying to work with the integral (12.7) and proving that it equals something exponentially

smaller than the maximal value of its integrand is not a promising approach. By contrast, the

saddle point contour used to produce Eq. (12.2) gives nice behavior of the integrand, so that

it can be evaluated.
�

The estimates for n! obtained in Example 10.1 came from a simple application of the

saddle point method. The motivation for the choice of the contour |z| = n is provided by the
discussion at the end of the example; other choices lead to oscillating integrands that cannot

be approximated by a Gaussian, nor by any other nice function. The example above treated

only the exponential function, but it is easy to see that this phenomenon is general; a rapidly

oscillating term exp(niα) for α 6= 0 is present unless the contour passes through the saddle
point. When we do use this contour, and the Gaussian approximation is valid, we find that

for functions f(z) satisfying our assumptions we have the following estimate.

Saddle point approximation

[zn]f(z) ∼ (2πb(r0))−1/2f(r0)r−n0 as n→∞ , (12.9)

where r0 is the saddle point (where r
−nf(r) is minimized, so that r0f

′(r0)/f(r0) = n)

and

b(r) = r
f ′(r)

f(r)
+ r2

f ′′(r)

f(r)
− r2

(

f ′(r)

f(r)

)2

= r

(

r
f ′(r)

f(r)

)′

. (12.10)

Example 12.2. Bell numbers. Example 5.4 showed how to estimate the Bell number Bn

by elementary methods, starting with the representation (5.38). The exponential generating

function

B(z) =

∞
∑

n=0

Bn
zn

n!
(12.11)
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satisfies

B(z) = exp(exp(z)− 1) ,

as can be seen from (5.38) or by other methods (cf. [81]). The saddle point occurs at that

r0 > 0 that satisfies

r0 exp(r0) = n , (12.12)

and

b(r0) = r0(1 + r0) exp(r0) , (12.13)

so the saddle point approximation says that as n→∞,

Bn ∼ n!(2πr20 exp(r0))−1/2 exp(exp(r0)− 1)r−n0 . (12.14)

The saddle point approximation can be justified even more easily than for the Stirling estimate

of n!.
�

The above approximation is widely applicable and extremely useful, but care has to be

exercised is applying it. This is shown by the next example.

Example 12.3. Invalid application of the saddle point method. Consider the trivial example

f(z) = (1 − z)−1, so that [zn]f(z) = 1 for all n ≥ 0. Then f ′(r)/f(r) = (1 − r)−1, and so
the saddle point is r0 = n/(n + 1), and b(r0) = r0/(1 − r0)2 = n(n + 1). Therefore if the
approximation (12.9) were valid, it would give

[zn]f(z) ∼ (2πn(n+ 1))−1/2(n+ 1)

(

1 +
1

n

)n

∼ (2π)−1/2e as n→∞ . (12.15)

Since (2π)−1/2e = 1.0844 . . . 6= 1 = [zn]f(z), something is wrong, and the estimate (12.9) does
not apply to this function.

�

The estimate (12.9) gave the wrong result in Example 12.3 because the Gaussian approxi-

mation on the saddle point method contour used so effectively in Example 12.1 (and in almost

all cases where the saddle point method applies) does not hold over a sufficiently large re-

gion for f(z) = (1 − z)−1. In Example 12.1 we used without detailed explanation the choice
θ0 = n

−2/5, which gave the approximation (12.5) for |θ| ≤ θ0, and yet led to an estimate for the
integral over θ0 < |θ| ≤ π that was negligible. This was possible because the third order term
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(i.e., n|θ|3) in Eq. (12.5) was small. When we try to imitate this approach for f(z) = (1−z)−1,
we fail, because the third order term is too large. Instead of neiθ − niθ, we now have

− log(1− r0eiθ)− niθ = − log(1− r0)−
1

2
n(n+ 1)θ2 − i

6
n2(n+ 1)θ3 + · · · . (12.16)

More fundamentally, the saddle point method fails here because the function f(z) = (1− z)−1

does not have a large enough singularity at z = 1, so that when one traverses the saddle point

contour |z| = r0, the integrand does not drop off rapidly enough for a small region near the
real axis to provide the dominant contribution.

When can one apply the saddle point approximation (12.9)? Perhaps the simplest, yet still

general, set of sufficient conditions for the validity of (12.9) is provided by requiring that the

function f(z) be Hayman-admissible. Hayman admissibility is described in Definition 12.1, in

the following subsection. Generally speaking, though, for the saddle point method to apply we

need the function f(z) to have a large dominant singularity at R, so that f(r) grows at least

as fast as exp((log(R − r))2) as r → R− for R < ∞, and as fast as exp((log r)2) as r → ∞
for R = ∞. The faster the growth rate, the easier it usually is to apply the method, so that
exp(1/(1 − z)) or exp(exp(1/(1 − z))) can be treated easily.
In our application of the saddle point method to exp(z) in Example 12.1 we were content

to obtain a poor error term, 1 + O(n−1/5), in Stirling’s formula for n!. This was done to

simplify the presentation and concentrate only on the main factors that make the saddle point

method successful. With more care devoted to the integral one can obtain the full asymptotic

expansion of n!. (Only the range |θ| ≤ θ0 has to be considered carefully.) This is usually true
when the saddle point method is applicable.

This section provided a sketchy introduction to the saddle point method. For a much more

thorough presentation, including a discussion of the topographical view of the integrand and

the “hill-climbing” interpretation of the contour of integration, see [63].

12.2. Admissible functions

The saddle point method is a powerful and flexible tool, but in its full generality it is often

cumbersome to apply. In many situations it is possible to apply general theorems derived

using the saddle point method that give asymptotic approximations that are not the sharpest

possible, but which allow one to avoid the drudgery of applying the method step by step. The

general theorems that we present were proved by Hayman [204] and by Harris and Schoenfeld

120



[198]. We next describe the classes of functions to which these theorems apply, and then present

the estimates one obtains for them. It is not always easy to verify that these definitions hold,

but it is almost always easier to do this than to apply the saddle point method from scratch.

It is worth mentioning, furthermore, that for many generating functions, there are conditions

that guarantee that they satisfy the hypotheses of the Hayman and the Harris-Schoenfeld

theorems. These conditions are discussed later in this section.

The definition below is stated somewhat differently than the original one in [204], but can

be shown to be equivalent to it.

Definition 12.1. A function

f(z) =
∞
∑

n=0

fnz
n (12.17)

is admissible in the sense of Hayman (or H-admissible) if

i) f(z) is analytic in |z| < R for some 0 < R ≤ ∞,

ii) f(z) is real for z real, |z| < R,

iii) for R0 < r < R,

max
|z|=r

|f(z)| = f(r) , (12.18)

iv) for

a(r) = r
f ′(r)

f(r)
, (12.19)

b(r) = ra′(r) = r
f ′(r)

f(r)
+ r2

f ′′(r)

f(r)
− r2

(

f ′(r)

f(r)

)2

, (12.20)

and for some function δ(r), defined in the range R0 < r < R to satisfy 0 < δ(r) < π, the

following three conditions hold:

a) f(reiθ) ∼ f(r) exp(iθa(r)− θ2b(r)/2)

as r → R uniformly for |θ| < δ(r), (12.21)

b) f(reiθ) = o(f(r)b(r)−1/2)

as r → R uniformly for |θ| < δ(r), (12.22)

c) b(r)→∞ as r → R. (12.23)
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For H-admissible functions, Hayman [204] proved a basic result that gives the asymptotics

of the coefficients.

Theorem 12.1. If f(z), defined by Eq. (12.17), is H-admissible in |z| < R, then

fn = (2πb(r))
−1/2f(r)r−n

{

exp

(

−(a(r)− n)
2

b(r)

)

+ o(1)

}

(12.24)

as r → R, with the o(1) term uniform in n.

If we choose r = rn to be a solution to a(rn) = n, then we obtain from Theorem 12.1 a

simpler result. (The uniqueness of rn follows from a result of Hayman [204] which shows that

a(r) is positive increasing in some range R1 < r < R, R1 > R0.)

Corollary 12.1. If f(z), defined by Eq. (12.17), is H-admissible in |z| < R, then

fn ∼ (2πb(rn))−1/2f(rn)r−nn as n→∞ , (12.25)

where rn is defined uniquely for large n by a(rn) = n, R0 < rn < R.

Corollary 12.1 is adequate for most situations. The advantage of Theorem 12.1 is that

it gives a uniform estimate over the approximate range |a(r) − n| � b(r)1/2. (Note that the
estimate (12.24) is vacuous for |a(r) − n| b(r)−1/2 → ∞.) Theorem 12.1 shows that the fnrn

are approximately Gaussian in the central region.

There are many direct applications of the above results.

Example 12.4. Stirling’s formula. Let f(z) = exp(z). Then f(z) is H-admissible for R =∞;
conditions i)–iii) of Definition 12.1 are trivially satisfied, while a(r) = r, b(r) = r, so iv) also

holds for R0 = 0, δ(r) = r
−1/3, say. Corollary 12.1 then shows that

fn =
1

n!
∼ (2πn)−1/2enn−n as n→∞ , (12.26)

since rn = n, which gives a weak form of Stirling’s approximation to n!.
�

In many situations the conditions of H-admissibility are much harder to verify than for

f(z) = exp(z), and even in that case there is a little work to be done to verify that condition

iv) holds. However, many of the generating functions one encounters are built up from other,

simpler generating functions, and Hayman [204] has shown that often the resulting functions

are guaranteed to be H-admissible. We summarize some of Hayman’s results in the following

theorem.
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Theorem 12.2. Let f(z) and g(z) be H-admissible for |z| < R ≤ ∞. Let h(z) be analytic in
|z| < R and real for real z. Let p(z) be a polynomial with real coefficients.

i) If the coefficients an of the Taylor series of exp(p(z)) are positive for all sufficiently large

n, then exp(p(z))) is H-admissible in |z| <∞.

ii) exp(f(z)) and f(z)g(z) are H-admissible in |z| < R.

iii) If, for some η > 0, and R1 < r < R,

max
|z|=r

|h(z)| = O(f(r)1−η) , (12.27)

then f(z) + h(z) is H-admissible in |z| < R. In particular, f(z) + p(z) is H-admissible
in |z| < R and, if the leading coefficient of p(z) is positive, p(f(z)) is H-admissible in
|z| < R.

Example 12.5. H-admissible functions. a) By i) Theorem 12.2, exp(z) is H-admissible, so

we immediately obtain the estimate (12.26), which yields Stirling’s formula. b) Since exp(z)

is H-admissible, part iii) of Theorem 12.2 shows that exp(z)− 1 is H-admissible. c) Applying
part ii) of Theorem 12.2, we next find that exp(exp(z) − 1) is H-admissible, which yields the
asymptotics of the Bell numbers.

�

Hayman’s results give only first order approximations for the coefficients of H-admissible

functions. In some circumstances it is desirable to obtain full asymptotic expansions. This is

possible if we impose additional restrictions on the generating function. We next state some

results of Harris and Schoenfeld [198].

Definition 12.2. A function f(z) defined by Eq. (12.17) is HS-admissible provided it is ana-

lytic in |z| < R, 0 < R ≤ ∞, is real for real x, and satisfies the following conditions:

A) There is an R0, 0 < R0 < R and a function d(r) defined for r ∈ (R0, R) such that

0 < d(r) < 1 ,
r{1 + d(r)} < R , (12.28)

and such that f(z) 6= 0 for |z − r| < rd(r).

B) If we define, for k ≥ 1,

A(z) =
f ′(z)

f(z)
, Bk(z) =

zk

k!
A(k−1)(z), B(z) =

z

2
B1(z) , (12.29)

123



then we have

B(r) > 0 for R0 < r < R and B1(r)→∞ as r→ R .

C) For sufficiently large R1 and n, there is a unique solution r = un to

B1(r) = n+ 1, R1 < r < R . (12.30)

Let

Cj(z, r) =
−1
B(r)

{

Bj+2(z) +
(−1)j
j + 2

B1(r)

}

. (12.31)

There exist nonnegative Dn, En, and n0 such that for n ≥ n0,

|Cj(un, un)| ≤ EnDjn, j = 1, 2, . . . . (12.32)

D) As n→∞,
B(un)d(un)

2 →∞ ,

DnEnB(un)d(un)
3 → 0 ,

Dnd(un)→ 0 .

(12.33)

For HS-admissible functions, Harris and Schoenfeld obtain complete asymptotic expansions.

Theorem 12.3. If f(z), defined by (12.17), is HS-admissible, then for any N ≥ 0,

fn = 2(πβn)
−1/2f(un)u

−n
n

{

1 +

N
∑

k=1

Fk(n)β
−k
n +O(φN (n; d))

}

as n→∞ , (12.34)

where

βn = B(un) , (12.35)

Fk(n) =
(−1)k√
π

2k
∑

m=1

Γ(m+ k + 12)

m!

∑

j1+···+jm=2k
j1,...,jm≥1

γj1(n) · · · γjm(n) , (12.36)

γj(n) = Cj(un, un) , (12.37)

and

φN (n; d) = max{µ(un, d), E′n(DnE′′nβ−1/2n )2N+2} ,
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with

E′n = min(1, En), E
′′
n = max(1, En) , (12.38)

µ(r, d) = max

{

λ(r; d)B(r)1/2,
exp(−B(r)d(r)2)
d(r)B(r)1/2

}

, (12.39)

where λ(r; d) is the maximum value of |f ′(z)/f(z)| for z on the oriented path Q(r) consisting
of the line segment from r + ird(r) to (1 − d(r)2)1/2 + ird(r) and of the circular arc from the
last point to ir to −r.

The conditions for HS-admissibility are often hard to verify. However, there is a theorem

[311] which guarantees that they do hold for a large class of interesting functions.

Theorem 12.4. If g(z) is H-admissible, then f(z) = exp(g(z)) is HS-admissible. Further-

more, the error term φN (n; d) of Theorem 12.3 is then o(β
−N
n ) as n → ∞ for every fixed

N ≥ 0.

Example 12.6. Bell numbers and HS-admissibility. Since exp(x)− 1 is H-admissible, as we
saw in Example 12.5, we find that exp(exp(z)− 1) is HS-admissible, and Theorem 12.3 yields
a complete asymptotic expansion of the Bell numbers.

�

Theorem 12.4 does not apply when g(z) is a polynomial. As is pointed out by Schmutz

[339], for g(z) = z4 − z3 + z2 the function f(z) = exp(g(z)) is HS-admissible, but Theo-
rem 12.3 does not give an asymptotic expansion because the error term φN (n; d) is too large.

Schmutz [339] has obtained necessary and sufficient conditions for Theorem 12.3 to give an

asymptotic expansion for the coefficients of f(z) = exp(g(z)) when g(z) is a polynomial.

12.3. Other saddle point applications

Section 12.1 presented the basic saddle point method and discussed its range of applicabil-

ity. Section 12.2 was devoted to results derived using this method that are general and yet can

be applied in a cook-book style, without a deep understanding of the saddle point technique.

Such a cook-book approach is satisfactory in many situations. However, often one encounters

asymptotic estimation problems that are not covered by any of general results mentioned in

Section 12.2, but can be solved using the saddle point method. This section mentions sev-

eral such results of this type that illustrate the range of problems to which this method is

applicable. Additional applications will be presented in Section 15, where other techniques are

combined with the saddle point method.
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Example 12.7. Stirling numbers. The Stirling numbers of the first kind, s(n, k), satisfy (6.5)

as well as [81]
n
∑

k=0

s(n, k)zk = z(z − 1) · · · (z − n+ 1) . (12.40)

Since (−1)n+ks(n, k) > 0, (which is reflected in the behavior of the generating function (12.40),
which grows faster along the negative real axis than along the positive one), we rewrite it as

n
∑

k=0

(−1)n+ks(n, k)zk = z(z + 1) · · · (z + n− 1) . (12.41)

The function on the right-hand side behaves like a good candidate for an application of the

saddle point method. For details, see [295, 296].
�

The estimates mentioned in Example 12.7 are far from best possible in either the size of

the error term or (more important) in the range of validity. References for the best currently

known results about Stirling numbers of both the first and second kind are given in [363].

Some of the results in the literature are not rigorous. For example, [363] presents elegant and

uniform estimates based on an application of the saddle point method. They are likely to

be correct, but the necessary rigorous error analysis has not been performed yet, although it

seems that this should be doable. Other results, like those of [232] are obtained by methods

that there does not seem to be any hope of making rigorous in the near future. Some of the

results, though, such as the original ones of Moser and Wyman [295, 296], and the more recent

one of Wilf [378], are fully proved.

The saddle point method can be used to obtain full asymptotic expansions. These expan-

sions are usually in powers of n−1/2 when estimating [zn]f(z), and they hardly ever converge,

but are asymptotic expansions as defined by Poincaré (as in Eq. (2.2)). The usual forms of the

saddle point method are incapable of providing expansions similar to the Hardy-Ramanujan-

Rademacher convergent series for the partition function p(n) (Eq. (3.1)). However, the saddle

point method can be applied to estimate p(n). There are technical difficulties, since the gen-

erating function

f(z) =

∞
∑

n=0

p(n)zn =

∞
∏

k=1

(1− zk)−1 (12.42)

has a large singularity at z = 1, but in addition has singularities at all other roots of

unity. The contribution of the integral for z away from 1 can be crudely estimated to be

O(n−1 exp(Cn1/2/2)) (the last term in Eq. (1.5)). A simple estimate of the integral near z = 1

yields the asymptotic expansion of Eq. (1.6). A more careful treatment of the integral, but
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one that follows the conventional saddle point technique, replaces the 1 + O(n−1/2) term in

Eq. (1.6) by an asymptotic (in the sense of Poincare, so nonconvergent) series
∑

ckn
−k/2. To

obtain Eq. (1.5), one needs to choose the contour of integration near z = 1 carefully and use

precise estimates of f(z) near z = 1.

De Bruijn [63] also discusses applications of the saddle point method when the saddle point

is not on the real axis, and especially when there are several saddle points that contribute

comparable amounts. This usually occurs when there are oscillations in the coefficients. When

the oscillations are irregular, the tricks mentioned in Section 10 of changing variables do not

work, and the contributions of the multiple saddle points have to be evaluated.

Example 12.8. Oscillating sequence. Consider the sequence an of Examples 9.4 and 10.1.

As is shown in Example 9.4, its ordinary generating function is given by (9.39). It has an

essential singularity at z = 1, but is analytic every place else. This function is not covered by

our earlier discussion. For example, its maximal value is in general not taken on the positive

real axis. It can be shown that the Cauchy integral has two saddle points, at approximately

z = 1−(2n)−1±in−1/2(1−(4n)−1)1/2. Evaluating [zn]f(z) by using Cauchy’s theorem with the
contour chosen to pass through the two points in the correct way yields the estimate (9.38).

�

In applying the saddle point method, a general principle is that multiplying a generating

function f(z) with dominant singularity at R by another function g(z) which is analytic in

|z| < R and has much lower growth rate near z = R yields a function f(z)g(z) whose saddle
point is close to that of f(z). Usually one can obtain a relation of the form

[zn](f(z)g(z)) ∼ g(r0)([zn]f(z)) , (12.43)

where r0 is the saddle point for f(z). This principle (which is related to the one behind

Theorem 7.1) is useful, but has to be applied with caution, and proofs have to be provided for

each case. For fuller exposition of this principle and general results, see [157]. The advantage

of this approach is that often f(z) is easy to manipulate, so the determination of a saddle point

for it is easy, whereas multiplying it by g(z) produces a messy function, and the exact saddle

point for f(z)g(z) is difficult to determine.

Example 12.9. Boolean lattice of subsets of {1, . . . , n}. The number an of Boolean sublattices
of the Boolean lattice of subsets of {1, . . . , n} has the exponential generating function [162]

A(z) =
∞
∑

n=0

an
zn

n!
= exp(2z + exp(z)− 1) . (12.44)
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We can write A(z) = exp(2z)B(z), where B(z) is the exponential generating function for the

Bell numbers (Example 12.2). Since B(z) grows much faster than exp(2z), it is easy to show

that (12.43) applies, and so

an ∼ exp(2r0)Bn as n→∞ , (12.45)

where r0 is the saddle point for B(z). Using the approximation (12.12) of Example 12.2, we

find that

an ∼ (n/ log n)2Bn as n→∞ . (12.46)

�

The insensitivity of the saddle point approximation to slight perturbations is reflected in

slightly different definitions of a saddle point that are used. The saddle point approximation

(12.9) for [zn]f(z) is stated in terms of r0, the point that minimizes f(r)r
−n. The discussion

of the saddle point emphasized minimization of the peak value of the integrand in Cauchy’s

formula, which is the same as minimizing f(r)r−n−1, since the contour integral (10.6) involves

f(z)z−n−1. Some sources call the point minimizing f(r)r−n−1 the saddle point. It is not

important which definition is adopted. The asymptotic series coefficients look slightly differ-

ently in the two cases, but the final asymptotic series, when expressed in terms of n, are the

same. The reason for slightly preferring the definition that minimizes f(r)r−n is that when

the change of variable z = r exp(iθ) is made in Cauchy’s integral, there is no linear term in θ,

and the integrand involves exp(−cnθ2 + O(|θ|3)). If we minimized f(r)r−n−1, we would have
to deal with exp(−c′iθ − c′′nθ2 + O(|θ|3)), which is not much more difficult to handle but is
less elegant.

The same principle can be applied when the exact saddle point is hard to determine, and

it is awkward to work with an implicit definition of this point. When that happens, there

is often a point near the saddle point that is easy to handle, and for which the saddle point

approximation holds. We refer to [157] for examples and discussion of this phenomenon.

12.4. The circle method and other techniques

As we mentioned in Section 12.3, the saddle point method is a powerful method that

estimates the contribution of the neighborhood of only a single point, or at most a few points.

The convergent series of Eq. (1.3) for the partition function p(n) (as well as the earlier non-

convergent but asymptotic and very accurate expansion of Hardy and Ramanujan) is obtained

128



by evaluating the contribution of the other singularities of f(z) to the integral. The m-th term

in Eq. (1.3) comes from the primitive m-th roots of unity. To obtain this expansion one needs

to use a special contour of integration and detailed knowledge of the behavior of f(z). The

details of this technique, called the circle method, can be found in [13, 23].

Convergent series can be obtained from the circle method only when the generating function

is of a special form. For results and references, see [8, 10].

Nonconvergent but accurate asymptotic expansions can be derived from the circle method

in a much wider variety of applications. It is especially useful when there is no single dominant

singularity. For the partition function p(n), all the singularities away from z = 1 contribute

little, and it is z = 1 that creates the dominant term and yields Eq. (1.6). For other functions

this is often false. For example, when dealing with additive problems of Waring’s type, where

one studies Nk,m(n), the number of representations of a nonnegative integer n as

n =
m
∑

j=1

xkj , xj ∈ � + ∪ {0} for all j , (12.47)

the natural generating function to study is

∞
∑

n=0

Nk,m(n)z
n = g(z)m , (12.48)

where

g(z) =

∞
∑

h=0

zh
k
. (12.49)

The function g(z) has a natural boundary at |z| = 1, but it again grows fastest as z approaches
a root of unity from within |z| < 1, so it is natural to speak of g(z) having singularities at
the roots of unity. The singularity at z = 1 is still the largest, but not by much, as other

roots of unity contribute comparable amounts, with the contribution of other roots of unity ζ

diminishing as the order of ζ increases. All the contributions can be estimated, and one can

obtain solutions to Waring’s problem (which was to show that for every k, there is an integer

m such that Nk,m(n) > 0 for all n) and other additive problems. For details of this method see

[23]. We mention here that for technical reasons, one normally works with generating functions

of the form Gn(z)
m, where

Gn(z) =

bn1/kc
∑

h=0

zh
k
, (12.50)

(so that the generating function depends on n), and analyzes them for |z| = 1 (since they are
now polynomials), but the basic explanation above of why this process works still applies.
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13. Multivariate generating functions

A major difficulty in estimating the coefficients of multivariate generating functions is

that the geometry of the problem is far more difficult. It is harder to see what are the critical

regions where the behavior of the function determines the asymptotics of the coefficients, and

those regions are more complicated. Singularities and zeros are no longer isolated, as in the

one-dimensional case, but instead form (k − 1)-dimensional manifolds in k variables. Even
rational multivariate functions are not easy to deal with.

One basic tool in one-dimensional complex analysis is the residue theorem, which allows

one to move a contour of integration past a pole of the integrand. (We derived a form of the

residue theorem in Section 10, in the discussion of poles of generating functions.) There is an

impressive generalization by Leray [4, 250] of this theory to several dimensions. Unfortunately,

it is complicated, and with few exceptions (such as that of [252], see also [49]) so far it has not

been applied successfully to enumeration problems. On the other hand, there are some much

simpler tools that can frequently be used to good effect.

An important tool in asymptotics of multivariate generating functions is the multidimen-

sional saddle point method.

Example 13.1. Alternating sums of powers of binomial coefficients. Consider

S(s, n) =
2n
∑

k=0

(−1)k+n
(

2n

k

)s

, (13.1)

where s and n are positive integers. It has been known for a long time that S(1, n) = 0,

S(2, n) = (2n)!(n!)−2, S(3, n) = (3n)!(n!)−3. However, no formula of this type has been known

for s > 3. De Bruijn (see Chapter 4 of [63]) showed that S(s, n) for integer s > 3 cannot

be expressed as a ratio of products of factorials. Although his proof is not presented as an

application of the multidimensional saddle point method, it is easy to translate it into those

terms. S(s, n) is easily seen to equal the constant term in

F (z1, . . . , zs−1) = (−1)n(1 + z1)2n . . . (1 + zs−1)2n(1− (z1 . . . zs−1)−1)2n , (13.2)

and so

S(s, n) = (2πi)−s+1
∫

· · ·
∫

F (z1, . . . , zs−1)z
−1
1 . . . z

−1
s−1dz1 . . . dzs−1 , (13.3)

where the integral is taken with each zj traversing a circle, say. De Bruijn’s proof in effect

shows that for s fixed and n→∞, there are two saddle points at z1 = · · · = zs−1 = exp(2iα),
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with α = ±(2s)−1, and this leads to the estimate

S(s, n) ∼
{

2 cos
( π

2s

)}2ns+s−1
22−s(πn)(1−s)/2s−1/2 as n→∞ , (13.4)

valid for any fixed integer s ≥ 2. Since cos(π(2s)−1) is algebraic but irrational for s ≥ 4, the
asymptotic estimate (13.4) shows that S(s, n) cannot be expressed as a ratio of finite products

of (ajn)! for any fixed finite set of integers aj.

In Chapter 6 of [63], de Bruijn derives the asymptotics of S(s, n) as n→∞ for general real s.
The approach sketched above no longer applies, and de Bruijn uses the integral representation

S(s, n) =

∫

C

(

Γ(2n+ 1)

Γ(n+ z + 1)Γ(n− z + 1)

)s dz

2i sinπz
,

where C is a simple closed curve that contains the points −n,−n + 1, . . . ,−1, 0, 1, . . . , n in
its interior and has no other integer points on the real axis in its closure. A complicated

combination of analytic techniques, including the one-dimensional saddle point method, then

leads to the final asymptotic estimate of S(s, n).
�

The multidimensional saddle point method works best when applied to large singularities.

Just as for the basic one-dimensional method, it does not work when applied to small singu-

larities, such as those of rational functions. Fortunately, there is a trick that often succeeds

in converting a small singularity in n dimensions into a large one in n − 1 dimensions. The
main idea is to expand the generating function with respect to one of the variables through

partial fraction expansions or other methods. It is hard to write down a general theorem, but

the next example illustrates this technique.

Example 13.2. Alignments of k sequences. Let f(k, n) denote the number of k×m matrices
of 0’s and 1’s such that each column sum is ≥ 1 and each row sum is exactly n. (The number
of columns, m, can vary, although obviously k ≤ m ≤ kn.) We consider k fixed, n→∞ [178].
If we let N(r1, . . . , rk) denote the number of 0, 1 matrices with k rows, no columns of all 0’s,

and row sums r1, . . . , rk, then it is easy to see [178] that

F (z1, . . . , zk) =
∑

r1,...,rk≥0

N(r1, . . . , rk)z
r1
1 · · · z

rk
k =



2−
k
∏

j=1

(1 + zj)





−1

. (13.5)

We have f(k, n) = N(n, . . . , n), and so we need the diagonal terms of F = F (z1, . . . , zk). The

function F is rational, so its singularity is small. Moreover, the singularities of F are difficult
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to visualize. However, in any single variable F is simple. We take advantage of this feature.

Let

A(z) =

k−1
∏

j=1

(1 + zj) , (13.6)

where z stands for (z1, . . . , zk−1) ∈ � k−1 , and expand


2−
k
∏

j=1

(1 + zj)





−1

= (2−A(z)(1 + zk))−1 =
∞
∑

m=0

A(z)mzmk
(2−A(z))m+1 . (13.7)

Therefore

N(r1, . . . , rk−1,m) =
1

(2πi)k−1

∫

· · ·
∫

A(z)m

(2−A(z))m+1
dz1

zr1+11

· · · dzk−1
z
rk−1
k−1

. (13.8)

The function whose coefficients we are trying to extract is now A(z)m/(2−A(z))m+1, which is
still rational. However, the interesting case for us is m→∞, which transforms the singularity
into a large one. We are interested in the case r1 = r2 = · · · = rk−1 = r = n. Then the integral
in (13.8) can be shown to have a saddle point at zj = ρ, 1 ≤ j ≤ k − 1, where ρ = 21/k − 1,
and one obtains the estimate [178]

f(k, n) = rnn−(k−1)/2{(ρπ(k−1)/2k1/2)−12(k2−1)/(2k) +O(n−1/2)} as n→∞ . �
(13.9)

The examples above of applications of the multidimensional saddle point method all dealt

with problems in a fixed dimension as various other parameters increase. A much more chal-

lenging problem is to apply this method when the dimension varies. A noteworthy case where

this has been done successfully is the asymptotic enumeration of graphs with a given degree

sequence by McKay and Wormald [279].

Example 13.3. Simple labeled graphs of high degree. Let G(n; d1, . . . , dn) be the number of

labeled simple graphs on n vertices with degree sequence d1, d2, . . . , dn. Then G(n; d1, . . . , dn)

is the coefficient of zd11 z
d2
2 · · · zdnn in

F =

n
∏

j,k=1
j<k

(1 + zjzk) , (13.10)

and so by Cauchy’s theorem

G(n; d1, . . . , dN ) = (2πi)
−n

∫

· · ·
∫

Fz−d1−11 · · · z−dn−1n dz1 · · · dzn , (13.11)
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where each integral is on a circle centered at the origin. Let all the radii be equal to some r > 0.

The integrand takes on its maximum absolute value on the product of these circles at precisely

the two points z1 = z2 = · · · = zn = r and z1 = z2 = · · · = zn = −r. If d1 = d2 = · · · = dn, so
that we consider only regular graphs, McKay and Wormald [279] show that for an appropriate

choice of the radius r, these two points are saddle points of the integrand, and succeed through

careful analysis in proving that if dn is even, and min(d, n − d − 1) > cn(log n)−1 for some
c > 2/3, then

G(n, d, d, . . . , d) = 21/2(2πnλd+1(1− λ)n−d)−n/2 exp
(−1 + 10λ− 10λ2

12λ(1 − λ) +O(n−ζ)

)

(13.12)

as n→∞ for any ζ < min(1/4, 1/2 − 1/(3c)), where λ = d/(n− 1).

McKay and Wormald [279] also succeed in estimating the number of irregular graphs,

provided that all the degrees dj are close to a fixed d that satisfies conditions similar to those

above. The proof is more challenging because different radii are used for different variables

and the result is complicated to state.
�
.

The McKay-Wormald estimate of Example 13.3 is a true tour de force. The problem is

that the number of variables is n and so grows rapidly, whereas the integrand grows only like

exp(cn2) at its peak. More precisely, after transformations that remove obvious symmetries

are applied the integrand near the saddle point drops off like exp(−n∑ θ2j ). This is just barely
to allow the saddle point method to work, and the symmetries in the problem are exploited

to push the estimates through. This approach can be applied to other problems (cf. [278]),

but it is hard to do. On the other hand, when the number of variables grows more slowly,

multidimensional saddle point contributions can be estimated without much trouble.

So far this section has been devoted primarily to multivariate functions with large singu-

larities. However, there is also an extensive literature on small singularities. The main thread

connecting most of these works is that of central and local limit theorems. Bender [32] initiated

this development in the setting of two-variable problems. We present some of his results, since

they are simpler than the later and more general ones that will be mentioned at the end of

this section.

Consider a double sequence of numbers an,k ≥ 0. (Usually the an,k are 6= 0 only for
0 ≤ k ≤ n.) We will assume that

An =
∑

k

an,k <∞ (13.13)
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for all n, and define the normalized double sequence

pn(k) = an,k/An . (13.14)

We will say that an,k satisfies a central limit theorem if there exist functions σn and µn such

that

lim
n→∞

sup
x

∣

∣

∣

∣

∣

∣

∑

k≤σnx+µn

pn(k)− (2π)−1/2
∫ x

−∞
exp(−t2/2)dt

∣

∣

∣

∣

∣

∣

= 0 . (13.15)

Equivalently, pn(k) is asymptotically normal with mean µn and variance σ
2
n.

Theorem 13.1. [32]. Let an,k ≥ 0, and set

f(z, w) =
∑

n,k≥0

an,kz
nwk . (13.16)

Suppose that there are (i) a function g(s) that is continuous and 6= 0 near s = 0, (ii) a function
r(s) with bounded third derivative near s = 0, (iii) an integer m ≥ 0, and (iv) ε, δ > 0 such
that

(

1− z

r(s)

)m

f(z, es)− g(z)

1− z/r(s) (13.17)

is analytic and bounded for

|z| < ε, |z| < |r(0)|+ δ . (13.18)

Let

µ = −r′(0)/r(0), σ2 = µ2 − r′′(0)/r(0) . (13.19)

If σ 6= 0, then (13.15) holds with µn = nµ and σ2n = nσ2.

A central limit theorem is useful, but it only gives information about the cumulative sums

of the an,k. It is much better to have estimates for the individual an,k. We say that pn(k) (and

an,k) satisfy a local limit theorem if

lim
n→∞

sup
x

∣

∣

∣
σnpn(bσnx+ µnc)− (2π)−1/2 exp(−x2/2)

∣

∣

∣
= 0 . (13.20)

In general, we cannot derive (13.20) from (13.15) without some additional conditions on the

an,k, such as unimodality (see [32]). The other approach one can take is to derive (13.20) from

conditions on the generating function f(z, w).
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Theorem 13.2. [32]. Suppose that an.k ≥ 0, and let f(z, w) be defined by (13.16). Let
−∞ < a < b <∞. Define

R(ε) = {z : a ≤ Re(z) ≤ b, |Im(z)| ≤ ε} . (13.21)

Suppose there exist ε > 0, δ > 0, an integer m ≥ 0, and function g(s) and r(s) such that

(i) g(s) is continuous and 6= 0 for s ∈ R(ε),

(ii) r(s) 6= 0 and has a bounded third derivative for s ∈ R(ε),

(iii) for s ∈ R(ε) and |z| ≤ |r(s)|(1 + δ), the function defined by (13.17) is analytic and
bounded,

(iv)
(

r′(α)

r(α)

)2

6= r
′′(α)

r(α)
for a ≤ α ≤ b , (13.22)

(v) f(z, es) is analytic and bounded for

|z| ≤ |r(Re(s))|(1 + δ) and s ≤ |Im(s)| ≤ π .

Then

an,k ∼
nme−αkg(α)

m!r(α)mσα(2π)1/2
as n→∞ (13.23)

uniformly for a ≤ α ≤ b, where

k

n
= −r

′(α)

r(α)
, (13.24)

σ2α =

(

k

n

)2

− r
′′(α)

r(α)
. (13.25)

There have been many further developments of central and local limit theorems for asymp-

totic enumeration since Bender’s original work [32]. Currently the most powerful and general

results are those of Gao and Richmond [155]. They apply to general multivariate problems,

not only two-variable ones. Other papers that deal with central and local limit theorems or

other multivariate problems with small singularities are [38, 42, 65, 96, 142, 143, 183, 227].

14. Mellin and other integral transforms

When the best generating function that one can obtain is an infinite sum, integral trans-

forms can sometimes help. There is a large variety of integral transforms, such as those of
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Fourier and Laplace. The one that is most commonly used in asymptotic enumeration and

analysis of algorithms is the Mellin transform, and it is the only one we will discuss exten-

sively below. The other transforms do occur, though. For example, if f(x) =
∑

anx
n/n! is an

exponential generating function of the sequence an, then the ordinary generating function of

an can be derived from it using the Laplace transform
∫ ∞

0
f(xy) exp(−x)dx =

∑

n

any
n(n!)−1

∫ ∞

0
xn exp(−x)dx

=
∑

n

any
n .

(14.1)

(This assumes that the an are small enough to assure the integrals above converge and the

interchange of summation and integration is valid.) Related integral transforms can be used

to transform generating functions into other forms. For example, to transform an ordinary

generating function F (u) =
∑

anu
n into an exponential one, we can use

1

2πi

∫

|u|=r
F (u) exp(w/u)du . (14.2)

The basic references for asymptotics of integral transforms are [89, 95, 299, 347]. This

section will only highlight some of the main properties of Mellin transforms and illustrate how

they are used. For a more detailed survey, especially to analysis of algorithms, see [137].

Let f(t) be a measurable function defined for real t ≥ 0. The Mellin transform f ∗(z) of
f(t) is a function of the complex variable z defined by

f∗(z) =

∫ ∞

0
f(t)tz−1dt . (14.3)

If f(t) = O(tα) as t→ 0+ and f(t) = O(tβ) as t→∞, then the integral in (14.3) converges and
defines f ∗(z) to be an analytic function inside the “fundamental domain” −α < Re(z) < −β.
As an example, for f(t) = exp(−t), we have f ∗(z) = Γ(z) and α = 0, β = −∞. There is an
inversion formula for Mellin transforms which states that

f(t) =
1

2πi

∫ c+i∞

c−i∞
f∗(z)t−zdz , (14.4)

and the integral is over the vertical line with Re(z) = c. The inversion formula (14.4) is valid

for −α < c < −β, but much of its strength in applications comes from the ability to shift the
contour of integration into wider domains to which f ∗(z) can be analytically continued.

The advantage of the Mellin transform is due largely to a simple property, namely that if

g(t) = af(bx) for b real, b > 0, then

g∗(z) = ab−zf∗(z) . (14.5)
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This readily extends to show that if

F (t) =
∑

k

λkf(ηkt) (14.6)

(where the λk and ηk > 0 are such that the sum converges and F (t) is well behaved), then

F ∗(z) =

(

∑

k

λkη
−z
k

)

f∗(z) . (14.7)

In particular, if

F (t) =

∞
∑

k=1

f(kt) , (14.8)

then

F ∗(z) =

(

∞
∑

k=1

k−z

)

f∗(z) = ζ(z)f ∗(z) , (14.9)

where ζ(z) is the Riemann zeta function.

Example 14.1. Runs of heads in coin tosses. What is Rn, the expected length of the longest

run of heads in n tosses of a fair coin? Let p(n, k) be the probability that there is no run of k

heads in a coin tosses. Then

Rn =
n
∑

k=1

k(p(n, k + 1)− p(n, k)) . (14.10)

We now apply the estimates of Example 9.2. To determine p(n, k), we take A = 00 · · · 0, and
then CA(z) = z

k−1+ zk−2+ · · ·+ z+1, so CA(1/2) = 1− 2−k. Hence (9.19) shows easily that
in the important ranges where k is of order log n, we have

p(n, k) ∼= exp(−n2−k) , (14.11)

and there Rn is approximated well by

r(n) =

∞
∑

k=0

k(exp(−n2−k−1)− exp(−n2−k)) . (14.12)

The function r(t) is of the form (14.6) with

λk = k, ηk = 2
−k, f(t) = exp(−t/2)− exp(−t) , (14.13)

is easily seen to be well behaved, and so for −1 < Re(z) < 0,

r∗(z) =

(

∞
∑

k=0

k2kz

)

f∗(z) = 2z(1− 2z)−2f∗(z) . (14.14)
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Next, to determine f ∗(z), we note that for Re(z) > 0 we have

f∗(z) =

∫ ∞

0
f(t)tz−1dt =

∫ ∞

0
e−t/2tz−1dt−

∫ ∞

0
e−ttz−1dt

= (2z − 1)Γ(z) . (14.15)

By analytic continuation this relation holds for −1 < Re(z), and we find that for −1 < Re(z) <
0,

r∗(z) = 2z(2z − 1)−1Γ(z) . (14.16)

We now apply the inversion formula to obtain

r(t) =
1

2πi

∫ −1/2+i∞

−1/2−i∞
2z(2z − 1)−1Γ(z)t−zdz . (14.17)

The integrand is a meromorphic function in the whole complex plane that drops off rapidly on

any vertical line. We move the contour of integration to the line Re(z) = 1. The new integral

is O(t−1), and the residues at the poles (all on Re(z) = 0) will give the main contribution to

r(t). There are first order poles at z = 2πim log 2 for m ∈ � \ {0} coming from 2z = 1, and
a single second order pole at z = 0, since Γ(z) has a first order pole there as well. A short

computation of the residues gives

r(t) = log2 t−
∞
∑

h=−∞

(log 2)−1Γ(−2πih(log 2)−1) exp(2πih log2 t) +O(t−1) . (14.18)

�

There are other ways to obtain the same expansion (14.18) for r(t) (cf. [181]). The periodic

oscillating component in r(t) is common in problems involving recurrences over powers of 2.

This happens, for example, in studies of register allocation and digital trees [136, 138, 141].

The periodic function is almost always the same as the one in Eq. (14.18), even when the

combinatorics of the problem varies. Technically this is easy to explain, because of the closely

related recurrences leading to similar Mellin transforms for the generating functions.

Mellin transforms are useful in dealing with problems that combine combinatorial and

arithmetic aspects. For example, if S(n) denotes the total number of 1’s in the binary repre-

sentations of 1, 2, . . . , n− 1, then it was shown by Delange that

S(n) =
1

2
n log2 n+ nu(log2 n) + o(n) as n→∞ , (14.19)

where u(x) is a continuous, nowhere differentiable function that satisfies u(x) = u(x+1). The

Fourier coefficients of u(x) are known explicitly. Perhaps the best way to obtain these results

is by using Mellin transforms. See [129, 353] for further information and references.
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Mellin transforms are often combined with other techniques. For example, sums of the

form sn =
∑

ak
(n
k

)

with oscillating ak lead to generating functions

s(z) =
∑

k

akw(z)
k . (14.20)

The asymptotic behavior of s(z) near its dominant singularity can sometimes be determined by

applying Mellin transforms. For a detailed explanation of the approach, see [137]. Examples

of the application of this technique can be found in [13, 280].

15. Functional equations, recurrences, and combinations of methods

Most asymptotic enumeration results are obtained from combinations of techniques pre-

sented in the previous sections. However, it is only rarely that the basic asymptotic techniques

can be applied directly. This section describes a variety of methods and results that are not

easy to categorize. They use combinations of methods that have been presented before, and

sometimes develop them further. In most of the examples that will be presented, some relations

for generating functions are available, but no simple closed-form formulas, and the problem is

to deduce where the singularities lie and how the generating functions behave in their neigh-

borhoods. Once that task is done, previous methods can be applied to obtain asymptotics of

the coefficients.

15.1. Implicit functions, graphical enumeration, and related topics

Example 15.1. Rooted unlabeled trees. We sketch a proof that Tn, the number of rooted

unlabeled trees with n vertices, satisfies the asymptotic relation (1.9). The functional equation

(1.8) holds with T (z) regarded as a formal power series. The first step is to show that T (z)

is analytic in a neighborhood of 0. This can be done by working exclusively with Eq. (1.8).

(There is an argument of this type in Section 9.5 of [188].) Another way to prove analyticity

of T (z) is to use combinatorics to obtain crude upper bounds for Tn. We use a combination

of these approaches. If a tree with n ≥ 2 vertices has at least two subtrees at the root, we can
decompose it into two trees, the first consisting of one subtree at the root, the other of the

root and the remaining subtrees. This shows that

Tn ≤ Tn−1 +
n−1
∑

k=1

TkTn−k , n ≥ 2 . (15.1)
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Therefore, if we define a1 = 1, and

an = an−1 +

n−1
∑

k=1

akan−k , n ≥ 2 , (15.2)

then we have Tn ≤ an. Now if
A(z) =

∞
∑

n=1

anz
n ,

then the defining relation (15.2) yields the functional equation

A(z)− z = zA(z) +A(z)2 , (15.3)

so that

A(z) = (1− z − (1− 6z + z2)1/2)/2 . (15.4)

Since A(z) is analytic in |z| < 3− 2
√
2 = 0.17157 . . . , we have

0 ≤ Tn ≤ an = O(6n) . (15.5)

It will also be convenient to have an exponential lower bound for Tn. Let bn be the number

of rooted unlabeled trees in which every internal vertex has ≤ 2 subtrees. Then b1 = 1, b2 = 1,
and

bn ≥
b(n−1)/2c
∑

k=1

bkbn−k−1 for n ≥ 3 . (15.6)

We use this to show that bn ≥ (6/5)n for n ≥ 7. Direct computation establishes this lower
bound for 7 ≤ n ≤ 14, and for n ≥ 15 we use induction and bn ≥ bkbn−k−1 with k = b(n−1)/2c.
Since Tn ≥ bn ≥ (6/5)n, T (z) converges only in |z| < r for some r with r < 1. Since

T (0) = 0, |T (z)| ≤ Cδ|z| in |z| ≤ r − δ for every δ > 0, and therefore

u(z) =
∞
∑

k=2

T (zk)/k (15.7)

is analytic in |z| < r1/2, and in particular at z = r. Therefore, although we know little about
r and u(z), we see that T (z) satisfies G(z, T (z)) = T (z), where

G(z, w) = z exp(w + u(z)) (15.8)

is analytic in z and w for all w and for |z| < r1/2.
We will apply Theorem 10.6. First, though, we need to establish additional properties of

T (z). We have

T (z) exp(−T (z)) = z exp(u(z))→ r exp(u(r)) as z → r− , (15.9)
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and 0 < r exp(u(r)) <∞. Since T (z) is positive and increasing for 0 < z < r, T (r), the limit
of T (z) as z → r− must exist and be finite.
We next show that T (r) = 1. We have

∂

∂w
G(z, w) = G(z, w) . (15.10)

We know that G(z, T (z)) = T (z) for |z| < r, and in particular for some z arbitrarily close to
r. If T (r) 6= 1, then by (15.10)

∂

∂w
(G(z, w) − w)

∣

∣

∣

∣

w=T (z)

6= 0 (15.11)

in a neighborhood of z = r, and therefore T (z) could be continued analytically to a neighbor-

hood of z = r. This is impossible, since r is the radius of convergence of T (z), and Tn ≥ 0
implies by Theorem 10.3 that T (z) has a singularity at z = r. Therefore we must have T (r) = 1,

and Gw(r, T (r)) = 1.

We have now shown that conditions (i) and (ii) of Theorem 10.6 hold with the r of that

theorem the same as the r we have defined and s = T (r) = 1, δ = r1/2 − r. Condition (iii)
is easy to verify. Finally, the conditions on the coefficients of T (z) and G(z, w) are clearly

satisfied.

Since Theorem 10.6 applies, we do obtain an asymptotic expansion for Tn of the form (1.9),

with C given by the formula (10.64). It still remains to determine r and C. No closed-form

expressions are known for these constants. They are conjectured to be transcendental and

algebraically independent of standard constants such as π and e, but no proof is available.

Numerically, however, they are simple to compute. Note that

Gz(r, 1) = exp(1 + u(r))(1 + ru′(r))

= r−1 + u′(r) , (15.12)

Gww(r, 1) = 1 , (15.13)

so we only need to compute r and u′(r). These quantities can be computed along with u(r) in

the same procedure. The basic numerical procedure is to determine r as the positive solution

to T (r) = 1. To determine T (x) for any positive x, we take any approximation to the T (xk),

k ≥ 1 (starting initially with xk as an approximation to T (xk), say), and combine it with (1.8)
(applied with z = xm, m ≥ 1) to obtain improved approximations. This procedure can be
made rigorous. Upper bounds for r, u(r), and u′(r) are especially easy. Since T1 = 1, T (x) ≥ x
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for 0 < x < 1, and therefore, T (xk) ≥ xk for k ≥ 1. Suppose that we start with a fixed value of
x and derive some lower bounds of the form T (xk) ≥ u(1)k ≥ 0 for k ≥ 1. Then the functional
equation (1.8) implies

T (xm) ≥ u(2)m = x exp
(

∞
∑

k=1

ukm/k

)

m ≥ 1 . (15.14)

This process can be iterated several more times, and to keep the computation manageable, we

can always set u
(j)
k = 0 for k ≥ k0. If we ever find a lower bound T (x) > 1 by this process, then

we know that r < x, since T (r) = 1. Lower bounds for r are slightly more complicated.
�

We mention here that if Un denotes the number of unlabeled trees, then the ordinary

generating function U(z) =
∑

Unz
n satisfies

U(z) = T (z)− T (z)2/2 + T (z2)/2 . (15.15)

Using the results from Example 15.1 about the analytic behavior of T (z), it can be shown that

Un ∼ C ′r−nn−5/2 , (15.16)

where r = 0.3383219 . . . is the same as before, while C ′ = 0.5349485 . . . .

Example 15.2. Leftist trees. Let an denote the number of leftist trees of size n (i.e., rooted

planar trees with n leaves, such that in any subtree S, the leaf nearest to the root of S is in the

right subtree of S [237]). Then a1 = a2 = a3 = 1, a4 = 2, a5 = 4. No explicit formula for an is

known. Even the recurrences for the an are complicated, and involve auxiliary sequences. If

f(z) =
∞
∑

n=1

anz
n (15.17)

denotes the ordinary generating function of an, then the combinatorially derived recurrences

for the an show that [224]

f(z) = z +
1

2
f(z)2 +

1

2

∞
∑

m=1

gm(z)
2 , (15.18)

where the auxiliary generating functions gm(z) (which enumerate leftist trees with the leftmost

leaf at distance m− 1 from the root) satisfy

g1(z) = z, g2(z) = zf(z), gm+1(z) = gm(z)



f(z)−
m−1
∑

j=1

gj(z)



 , m ≥ 2 , (15.19)
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and

f(z) =
∞
∑

m=1

gm(z) . (15.20)

These generating function relations might not seem promising. If r is the smallest singularity

of f(z), then
∑

gm(z)
2 is not analytic at r, so we cannot apply Theorem 10.6 in the way it was

used in Example 15.1. However, Kemp [224] has sketched a proof that the analytic behavior

of f(z) is of the same type as that involved in functions covered by Theorem 10.6, so that it

has a dominant square root singularity, and therefore

an = αc
nn−3/2 +O(cnn−5/2) , (15.21)

where

α = 0.250363429 . . . , c = 2.749487902 . . . . (15.22)

The constants α and c are not known explicitly in terms of other standard numbers such as π or

e, but they can be computed efficiently. The αcnn−3/2 term in (15.21) gives an approximation

to an that is accurate to within 4% for n = 10, and within 0.4% for n = 100. Thus asymptotic

methods yield an approximation to an which is satisfactory for many applications. Further

results about leftist trees can be found in [225].
�

15.2. Nonlinear iteration and tree parameters

Example 15.3. Heights of binary trees. A binary tree [DEK] is a rooted tree with unlabeled

nodes, in which each node has 0 or 2 successors, and left and right successors are distinguished.

The size of a binary tree is the number of internal nodes, i.e., the number of nodes with two

successors. We let Bn denote the number of binary trees of size n, so that B0 = 1 (by

convention), B1 = 1, B2 = 2, B3 = 5, . . . . Let

B(z) =
∞
∑

n=0

Bnz
n . (15.23)

Since each nonempty binary tree consists of the root and two binary trees (the left and right

subtrees), we obtain the functional equation

B(z) = 1 + zB(z)2 . (15.24)

This implies that

B(z) =
1− (1− 4z)1/2

2z
, (15.25)

143



so that

Bn =
1

n+ 1

(

2n

n

)

, (15.26)

and the Bn are the Catalan numbers. The formula (4.4) (easily derivable from Stirling’s

formula (4.1)) shows that

Bn ∼ π−1/2n−3/24n as n→∞ . (15.27)

The height of a binary tree is the number of nodes along the longest path from the root to

a leaf. The distribution of heights in binary trees of a given size does not have exact formulas

like that of (15.26) for the number of binary trees of a given size. There are several problems

on heights that have been answered only asymptotically, and with varying degrees of success.

The most versatile approach is through recurrences on generating functions. Let Bh,n be the

number of binary trees of size n and height ≤ h, and let

bh(z) =

∞
∑

n=0

Bh,nz
n . (15.28)

Then

b0(z) = 0, b1(z) = 1 , (15.29)

and an extension of the argument that led to the relation (15.24) yields

bh+1(z) = 1 + zbh(z)
2 , h ≥ 0 . (15.30)

The bh(z) are polynomials in z of degree 2
h−1 − 1 for h ≥ 1. Unfortunately there is no simple

formula for them like Eq. (15.25) for B(z), and one has to work with the recurrence (15.30)

to obtain many of the results about heights of binary trees. Different problems involve study

of the recurrence in different ranges of values of z, and the behavior of the recurrence varies

drastically.

For any fixed z with |z| ≤ 1/4, bh(z)→ B(z) as h→∞. For |z| > 1/4 the behavior of bh(z)
is more complicated, and is a subject of of nonlinear dynamics [91]. (It is closely related to the

study of the Mandelbrot set.) For any real z with z > 1/4, bh(z) → ∞ as h → ∞. To study
the distribution of the Bh,n as n varies for h fixed, but large, it is necessary to investigate this

range of rapid growth. It can be shown [133] that for any λ1 and λ2 with 0 < λ1 < λ2 < 1/2,

Bh,n =
exp(2h−1(β(r)− rβ ′(r) log r))
2(h−1)/2(2π(r2β′′(r) + rβ′(r)))1/2

(1 +O(2−h/2)) (15.31)
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uniformly as h, n→∞ with
λ1 < n/2

h < λ2 , (15.32)

where the function β(x) is defined for 1/4 < x <∞ by

β(x) = log x+
∞
∑

j=1

2−j log

(

1 +
1

bj(x)− 1

)

, (15.33)

and r is the unique solution in (1/4,∞) to

rβ′(r) = n2−h+1 . (15.34)

The formula (15.31) might appear circular, in that it describes the behavior of the coeffi-

cients βh,n of the polynomial bh(z) in terms of the function β(z), which is defined by bh(z) and

all the other bj(z). However, the series (15.33) for β(z) converges rapidly, so that only the first

few of the bh(z) matter in obtaining approximate answers, and computation using (15.33) is

efficient. The function β(z) is analytic in a region containing the real half-line x > 1/4, so the

behavior of the Bh,n is smooth. It is also known [133] that the behavior of Bh,n as a function

of n is Gaussian near the peak, which occurs at n ∼ 2h−1 · 0.628968 . . . . The distribution of
Bh,n is not Gaussian throughout the range (15.32), though.

The proof of the estimate (15.31) is derived from the estimate

bh(z) = exp(2
h−1β(z)− log z)(1 +O(exp(−ε2h))) , (15.35)

valid in a region along the half-axis x > 1/4. The estimates for the coefficients Bh,n are

obtained by applying the saddle point method. Because of the doubly-exponential rate of

growth of bh(z) for z close to the real axis, it is easy to show that on the circle of integration,

the region away from the real axis contributes a negligible amount to Bh,n. The relation (15.35)

is sufficient, together with the smoothness properties of β(z), to estimate the contribution of

the integral near the real axis. To prove (15.35), one proceeds as in Example 9.7. However,

greater care is required because of the complex variables that occur and the need for estimates

that are uniform in the variables. The basic recurrence (15.30) shows that

log bh+1(z) = 2 log bh(z) + log z + log

(

1 +
1

zbh(z)2

)

= 2 log bh(z) + log z + log

(

1 +
1

bh+1(z)− 1

)

.

(15.36)

145



Iterating this relation, we find that for h ≥ 1,

log bh+1(z) = 2h+1 log b1(z) + (2
h − 1) log z +

h−1
∑

k=0

2k log

(

1 +
1

bh+1−k(z) − 1

)

= 2h







log z +
h+1
∑

j=1

2−j log

(

1 +
1

bj(z)− 1

)







− log z .

(15.37)

The basic equation (15.35) then follows. The technical difficulty is in establishing rigorous

bounds for the error terms in the approximations. Details are presented in [133].

Most of the binary trees of a given height h are large, with about 0.3 · 2h internal nodes.
This might give the misleading impression that most binary trees are close to the full binary

tree of a similar size. However, if we consider all binary trees of a given size n, the average

height is on the order of n1/2, so that they are far from the full balanced binary trees. The

methods that are used to study the average height are different from those used for trees of a

fixed height. The basic approach of [133] is to let

Hn =
∑

T
|T |=n

ht(T ) ,

where the sum is over the binary trees T of size n, and ht(T ) is the height of T . Then the

average height is just Hn/Bn.

The generating function for the Hn is

H(z) =
∞
∑

n=0

Hnz
n =

∑

h≥0

(B(z) − bh(z)) , (15.38)

and the analysis of [133] proceeds by investigating the behavior of H(z) in a wedge-shaped

region of the type encountered in Section 11.1. If we let

ε(z) = (1− 4z)1/2 , (15.39)

eh(z) = (B(z) − bh(z))/(2B(z)) , (15.40)

then the recurrence (15.30) yields

eh+1(z) = (1− ε(z))eh(z)(1 − eh(z)) , e0(z) = 1/2 . (15.41)

Extensive analysis of this relation yields an approximation to eh(z) of the form

eh(z) ≈
ε(z)(1 − ε(z))h
1− (1− ε(z))h , (15.42)
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valid for |ε(z)| sufficiently small, |Arg ε(z)| < π/4 + δ for a fixed δ > 0. (The precise error
terms in this approximation are complicated, and are given in [133].) This then leads to an

expansion for H(z) in a sector |z − 1/4| < α, π/2− β < |Arg(z − 1/4)| < π/2 + β of the form

H(z) = −2 log(1− 4z) +K +O(|1 − 4z|v) , (15.43)

where v is any constant, v < 1/4, and K is a fixed constant. Transfer theorems of Section 11.1

now yield the asymptotic estimate

Hn ∼ 2n−14n as n→∞ . (15.44)

When we combine (15.44) with (15.27), we obtain the desired result that the average height

of a binary tree of size n is ∼ 2(πn)1/2 as n→∞.
Distribution results about heights of binary trees can be obtained by investigating the

generating functions
∑

h≥0

hr(B(z)− bh(z)) . (15.45)

This procedure, carried out in [133] by using modifications of the approach sketched above for

the average height, obtains asymptotics of the moments of heights. The method mentioned in

Section 6.5 then leads to a determination of the distribution. However, the resulting estimates

do not say much about heights far away from the mean. A more careful analysis of the behavior

of eh(z) can be used [126] to show that if x = h/(2n
1/2), then

Bh,n −Bh−1,n
Bn

∼ 2xn−1/2
∞
∑

m=1

m2(2m2x2 − 3)e−m2x2 (15.46)

as n, h→∞, uniformly for x = o((log n)1/2), x−1 = o((log n)1/2).
For extremely small and large heights, different methods are used. It follows from [126]

that
Bh,n −Bh−1,n

Bn
≤ exp(−c(h2/n+ n/h2)) (15.47)

for a constant c > 0, which shows that extreme heights are infrequent. (The estimates in [126]

are more precise than (15.47).) Bounds of the above form for small heights are obtained in

[126] by studying the behavior of the bh(z) almost on the boundary between convergence and

divergence, using the methods of [399]. Let xh be the unique positive root of bh(z) = 2. Note

that B(1/4) = 2, and each coefficient of the bh(z) is nondecreasing as h → ∞. Therefore
x2 > x3 > · · · > 1/4. More effort shows [126] that xh is approximately 1/4+αh−2 for a certain
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α > 0. This leads to an upper bound for Bh,n by Lemma 8.1. Bounds for trees of large heights

are even easier to obtain, since they only involve upper bounds for the bh(z) − bh−1(z) inside
the disk of convergence |z| < 1/4. �

In addition to the methods of [132, 133, 126] that were mentioned above, there are also other

techniques for studying heights of trees, such as those of [60, 331]. However, there are problems

about obtaining fully rigorous proofs that way. (See the remarks in [126] on this topic.) Most

of these methods can be extended to study related problems, such as those of diameters of

trees [357].

The results of Example 15.3 can be extended to other families of trees (cf. [132, 133, 126]).

What matters in obtaining results such as those of the above example are the form of the

recurrences, and especially the positivity of the coefficients.

Example 15.4. Enumeration of 2,3-trees [300]. Height-balanced trees satisfy different func-

tional equations than unrestricted trees, which results in different analytic behavior of the

generating functions, and different asymptotics. Consider 2, 3-trees; i.e., rooted, oriented trees

such that each nonleaf node has either two or three successors, and in which all root-to-leaf

paths have the same length. If an is the number of 2, 3-trees with exactly n leaves, then

a1 = a2 = a3 = a4 = 1, a5 = 2, . . ., and the generating function

f(z) =

∞
∑

n=1

anz
n (15.48)

satisfies the functional equation

f(z) = z + f(z2 + z3) . (15.49)

Iteration of the recurrence (15.49) leads to

f(z) =

∞
∑

k=0

Qk(z) , (15.50)

where Q0(z) = z, Qk+1(z) = Qk(z
2 + z3), provided the series (15.50) converges. The Taylor

series (15.48) converges only in |z| < φ−1, where φ = (1 + 51/2)/2 is the “golden ratio.” Study
of the polynomials Qk(z) shows that the expansion (15.50) converges in a region

D = {z : |z| < φ−1 + δ, |Arg(z − φ−1)| > π/2− ε} (15.51)
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for certain δ, ε > 0, and that inside D,

f(z) = −c log(φ−1 − z) +w(log(φ−1 − z)) +O(|φ−1 − z|) , (15.52)

where c = [φ log(4− φ)]−1, and w(t) is a nonconstant function, analytic in a strip |Im (t)| < η
for some η > 0, such that w(t + log(4 − φ)) = w(t). The expression (15.52) only has to be
proved in a small vicinity of φ−1 (intersected with D, of course). Since

Q(φ−1 + ν) = φ−1 + (4− φ)ν +O(|ν|2) (15.53)

(so that φ−1 is a repelling fixed point of Q), behavior like that of (15.52) is to be expected,

and with additional work can be rigorously shown to hold. Once the expansion (15.52) is

established, singularity analysis techniques can then be applied to deduce that

an ∼
φn

n
u(log n) as n→∞ , (15.54)

where u(t) is a positive nonconstant continuous function that satisfies u(t) = u(t+log(4−φ)),
and has mean value (φ log(4− φ))−1. For details, see [300].
The same methods can be applied to related families of trees, such as those of B-trees.

�

The results of Example 15.3 and the generalizations mentioned above all apply only to

the standard counting models, in which all trees with a fixed value of some simple property,

such as size or height, are equally likely. Often, especially in computer science applications,

it is necessary to study trees produced by some algorithm, and consider all outputs of this

algorithm as equally likely. For example, in sorting it is natural to consider all permutations

of n elements as equally probable. If random permutations are used to construct binary search

trees, then the distribution of heights will be different from that in the standard model, and

the two trees of maximal height will have probability of 2/n! of occurring. The average height

turns out to be ∼ c log n as n→∞, for c = 4.311 . . . a certain constant given as a solution to
a transcendental equation. This was shown by Devroye [92] (see also [93]) by an application

of the theory of branching processes. For a detailed exposition of this method and other

applications to similar problems, see [270]. The basic generating function approach that we

have used in most of this chapter leads to functional iterations which have not been solved so

far.
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15.3. Differential and integral equations

Section 9.2 showed that differential equations arise naturally in analyzing linear recurrences

of finite order with rational coefficients. There are other settings when they arise even more

naturally. As is true of nonlinear iterations in the previous section and the functional equations

of the next one, differential and integral equations are typically used to extract information

about singularities of generating functions. We have already seen in Example 9.3 and other

cases that differential equations can yield an explicit formula for the generating function, from

which it is easy to deduce what the singularities are and how they affect the asymptotics of

the coefficients. Most differential equations do not have a closed-form solution. However, it

is often still possible to derive the necessary information about analytic behavior even when

there is no explicit formula for the solution. We demonstrate this with a brief sketch of a

recent analysis of this type [131]. Other examples can be found in [270].

Example 15.5. Search costs in quadtrees [131]. Quadtrees are a well-known data structure

for multidimensional data storage [168]. Consider a d-dimensional data space, and let n points

be drawn independently from the uniform distribution in the d-dimensional unit cube. We

take d fixed and n→ ∞. Suppose that the first n− 1 points have already been inserted into
the quadtree, and let Dn be the search cost (defined as the number of internal nodes traversed)

in inserting the n-th item. The result of Flajolet and Lafforgue [131] is that Dn converges in

distribution to a Gaussian law when n → ∞. If µn and σn denote the mean and standard
deviation of Dn, respectively, then

µn ∼ 2d−1 log n, σn ∼ d−1(2 log n)1/2 as n→∞ , (15.55)

and for all real α < β, as n→∞,

Pr(ασN < Dn − µn < βσn) ∼ (2π)−1/2
∫ β

α
exp(−x2/2)dx . (15.56)

The results for µn and σn had been known before, and required much simpler techniques

for their solution, see [270]. It was only necessary to study asymptotics of ordinary differential

equations in a single variable. To obtain distribution results for search costs, it was necessary

to study bivariate generating functions. The basic relation is

∑

k

Pr{Dn = k}uk = (2du− 1)−1(φn(u)− φn−1(u)) , (15.57)
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where the polynomials φn(u) have the bivariate generating function

Φ(u, z) =
∞
∑

n=0

φn(u)z
n . (15.58)

which satisfies the integral equation

Φ(u, z) = 1 + 2du

∫ z

0

dx1
x1(1− x1)

∫ x1

0

dx2
x2(1− x2)

∫ x2

0

dx3
x3(1− x3)

· · ·

∫ xd−2

0

dxd−1
xd−1(1− xd−1)

∫ xd−1

0
Φ(u, xd)

dxd
1− xd

.

(15.59)

This integral equation can easily be reduced to an equivalent differential equation, which is

what is used in the analysis. For d = 1 there is an explicit solution

Φ(u, z) = (1− z)−2u , (15.60)

which shows thatDn can be expressed in terms of Stirling numbers. This is not surprising, since

for d = 1 the quadtree reduces to the binary search tree, for which these results were known

before. For d = 2, Φ(u, z) can be expressed in terms of standard hypergeometric functions.

However, for d ≥ 3 there do not seem to be any explicit representations of Φ(u, z). Flajolet
and Lafforgue use a singularity perturbation method to study the behavior of Φ(u, z). They

start out with the differential system derivable in standard way from the differential equation

associated to (15.59) (i.e., a system of d linear differential equations in z with coefficients that

are rational in z). Since only values of u close to 1 are important for the distribution results,

they regard u as a perturbation parameter of this system. For every fixed u, they determine

the dominant singularity of the linear differential system in the variable z, using the indicial

equations that are standard in this setting. It turns out that the dominant singularity is a

regular one at z = 1, and

Φ(u, z) ≈ c(u)(1 − z)−2u1/d , (15.61)

at least for z and u close to 1. This behavior of Φ(u, z) is then used (in its more precise

form, with explicit error terms) to deduce, through the transfer theorem methods explained in

Section 11, the behavior of φn(u):

φn(u) ≈ c(u)Γ(2u1/d)−1n2u
1/d−1 . (15.62)

This form, again in a more precise formulation, is then used to deduce that the behavior of

Dn is normal near its peak, and that the tails of the distribution are small.
�
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15.4. Functional equations

One area that needs and undoubtedly will receive much more attention is that of com-

plicated nonlinear relations for generating functions. Even in a single variable our knowledge

is limited. Some of the work of Mahler [267, 268, 269], devoted to functions f(z) satisfying

equations of the form p(f(z), f(zg)) = 0, where p(u, v) is a polynomial, shows that it is possible

to extract information about the analytic behavior of f(z) near its singularities. This can then

be used to study the coefficients.

Sometimes seemingly complicated functional equations do have easy solutions.

Example 15.6. A pebbling game. In a certain pebbling game [76], minimal configurations of

size n are counted by Tn(0), where Tn(x) is a polynomial that satisfies Tn(x) = 0 for 0 ≤ n ≤ 2,
T3(x) = 4x+ 2x

2, and for n ≥ 3,

Tn+1(x) = x
−1(1 + x)2Tn(x)− x−1Tn(0) + xT ′n(0) + nxn . (15.63)

The coefficients of Tn(x) are ≥ 0, and

Tn+1(1) ≤ 4Tn(1) + Tn(1) + 1 ≤ 6Tn(1) , (15.64)

so clearly each coefficient of Tn(x) is ≤ 6n, say. Let

f(x, y) =
∞
∑

n=0

Tn(x)y
n . (15.65)

The bound on Tn(1) shows that f(x, y) is analytic in x and y for |x| < 1, |y| < 1/6, say, with
x and y complex. Then the recurrence (15.63) leads to the functional equation

(x− y(1 + x)2)f(x, y) = 2x2(2 + x)y3 + x2y2(1− 2x2y2)(1 − xy)−2

− yf(0, y) + x2yfx(0, y) ,
(15.66)

where fx(x, y) is the partial derivative of f(x, y) with respect to x. We now differentiate the

equation (15.66) with respect to x and set x = 0. We find that

(1− 2y)f(0, y) = yfx(0, y) , (15.67)

and therefore

(x− y(1 + x)2)f(x, y) = 2x2(2 + x)y3 + x2y2(1− 2x2y2)(1 − xy)−2

− [y + (2y − 1)x2]f(0, y) .
(15.68)
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When

x = y(1 + x)2 , (15.69)

the left side of Eq. (15.68) vanishes, and Eq. (15.68) yields the value of f(0, y). Now Eq. (15.69)

holds for

x = (2y)−1(1− 2y ± (1− 4y)1/2) .

To ensure that (15.69) holds for x and y both in a neighborhood of 0, we set

g(y) = (2y)−1(1− 2y − (1− 4y)1/2) . (15.70)

Then g(y) = y(1 + g(y))2, g(y) is analytic for |y| small, and so substituting x = g(y) in
Eq. (15.68) yields

[y + (2y − 1)g(y)2]f(0, y) = 2g(y)2(2 + g(y))y3

+ y2g(y)2(1− 2y2g(y)2)(1 − yg(y))−2 .
(15.71)

Thus f(0, y) is an algebraic function of y. Eq. (15.71) was proved only for |y| small, but it can
now be used to continue f(0, y) analytically to the entire complex plane with the exception of

a slit from 1/4 to infinity along the positive real axis. There is a first order pole at y = 1/r,

with r = 4.1478990357 . . . the positive root of

r3 − 7r2 + 14r − 9 = 0 , (15.72)

and no other singularities in |y| < 1/4. Hence we obtain

Tn(0) = [y
n]f(0, y) = crn +O((4 + ε)n) (15.73)

as n → ∞, for every ε > 0, where c is an algebraic number that can be given explicitly in
terms of r.

The value of f(0, y) is determined by Eq. (15.71), and together with Eq. (15.68) gives

f(x, y) explicitly as an algebraic function of x and y. The resulting expression can then be

used to determine other coefficients of the polynomials Tn(x).
�

Example 15.6 was easy to present because of the special structure of the functional equation.

The main trick was to work on the variety defined by Eq. (15.69), on which the main term

vanishes, so that one can analyze the remaining terms. The same basic approach also works
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in more complicated situations. The analysis of certain double queue systems leads to two-

variable generating functions for the equilibrium probabilities that satisfy equations such as

the following one, obtained by specializing the problem treated in [145]:

Q(z, w)f(z, w) = 2z(w − 1)f(z, 0) + 3w(z − 1)f(0, w) , (15.74)

valid for complex z and w with |z|, |w| ≤ 1, where

Q(z, w) = 6zw − 3w − 2z − z2w2 . (15.75)

The generating function f(z, w) is analytic in z and w. What makes this problem tractable

is that on the algebraic curve in two-dimensional complex space defined by Q(z, w) = 0,

the quantity on the right-hand side of Eq. (15.74) has to vanish, and this imposes stringent

conditions on f(z, 0) and f(0, w), which leads to their determination. Once f(z, 0) and f(0, w)

are found, f(z, w) is defined by Eq. (15.74), and one can determine the asymptotics of its

coefficients. Treatment of functional equations of the type (15.74) was started by Malyshev

[274]. For recent work and references to other papers in this area, see [144, 145]. This approach

has so far been successful only for two-variable problems with Q(z, w) of low degree. Moreover,

the mathematics of the solution is far deeper than that used in Example 15.6.

16. Other methods

This section mentions a variety of methods that are not covered elsewhere in this chapter

but are useful in asymptotic enumeration. Most are discussed briefly, since they belong to

large and well developed fields that are beyond the scope of this survey.

16.1. Permanents

Van der Waerden’s conjecture, proved by Falikman [113] and Egorychev [98], can be used

to obtain lower bounds for certain enumeration problems. It states that if A is an n×n matrix
that is doubly stochastic (entries ≥ 0, all row and column sums equal to 1) then the permanent
of A satisfies per(A) ≥ n−nn!. (For most asymptotic problems it is sufficient to rely on an
earlier result of T. Bang [26] and S. Friedland [148] which gives a lower bound of per(A) ≥ e−n

that is worse only by a factor of n1/2.) There is also an upper bound for permanents. Minc’s

conjecture, proved first by Bragman and in a simpler way by Schrijver [340] states that an
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n× n matrix A with 0, 1 entries and row sums r1, . . . , rn has

per(A) ≤
n
∏

j=1

(rj !)
1/rj .

We now show how these results can be applied.

Example 16.1. Latin rectangles. Suppose we are given a k×n Latin rectangle, k < n, so that
the symbols are 1, 2, . . . , n, and no symbol appears twice in any row or column. In how many

ways can we extend this rectangle to a (k+1)×n Latin rectangle? To get a lower bound, form
an n× n matrix B = (bij), with bij = 1 if i does not appear in column j of the rectangle, and
bij = 0 otherwise. Then the row and column sums of B are all equal to n− k, so (n− k)−1B
is doubly stochastic. Therefore per(B), which equals the desired number of ways of extending

the rectangle, is ≥ (n − k)nn−nn! by van der Waerden’s conjecture. By Minc’s conjecture,
we also have per(B) ≤ ((n − k)!)n/(n−k). If we let L(k, n) denote the number of k × n Latin
rectangles, then L(1, n) = n!, and the bounds derived above for the number of ways to extend

any given rectangle give

L(k, n) ≥
k−1
∏

j=0

{(n− j)nn−nn!} = n−kn(n!)2n((n− k)!)−n , (16.1)

L(k, n) ≤
k−1
∏

j=0

{(n− j)!}n/(n−j) . (16.2)

Sharper estimates for L(k, n) have been obtained through more powerful and complicated

methods by Godsil and McKay [163]. They obtain an asymptotic relation for L(k, n) that is

valid for k = o(n6/7), and improved estimates for other k. (It is known that for any fixed k,

the sequence L(k, n) satisfies a linear recurrence with polynomial coefficients [160].)
�

There are problems in which inequalities for permanents give the correct asymptotic esti-

mates. One such example is presented in [318] which discusses a variation on the “problème

des rencontres.”

16.2. Probability theory and branching process methods

Many combinatorial enumeration results can be phrased in probabilistic language, and

a few probabilistic techniques have appeared in the preceding sections. However, the stress

throughout this chapter has been on elementary and generating function approaches to asymp-

totic enumeration problems. Probabilistic methods provide another way to approach many of
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these problems. This has been appreciated more in the former Soviet Union than in the West,

as can be seen in the books [240, 241, 338].

The last few years have seen a great increase in the applications of probabilistic methods

to combinatorial enumeration and analysis of algorithms. Many powerful tools, such as mar-

tingales, branching processes, and Brownian motion asymptotics have been brought to bear

on this topic. General introductions and references to these topics can be found in Chapter ?

as well as in [5, 11, 20, 21, 27, 92, 93, 108, 258, 260, 262, 270].

16.3. Statistical physics

There is an extensive literature in mathematical physics concerned with asymptotic enu-

meration, especially in Ising models of statistical mechanics and percolation methods. Many

of the methods are related to combinatorial enumeration. For an introduction to them, see

Chapter ? or the books [30, 226].

16.4. Classical applied mathematics

There are many techniques, such as the ray method and the WKB method, that have

been developed for solving differential and integral equations in what we might call classical

applied mathematics. An introduction to them can be found in [31]. They are powerful, but

they have the disadvantage that most of them are not rigorous, since they make assumptions

about the form or the stability of the solution that are likely to be true, but have not been

established. Therefore we have not presented such methods in this survey. For some examples

of the nonrigorous applications of these methods to asymptotic enumeration, see the papers

of Knessl and Keller [231, 232]. It is likely that with additional work, more of these methods

will be rigorized, which will increase their utility.

17. Algorithmic and automated asymptotics

Deriving asymptotic expansions often involves a substantial amount of tedious work. How-

ever, much of it can now be done by computer symbolic algebra systems such as Macsyma,

Maple, and Mathematica. There are many widely available packages that can compute Taylor

series expansions. Several can also compute certain types of limits, and some have implemented

Gosper’s indefinite hypergeometric summation algorithm [171]. They ease the burden of car-

rying out the necessary but uninteresting parts of asymptotic analysis. They are especially
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useful in the exploratory part of research, when looking for identities, formulating conjectures,

or searching for counterexamples.

Much more powerful systems are being developed. Given a sequence, there are algorithms

that attempt to guess the generating function of that sequence [46, 162]. It is possible to

go much further than that. Many of the asymptotic results in this chapter are stated in

explicit forms. As an example, the asymptotics of a linear recurrence is derived easily from the

characteristic polynomial and the initial conditions, as was shown in Section 9.1. One needs

to compute the roots of the characteristic polynomial, and that is precisely what computer

systems do well. It is therefore possible to write programs that will derive the asymptotics

behavior from the specification of the recurrence. More generally, one can analyze asymptotics

of a much greater variety of generating functions. Flajolet, Salvy, and Zimmermann [124, 139]

have written a powerful program for just such computations. Their system uses Maple to carry

out most of the basic analytic computations. It contains a remarkable amount of automated

expertise in recognizing generating functions, computing their singularities, and extracting

asymptotic information about their coefficients. For example, if

f(z) = − log[1 + z log(1− z2)] + (1− z3)−5 + exp(zez) , (17.1)

then the Flajolet-Salvy-Zimmermann system can determine that the singularity of f(z) that

is closest to the origin is at z = ρ, where ρ is the smallest positive root of

1 = −ρ log(1− ρ2) , (17.2)

and then can deduce that

[zn]f(z) = n−1ρ−n +O(n−2ρ−n) as n→∞ . (17.3)

The Flajolet-Salvy-Zimmermann system is even more powerful than indicated above, since

it does not always require an explicit presentation of the generating function. Instead, often

it can accept a formal description of an algorithm or data structure, derive the generating

function from that, and then obtain the desired asymptotic information. For example, it can

show that the average path length in a general planar tree with n nodes is

1

2
π1/2n3/2 +

1

2
n+O(n1/2) as n→∞ . (17.4)

What makes systems such as that of [139] possible is the phenomenon, already mentioned in

Section 6, that many common combinatorial operations on sets, such as unions and permuta-

tions, correspond in natural ways to operations on generating functions.
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Further work extending that of [139] is undoubtedly going to be carried out. There are

some basic limitations coming from the undecidability of even simple problems of arithmetic,

which are already known to impose a limitation on the theories of indefinite integration. If we

approximate a sum by an integral
∫ b

a
x−αdx , (17.5)

then as a next step we need to decide whether α = 1 or not, since if α = 1, this integral

is log(b/a) (assuming 0 < a < b < ∞), whereas if α 6= 1, it is (b1−α − a1−α)/(1 − α).
Deciding whether α = 1 or not, when α is given implicitly or by complicated expressions, can

be arbitrarily complicated. However, such difficulties are infrequent, and so one can expect

substantial increase in the applicability of automated systems for asymptotic analysis.

The question of decidability of asymptotic problems and generic properties of combinatorial

structures that can be specified in various logical frameworks has been treated by Compton in a

series of papers [77, 78, 79]. There is the beautiful recent theory of 0-1 laws for random graphs,

which says that certain (so-called first-order) properties are true with probability either 0 or 1

for random graphs. Compton proves that certain classes of asymptotic theories also have 0-1

laws, and describes general properties that have to hold for almost all random structures in

certain classes. His analysis uses Tauberian theorems and Hayman admissibility to determine

asymptotic behavior. For some further developments in this area, see also [35].

18. Guide to the literature

This section presents additional sources of information on asymptotic methods in enumer-

ation and analysis of algorithms. It is not meant to be exhaustive, but is intended to be used

as a guide in searching for methods and results. Many references have been presented already

throughout this chapter. Here we describe only books that cover large areas relevant to our

subject.

An excellent introduction to the basic asymptotic techniques is given in [175]. That book,

intended to be an undergraduate textbook, is much more detailed than this chapter, and

assumes no knowledge of asymptotics, but covers fewer methods. A less comprehensive and

less elementary book that is oriented towards analysis of algorithms, but provides a good

introduction to many asymptotic enumeration methods, is [177].

The best source from which to learn the basics of more advanced methods, including many

of those covered in this chapter, is de Bruijn’s book [63]. It was not intended particularly
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for those interested in asymptotic enumeration, but almost all the methods in it are relevant.

De Bruijn’s volume is extremely clear, and provides insight into why and how various methods

work.

General presentations of asymptotic methods, although usually with emphasis on applica-

tions to applied mathematics (differential equations, special functions, and so on) are available

in the books [54, 100, 114, 115, 315, 344, 354, 372, 382, 385]. Integral transforms are treated

extensively in [89, 95, 116, 299, 365]. Books that deal with asymptotics arising in the analysis

of algorithms or probabilistic methods include [11, 55, 108, 209, 223, 240, 241, 270, 338].

Nice general introductions to combinatorial identities, generating functions, and related

topics are presented in [81, 351, 377]. Further material can be found in

[13, 88, 99, 173, 188, 335, 336].

A very useful book is the compilation [168]. While it does not discuss methods in too much

detail, it lists a wide variety of enumerative results on algorithms and data structures, and

gives references where the proofs can be found.

Last, but not least in our listing, is Knuth’s three-volume work [235, 236, 237]. While it

is devoted primarily to analysis of algorithms, it contains an enormous amount of material on

combinatorics, especially asymptotic enumeration.
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[87] G. Darboux, Mémoire sur l’approximation des fonctions de très-grands nombres, et sur
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[275] A. Maté and P. Nevai, Sublinear perturbations of the differential equation y (n) = 0 and

of the analogous difference equation, J. Diff. Equations 53 (1984), 234–257.
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