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Abstract The first practical public key cryptosystem ever published, the Diffie-Hellman key exchange
algorithm, relies for its security on the assumption that discrete logarithms are hard to compute. This
intractability hypothesis is also the foundation for the security of a large variety of other public key
systems and protocols.

Since the introduction of the Diffie-Hellman key exchange more than three decades ago, there have
been substantial algorithmic advances in the computation of discrete logarithms. However, in general
the discrete logarithm problem is still considered to be hard. In particular, this is the case for the
multiplicative group of finite fields with medium to large characteristic and for the additive group of a
general elliptic curve.

This paper presents a current survey of the state of the art concerning discrete logarithms and their
computation.

1 Introduction

1.1 The Discrete Logarithm Problem

Many popular public key cryptosystems are based on discrete exponentiation. If G is a multi-
plicative group, such as the group of invertible elements in a finite field or the group of points
on an elliptic curve, and g is an element of G, then gx is the discrete exponentiation of base g
to the power x. This operation shares basic properties with ordinary exponentiation, for example
gx+y = gx · gy. The inverse operation is, given h in G, to determine a value of x, if it exists, such
that h = gx. Such a number x is called a discrete logarithm of h to the base g, since it shares
many properties with the ordinary logarithm. If, in addition, we require some normalization of x
to limit the possible answers to single valid value we can then speak of the discrete logarithm of h.
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Indeed, without such a normalization, x is not unique and is only determined modulo the order of
the element g.

Assume for simplicity that G is a cyclic group generated by g, and that the notation logg(h)
denotes a value such that h = glogg(h). Then, as with ordinary logarithms, there is a link between
multiplication of elements and addition of logarithms. More precisely, we have:

logg(h · j) ≡ logg(h) + logg(j) mod |G|.

We say that we solve the discrete logarithm problem (DLP) in G if, given any element gx in G
we are able to recover x. To normalize the result, we usually ask for x to be taken in the range
0 6 x < |G|. In many applications, in particular in cryptography, it is sufficient to be able to solve
this problem in a substantial fraction of cases. (The usual theoretical standard is that this fraction
should be at least the inverse of a polynomial in the logarithm of the size of the group.)

The main interest of discrete logarithm for cryptography is that, in general, this problem is
considered to be hard. The aim of this paper is to provide state-of-the-art information about the
DLP in groups that are used for cryptographic purposes. It gives pointers to the latest results and
present observations about the current status and likely future of the DLP.

1.2 Applications of Discrete Logarithms

In some sense, the discrete logarithm has a long history in number theory. It is just an explicit
way to state that an arbitrary cyclic group containing N elements is isomorphic to (ZN ,+). Still,
before the invention of the Diffie-Hellman protocol the problem of efficiently computing discrete
logarithms attracted little attention. Perhaps the most common application was in the form of
Zech’s logarithm, as a way to precompute tables allowing faster execution of arithmetic in small
finite fields.

The role of the DLP in cryptography predates Diffie-Hellman. Indeed, the security of secret-key
cryptosystem involving linear feedback-shift registers (LFSR) is closely related to the computation
of discrete logarithms in finite fields of characteristic two. More precisely, locating the position
where a given subsequence appears in the output of an LFSR is, in fact, a discrete logarithm
problem in the finite field defined by the feedback polynomial1.

The main impetus to intensive study of discrete logarithms came from the invention of the
Diffie-Hellman method in 1976 [DH76]. Much later, the introduction of pairing in cryptography in
2000 (journal versions [Jou04, BF03]) increased the level of attention on some atypical finite fields,
with composite extension degrees and/or medium-sized characteristic.

Diffie-Hellman Key Exchange

Let us recall the first practical public key technique to be published, which is still widely used, the
Diffie-Hellman key exchange algorithm. The basic approach is as follows. If Alice and Bob wish to
create a common secret key, they first agree on a cyclic group G and a generator g of this group.2
Then, Alice chooses a random integer a, computes ga and sends it to Bob over a public channel,
while Bob chooses a random integer b and sends gb to Alice. Now Alice and Bob can both compute
a common value, which then serves as their shared secret:

(gb)a = ga·b = (ga)b

The security of this system depends on the assumption that an eavesdropper who overhears
the exchange, and thus knows g, ga, and gb, will not be able to compute the shared secret. In
particular, this hypothesis assumes that the eavesdropper is unable to solve the discrete logarithm
1 Assuming that it is irreducible, which is usually the case.
2 The group G and generator g can be the same for many users, and can be part of a public standard. However,
that can lead to a reduction in security of the system.
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problem in G. Indeed, if the DLP for this group is solvable, he can compute either a or b and recover
the shared secret ga·b. However, it is not known whether the problem of computing gab given g,
ga, and gb, which is known as the computational Diffie-Hellman problem (CDH) is equivalent to
the computation of discrete logarithms. Moreover, to prove the security of many cryptographic
protocols, it is often necessary to consider the associated decision problem: given g, ga, gb and h,
decide whether h is the correct value of gab or not. This latest problem is called the decision
Diffie-Hellman problem (DDH).

There are also many generalized computational and decision problems somehow related to the
discrete logarithm problem that have been introduced as possible foundations for various cryp-
tosystems. Since it is not easy to compare all these assumptions, in an attempt to simplify the
situation, Boneh, Boyen and Goh [BBG05] have proposed the Uber assumption which subsumes
all these variations and can be proven secure in the generic group model (see Section 2.5).

However, the discrete logarithm problem itself remains fundamental. Indeed from a mathematical
viewpoint, it is a much more natural question than the other related problems and, in practice, none
of these other problems has ever been broken independently of the DLP. Since the introduction
of the Diffie-Hellman key exchange, this concern has motivated a constant flow of research on the
computation of discrete logarithms.

Another extremely important assumption in the above description is that the eavesdropper is
passive and only listens to the traffic between Alice and Bob. If the attacker becomes active, then
the security may be totally lost, for example if he can mount a man-in-the-middle attack where
he impersonates Bob when speaking to Alice and conversely. This allows him to listen to the
decrypted traffic. To avoid detection, the attacker forwards all messages to their intended recipient
after reencrypting with the key that this recipient has shared with him during the initial phase.
One essential issue when devising cryptosystems based on discrete logarithms is to include safety
measures preventing such active attacks.

Other Protocols

After the invention of the RSA cryptosystems, it was discovered by ElGamal [Gam85] that the
discrete logarithm problem can be used not only for the Diffie–Hellman key exchange, but also for
encryption and signature. Later Schnorr [Sch89] gave an identification protocol based on a zero-
knowledge proof of knowledge of a discrete logarithm, which can be turned into Schnorr’s signature
scheme using the Fiat-Shamir transform [FS86].

There are many more cryptosystems based on the discrete logarithm problem which will not
be covered here. However, let us mention Paillier’s encryption [Pai99]. This system works in the
group Z∗N2 , where N = pq is an RSA number of unknown factorization. In particular, this is an
example of a discrete logarithm based cryptosystem that works within a group of unknown order.
This system possesses an interesting property, in that it is additively homorphic; the product of
the Paillier encryption of two messages is an encryption of their sum.

Another very interesting feature of discrete logarithms is the ability to construct key exchange
protocols with additional properties, such as authenticated key exchange, which embed the veri-
fication of the other party identity within the key exchange protocol. Perfect forward secrecy, in
which disclosure of long-term secrets does not allow for decryption of earlier exchanges, is also
easy to provide with schemes based on discrete logarithms. For example, in the Diffie-Hellman
key exchange, Alice’s secret a and Bob’s secret b are ephemeral, and so is the shared secret they
are used to create, and (if proper key management is used) are discarded after the interaction is
completed. Thus an intruder who manages to penetrate either Alice’s or Bob’s computer would
still be unable to obtain those keys and decrypt their earlier communications. It is also possible to
mix long-term secrets, i.e. private keys, and ephemeral secrets, in order to simultaneously provide
perfect forward secrecy and identity verification.
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A Powerful Extension: Pairing–Based Cryptography

Besides the Diffie-Hellman key exchange, a natural question to ask is whether there exists a three-
party one-round key agreement protocol that is secure against eavesdroppers. This question re-
mained open until 2000 when Joux [Jou04] devised a simple protocol that settles this question
using bilinear pairings. Until then, building a common key between more than two users required
two rounds of interaction. A typical solution for an arbitrary number of users is the Burmester-
Desmedt protocol [BD94].

The one-round protocol based on pairing works as follows. If Alice, Bob and Charlie wish to
create a common secret key, they first agree on G1 = 〈P 〉 an additive group with identity O, a
multiplicative group G2 of the same order, with identity 1 and a bilinear pairing from G1 to G2.
Let us recall the definition :

Definition 1.1. A symmetric bilinear pairing3 on (G1, G2) is a map

e : G1 ×G1 → G2

satisfying the following conditions:

1. e is bilinear: ∀R,S, T ∈ G1, e(R+ S, T ) = e(R, T ) · e(S, T )
and e(R,S + T ) = e(R,S) · e(R, T ).

2. e is non-degenerate: If ∀R ∈ G1, e(R,S) = 1, then S = O.

Alice randomly selects a secret integer a modulo the order of G1 and broadcasts the value aP
to the other parties. Similarly and simultaneously, Bob and Charlie select their one secret integer
b and c and broadcast bP and cP . Alice (and Bob and Charlie respectively) can now compute the
shared secret key :

K = e(bP, cP )a = e(P, P )abc

We know that the security of DH-based protocols often relies on the hardness of the CDH and DDH
problems. Likewise, the security of pairing-based protocols depends on the problem of computing
e(P, P )abc given P , aP , bP and cP , which is known as the computational bilinear Diffie-Hellman
problem (CBDH or simply BDH). This problem also exists in its decisional form (DBDH). However,
little is known about the exact intractability of the BDH and the problem is generally assumed to
be as hard as the DLP in the easier of the groups G1 and G2. Indeed, if the DLP in G1 can be
efficiently solved, then an eavesdropper who wishes to compute K can recover a from aP and then
compute e(bP, cP )a. Similarly, if the DLP in G2 can be efficiently solved, he could recover bc from
e(bP, cP ) = e(P, P )bc, then compute bcP and finally obtain K as e(aP, bcP ).

One consequence of the bilinearity property is that the DLP in G1 can be efficiently reduced to
the DLP in G2. More precisely, assume that Q is an element of G1 such that Q = xP , then we see
that e(P,Q) = e(P, xP ) = e(P, P )x. Thus, computing the logarithm of e(P,Q) in G2 (to the base
e(P, P )) yields x. This reduction was first described by Menezes, Okamoto, and Vanstone [MOV93]
to show that supersingular elliptic curves are much weaker than random elliptic curves, since the
discrete logarithm problem can be transfered from a supersingular curve to a relatively small finite
field using pairings.

After the publication of the Menezes, Okamoto, and Vanstone result, cryptographers started in-
vestigating further applications of pairings. The next two important applications were the identity-
based encryption scheme of Boneh and Franklin [BF03] and the short signature scheme of Boneh,
Lynn and Shacham [BLS04]. Since then, there has been a tremendous activity in the design, im-
plementation and analysis of cryptographic protocols using bilinear pairings on elliptic curves, and
also on more general abelian varieties, for example, on hyperelliptic curves.
3 In general, asymmetric pairings are also considered. For simplicity of presentation, we only describe the sym-
metric case.
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1.3 Advantages of Discrete Logarithms

A large fraction of the protocols that public key cryptography provides, such as digital signatures
and key exchange can be accomplished with RSA and its variants. Pairing-based cryptosystems
are a notable exception to this general rule. However, even for classical protocols, using discrete
logarithms instead of RSA as the underlying primitive offers some notable benefits.

Technical Advantages

Smaller key sizes

The main advantage of discrete logarithms comes from the fact that the complexity of solving the
elliptic curve discrete logarithm problem (ECDLP) on a general elliptic curve is, as far as we know,
much higher than factoring an integer of comparable size. As a direct consequence, elliptic curve
cryptosystems currently offer the option of using much smaller key sizes than would be required
by RSA or discrete logarithms on finite fields to obtain a comparable security level.

In truth, the key size reduction is so important that it more than offsets the additional complexity
level of elliptic curve arithmetic. Thus, for the same overall security level, elliptic curve systems
currently outperform more classical systems.

Perfect forward secrecy

When using RSA to setup a key exchange, the usual approach is for one side to generate a random
secret key and send it to the other encrypted with his RSA public key. This grants, to an adversary
that records all the traffic, the ability to decrypt every past communications, if he ever gets hold
of the corresponding private key.

By contrast, as we have already mentioned in the introduction, a correctly designed key exchange
protocol based on the discrete logarithm problem can avoid this pitfall and achieve perfect forward
secrecy, thus preventing an adversary to decrypt past communications [DOW92].

Algorithmic diversity

Cryptographers have learned from history that it is unwise to base security on a single assumption,
as its violation can lead to simultaneous breakdown of all systems. For this reason it is important
to have a diversity of cryptosystems and have candidate replacement systems. Schemes based on
discrete logarithms provide an alternative to those derived from RSA and other algorithms whose
security depends on difficulty of integer factorization.

However, we should note that both integer factorizations and discrete logarithms would be
easy to obtain from quantum computers. Hence it is important to investigate even more exotic
cryptosystems, such as those based on error-correcting codes and lattices.

The paper is organized as follows. Section 2 deals with generic algorithms, i.e. those that assume
no special knowledge about the underlying group and consider group operations as black boxes.
By contrast, Section 3 presents the Index Calculus Method, a very useful framework to obtain a
family of algorithms that make extensive use of specific knowledge of the group. Section 4 presents
concrete algorithms to solve the DLP in finite fields and Section 5 describes the state-of-the-art
about the DLP on algebraic curves.
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2 Generic Results

This section discusses some general results for discrete logarithm that assume little knowledge of
the group. In the most general case, we only ask for a group whose elements can be represented
in a compact way and whose law is explicitly given by an efficient algorithm. We also consider
the case where the order of the group and possibly its factorization are also given. This case is
interesting because for many groups that are considered in practice, this information is easily
obtained. Typically, for an elliptic curve, the group order is efficiently found using point counting
algorithms. Moreover, system designers usually choose curves whose order is a small multiple of a
prime, in which case, factoring the order becomes easy.

Throughout the section, we use the same notations as in Section 1.1. First, we describe some
general complexity results that relates the hardness of the discrete logarithm problem to classical
complexity theoretical classes. Second, assuming that the factorization of the order of G is given,
we show that computing discrete logarithms in G is no harder than computing discrete logarithms
in all subgroups of G of prime order. This is the outcome of the Pohlig–Hellman algorithm [PH78],
which is a constructive method to compute discrete logarithms in the whole group from a small
number of computations of discrete logarithms in the subgroups of prime order. We also describe
Pollard’s Rho algorithm [Pol78] that allows the computation of discrete logarithms in a group G
in O(

√
|G|) operations. Combining Pohlig–Hellman with Pollard’s Rho essentially4 permits the

computation of discrete logarithms in time O(√p), where p is the largest prime factor of the order
of a generic group.

Finally, we discuss the issue of computing many independent discrete logarithms in the same
generic group, amortizing part of the computation cost; we also briefly present the generic group
model as proposed by Shoup in [Sho97b] and the lower bound on the complexity that is related to
it.

2.1 Complexity classes

In order to describe the exact level of hardness of a computational problem, the main approach is
to describe the complexity classes the problem belongs to. To this end, the traditional approach is
to work with decision problems, i.e., problems with a yes/no answer. Since the discrete logarithm
problem itself is not a decision problem, the first step is to introduce a related decision problem
whose hardness is essentially equivalent to computing discrete logarithms. This can be done in
many ways, for example, let us consider the following problem.
Problem 2.1 (Log Range Decision). Given a cyclic group G and a triple (g, h,B):

• Output YES if there exists x ∈ [0 · · ·B] such that h = gx.
• Otherwise output NO.

An algorithm or oracle that solves this problem can be used to compute discrete logarithms
using a binary search. This requires a logarithmic number5 of calls to Log Range Decision. As a
consequence, the hardness of Log Range Decision is essentially the same as the hardness of the
Discrete Logarithm Problem itself.

Log Range Decision is in NP ∩ co-NP

To show that the problem is in NP, assume that there exists x ∈ [0 · · ·B] such that h = gx,
then x itself is a witness to this fact which is easily tested in polynomial time.

When g is a generator of G and |G| is known, giving a possible discrete logarithm of h to the base
g is also a satisfying witness to prove that the answer is NO. Thus, in this simple case, the problem
4 If |G| is a product of many small primes, possibly with multiplicity, this claim does not hold. However, this is
not an interesting case for cryptographic purposes.
5 In other words, the number of oracle calls is a polynomial in the bitsize of the answer.
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belongs to co-NP. However, in general, the situation is more complex: we need a generator6 g0 of G
together with |G| and its factorization to prove this fact. With g0 in hand, the discrete logarithms of
both g and h to the base g0 suffice to determine whether h belongs to the subgroup generated by g
and, if needed, to prove that none of the discrete logarithms of h to the base g belong to [0 · · ·B].
As a consequence, even in the general case, Log Range Decision is in co-NP.

Log Range Decision is in BQP

Another very important complexity theoretic result about the computation of discrete logarithms is
that there exists an efficient quantum algorithm invented by Shor [Sho97a]. This algorithm works for
arbitrary groups, assuming that the group operation can be computed efficiently. It is based on the
Quantum Fourier transform and belongs to the complexity class BQP (Bounded-error Quantum
Polynomial time) that corresponds to polynomial time computation on a quantum computer with
a bounded error probability7.

Computing |G| using a discrete logarithm computation

When considering the discrete logarithm problem, we often assume that the group order |G| is
known. One justification is that it is often the case which the groups that are used in cryptography.
Here, we point out another reason. When the discrete logarithm problem becomes easy in a group,
it is possible to compute |G| using a discrete logarithm computation. Assume that we are only
given the bitsize of |G|, i.e. that we know that |G| ∈ [2n−1, 2n − 1[. In this context, given g a
generator of G, we see that:

|G| = 2n − logg(g2n).

Average case hardness and random self-reducibility

When using hard problems to build cryptosystems, one important issue is to be sure that randomly
generated instances of the problem are practically hard. This deviates from the standard definition
of hardness in complexity. In cryptography, a problem that admits hard instances is not enough,
we need the problem to be hard not only in its worst case, but also in its average case, and also
usually in most cases.

Concerning the discrete logarithm problem, we have a very nice property, random self-reducibility
introduced in [AFK89]. This property shows that any instance of the DLP can be rerandomized
into a purely random instance. As a consequence, if the DLP is easy in the average case it is also
easy in the worst case. Conversely, if there exists hard instances of the DLP in some group G, then
the DLP is hard for random instances in G.

The reduction works as follow, assume that we are given an oracle that solves the DLP in G for
random instances and some fixed instance of the problem, h = gx. Choose an integer r modulo |G|
uniformly at random and define z = hgr, then z follows a uniform random distribution in G. If the
given oracle can compute logg(z), we recover x from the relation x ≡ logg(z)− r (mod |G|).

2.2 Pohlig–Hellman

Let G be a group of order n, g a generator, and h the element for which we want to compute the
discrete logarithm x. We suppose further that we know the factorization of n:
6 Since there are many distinct generators of G, in fact ϕ(G), g0 is easy to find by testing random candidates.
7 Typically, an error probability of 1/3 can be used in the formal definition of BQP.
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n =
∏
pi|n

pi
ei .

The Pohlig-Hellman algorithm permits us to reduce the DLP in G to DLPs in cyclic groups of
prime order pi. We proceed in two phases:

1. First we reduce the DLP in G to DLPs in groups with orders a power of the primes pi involved
in the factorization of n. For each pi, we set:

ni = n

piei
, gi = gni and hi = hni .

So gipi
ei = gn = 1 and the order of gi is exactly piei . Moreover gxi = gnix = hni = hi. Thus hi

belongs to the subgroup of order peii generated by gi. More precisely, hi can be considered as
the projection of the element we want the discrete logarithm on the subgroup generated by gi.
Let us call xi the discrete logarithm of hi to the base gi. We then have

x ≡ xi mod peii .

Since the peii are pairwise coprime, if we know all the xi, a simple application of the Chinese
Remainder Theorem permits us to recover x.

2. A further simple reduction shows that solving the DLP in a group of prime order allows to solve
the DLP in groups with orders that are powers of that prime.

To conclude, what has to be kept in mind is that computing discrete logarithms in G is no harder
than computing discrete logarithms in all subgroups of prime order in G.

2.3 Discrete Logarithms in G in O
(√

|G|
)
.

There are several methods for computing discrete logarithms in a group G in about
√
|G| opera-

tions. The first and best known of these is the Shanks Baby Step/Giant Step technique.

Baby Step/Giant Step

Let n be the order of G, or even an upper bound of |〈g〉|, and h be the element for which we
want to compute the discrete logarithm x. Let m be equal to d

√
ne. If we let q and r be such that

x = qm+ r with 0 6 r, q < m, which is possible thanks to the size of m compared to n, then it is
clear that finding x is exactly the same as recovering q and r. First we remark that we have:

(gm)q = (gmqgr)g−r = gmq+rg−r = hg−r. (1)

We create the first list:
Baby = {(hg−r, r)|0 6 r < m}

We call it the Baby list, because we multiply each step by the inverse of g (which is considered to
be small). If, by good luck, there exists a couple (1, r′) in this set, we have obtained hg−r′ = 1 and
thus x = r′. If not, we create another list:

Giant = {((gm)q, q)|0 6 q < m}

called the Giant list because we multiply in this case each step by gm. We sort the two lists to
find a collision on the two first elements of each pair. When we obtain (hg−r, r) ∈ Baby such that
(gm)q = hg−r, thanks to (1), we have found q and r and thus x.

Checking for equality in two sorted lists of m entries each can be done in linear time (assuming
that the representations of elements are compact enough). Hence the running time of the algorithm
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is dominated by the arithmetic required to compute the two lists and the time to sort them. This
algorithm is deterministic and solves the DLP in Õ (

√
n) operations8.

Pollard’s Rho Algorithm

This algorithm runs in time comparable to the Shanks method, O (
√
n) operations, but has the

advantage that it is practically memoryless. Unlike the Shanks algorithm, though, it is probabilistic,
not deterministic. It was proposed by John M. Pollard in 1978 [Pol78] and works as follows.

Let us imagine that we have a partition of G into three subsets of roughly equal size A1, A2 and
A3 . We define the map f by:

f(b) =

 gb if b ∈ A1
b2 if b ∈ A2
hb if b ∈ A3

We take now a random integer x0 in {1, · · · , n} and we compute b0 = gx0 . We consider the sequence
bi+1 = f(bi). The algorithm relies on two facts. First, for each i we can rewrite bi as

bi = gxihyi (2)

where (xi)i and (yi)i are given by the initial choice of x0, y0 = 0 and :

xi+1 =

xi + 1 mod n if bi ∈ A1
2xi mod n if bi ∈ A2

xi if bi ∈ A3

and yi+1 =

 yi if bi ∈ A1
2yi mod n if bi ∈ A2
yi + 1 mod n if bi ∈ A3

Second, since we are computing a sequence in a finite group, there exist two integers i > 0 et k > 1
such that we have a collision bi = bi+k (in practice we search collision of the form bi = b2i). Thanks
to equation (2) we have:

gxihyi = gxi+khyi+k

which yields a linear equation for logg(h) :

xi − xi+k ≡ logg(h)(yi+k − yi) mod n.

If we can invert yi+k − yi modulo n then we can recover the discrete logarithm of h. If yi+k − yi
is not invertible, we need to remember that Pollard Rho is usually used as a subroutine of Pollig–
Hellman, which means that n is usually prime. As a consequence, the only option is to restart a
different instance of computation, for example using another choice for x0.

The Pollard Rho algorithm can be implemented so that it requires only O(1) elements in memory
and O (

√
n) operations. Some practical improvements of this algorithm are presented in [Tes00,

BLS11, CHK12].
In practice, computations of discrete logarithms using generic algorithms use a combination of

the Pohlig-Hellman and Pollard Rho algorithms. Depending on the computer architecture used for
the computations, there exists alternatives to Pollard’s Rho that are sometimes more appropriate
(see the next Section). However, the overall complexity using these algorithms remains O

(√
p
)

where p is the largest prime dividing the order of the group. In fact, Section 2.5 shows that generic
group algorithms cannot outperform this complexity.

2.4 Scalability of Generic Discrete Logarithm Algorithms

From a purely theoretical viewpoint, a O(
√
|G|) algorithm that only uses a constant amount of

memory is a very fine solution. However, for practical purposes, it is very useful to know whether
8 As usual, the Õ notation Õ(n) is a shorthand for O(n logα n) for an arbitrary value of α.
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such a computation can be distributed on a parallel computer or a network of independent com-
puters. Indeed, this scalability issue often decides whether a computation is feasible or not.

In this setting, it is very useful to replace cycle finding algorithms by algorithms based on the
distinguished point technique. According to [Den82, p. 100] the idea of the distinguished point
technique was proposed by Rivest. Quisquater and Delescaille [QD89] used the technique to find
collisions in the DES algorithm. The in-depth study made by van Oorschot and Wiener [vOW99]
shows how the technique can be used in order to efficiently take advantage of parallelism for collision
search.

Basically, the main idea of the distinguished point technique is to build chains of computations,
starting from a random value and iterating a fixed function f to compute a chain of successors.
Denoting the starting point x0, we iteratively compute xi+1 = f(xi). We abort the computation
when encountering a point xN that satisfies some distinguished point property. Typically, this
property is taken to be that the representation of xN starts with a specified number of ’0’ bits. We
then store the triple (x0, xN , N). Recall that as in Pollard Rho, we wish to find a collision of f in
order to compute the desired discrete logarithm. With the distinguished point technique, any col-
lision between two distinct chains ensures that the two chains terminate at the same distinguished
point. Conversely, given two chains ending at the same distinguished point, recomputing the two
chains from their respective starting points, accounting for the length difference, usually leads to
an explicit collision. Since the initial computations of chains are independent from each other, it
is extremely easy to distribute them over a large number of distinct computers.

Recently, using a slight variation of this distinguished point technique, it was shown in [FJM13]
that given L independent discrete logarithms to compute in the same group |G|, the computation
can be achieved in time O(

√
L|G|) rather than O(L

√
|G|). Similar results were already known

under the condition L ≤ O(|G|1/4) [KS01].

2.5 The Generic Group Model

In 1997, Shoup [Sho97b] introduces a theoretical framework to study the complexity of generic
algorithms: the generic group model. In this model, he shows that any generic algorithm must
perform Ω(√p) group operations, where p is the largest prime dividing the order of the group.
Since this lower bound essentially9 matches the known upper bound, the generic group model
emphasizes the fact that currently known generic algorithms for computing discrete logarithms are
optimal.

In a nutshell, in the generic group model, group elements are identified by unique but arbitrary
encodings. As a consequence, it is not possible to exploit any special properties of the encodings
and group elements can only be operated on using an oracle that provides access to the group
operations.

One frequently encountered criticism of the generic group model is that it suffers from the same
weaknesses as the random oracle model, which is considered with suspicion by many cryptographers.
Namely, in these models, there exists secure protocols that cannot be securely instantiated [Den02,
CGH00].

3 Index Calculus Method

The results from the generic group model no longer apply when extra information about the group
structure is known. Indeed, this extra information can then be used to obtain faster algorithm.
The most important example is the Index Calculus Method which uses this additional knowledge
to provide subexponential algorithms.

Though the Index Calculus Method works both for factoring and for discrete logarithm, here
we only consider its application to discrete logarithm computations.
9 Up to logarithmic factors.
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3.1 General Description

The basic idea of Index Calculus algorithms relies on three main steps: the sieving phase (also
called the relation collection phase), the linear algebra phase and the individual logarithm phase.
Basically, the first phase creates relations between the logarithms of elements belonging to a small
subset of the considered group, the second one recovers those logarithms and the last one permits
to obtain the logarithm of any arbitrary element by relating it to the logarithms obtained during
the first two phases. Those three steps works as follows:

1. Sieving Phase or Relation Collection Phase For simplicity, assume that G is a cyclic group
generated by g. We want to create a large number of multiplicative relations between elements
belonging to a subset of the group G. This subset is usually constructed by selecting elements
which can be considered to be small, in some sense that depends on the context. This subset of G
is usually called the smoothness basis or the factor basis. Let {gi, i ∈ I} denote this smoothness
basis and consider a relation of the form:∏

i∈I
gi
mi =

∏
i∈I

gi
ni . (3)

Then, taking the discrete logarithms of the two sides, we deduce:∑
i∈I

mi logg gi ≡
∑
i∈I

ni logg gi mod |G|.

This becomes a linear equation between the logarithms of the gi viewed as formal unknowns. We
stop the sieving phase once we have collected enough such linear equations to obtain a system
of codimension 1.

2. Linear Algebra Phase The aim of the linear algebra step is to solve the previous system
of linear equations. Thus, we get at the end of this phase all the discrete logarithms of the
smoothness basis10.
A very important observation that naturally applies in most Index Calculus algorithms is that
the equations produced during the relation collection phase are very sparse. This is extremely
important, because sparse system can be solved using special algorithms which are much faster
than general linear system algorithms. This is detailed in Section 3.4.

3. Individual Logarithm Phase To really solve the discrete logarithm problem in G, we should
be able to compute the logarithm of any arbitrary element z of G. Roughly, the goal of this last
phase is to decompose z into products of other elements, which can in some sense be considered
smaller than z and iterate until z is finally expressed as a product of elements belonging to the
smoothness basis. Plugging the values of the discrete logarithms obtained during the first two
phases in this expression yields the logarithm of z.

3.2 Collection of Relations

In order to design Index Calculus algorithms, we thus need to construct multiplicative relations as
in (3).

The simplest approach for discrete logarithms modulo a prime p is to take a random integer a,
compute u ≡ ga mod p for u an integer such that 1 6 u 6 p− 1, and check whether

u =
∏

qi

where the qi are primes satisfying qi < B for some bound B. When the above congruence holds,
we say that u is B-smooth and we call B the smoothness bound. For most values of a, u will
not be smooth, and so will be discarded. However, even with this primitive approach, one can
10 Or at least, a large fraction of these logarithms. Indeed, depending on the exact properties of the relation
collection phase, a few elements of the smoothness basis might possibly be missing.
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obtain running time bounds of the form11 Lp(1/2, c). Moreover, this approach provides a provable
although probabilistic algorithm for solving the DLP in many finite fields.

Though this remains an interesting algorithm because it is at once simple and rigorous, it is
possible to devise better algorithms with other strategies. One key idea is to represent the group G
in which we want to compute discrete logarithms in two different but compatible ways. In other
words, we want to be able to draw a commutative diagram like the one presented in Figure 1. With
this representation in hand, for all x in E, we can get two elements in G related in an algebraic
way. Thanks to commutativity, we have an equality in the group G:

ϕ1(ψ1(x)) = ϕ2(ψ2(x)).

However, for this to be useful, we need to have a way to select some special relations among those
created. To this end, we choose a small set in each intermediate set E1 and E2 of the diagram. Once
these are chosen, in the sieving phase we keep only relations that involve elements of these two
small sets and no others. We call the smoothness base (or factor base) the subset of G consisting of
elements that can be obtained trough these two small subsets12 of E1 and E2. The Number Field
Sieve [Sch00, Gor93, JLSV06] and the Function Field Sieve [AH99, JL06] that have complexity of
the form Lpn(1/3, c) both follow this general strategy. They are heuristic algorithms in that their
analyses depend on plausible assumptions, but ones that have not been proved rigorously. Despite
the fact that they share a common algorithmic structure, there is a major difference between the
NFS and the FFS. The former algorithm is based on multiplicative relations between algebraic
integers in number fields while the latter works in function fields. At the bottom level, this means
that one algorithm needs to factor integers while the other factors polynomials. This is a major
difference since polynomials are much easier to factor than integers and also have more systematic
properties which have been used in the recent algorithms reported in the next paragraph.

A small change in just the sieving phase can lead to a substantial improvement in the complexity
of an algorithm. In fact, recent progress in the Index Calculus method for the discrete logarithm
problem has come from better collections of relations. However, the notion of sieving tends to
disappear since the new algorithms proposed to solve the DLP in finite fields with small charac-
teristic rely on a new trick that directly creates those relations. Those new methods developed
in paragraph 4.2 has recently yielded complexities in Lpn(1/4, c) [Jou13b] for finite fields with a
small characteristic. With an additional improvement made this time in the individual logarithm
phase, this has led to a heuristic quasi-polynomial algorithm [BGJT13], again for large fields of
small characteristic.

E

E1 E2

G

ψ1

ψ2

ϕ1
ϕ2

Fig. 1 Commutative diagram for the Sieving Phase

3.3 Smoothness

Index Calculus algorithms depend on a multiplicative splitting of elements (integers, ideals or
polynomials) into elements drawn from a smaller set, typically consisting of elements that are
11 See paragraph 3.3 to understand the origin of this L notation. For the moment, just read Lq(α, c) as a
shorthand for exp

(
(c+ o(1))(log q)α(log log q)1−α

)
.

12 Note that those subsets are sometimes called the smoothness bases by some authors too.
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in some sense considered to be small. Elements that do split this way are called smooth, and a
fundamental problem in the analysis of Index Calculus algorithms is to estimate how the relation
generation process produces those smooth elements. In most cases, the heuristic assumption is
made that the elements that arise during the process essentially behave like random elements of
the same size. This assumption was introduced to simplify the analysis of the algorithm and it
successfully led to many algorithmic improvements and to a large number of integer factorization
and discrete logarithm records.

However, depending on such a heuristic is uncomfortable and many researchers would like to
come up with rigorous algorithms. Unfortunately, at the present time, the existing rigorous al-
gorithms are much less efficient than their heuristic siblings. Quite surprisingly, the most recent
advances are based on the fact that, in cases where the classical heuristic assumption become false,
it is possible to use this failure to our advantage and produce more efficient algorithms.

To be more precise, let us give classic definitions and major theorems used in order to estimate
these probability.
Definition 3.1. An integer is y-smooth if all its prime factors are lower than y.
Definition 3.2. A polynomial over a finite field is m-smooth if all its irreducible factors have
degree lower than m.

Canfield, Erdös and Pomerance [CEP83] gave in 1983 the probability of smoothness of integers.
More than a decade later, Panario, Gourdon and Flajolet [PGF98] generalized this estimation to the
probability of smoothness of polynomials in finite fields. A less general result in this direction was
obtained earlier in [Odl85]. These two main results that are surprisingly close can be summarized
in the following estimate.
Estimate 3.1. The probability for an arbitrary integer lower than x to be y-smooth (respectively
for a random polynomial of degree less than n to be m-smooth) is:

u−u+o(1)

where u = log x
log y (respectively u = n

m
).

The very first analyses of the asymptotic running time of Index Calculus algorithms appeared
in the 1970s and were of the form exp

(
(c+ o(1))(log p)1/2(log log p)1/2). In fact, Index Calculus

algorithms not only have in common their structure in three phases but also the expressions of
their asymptotic complexities. To simplify these expressions, we usually write them with the help
of the following notation:

Lq(α, c) = exp
(
(c+ o(1))(log q)α(log log q)1−α)

where α and c are constants such that 0 < α < 1 and c > 0 . This is linked to the smoothness
probability of elements since it directly comes from the Estimate 3.1. The simple notation Lq(α) is
often used when c is not specified and the expression Lq(α, c+o(1)) is abbreviated in Lq(α, c) where
o(1) is for q → ∞. The most important parameter is the first one, since it governs the transition
from an exponential time algorithm to a polynomial time one. In fact, if α tends to 1, Lq(α)
becomes exponential13 in log q and in the other hand, if α tends to 0, Lq(α) becomes polynomial
in log q.

This notation permits not only to write the complexities in a simple an compact form but also
to give an indication concerning the different ranges of application of algorithms for finite fields.

3.4 Sparse Linear Systems over Finite Fields

Index Calculus algorithms use linear algebra to recover the logarithms of the elements of the
smoothness basis. Since these logarithms are determined modulo the order of the considered group,
13 Note that, since log q is the number of bits necessary to encode elements of the group we are considering, it is
the natural parameter to consider when expressing the complexity of algorithms.
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we need to solve a large system of linear equations over a residue ring Z/mZ. For a long time in
the 1970s and early 1980s this step was regarded as a major bottleneck, affecting the asymptotic
running time estimates of algorithms. This was due to the cubic complexity of solving linear systems
with classical methods such as Gaussian Elimination.

Even today, the linear algebra step remains difficult and it is a more serious problem for discrete
logarithm than for factoring. The main difference is that for factoring we need solutions modulo 2,
while for discrete logarithm we require solutions modulo large numbers. This is one of the reasons
of the persistent gap between factorization and discrete logarithm records in Fp, with p a prime.
Fortunately, the linear systems of equations produced by Index Calculus algorithms are sparse,
often to a very large extent.

A sparse matrix is a matrix that contains a relatively small number of non-zero entries. Very
frequently, it takes the form of a matrix in which each line (or each column) only contains a small
number of non-zero entries, compared to the dimension of the matrix. With sparse matrices, it is
possible to represent in computer memory matrices with much larger dimension, describing each
line (resp. column) as the list of positions containing a non-zero coefficient, together with the value
of the corresponding coefficient. When dealing with a sparse linear system of equations, using plain
Gaussian Elimination is a bad idea. Indeed, each pivoting step increases the number of entries in
the matrix and after a relatively small number of steps, the matrix can no longer be considered
as sparse. As a consequence, if the dimension of the initial matrix is large, Gaussian Elimination
quickly overflows the available memory. In order to deal with sparse systems, a different approach
is required.

Three main families of algorithms have been devised to deal with linear algebra in the case of
sparse matrices. These methods behave better than general purpose linear algebra algorithms.

The first family, structured Gaussian Elimination, initially proposed in [Odl85] and implemented
in [LO90] contains variants of the Gaussian Elimination algorithm that perform pivot selection in
a way that minimizes the fill-in of the matrix throughout the algorithm. These methods are used
to reduce the dimension of the original system and produce a reduced-size system which remains
reasonably sparse. This reduced system is then solved using an algorithm from one of the other
two families.

A common property of these two other families is that they use a matrix involved in the linear
algebra in a very restrictive way. In fact, it only appears in matrix-vector products, where some
variable vectors are multiplied either by the considered matrix or its transpose. The first of these
two families contains Krylov Subspace Methods which have been adapted from numerical analysis
and construct sequences of mutually orthogonal vectors. In particular, this family contains the
Lanczos and Conjugate Gradient algorithms, already described for the discrete logarithm context
in [COS86]. The second family contains the Wiedemann algorithm [Wie86] and its generalization
for parallel processing, Block Wiedemann. To put it in a nutshell, the algorithms in this family find
a solution of a linear system by computing the minimal polynomial14 of the considered matrix.

Both the Krylov Subspace and Wiedemann families of algorithms cost a number of matrix-
vector multiplications equal to a small multiple of the matrix dimension. Thus, for an N × N
matrix containing λ entries per line on average, the global cost is O(λN2).

4 Discrete Logarithm in Finite Fields

4.1 A Short History

The earliest methods introduced to compute discrete logarithms are generic. Of course, the fact
that discrete logarithms can be computed using exhaustive search is self-evident. However, the
algorithmic techniques to outperform this simple approach are more recent. The first method to
achieve this is the Baby step/Giant step, initially introduced in 1971 by Shanks [Sha71] for the
14 More precisely, this is the goal of Wiedemann algorithm. The block version computes something somewhat
different but quite similar.



The Past, evolving Present and Future of Discrete Logarithm 15

C
om

pl
ex
iti
es

0 1
3

2
3 1

lp

LQ
(

1
2

)
LQ
(

1
2

)

LQ
(

1
2

)

O(
√
pn)

LQ
(

1
2 , c
)

high c

LQ
(

1
2 , 1
)

LQ
(

1
3

)
in cara. 2

C(128/9)

C(213/36)

C(64/9)
C((92 + 26

√
13)/27)

LQ(1/4)

C(64(degP + 1)/(9 degP ))

C(32/9)

C(32/9)

LQ(α + o(1)) when p = LQ(α)

Generic Algorithms

1971
Shanks

1978
Pohlig - Hellman

Linear Sieve
1993

Adleman - Demarrais

Adleman
1979

Provable
D. Log
1987

Pomerance

Gaussian
Integer
Method
1986

Coppersmith
Odlyzko

Schroeppel

Hellman
Reyneri
1982

NFS
93

Gord.

SNFS
1993

Gordon

NFS
1999

Schirokauer

Copper.
1984

Number Field Sieve
2006

Joux - Lercier - Smart - Vercauteren

Multiple Number Field Sieve
2014

Barbulescu - Pierrot

Special Number Field Sieve
2013

Joux - Pierrot

Function Field Sieve
1999

Adleman
Huang

2006
Joux

Lercier

Joux 2013

Quasi-
Polynomial

2013 Barbulescu
Gaudry - Joux - Thomé

medium p high p
prime
field

small p
fixed p fixed

n

Fig. 2 Bird’s-Eye View of Algorithms for Discrete Logarithm in Finite Fields and their Complexities from
1970 to 2014. We warn the lector that his drawing is not to scale since a difference in the first or in the second
parameter in the LQ notation does not have the same effect on the complexity at all. Yet, the main color of each
algorithm illustrates the variation of the first parameter: we depict LQ(1/2) algorithms in red, LQ(1/3) in blue,
and LQ(1/4) and quasi-polynomial in green. For a fixed color, the darker an algorithm is drawn, the more recent
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Date Field Bitsize Cost (CPU.hours) Algorithm Authors
1992 2401 401 114000 [COS86] Gordon, McCurley
1996 p 281 ? [COS86] Weber, Denny, Zayer

1998/02 Special p 427 12 500 [Gor93] Weber
1998/05 p 298 2900 [COS86] Joux, Lercier
2001/01 p 364 290 [JL03] Joux, Lercier
2001/04 p 397 960 [JL03] Joux, Lercier
2001/09 2521 521 2 000 [JL02] Joux, Lercier
2002 2607 607 > 200 000 [Cop84] Thomé

2005/06 p 431 350 [JL03] Joux, Lercier
2005/09 2613 613 26 000 [JL02] Joux, Lercier
2005/10 6553725 400 50 [JL06] Joux, Lercier
2005/11 37080130 556 ? 200 [JL06] Joux, Lercier
2007 p 530 29 000 [JL03] Kleinjung

2012/06 36·97 923 895 000 [JL06] Hayashi, Shimoyama, Shinohara, Takagi
2012/12 p47 1175 ? 32 000 [Jou13a] Joux
2013/01 p57 1425 ? 32 000 [Jou13a] Joux
2013/02 21778 1778 ? 220 [Jou13b] Joux
2013/02 21991 1991 ? 2200 [GGMZ13] Gologlu, Granger, McGuire, Zumbragel
2013/03 24080 4080 ? 14 100 [Jou13b] Joux
2013/04 2809 809 19 300 [AH99, JL06] The Caramel Group
2013/04 26120 6120 ? 750 [GGMZ13, Jou13b] Gologlu, Granger, McGuire, Zumbragel
2013/05 26168 6168 ? 550 [Jou13b] Joux
2014/01 36·137 1303 920 [Jou13b] Adj, Menezes, Oliveira, Rodriguez-Henriquez
2014/01 29234 9234 ? 398 000 [Jou13b] Granger, Kleinjung, Zumbragel
2014/01 24404 698-bit subgroup 52 000 [Jou13b] Granger, Kleinjung, Zumbragel
Table 1 History of discrete logarithm records. The ? in the bitsize column indicates (possibly twisted) Kummer
extensions.

computation of class numbers in quadratic fields. The next technique, proposed in 1978, is the
Pollard Rho method [Pol78], a variation on Pollard’s Rho factoring algorithm [Pol75] from 1975.

Interestingly, the link that Pollard’s Rho algorithm shows between factorization of integers
and the computation of discrete logarithms modulo prime is much more general and most of the
algorithms known to solve one of the problems admit variants that apply to the other. There are
some exceptions. For example, it is not known how to obtain a variation of the Elliptic Curve
factoring Method (ECM) of Lenstra to compute discrete logarithms. However, a variation of ECM
can be used [MW96, JN03] to provide a relationship between the hardness of CDH and DLP. Until
recently, it was believed that this relationship between the hardness of integer factorization and
discrete logarithm computations could be extended to arbitrary finite fields. However, due to the
recent results on the computation of discrete logarithms in small characteristic, this is no longer
clear.

In 1976, the invention of Diffie–Hellman key exchange kindled renewed interest on the discrete
logarithm problem in finite fields. In 1977, the discovery of RSA also renewed the interest on the
integer factoring problem. At that time, the state of the art on factoring was not far in advance
of what was described in a book published in 1922 by Kraitchik [Kra22], which shows how the
use of quadratic forms can speed-up factorization. The same book also provides methods for the
computation of discrete logarithms, however, the terminology of Kraitchik used the french work
indice instead of discrete logarithm. This terminology spawned the name Index Calculus for these
algorithms. The early index calculus algorithms where proposed first for prime fields Fp [Adl79].
They achieve complexity in Lp(1/2, c) for a certain constant c. The main advantage of these initial
algorithms is that they can be turned into provable version as shown in [Pom87]. Moreover, they
were generalized to finite fields of the form Fpk with fixed p by Hellman and Reyneri in [HR82].

Nonetheless, the original value of c was too high for practical application. The situation was
largely improved by the Gaussian Integer Method introduced in 1986 by Coppersmith, Odlyzko
and Schroeppel [COS86] which lowered the value of c to 1. At that time, it was also discovered
that a variation of this algorithm obtained by replacing numbers by polynomials could be used to
compute discrete logarithms in small characteristic finite fields.
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A drastic change occurred in 1984 when Coppersmith proposed, in the case of characteristic 2,
a heuristic algorithm with complexity L2n(1/3) [Cop84]. This initial progress quickly led to the
introduction of several other heuristic algorithms with L(1/3) complexity both for factoring and
discrete logarithms computations. A survey on the early effective implementations of these al-
gorithms for discrete logarithms appeared in 1996 [SWD96]. For a long time, L(1/3)-algorithms
focused on field with small characteristic, prime fields and occasionally fields of the form Fpk for
small values of k [Sch00]. The view changed in 2006, with two articles that showed that taken
together, the Number Field Sieve [JLSV06] and the Function Field Sieve [AH99, JL06] are enough
to cover the whole range of finite fields with heuristic L(1/3) algorithms. Essentially, the result
was to split the finite field in three groups, small characteristic with complexity L(1/3, (32/9)1/3),
medium characteristic with complexity L(1/3, (128/9)1/3) and large characteristic with complexity
L(1/3, (64/9)1/3).

In 2013 and 2014, several algorithmic improvements on the complexity of discrete logarithm
algorithms have appeared: two variants of the Number Field Sieve have been designed for finite
fields with medium to high characteristic [JP13, BP14] and a breathtaking step forward [Jou13a,
GGMZ13, Jou13b, BGJT13, GKZ14] has been made for finite fields with small characteristic. We
discuss this in Section 4.2.

4.2 Current Discrete Logarithms

Current discrete logarithms algorithms for finite fields vary with the relative sizes of the character-
istic and the extension degree. In order to choose the one that is well-suited for a given field Fpn ,
we are used to write p = Lpn(lp, cp), with 0 6 lp 6 1 and cp a value or reasonable size (i.e. close
to 1). As for complexity, the first parameter is the most important one in this notation. In fact, for
a fixed size of finite field, when the characteristic is very small, lp is close to 0. Conversely, when
the finite field is a prime field (the extension degree is thus equals to 1) the natural choice is to set
lp = 1. More precisely, finite fields split in three groups:

• Finite Fields with High Characteristic, when lp > 2/3.
• Finite Fields with Medium Characteristic, when 1/3 6 lp 6 2/3.
• Finite Fields with Small Characteristic, when 1/3 6 lp.

Each case is related to one algorithm which are examined in details in the sequel. The two boundary
cases when lp equals 1/3 or 2/3 are a little bit more intricate since several algorithms are available
in those cases. They will not be treated here but let us simply recall that the Function Field Sieve
is still the best option for some fields in the first boundary case.

We give in Figure 3 and Figure 4 two different viewpoints of the current situation. The first
figure summarizes which algorithm has to be chosen for a given finite field whereas the second one
shows which sizes of field are weak compared with a given complexity. The axes of Figure 4 may
seem surprising to some innocent reader. However, since logQ = n log p, it is natural to compare
the size of n with the size of log p (and not with the size of p).

Medium and High Characteristic

For a finite field with medium or high characteristic, Joux, Lercier, Smart and Vercauteren pre-
sented in 2006 an adaptation of the Number Field Sieve (NFS) that has a complexity in Lpn(1/3).
For finite fields with high characteristic, it extended the variant of Shirokauer that had the same
complexity, namely Lpn(1/3, (64/9)1/3), but was available only for finite fields with fixed extension
degree. The NFS as proposed in [JLSV06] is an Index Calculus algorithm that takes advantage of
two representations of the finite field that rely on number fields. In a nutshell, the sieving process
deals with linear polynomials and the smoothness basis consists in elements in the number fields
that have norms lower than a certain predefined smoothness bound. A tricky post-process permits
to associate each element of the smoothness basis to an element of the finite field.
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For finite fields with medium characteristic, [JLSV06] proposed a variant of the classical Number
Field Sieve that leads to a final complexity in Lpn(1/3, (128/9)1/3). The polynomial selection used to
represent the finite field is easier, however, the sieving can no longer be done on linear polynomials.
Since High Degree polynomials are used in the sieving phase, this variant of the Number Field
Sieve is often called the NFS-HD. This is also the reason why the complexity of the algorithm is
higher in this case than in the high characteristic case.

The currently best know algorithm for discrete logarithms in medium and high characteristic
is the Multiple Number Field Sieve, a variant of NFS proposed in 2014 by Barbulescu and Pier-
rot [BP14]. In both cases, the main idea of MNFS is to consider not only two number fields but
a lot of possible paths in the diagram. A specific benefit is obtained in the medium characteristic
case since each number fields play the same role. This notion of symmetry no longer exists in the
high case where one of the number field has a particular part.

Note that a Special Number Field Sieve [JP13] has been designed for both medium and high
characteristic. In concerns all finite fields that have a sparse representation of their characteristic,
and can be applied, so, to some finite fields coming from pairing based constructions.

Small Characteristic

For a finite field with small characteristic, namely, a field Fpn where the characteristic can be
written as p = Lpn(l, c) with l 6 1/3, Joux and Lercier presented the same year an adaptation of
the Function Field Sieve (FFS) that also had a complexity in Lpn(1/3). It was an adaptation of the
FFS as introduced by Adleman in 1993. Since the beginning of 2013 a lot of things have changed
for those fields with small (or extremely small) characteristics. From Lpn(1/3) the complexity of
the DLP has dropped to Lpn(1/4 + o(1)) [Jou13b], and finally to a heuristic quasi-polynomial
algorithm [BGJT13].

Surprisingly, several of these improvements work by falsifying the standard heuristic assumptions
used in older algorithms. The first of these improvements published in [Jou13a] showed that the
2006 version of the Function Field Sieve from [JL06] can be modified in a surprising way to
improve its complexity. The basic idea is to slightly change how finite fields are defined and ends in
a situation where the search for one smooth polynomial on the left-hand side of a relation can be
amortized by constructing many possible right-hand sides from a single initial polynomial on the
left. In the specific case of Kummer extensions, this can be improved further. For the first time, this
new method takes advantage of the fact that the independence assumption between polynomials
for the smoothness property does not hold in this context. This improvement especially focused
on fields with characteristic close to L(1/3) or, more generally, fields containing a subfield of size
L(1/3).

The next step concerns small characteristic fields, where it is possible to go well beyond the
initial improvements. The basic idea can be viewed in two different ways, one can either consider
a family of polynomials whose splitting probability is much higher than for random polynomials
of the same degree as proposed in [GGMZ13], or start from a polynomial that splits and use a
generalized version of the change of variable from [Jou13a] to construct many polynomials from this
starting point. This latter approach is described in [Jou13b] and combined with a new method for
computing individual logarithms, it yields a heuristic L(1/4) algorithm. From an asymptotic point
of view, this can be improved to a heuristic quasi-polynomial algorithm using another strategy for
computing individual logarithms [BGJT13].

Note that these recent algorithms remain heuristic. However, it requires a new form of heuristic
which is similar to but differs from the old one. Namely, whenever a polynomial occurs, we consider
its probability of smoothness to be close to that of a random polynomial of the same degree unless
there is an explicit reason that falsifies this assumption. Of course, whenever an explicit reason
appears, by design, it largely increases the splitting probability. One of the main line of research in
small characteristic is now to try to build an heuristic-free algorithm. A first step has been done
in this direction in [GKZ14], removing the smoothness heuristic of the descent phase.
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5 Elliptic Curve Discrete Logarithm

Subexponential Index Calculus algorithms have been developed for a variety of discrete logarithm
problems. The one notable exception, where in general we still do not have algorithms better than
those for the generic problem, is for elliptic curve discrete logarithms.

Most of the recent progress in discrete logarithm algorithms has come from developments in the
Index Calculus method through exploitation of algebraic properties of finite fields. Unfortunately,
this approach is in general not applicable to elliptic curve discrete logarithms. For elliptic curves,
there exist some direct discrete logarithms algorithms that work for specific classes of curves and
some indirect approaches that transfer the problem to finite fields [MOV93, FR94] or to higher
genus curves [GHS02].

In general, the best known discrete logarithm algorithms for elliptic curves have exponential
time complexities. However, this is not the case for higher genus curves, for which there exists
Index Calculus algorithm. Moreover, some specific families of elliptic curves are also vulnerable to
Index Calculus.

5.1 High genus curves

A very important result concerning curves of genus at least 3 introduced in [GTTD07] is that there
exists an Index Calculus algorithm that applies to hyperellitic curves of genus g ≥ 3 defined over Fq
and computes discrete logarithms in time Õ(q2−2/g). This outperforms generic algorithms whose
complexity in this case is Õ(qg/2).

Note that there are similar results concerning non-hyperelliptic curves, for example, see [EGT11,
DK13].

5.2 Elliptic curves over extension fields

Where elliptic curves over extension fields are concerned, there are two main approaches: cover (or
Weil descent) attacks and decomposition attacks. In addition, for some good configurations, it is
possible to combine the two approaches into an even more efficient algorithm [JV12].

Weil descent

This approach introduced in [GHS02] aims at transporting the discrete logarithm problem from an
elliptic curve defined over an extension field to an higher genus curve defined over a smaller field.
If the genus of the target curve is not too large, this can lead to an efficient discrete logarithm
algorithm.

Decomposition

The basic idea of the decomposition method [Sem04] is to find relations between the smoothness
basis elements by using the n-th Semaev’s summation polynomial to model the fact that n points
on the curve sum to zero. Due to the symmetry of this polynomial, it is possible to reduce its
degree by expressing everything in terms of the elementary symmetric polynomials in the abscissa
of the solution points. Over an extension field of degree close to n above the base field, choosing
the smoothness basis to be made of points with abscissa in the base field, it is possible to rewrite
Semaev’s polynomial as a polynomial system over the base field.

When the extension degree is much larger and cannot be decomposed into a favorable tower
of extension, the situation is less clear. The typical case considered in [FPPR12, PQ12] is to
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take an elliptic curve over F2p , where p is prime. The main difficulty is that, contrary to the
previous setting, none of the natural choices of smoothness basis are preserved when considering
the symmetric polynomials in the abscissa. As a direct consequence, it is no longer possible to easily
reduce the degree of Semaev’s polynomial, which makes the asymptotic behavior of the method
much harder to predict.

6 The future

To date, the status of the discrete logarithm problem is quickly evolving. As a consequence, trying
to predict future changes is extremely difficult. For this reason, we only sketch out the main open
problems and give a small list of possible progress.

The most dangerous and notable risk for the discrete logarithm problem in general, which also
applies to integer factorization, is the possibility of large scale general purpose quantum computers.
If such machines were to become available, Shor algorithm would completely break these two hard
problems. However, at the present time, it is unclear whether such machines will become available
in the foreseeable future.

Concerning discrete logarithms in finite fields, several avenues for progress are open. First, in
small characteristic, the present quasi-polynomial algorithm could be improved in many directions,
with the removal of heuristic hypotheses, the improvement of the exponent in the polynomial part
of the complexity and the search for a polynomial time algorithm. In larger characteristic, the
methods that have been recently discovered cannot be applied directly. Moreover, these methods
deeply rely on specific properties of polynomials which do not seem readily adaptable to numbers.
Yet, the L(1/3) complexity no longer seems to be a natural bound and one could possibly expect
progress for the NFS in this range, stemming from totally new ideas. There is also a possibility for
such eventual progress to improve the complexity of factoring.

The most difficult challenge for discrete logarithms is probably the search for a subexponen-
tial algorithm that would apply to general elliptic curves defined over large characteristic fields.
However, even finding new Index Calculus algorithms to cover additional special cases of curves is
already a very challenging and fascinating problem in this field of research.
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