
Index Calculation Attacks on RSA Signature and Encryption

Jean-Sébastien Coron1, Yvo Desmedt2, David Naccache1,
Andrew Odlyzko3, and Julien P. Stern4

1 Gemplus Card International
{jean-sebastien.coron,david.naccache}@gemplus.com

2 Florida State University
desmedt@cs.fsu.edu

3 University of Minnesota
odlyzko@umn.edu

4 Cryptolog International
julien@cryptolog.com

Abstract. At Crypto ’85, Desmedt and Odlyzko described a chosen-ciphertext attack against plain
RSA encryption. The technique can also be applied to RSA signatures and enables an existential
forgery under a chosen-message attack. The potential of this attack remained untapped until a
twitch in the technique made it effective against two very popular RSA signature standards, namely
iso/iec 9796-1 and iso/iec 9796-2. Following the attack iso/iec 9796-1 was withdrawn and iso/iec
9796-2 amended. In this paper, we recall Desmedt and Odlyzko’s attack as well as its application
to the cryptanalysis of iso/iec 9796-2.

1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [13], and is now the most widely
used public-key cryptosytem. RSA can be used for both encryption and signature.

A chosen-ciphertext attack against plain RSA encryption was described at Crypto ’85 by
Desmedt and Odlyzko [3]. In the plain RSA encryption scheme, a message m is simply encrypted
as :

c = me mod N

where N is the RSA modulus and e is the public exponent. Informally, during a chosen-
ciphertext attack, an attacker may obtain the decryption of any ciphertext of his choice; the
attacker’s goal is then to decrypt (or to recover some information about) some given ciphertext.
However, Desmedt and Odlyzko’s attack does not seem to be applicable to real-world RSA
encryption standards, because in practice, the message m is generally encoded as µ(m) before
being encrypted :

c = µ(m)e mod N

where µ is some (probabilistic) algorithm.
As noted in [10], Desmedt and Odlyzko’s attack can also be applied to RSA signatures.

Recall that the RSA signature of a message m is defined as:

s = µ(m)d mod N

where µ(m) is the encoding function and d the private exponent. Desmedt and Odlyzko’s attack
on RSA signatures only applies if the encoding function µ(m) produces integers much smaller

2

than N . In this case, one obtains an existential forgery under a chosen-message attack. In this
setting, the attacker can ask for the signature of any message of his choice, and its goal is to
forge the signature for some (possibly meaningless) message which was not signed before.

At crypto ’99 [2], Coron, Naccache and Stern published an attack against the iso/iec 9796-2
RSA signature standard [6] and a slight variant of the iso/iec 9796-1 signature standard [5].
This attack is an adaptation of Desmedt and Odlyzko’s attack, which could not be applied
directly since for both standard it holds that µ(m) has the same size as N . Shortly after, the
attack against the real iso/iec 9796-1 standard was extended by Coppersmith, Halevi and Jutla
[1]. Following the attack iso/iec 9796-1 was withdrawn and iso/iec 9796-2 amended.

The paper is organized as follows: first we recall the definition of the RSA cryptosystem.
Then we describe Desmedt and Odlyzko’s attack against plain RSA encryption, and eventually
its application to the cryptanalysis of the iso/iec 9796-2 standard.

2 The RSA cryptosystem

The first realization of public-key encryption and digital signatures was invented in 1977 by
Rivest, Shamir and Adleman [13]:

Definition 1 (The RSA Primitive). The RSA primitive is a family of trapdoor permuta-

tions, specified by:

– The RSA generator RSA, which on input 1k, randomly selects two distinct k/2-bit primes

p and q and computes the modulus N = p · q. It randomly picks an encryption exponent

e ∈ Z
∗

φ(N), computes the corresponding decryption exponent d = e−1 mod φ(N) and returns

(N, e, d);
– The function f : Z

∗

N → Z
∗

N defined by f(x) = xe mod N ;

– The inverse function f−1 : Z
∗

N → Z
∗

N defined by f−1(y) = yd mod N .

2.1 The RSA encryption scheme

The standard practice for encrypting a message m with RSA is to first apply an encoding
scheme µ and raise µ(m) to the public exponent e. The algorithm µ is generally chosen to be
probabilistic. The ciphertext c is then

c = µ(m)e mod N .

where (N, e) is the public-key. Decryption simply consists in using the private key (N, d) to
compute :

µ(m) = ce mod N .

and recover m from µ(m).

2.2 The RSA Signature Scheme

As previously, the public-key is (N, e) and the private key is (N, d). The RSA signature scheme
is specified by an encoding function µ, which takes as input a message m and returns an integer
modulo N , denoted µ(m). The signature of a message m is then:

s = µ(m)d mod N

3

The signature s is verified by checking that :

µ(m)
?
= se mod N

3 Attack on RSA Encryption

In [3], Desmedt and Odlyzko describe a chosen-ciphertext attack against plain RSA encryption.
Recall that for plain RSA encryption, a message m is directly encrypted as c = me mod N .
The setting of the attack is the following :

1. The attacker receives the public-key (N, e).
2. The attacker can ask for the decryption of any ciphertext of his choice, i.e. the attacker

submits x and receives m = xd mod N for any x of his choice. The number of decryption
queries is not limited.

3. The attacker receives a challenge ciphertext c. The attacker is not allowed to make decryp-
tion queries anymore. The attacker must output cd mod N .

Desmedt and Odlyzko’s attack works as follows. After receiving the public-key (step 1), we
ask for the decryption xd mod N for all integers x ∈ S = S1 ∪ S2, where:

S1 = {p : p ≤ Lα, p is prime}

S2 = {⌊
√
N⌋ + 1, ⌊

√
N⌋ + 2, . . . , ⌊

√
N⌋ + ⌊Lα⌋}

where α > 0 is some fixed parameter and L = L(N) denotes any quantity that satisfies:

L = exp((1 + o(1))(
√

(logN)(log logN))) as N → ∞

Once we have obtained xd mod N for all x ∈ S (step 2), we receive the challenge ciphertext
c and must output cd mod N , without using the decrypting facility anymore (step 3). The basic
idea is to find a representation:

c = ye
∏

x∈S

xax mod N (1)

for some integers ax and y, since then :

cd = y
∏

x∈S

(xd)ax mod N

where y and all the xd are known.
To obtain the representation (1), we proceed in two stages. In the first stage we find some

integer y and primes qi ≤ L2α such that:

c = ye
h

∏

i=1

qi mod N (2)

To obtain the representation (2), we chose a random y, compute :

b = c · y−e mod N

and check whether b factors into primes q ≤ L2α. We use that following theorem [12] to obtain
the average number of y values before such factorization is obtained.

4

Theorem 1. Let x be an integer and let Lx[β] = exp
(

β ·
√

log x log log x
)

. Let y be an integer

randomly distributed between 0 and xγ for some γ > 0. Then for large x, the probability that y
has all its prime factors less than Lx[β] is given by :

Lx

[

− γ

2β
+ o(1)

]

Taking γ = 1 and β = 2α, we obtain that we need to generate on average approximately
L1/4α values of y before such factorization is obtained. Moreover, for each y, it takes Lo(1) bit
operations to test whether such a factorization exists using Lenstra’s elliptic curve factorization
algorithm [9]. Therefore this stage is expected to take time

L1/(4α)+o(1) = L1/(4α)

Once a factorization of the form (2) is obtained, we proceed to the second stage, in which
we represent each of the at most O(log(N)) = Lo(1) primes q = qi ≤ L2α in the form:

q =
∏

x∈S

xux mod N (3)

where only O(logN) of the ux are non-zero (possibly negative). Once such a representation is
obtained for each of the q’s, we quickly obtain (1).

To see how to represent a prime q ≤ L2α in the form (3), let :

m =

⌊√
N

q

⌋

(4)

and determine those integers among :

m+ 1,m+ 2, . . . ,m+ ⌊Lβ⌋

that are divisible solely by primes p ≤ Lα, for some β > 0. Using the previous theorem, we
expect to find Lβ−1/(4α) such integers, and finding them will take Lβ bit operations if we employ
Lenstra’s factorization algorithm.

We next consider two cases. If α ≥ 1
2 , we take β = 1

4α + δ for any δ > 0. We then have Lδ

integers m+ j, 1 ≤ j ≤ Lβ, all of whose prime factors are ≤ Lα. For each such integer and any
i such that 1 ≤ i ≤ L1/(4α) ≤ Lα, we write :

q(m+ j)(k + i) = t mod N (5)

where k = ⌊
√
N⌋. Using equation (4) and the corresponding bounds for q, j and i, we obtain

that :
t ≤ N

1

2
+o(1)

Therefore, if the integer t factor like random integers of the same size, we will find Lδ integers t
that factor into primes ≤ Lα, and any single one will give a factorization of the form (3), which
gives the desired result. Since the testing of each t takes Lo(1) bit operations, this stage requires
Lβ+o(1) bit operations, and since this holds for all δ > 0, we conclude that for α ≥ 1

2 , this stage

can be carried out in L1/(4α) bit operations.

5

It remains to consider the case α < 1
2 . Here we take β = 1

2α − α + δ. We expect to find

Lβ−1/(4α) = L1/(4α)−α+δ values of m + j, 1 ≤ j ≤ Lβ , which factor into primes ≤ Lα, and
it takes Lβ+o(1) = Lβ bit operations to find them. For each one and for 1 ≤ i ≤ Lα, we test
whether the t defined by (5) is composed of primes ≤ Lα. We expect to find Lδ of them. Letting
δ → 0, we obtain that this case takes L1/(2α)−α bit operations.

We thus conclude that if the attacker can obtain decryptions of Lα chosen ciphertexts he
will be able to decrypt any individual ciphertext in L1/(4α) bit operations for α ≥ 1

2 and in

L1/(2α)−α bit operations for 0 < α ≤ 1
2 . For α = 1

2 both stages require L1/2 steps.

Therefore, Desmedt and Odlyzko’s attack is asymptotically faster than the quadratic-sieve
factorization algorithm [11], which requires L steps to recover the factorization of N . However,
the attack is asymptotically slower than the number field sieve algorithm [8] which appeared
later, whose complexity to factor N is given by :

exp
(

(c+ o(1))(logN)1/3(log logN)2/3
)

for some constant c ≃ 1.9.

Given that in practice RSA encryption schemes used an encoding function µ(m), the attack
does not appear directly applicable to real-world standards. The situation nonetheless proved
very different for RSA signature schemes, as explained in the next sections.

4 Attack on RSA Signatures

The attack against RSA encryption can be easily adapted to RSA signatures to provide an
existential forgery under a chosen-message attack [10]. The outline of such a scenario is the
following :

1. Select a bound y and let S = (p1, . . . , pℓ) be the list of primes smaller than y.

2. Find at least ℓ+ 1 messages mi such that each µ(mi) is the product of primes in S.

3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by solving a linear
system given by the exponent vectors of the µ(mi) with respect to the primes in S.

4. Ask for the signature of the mi for i 6= j and forge the signature of mj .

The attack’s complexity depends on the cardinality of S and on the difficulty of finding at
step (2) enough µ(mi) which are the product of primes in S. Generally, the attack applies only
if µ(m) is small; otherwise, the probability that µ(m) is the product of small primes only is too
small.

In the following, we describe the attack in more detail. First, we assume that e is a prime
integer. We let τ be the number of messages mi obtained at step (2). We say that an integer is
B-smooth if all its prime factors are smaller than B. The integers µ(mi) obtained at step (2)
are therefore y-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

µ(mi) =
ℓ

∏

j=1

p
vi,j

j (6)

6

Step (3) works as follows. To each µ(mi) we associate the ℓ-dimensional vector of the exponents
modulo e:

Vi = (vi,1 mod e, . . . , vi,ℓ mod e)

The set of all ℓ-dimensional vectors modulo e form a linear space of dimension ℓ. Therefore, if
τ ≥ ℓ+ 1, one can express one vector, say Vτ , as a linear combination of the others modulo e,
using Gaussian elimination:

V τ =
τ−1
∑

i=1

βiV i + Γ · e (7)

for some Γ = (γ1, . . . , γℓ). Denoting

δ =
ℓ

∏

j=1

p
γj

j (8)

one obtains from (6) and (7) that µ(mτ) is a multiplicative combination of the other µ(mi):

µ(mτ) = δe ·
τ−1
∏

i=1

µ(mi)
βi (9)

Then, at step (4), the attacker will ask for the signature of the τ −1 first messages mi and forge
the signature of mτ using:

µ(mτ)
d = δ ·

τ−1
∏

i=1

(

µ(mi)
d
)βi

mod N (10)

The attack’s complexity depends on ℓ and on the probability that the integers µ(mi) are y-
smooth. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [4] that, for large
x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by :

ρ(t) =

1 if 0 ≤ t ≤ 1

ρ(n) −
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n+ 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth; the following
table gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

log
2
ρ(t) 0 −1.7 −4.4 −7.7 −11.5 −15.6 −20.1 −24.9 −29.9 −35.1

Table 1. The value of Dickman’s function.

In the following, we provide an asymptotic analysis of the algorithm’s complexity, based on
the assumption that the integers µ(m) are uniformly distributed between zero and some given
bound x. Letting β be a constant and letting:

y = Lx[β] = exp
(

β ·
√

log x log log x
)

7

one obtains from theorem 1 that, for large x, the probability that an integer uniformly dis-
tributed between one and x is Lx[β]-smooth is:

ψ(x, y)

x
= Lx

[

− 1

2β
+ o(1)

]

Therefore, we have to generate on average Lx[1/(2β) + o(1)] integers µ(m) before we can find
one which is y-smooth.

Using the ECM factorization algorithm [9], a prime factor p of an integer n can be found in
time Lp[

√
2 + o(1)]. A y-smooth integer can thus be factored in time Ly[

√
2 + o(1)] = Lx[o(1)].

The complexity of finding a random integer in [0, x] which is y-smooth using the ECM is thus
Lx [1/(2β) + o(1)]. Moreover, the number τ of integers which are necessary to find a vector
which is a linear combination of the others is ℓ+1 ≤ y. Therefore, one must solve a system with
r = Lx[β+ o(1)] equations in r = Lx[β+ o(1)] unknowns. Using Lanzos’ iterative algorithm [7],
the time required to solve such system is O(r2) and the space required is roughly O(r).

To summarize, the time required to obtain the Lx[β + o(1)] equations is asymptotically
Lx [β + 1/(2β) + o(1)] and the system is solved in time Lx[2β + o(1)]. The total complexity is
minimal by taking β = 1/

√
2. We obtain a time complexity

Lx[
√

2 + o(1)]

and space complexity:

Lx

[√
2

2
+ o(1)

]

where x is a bound on µ(m).

This complexity is sub-exponential in the size of the integers µ(m). Therefore, without any
modification, the attack will be practical only if µ(m) is small. In particular, when µ(m) is about
the same size as the modulus N , the complexity of the attack is no better than factoring N .
Note that the attack can easily be extended to any exponent e, and also to Rabin signatures
(see [2]).

In table 2, we give the values of the functions Lx[
√

2] et Lx[
√

2/2] corresponding to the time
complexity and space complexity of the attack, as a function of the size |x| of the integer µ(mi).
This table should be handled with care: this is just an approximation of the attack practical
complexity, and the attack may take more time in practice. The table suggests that the attack
can be practical when the size of µ(m) is smaller than 128 bits, but the attack becomes quickly
unpractical for larger sizes.

5 The Security of iso/iec 9796-2 Signatures

iso/iec 9796-2 [6] is an encoding standard allowing total or partial message recovery. Let denote
by kh the output size of the hash function. Hash-functions of different sizes are acceptable.
Section 5, note 4 of [6] recommended (before the standard’s correction by ISO following the
attack described in this paper) 64 ≤ kh ≤ 80 for total recovery and 128 ≤ kh ≤ 160 for partial
recovery.

8

|x| log
2
time log

2
space

64 26 13

99 35 18

119 39 20

139 43 22

144 44 22

176 49 25

200 53 27

256 62 31

368 77 38

Table 2. Attack complexity

For iso/iec 9796-2 , the encoding function µ(m) has the same size as N . Therefore, Desmedt
and Odlyzko’s attack can not be applied directly. The technique consists in generating messages
mi such that a linear combination ti of µ(mi) and N is much smaller than N . Then, the attack
will be applied to the integers ti instead of µ(mi).

5.1 Partial message recovery

For simplicity, assume that k (the size of the modulus N), kh and the size of m are all multiples
of eight and that the hash function is known to both parties. The message m = m[1]‖m[2] is
separated into two parts where m[1] consists of the k − kh − 16 most significant bits of m and
m[2] of all the remaining bits of m. The padding function is :

µ(m) = 6A16‖m[1]‖HASH(m)‖BC16

and m[2] is transmitted in clear.
Dividing (6A16 + 1) · 2k by N we obtain :

(6A16 + 1) · 2k = i ·N + r with 0 ≤ r < N < 2k

One lets N ′ = i ·N which gives :

N ′ = 6A16 · 2k + (2k − r)

Therefore, we can write N ′ as :
N ′ = 6A16‖N ′[1]‖N ′[0]

where the N ′[1] block is k − kh − 16 bits long, the same bit-size as m[1]. Then, one can take
m[1] = N ′[1], and letting :

t = 28 · µ(m) − i ·N
we obtain that :

t = 6A16‖m[1]‖HASH(m)‖BC0016 − 6A16‖N ′[1]‖N ′[0]

t = HASH(m)‖BC0016 −N ′[0]

and the size of t is less than kh + 16 bits.

9

The attacker modifies m[2] (and therefor HASH(m)) until he finds sufficiently many integers
t which are the product of small primes. Then since t = 28 · µ(m) mod N , one can apply the
Desmedt and Odlyzko attack described in section 4 to the integers t (the factor 28 can be added
to the set S). The attack complexity is independent of the size of N ; it only depends on the hash
size kh. From table 2, we obtain the following attack complexity, as a function of the hash size.
For example, for kh = 128, the size of t is 144 bits and from table 2, we obtain that the time
complexity is roughly 244. However, this is only an estimate, and the practical complexity may
be much higher. Nevertheless the table suggests that the attack may be practical for kh = 128,
but will be more demanding for kh = 160. Note that the following complexities are smaller
than the complexities obtained in [2]. This is due to the fact that we have obtained a smaller
complexity in section 4.

kh log
2
time log

2
space

128 44 22

160 49 25

Table 3. Attack complexity with partial message recovery

5.2 Full message recovery

Assuming again that the hash function is known to both parties, that k and kh are multiples
of eight and that the size of m is k − kh − 16, the encoding function µ is then defined as :

µ(m) = 4A16‖m‖HASH(m)‖BC16

Let us separate m = m[1]‖m[0] into two parts where m[0] consists of the ∆ least significant bits
of m and m[1] of all the remaining bits of m and compute, as in the previous case, an integer i
such that :

N ′ = i ·N = 4A16‖N ′[1]‖N ′[0]

where N ′[0] is (kh +∆+ 16)-bit long and N ′[1]‖N ′[0] is k-bit long.

Setting m[1] = N ′[1] we get :

t = 28 · µ(m) −N ′ = m[0]‖HASH(m)‖BC0016 −N ′[0]

where the size of t is less than kh +∆+ 16 bits.

The attacker will thus modify m[0] (and therefore HASH(m)) as needed and conclude the
attack as in the partial recovery case. As shown in section 4, the number of t-values necessary to
forge a signature is roughly Lx[

√
2+o(1)], where x is a bound on t. Therefore, the parameter ∆

must be fixed such that 2∆ ≃ Lx[
√

2]. From table 2, we obtain the following attack complexity,
as a function of the hash size. For example, for kh = 64, we take ∆ = 35 bits and the size of
t is then 64 + 39 + 16 = 119 bits and from table 2 shows that the time complexity is roughly
239. This shows that the attack may be practical for kh = 64. This led to the revision of the
iso/iec 9796-2 standard.

10

kh ∆ log
2
time log

2
space

64 39 39 20

80 43 43 22

128 53 53 27

Table 4. Attack complexity with full message recovery

6 Conclusion

We have illustrated the potential of Desmedt and Odlyzko’s attack by exhibiting a simple attack
on the iso/iec 9796-2 signature standard. The publication of this attack drove ISO to re-edit
iso/iec 9796-2. A more elaborate variant (not described in this paper) [1, 2] led to the complete
withdrawal of iso/iec 9796-1.

References

1. D. Coppersmith, S. Halevi and C. Jutla, ISO 9796-1 and the new forgery strategy, Research contribution to
P1363, 1999, available at http://grouper.ieee.org/groups/1363/contrib.html.

2. J.S. Coron, D. Naccache and J.P. Stern, On the security of RSA Padding, Proceedings of Crypto ’99, LNCS
vol. 1666, Springer-Verlag, 1999, pp. 1-18.

3. Y. Desmedt and A. Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete logarithm
schemes, Proceedings of Crypto ’85, LNCS 218, pp. 516–522.

4. K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Arkiv
för matematik, astronomi och fysik, vol. 22A, no. 10, pp. 1–14, 1930.

5. ISO/IEC 9796, Information technology - Security techniques - Digital signature scheme giving message
recovery, Part 1 : Mechanisms using redundancy, 1999.

6. ISO/IEC 9796-2, Information technology - Security techniques - Digital signature scheme giving message
recovery, Part 2 : Mechanisms using a hash-function, 1997.

7. C. Lanczos, An iterative method for the solution of the eigenvalue problem of linear differential and integral
operator, J. Res. Nat. Bur. Standards, 1950, vol. 45, pp. 255–282.

8. A.K. Lenstra and H. W. Jr. Lenstra, The Development of the Number Field Sieve, Berlin: Springer-Verlag,
1993.

9. H. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987) pp. 649-673.

10. J.-F. Misarsky, How (not) to design RSA signature schemes, Public-key cryptography, Springer-Verlag, Lec-
tures notes in computer science 1431, pp. 14–28, 1998.

11. C. Pomerance, The Quadratic Sieve Factoring Algorithm, In Advances in Cryptology, Proceedings of Euro-
crypt ’84. Springer-Verlag, pp. 169-182, 1985.

12. C. Pomerance, Analysis and comparison of some integer factoring algorithms, pp. 89–139 in Computational
Methods in Number Theory: Part 1, H.W. Lenstra, Jr., and R. Tijdeman ed. Math. Centre Tract 154, Math.
Centre Amsterdam, 1982.

13. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosys-
tems, CACM 21, 1978.

