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1. A Brief Biography
1.1. Personal background. Freeman John Dyson was
born in Crowthorne, Berkshire, in the United Kingdom,
on December 15, 1923. His father was the musician and
composer Sir George Dyson; his mother, Mildred Lucy,
née Atkey, was a lawyer who later became a social worker.
Freeman had an older sister, Alice, who said that, as a boy,
he was constantly calculating and was always surrounded
by encyclopedias. According to his own testimony, Free-
man became interested in mathematics and astronomy
around age six.

At the age of twelve, he won the first place in a scholar-
ship examination to Winchester College, where his father
was the Director of Music; one of the early manifestations
of Freeman’s extraordinary talent. Dyson described his ed-
ucation at Winchester as follows: the official curriculum
at the College was more or less limited to imparting basic
skills in languages and inmathematics; everything else was
in the responsibility of the students. In the company of
some of his fellow students, he thus tried to absorb what-
ever he found interesting, wherever he could find it. That
included, for example, basic Russian that he needed in or-
der to be able to understand Vinogradov’s Introduction to
the Theory of Numbers.
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In 1941, Dyson won a scholarship to Trinity College in
Cambridge. He studied physics with Paul Dirac and Sir
Arthur Eddington and mathematics with G. H. Hardy, J. E.
Littlewood, and Abram Besikovich, the latter apparently
having the strongest influence on his early development
and scientific style. Dyson’s knowledge of Russian came
in handy, as Besikovich preferred to converse with Dyson
in Russian. Dyson published several excellent papers on
problems in number theory, analysis, and algebraic topol-
ogy. Politically, he considered himself to be a socialist.
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During the war, at the age of nineteen, Dyson was as-
signed to the Royal Air Force’s Bomber Command, where
he developed methods for calculating the optimal density
of bombers in formations to hit German targets. In 1945,
he was awarded a BA in mathematics. He became a fel-
low of Trinity College (1946–1949), where he occupied a
room just below the philosopher Ludwig Wittgenstein. Af-
ter having read Heitler’s Quantum Theory of Radiation and
the Smyth Report on the Manhattan Project, Dyson con-
cluded that “Physics would be a major stream of scientific
progress, during the next twenty five years,” and he decided
to trade mathematics for theoretical physics.

In 1947, Dyson won a Commonwealth Fund Fellow-
ship and applied to become a graduate student of Hans
Bethe at Cornell University. It may be surprising that
he decided to leave Cambridge, where Eddington, Kem-
mer, and Dirac taught, and move to America. Dyson
wrote [Dys07, Chapter 1]:

Scientists come in two varieties, hedgehogs and
foxes. I borrow this terminology from Isaiah
Berlin, who borrowed it from the ancient Greek
poet Archilochus.. . . [F]oxes know many tricks,
hedgehogs only one. Foxes are broad, while
hedgehogs are deep. Foxes are interested in ev-
erything and move easily from one problem to
another. Hedgehogs are only interested in a few
problems that they consider fundamental, and
stick with the same problems for years or decades.
[...] Some periods in the history of science are
good times for hedgehogs, while other periods are
good times for foxes. The beginning of the twen-
tieth century was good for hedgehogs. [...] [I]n
the middle of the century, the foundations were
firm and the universe was wide open for foxes to
explore.

Obviously, Freeman Dyson was the archetypal “fox,” and
the period in physics when he started to do research and
scored his first great successes was exactly right for foxes.
He was so much a fox that he never got around to getting
his doctoral degree. Of course, he did not need to. He
was offered a professorship at Cornell University in 1951,
to work with Hans Bethe essentially as a replacement for
Richard Feynman, who had left for Caltech a year earlier.
Dyson wrote about the time he spent at Cornell [Dys96,
p. 18]:

I enjoyed teaching students in class-room courses,
and I enjoyed talking to them individually about
science, but I did not enjoy being responsible for
dragging them through the three-year treadmill of
Ph.D. thesis research. From this unhappy situa-
tion, I was rescued by the offer of a Professorship

at the Institute for Advanced Study. I loved Cor-
nell and I loved Hans Bethe, but I hated the Ph.D.
system to which my students were tied. The Insti-
tute suited my style of work much better. The life-
cycle of the Institute is one year long, with a fresh
crowd of visiting members arriving each Septem-
ber. The annual cycle is well matched to my short
attention-span. . . .With some regret but more re-
lief, I left Cornell in June 1953 and took up my
new position in Princeton in September. I was de-
lighted to have a position in which I would never
again be responsible for a Ph.D. For the rest of my
life I have been fighting ineffectually against the
ever-tightening grip of the Ph.D. system on young
people wishing to pursue careers in science. I am
eternally grateful to Cornell for accepting me as a
professor in 1951 without a Ph.D. Unfortunately,
the liberality with which Cornell treated me did
not extend to my students.

Dyson had married Verena Huber-Dyson in 1950. They
had two children (Esther and George), but the marriage
ended in divorce in 1958. In 1957, Dyson became a citizen
of the United States. In 1958, he married Imme Jung, and
together they had four children (Dorothy, Mia, Rebecca,
and Emily). Dyson was a family man, and he seemed to
greatly enjoy the company of his own six as well as other
children.
1.2. Some of Dyson’s key contributions to theoretical
physics. At the time Dyson started his career in physics,
quantum field theory was in a messy state. Dirac and
Werner Heisenberg thought that, in a revolution similar
to the one that gave birth to quantum mechanics, relativis-
tic quantum field theory (RQFT1) would eventually be su-
perseded by a mathematically meaningful theory unifying
quantum theory with relativity theory. Dyson concluded
that what was necessary was to clarify the intricacies of the
existing formalism of RQFT and to then use it to do con-
crete calculations explaining new experimental data. In
Cambridge, Dyson had learned some quantum field the-
ory from his friend Nicholas Kemmer and from a book by
Gregor Wentzel. Dyson wrote [Dys96, p. 12]:

It was my luck that I arrived with this gift from Eu-
rope just at the moment when the new precise ex-
periments of Lamb and others [...] required quan-
tum field theory for their correct interpretation.
When I used quantum field theory to calculate an

1One referee pointed out that many would prefer the abbreviation “QFT” over
“RQFT” since although nonrelativistic quantum field theories do exist, the rela-
tivistic variety is the standard, and certainly the kind on which Dirac, Feynman,
and Dyson focused.
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experimental number, the Lamb shift [. . . ], Bethe
was impressed.

Dyson’s principal contribution to quantum field the-
ory was, however, to unify the approaches to quantum
electrodynamics (QED), the quantum theory of electrons,
positrons, and photons, that had been proposed by Feyn-
man, Julian Schwinger, and Shin’ichirō Tomonaga, a lit-
tle earlier. This unification work was facilitated by a cross-
country road trip, from Ithaca, New York, to Albuquerque,
New Mexico, that Dyson took with Feynman in June 1948,
joyfully recounted byDyson in Chapter 6 of [Dys79]. After
parting company with Feynman in Albuquerque, Dyson
rode a sequence of Greyhound buses to Ann Arbor, Michi-
gan, where he attended a series of lectures by Schwinger,
and had many conversations with him over a five-week
period. From Ann Arbor, he took a Greyhound bus to
California, where he spent ten days. As the summer was
winding down, he headed back east to Cornell. Dyson
described the crucial insights he gained on this leg of the
journey as follows [Dys79, p. 67]:

Feynman’s pictures and Schwinger’s equations be-
gan sorting themselves out in my head with a clar-
ity they never had before. For the first time I was
able to put them all together. For an hour or two
I arranged and rearranged the pieces. Then I knew
that they all fitted. I had no pencil or paper, but
everything was so clear I did not need to write it
down. Feynman and Schwinger were just look-
ing at the same set of ideas from two different
sides. Putting their methods together, you would
have a theory of quantum electrodynamics that
combined the mathematical precision of
Schwinger with the practical flexibility of Feyn-
man. Finally, there would be a straightforward
theory of the middle ground. It was my tremen-
dous luck and I was the only person who really
had the chance to talk at length to both Schwinger
and Feynman and really understand what both of
them were doing.

Feynman, Schwinger, and Tomonaga shared the 1965 No-
bel Prize for their contributions to quantum electrody-
namics. Dyson discovered the right general concepts and
methods, in particular a Lorentz-covariant form of pertur-
bation theory for the scattering matrix, involving the sys-
tematic use of what are now universally called Feynman
diagrams, and renormalization theory [Dys49], to convert
RQFT into something considerably more compelling than
a machine spitting out numbers that miraculously fit ex-
perimental data. In developing renormalization theory he
understood the importance of “scale separation” in RQFT,
an idea that later gave rise to the so-called renormalization

group, an important paradigm developed primarily by Wil-
son, who greatly generalized ideas of Stückelberg and Pe-
termann and of Gell-Mann and Low. Dyson generously
shared his understanding of quantum field theory with
Bethe and Feynman, and explained the latter’s ideas to
people preferring Schwinger’s over Feynman’s approach to
RQFT, such as J. Robert Oppenheimer, who had become
the director of the Institute for Advanced Study.

Since Dyson was a “fox,” it is unimaginable that he
would work in the same field for more than a year or so at
a time. Indeed, right after his initial successes with QED
(and with meson theory), he moved on to work on prob-
lems in statistical mechanics and solid-state physics.

Dyson’s ideas and results in statistical mechanics and
condensed matter physics, among them his proof, with
Andrew Lenard, of “Stability of Matter,” inspired a tremen-
dous amount of important work by younger colleagues,
among whom one should mention Elliott H. Lieb, who
pursuedmany of the themesDyson had set with admirable
success.

Dyson has made many further seminal contributions
to mathematical physics, applied mathematics, and engi-
neering. Of particular note is his deep work on random ma-
trix theory (RMT), originally initiated by Eugene P. Wigner
in work on the energy spectra of heavy nuclei. Dyson’s
insights have inspired numerous applications of RMT; for
example, to number theory (work of Hugh L. Montgomery
on the zeros of the Riemann zeta function). More recently,
“Dyson’s Brownian motion” has become a very powerful
tool to prove new results in RMT.
1.3. Some of Dyson’s key contributions tomathematics.
1.3.1. The rank and crank of a partition. In one of his earli-
est papers [Dys44], published when he was a 20-year-old
undergraduate at Cambridge, Dyson wrote:

Professor Littlewood, when he makes use of an
algebraic identity, always saves himself the trou-
ble of proving it; he maintains that an identity,
if true, can be verified in a few lines by anybody
obtuse enough to feel the need of verification. My
object in the following pages is to confute this as-
sertion. . . . The plan of my argument is as follows.
After a few preliminaries I state certain properties
of partitions which I am unable to prove: these
guesses are then transformed into algebraic iden-
tities which are also unproved,. . . finally, I indulge
in some even vaguer guesses concerning the exis-
tence of identities which I am not only unable to
prove but also unable to state. . . .Needless to say,
I strongly recommend my readers to supply the
missing proofs, or, even better, the missing identi-
ties.
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In this paper, Dyson defines the rank of a partition (largest
part minus the number of parts) and conjectures that this
provides a combinatorial accounting for the congruences
of Srinivasa Ramanujan [Ram00]:

𝑝(5𝑛 + 4) ≡ 0 (mod 5), (1)

𝑝(7𝑛 + 5) ≡ 0 (mod 7), (2)

where 𝑝(𝑛) denotes the number of partitions of the inte-
ger 𝑛. The rank conjectures were proved a decade later by
Oliver Atkin and Peter Swinnerton-Dyer [ASD54].

The rank does not, however, explain the third Ramanu-
jan congruence

𝑝(11𝑛 + 6) ≡ 0 (mod 11). (3)

Dyson therefore goes on to conjecture the existence of a
partition statistic “similar to, but more recondite than, the
rank of a partition; I shall call this hypothetical coefficient
the ‘crank’ of the partition. . . I believe the ‘crank’ is unique
among arithmetical functions in having been named be-
fore it was discovered.” More than four decades later,
George Andrews and Frank Garvan found the requested
crank [AG88]. Ranks and cranks and their generalizations
remain an active area of research to this day.

1.3.2. Identities of Rogers–Ramanujan type. The Rogers–
Ramanujan identities are a pair of 𝑞-series—infinite prod-
uct identities that were discovered by L. J. Rogers in
1894 [Rog94], yet were ignored by the mathematical
community until Ramanujan independently rediscovered
them (at first without a proof) and brought them to the
attention of G. H. Hardy. They are as follows: for |𝑞| < 1,

∞
∑
𝑛=0

𝑞𝑛2

(1 − 𝑞)(1 − 𝑞2)⋯ (1 − 𝑞𝑛) = ∏
𝑗≥1

𝑗≡±1 (mod 5)

1
1 − 𝑞𝑗 (4)

and
∞
∑
𝑛=0

𝑞𝑛(𝑛+1)
(1 − 𝑞)(1 − 𝑞2)⋯ (1 − 𝑞𝑛) = ∏

𝑗≥1
𝑗≡±2 (mod 5)

1
1 − 𝑞𝑗 . (5)

Dyson delighted in identities of the “Rogers–
Ramanujan type” and in fact Dyson’s very first published
paper [Dys43] was on three modulus 7 analogs of (4)
and (5) that were also originally due to Rogers [Rog94].

During the war, while working at Bomber Command,
Dyson corresponded with W. N. Bailey, who was at the
time working out a deeper understanding of identities of
the Rogers–Ramanujan type. In the course of the corre-
spondence, Dyson contributed many identities to Bailey’s
two papers on Rogers–Ramanujan type identities. Dyson
reported in [Dys88b] that his personal favorite of these

identities was

∞
∑
𝑛=0

𝑞𝑛(𝑛+1)
∏𝑛

𝑘=1(1 + 𝑞𝑘 + 𝑞2𝑘)
∏2𝑛+1

ℎ=1 (1 − 𝑞ℎ)
=

∞
∏
𝑗=1

1 − 𝑞9𝑗
1 − 𝑞𝑗 . (6)

Even after Dyson’s ascendance as one of the world’s
leading physicists, he returned from time to time to some
research in the theory of partitions and 𝑞-series, such as
in [Dys49,Dys12].

1.3.3. The Dyson conjecture. In the first of a series of
papers on the statistical theory of energy levels of com-
plex systems [Dys62a], Dyson introduced what came to be
known as the Dyson conjecture: the constant term in the ex-
pansion of the product

∏
1≤𝑖≠𝑗≤𝑛

(1 − 𝑧𝑖
𝑧𝑗
)
𝑎𝑖

(7)

is the multinomial coefficient
(𝑎1 + 𝑎2 +⋯+ 𝑎𝑛)!

𝑎1! 𝑎2!⋯𝑎𝑛!
.

In 1975, George Andrews stated a 𝑞-analog of the Dyson
conjecture, which was proved ten years later by Doron Zeil-
berger and David Bressoud [ZB85]. The Dyson conjecture
has inspired numerous generalizations and extensions by
many authors over the years, including the extension of
the conjecture to root systems by Ian Macdonald.

1.3.4. “Missed opportunities” lead to found opportunities.
On January 17, 1972, Dyson delivered the Gibbs Lecture
at the annual AMS Meeting, which he entitled “Missed op-
portunities” [Dys72]. In it, he famously declared that “the
marriage between mathematics and physics, which was so
enormously fruitful in past centuries, has recently ended in
divorce.” He went on to recount a tale of how he “missed
the opportunity of discovering a deeper connection be-
tween modular forms and Lie algebras, just because the
number theorist Dyson and the physicist Dyson were not
speaking to each other.” Happily, and in no small part
spurred on by Dyson’s lecture, it appears that mathemat-
ics and physics have reconciled in the ensuing decades and
are once again collaborating harmoniously.
1.4. Dyson’s boundless curiosity. Dyson described what
he regarded as his job in mathematics and physics as fol-
lows: “I define a puremathematician to be somebody who
creates mathematical ideas, and I define an applied mathe-
matician to be somebody who uses existing mathematical
ideas to solve problems. According to this definition, I was
always an applied mathematician, whether I was solving
problems in number-theory or in physics.” Dyson was a
“fox.” He did not discover new physical theories, but, with
an unfailing instinct for the most interesting open ques-
tions, went ahead to elucidate the mathematical structure
of physical theories and solve difficult concrete problems.
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It is well known that Dyson also got involved in engi-
neering projects with General Atomic, such as the design
of the TRIGA reactor, the design of small nuclear bombs
with an intended application to the propulsion of space-
ships by nuclear explosions (Project Orion), etc. He was
also involved in political initiatives, such as the 1963 Par-
tial Test Ban Treaty, which he supported in spite of the fact
that it rendered Project Orion obsolete. In his later years,
he wrote many very successful books for a general audi-
ence, such as Disturbing the Universe, Infinite in All Direc-
tions, The Scientist as Rebel, and Maker of Patterns. Dyson
was a remarkably talented writer, and rumor has it that he
never had to write any page twice. In recent years, he wrote
numerous stimulating reviews for the New York Review of
Books and corresponded with his readers.

2. Personal Recollections
2.1. Stephen L. Adler. My first very indirect contact with
Freeman probably occurred while I was a graduate student
at Princeton (1961–1964), when I occasionally came with
classmates to attend the Tuesday theoretical seminar at
the Institute for Advanced Study (IAS). Oppenheimer and
other members of the IAS physics faculty sat in the front
row, and peppered the speaker with questions. My friends
and I sat in the rows behind the first row. Freeman was al-
most certainly at one ormore of these sessions, but I didn’t
speak with him.

My real association with the IAS, and with Freeman,
began in the fall of 1965, after I had done work on
consequences of the partially conserved axial-vector cur-
rent hypothesis, current algebras, sum rules, and neutrino
physics that had attracted much attention in the high en-
ergy physics community. Freeman’s interests at that point
were shifting to astrophysics, Tullio Regge’s interests were
basicallymathematical, andC.N. (Frank) Yang had left the
IAS to go to Stony Brook, leaving no faculty with interests
focusing on current issues in elementary particle physics.
This led to a decision to bring in younger people on a tem-
porary basis. One consequence was that out of the blue
(at least so it seemed to me at the time, but undoubtedly
Freeman, Tullio, and Princeton University faculty were in-
volved) I received a phone call from Oppenheimer when I
was at Harvard, offering me a five-year membership at the
IAS at a generous salary, much more than I was getting as
Junior Fellow. Oppenheimer also told me that a similar
offer was being made to Roger Dashen (whom I had met
briefly in the spring of 1965) so that neither of us would
feel too lonely. Researching in the School of Natural Sci-
ences (SNS) minutes much later, I learned that this initia-
tive was part of a decision to divide the School of Mathe-
matics at the IAS into separate Schools ofMathematics and
Natural Sciences. This division was completed during the
1965–1966 academic year.

It didn’t take me long to decide to accept the IAS of-
fer. In the spring of 1966 I visited Murray Gell-Mann’s
group at Cal Tech, and got to know Roger Dashen much
better before we both moved to Princeton. When Dashen
and I arrived at the IAS for the fall semester of 1966, we
had the job of restarting the high energy physics program.
Freeman and Tullio both gave us remarkably free rein in
doing this, a model behavior that I have tried to emulate
as younger faculty (Witten, Wilczek, Seiberg, Maldacena,
and Arkani-Hamed) were much later on brought into the
School. Although our status was that of long-term mem-
ber, Roger and I participated in SNS meetings in Oppen-
heimer’s office, along with Freeman and Tullio. After Op-
penheimer died in February 1967, the meetings moved to
Tullio Regge’s office.

Instead of restarting the Tuesday theoretical seminar,
Roger and I started two seminars, one on Mondays for lo-
cal speakers and one on Fridays for out-of-town speakers,
alternating biweekly with the high energy physics group
at Princeton University. A long-term project, which had
strong support from Freeman and Tullio, was to separate
the physics books from the mathematics books. These
were all shelved together in the library room on the sec-
ond floor of Fuld Hall, and were arranged in alphabetical
order by author with no subject index. I undertook to or-
ganize this separation, with the acquiescence of Carl Kay-
sen, the new IAS director. Armand Borel, the Mathemat-
ics professor responsible for the library, grumbled that I
was only a long-term member, but he was as always prag-
matic and in the end did not block this reform from going
ahead. I spent weeks after lunch going through the card
catalog to make the separation, and a new librarian was
hired to catalog the physics books by subject using the Li-
brary of Congress system. Freeman’s support was vital in
making sure that all of this went through. Much later on,
when a younger generation populated the IAS Mathemat-
ics faculty, the mathematics books were also rearranged by
subject.

Although Roger and I were in the same office building
as Freeman for a few years after we came, I had only a
few physics interactions with Freeman; our interests had
diverged substantially. Freeman’s main impact on me and
the high energy physics group was his hands-off attitude,
in letting us run things unimpeded, and his support when
interactions with the rest of the IAS were involved. Free-
man was a passionate supporter of Kaysen’s initiative to
broaden the IAS by creating a School of Social Science,
which was opposed at that time by some of the Mathemat-
ics and Historical Studies faculty. Additionally, he gave
strong support to bringing biology to the IAS, now tak-
ing the form of the Systems Biology group within the SNS.
Freeman’s broad-mindedness, his openness to new ven-
tures, has been a very significant legacy to the IAS. Much
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Figure 2.

later on, when Congress eliminated the university exemp-
tion from the ban on mandatory retirement, Freeman set
a good example by retiring at 70 even though he did not
have to. Most of us in Mathematics and Natural Sciences
have followed his example, by retiring at or before 70, and
this has allowed both Schools to bring in new, younger
faculty, keeping the IAS vital as it moves forward into the
future.
2.2. Krishnaswami Alladi. Freeman Dyson (1923–2020)
was a brilliant physicist and mathematician who was influ-
ential not only due to his fundamental research contribu-
tions, but also because his views on various important sci-
entific issues always attracted worldwide attention. He is
known the world over as an outstanding theoretical physi-
cist, but relatively few know that he began his research ca-
reer as an undergraduate by providing a simple and elegant
explanation of a remarkable theorem on partitions discov-
ered by the Indianmathematical genius Srinivasa Ramanu-
jan. Both my late father Prof. Alladi Ramakrishnan and I
had the privilege of having known Dyson, and here I will
provide some personal remembrances. But I begin by giv-
ing a brief account of Dyson’s work relating to Ramanu-
jan’s congruences for the partition function, because this
was Dyson’s first important discovery.

2.2.1. Dyson’s rank for partitions. In the early part of
the 20th century, Srinivasa Ramanujan revolutionized the
theory of partitions by discovering some spectacular re-
sults. One of his startling discoveries was that 𝑝(5𝑛 +
4) ≡ 0 (mod 5), 𝑝(7𝑛 + 5) ≡ 0 (mod 7), and 𝑝(11𝑛 +
6) ≡ 0 (mod 11), where 𝑝(𝑛) denotes the number of par-
titions of a positive integer 𝑛. Ramanujan’s mentor G.
H. Hardy of Cambridge University was stunned to see
these congruences because partitions represent an addi-
tive process, and so no one would expect that partitions
would satisfy such lovely divisibility relations. Ramanu-
jan gave proofs of these congruences, but these proofs were

analytic in nature. Since partitions are combinatorial ob-
jects, it was desirable to understand these congruences
combinatorially. Such an explanation was found in 1944
by Freeman Dyson who was an undergraduate mathemat-
ics major at Cambridge University at the time.

Dyson defined the rank of a partition as the largest part
minus the number of parts. He observed that the rank can
be used to split the set of partitions of 5𝑛 + 4 into five
subsets of equal size, and the set of partitions of 7𝑛 + 5
into seven subsets of equal size. Thus the rank explains
Ramanujan’s partition congruences mod 5 and 7.

But then he noted that the rank would not explain the
third congruence pertaining to 11. He went on to conjec-
ture the existence of a partition statistic that he dubbed the
crankwhich would explain why 11 would divide 𝑝(11𝑛+6).
Dyson published his findings in a charming paper [Dys44]
in 1944 entitled “Some guesses in the theory of partitions”
in the Cambridge University undergraduate mathematics
journal Eureka. There he humorously remarked that it was
probably the first instance in mathematics when an object
(the crank) was named before it was found! Interestingly,
43 years later, the crank was found by George Andrews and
Frank Garvan during the Ramanujan Centennial Confer-
ence at the University of Illinois, Urbana, in the summer
of 1987, and thus Dyson’s crank conjecture was solved.

Since then the study of cranks for general partition func-
tions and their relatives has become an active area of re-
search in number theory.

2.2.2. Dyson’s other mathematical work. Dyson made sev-
eral more fundamental contributions to mathematics. We
mention just one here.

One of the fundamental questions in the study of ir-
rational numbers is to estimate how closely algebraic ir-
rationals can be approximated by rationals. In 1909, the
Norwegian mathematician Axel Thue established a deep
result for algebraic numbers of degree at least 3, namely
an upper bound on the irrationality measure for such alge-
braic numbers. From this it followed that equations like

𝑥𝑘 − 𝑑𝑦𝑘 = 𝑁,

where 𝑑 is a not a 𝑘th power and 𝑁 any integer, have at
most a finite number of solutions in integer values of 𝑥
and 𝑦 if the integer 𝑘 is at least 3. In contrast, such an equa-
tion can have infinitely many solutions in integers 𝑥 and
𝑦 if 𝑘 = 2. Thue’s result on irrationality measures was sig-
nificantly improved by Carl Ludwig Siegel in 1921. Dyson
further improved on Siegel’s theorem in 1947, and the fi-
nal definitive result was established by K. F. Roth in the
fifties. Thus Dyson made a notable contribution to this
major mathematical problem when he was still a student.

2.2.3. Dyson and quantum electrodynamics. In 1947,
Dyson moved to the United States to work under Hans
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Bethe at Cornell University. There Dyson came into con-
tact with Richard Feynman who simultaneously and inde-
pendently of Julian Schwinger and Shinichiro Tomonaga
had done pioneering work in quantum electro-dynamics.
But the method of Feynman which was diagrammatic
was very different from the field-theoretic approach of
Schwinger and Tomonaga. In 1949 Dyson proved [Dys49]
that the two approaches were equivalent and this pro-
pelled him to stardom in the world of physics.

In the 1960s, as a schoolboy, I had heard my father
speak highly of Dyson on many occasions. While working
for his PhD in probability and stochastic processes at the
University of Manchester, my father met Dyson in 1949 at
a conference in Edinburgh where Dyson was hailed as a ris-
ing star. Later in 1957–58, when my father was a Visiting
Member at the Institute for Advanced Study in Princeton,
he interacted more closely with Dyson who was by then a
permanent member.

In 1967, my father wrote a paper showing how the Feyn-
man diagrams coalesce in a way that was simpler than
Dyson’s derivation.

2.2.4. Contacting Dyson in 1972. My fledgling research
in number theory began in 1972 when I was just entering
the BSc class at Vivekananda College of Madras University.
I was only 16 then, and I was fascinated by Fibonacci num-
bers and arithmetical functions. In order to get an assess-
ment of my early research, my father sent my work to very
eminent mathematicians to get their opinion and advice.
My father also wrote toDyson because he knew that Dyson
had begun his academic life in number theory as an under-
graduate. Dyson wrote back saying that my work showed
that I had promise, but that a talented youngster should
take to a more serious subject like physics, instead of pur-
suing number theory which he considered “recreational”!

Dyson on many occasions had referred to number the-
ory as recreational, but at the same time, he had empha-
sized that his investigations in number theory had given
him the greatest pleasure.

2.2.5. Interacting with Dyson at the Institute for Advanced
Study (1981–82). I spent the academic year 1981–82 as a
Visiting Member at the Institute for Advanced Study. My
main interaction was with the FieldsMedalists Atle Selberg
and Enrico Bombieri in the School ofMathematics. Dyson
was in the School of Natural Sciences, and so I did not see
him in the mathematics seminars. But I did see him at
the daily afternoon tea. I conversed with him a few times
and he enquired about the work I was doing in analytic
number theory and the progress I was making.

My wife Mathura and I had a nice apartment—56 Ein-
stein Drive—on the grounds of the Institute. My daughter
Lalitha was just a few months old.

Mathura and I were invited to dinners and parties quite
a few times, and we needed a babysitter for Lalitha on
those occasions.

I was told that Dyson’s daughter Rebecca, who was then
14 years old, would be a good babysitter. So I approached
Dyson with this request and he was quite pleased to con-
vey it to his daughter. Indeed, every time Rebecca would
babysit Lalitha, Dyson would personally drop his daugh-
ter at the front door of our apartment and pick her up later.
Each time he would say a warm hello when he dropped
her, and a pleasant goodbye when he picked her up.

2.2.6. The Selected Papers of Freeman Dyson. There was
an instance when what Dyson said in the Preface to his
Selected Papers [Dys96] was useful to me during my term
as Chair at the University of Florida. I was at the CIRM
outside of Marseille attending a conference in number the-
ory. At the excellent library of the CIRM, I happened to
come across [Dys96]. This book is a collection of all his
papers in mathematics and only a selection of some of his
papers in physics. In the Preface to this book, Dyson says
that in mathematics, a theorem proved is a theorem for-
ever, and so it is customary to publish the collected works
of a mathematician. By contrast, in physics, most papers
are speculative, and so only years later would a physicist
know which papers are correct and truly significant. So it
is customary to publish only selected papers of a physicist.
Coincidentally, when I was attending that conference at
the CIRM, I received a letter from the Dean saying that the
Provost’s Tenure and Promotion Committee wanted some
justification as to why one of my colleagues was being put
up for promotion to full professorship when this person
had only 28 research publications instead of the required
30! Inmy response I emphasized the quality of work ofmy
colleague; quoting Dyson from his Preface, I added a com-
ment that the 28 papers by this colleaguewould amount to
more than 50 by a physicist or a chemist! The promotion
was approved without further questioning.

2.2.7. 80th anniversary of the Institute for Advanced Study,
2010. MynextmeetingwithDysonwas in Princeton in Sep-
tember 2010, when I was invited by Professor Peter God-
dard, Director of the Institute for Advanced Study, for the
conference to celebrate the 80th anniversary of the Insti-
tute. Mathura and I were invited to the banquet of the
80th Anniversary Conference. At the banquet, Freeman
Dyson gave a magnificent after-dinner speech about the
development of theoretical physics at the Institute. In giv-
ing a fantastic account of the 80 years of the Institute,
Dyson was critical that Robert Oppenheimer, who was
the Director from 1947 to 1965, concentrated too much
on particle physics. Dyson pointed out that it was at
his insistence that a program on astrophysics was started
at the Institute in 1958 with the appointment of Bengt
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Stromgren. Dyson also suggested the great astrophysicist
Subrahmanyam Chandrasekhar of the University of
Chicago for a permanent appointment at the Institute, but
Chandrasekhar was not interested in the offer.

In retrospect, Dyson said that he felt it was better that
Stromgrenwas appointed as a PermanentMember because
Chandrasekhar was a “lone wolf” who preferred to work
alone and so may not have blended with the culture of
the Institute where Permanent Members spend consider-
able time interacting with visitors. Dyson was known to
be frank and forthright, and what he said at the banquet
was a confirmation of this.

2.2.8. Visit to Florida in 2013. My last interaction
with Dyson was when he visited the University of Florida
in March 2013 in response to my invitation to deliver
the Ramanujan Colloquium. This colloquium series, so
generously sponsored by George Andrews, has enabled
us to get world-famous mathematicians as speakers every
year. Each speaker would give a public lecture of wide
appeal, namely the Ramanujan Colloquium, followed by
two more specialized seminars during the next two days.

For the Ramanujan Colloquium, Dyson spoke on the
theme “Playing with partitions” in which he described
how the work of Ramanujan fascinated him, and how
he arrived at the notion of the rank to combinatorially
explain two of Ramanujan’s partition congruences. He
spoke with enormous energy, something you would not
expect in someone who was 90 years of age. After mak-
ing some introductory comments about Ramanujan and
partitions, Dyson surprised (or should I say shocked!) ev-
eryone by saying: “I hold Hardy personally responsible
for the death of Ramanujan.” Dyson pointed out that Ra-
manujan was away from his family, and that the rigors
of life in England during World War I took a toll on his
health. He stressed that Ramanujan needed a warm and
considerate friend, but Hardy was aloof and did not re-
alize Ramanujan’s needs. As another example of Hardy’s
cold demeanour, he pointed out that when he discovered
the rank as an explanation of Ramanujan’s congruences,
Hardy gave Dyson the cold shoulder and did not show any
interest in this work.

In the evening following the colloquium, we had a ban-
quet in honor of Dyson. In my speech at the banquet, I
referred to my first contact with Dyson in 1972, and re-
minded him that he advised me then to take to physics
instead of number theory. He smiled and nodded when I
turned towards him as I said this.

The next day, Dyson addressed the Number Theory
Seminar on the theme “New strategies for prisoner’s
dilemma.” His third lecture was a colloquium in the
physics department entitled “Are gravitons in principle de-
tectable?”

He started this thrilling lecture by saying the following
in a thunderous voice: “I hate dogmas and always ques-
tion them.” The physics auditorium was overflowing with
many students squatting in the aisles and some standing.
Dyson’s visit and lectures made a lasting impression on all
of us.
2.3. Pavel Bleher. January 1992. I am very excited: I am
coming to the Institute for Advanced Study (IAS) for one
month, where I will be working with Freeman Dyson on
the distribution of eigenvalues in quantum integrable sys-
tems. This will be a continuation of our joint project with
Joel Lebowitz and Zheming Cheng, which we started in
Fall 1991. It is midwinter, a very cold late evening, and we
(my wife Tanya and I) are tired after our long overseas trip.
We enter our apartment at the Institute and find a greet-
ing note from Freeman and Imme, a welcome dinner on
a table, and a refrigerator full of food. This was extremely
warm and touching.

My first acquaintance with the works of Freeman Dyson
was in the earlier seventies, when I was working with Yakov
Sinai on the critical phenomena in the Dyson hierarchi-
cal models, introduced by Dyson in his proof of the exis-
tence of a phase transition in the classical ferromagnetic
spin chain with the Hamiltonian

𝐻(𝜎) = −𝐽∑
𝑖≠𝑗

𝜎𝑖𝜎𝑗
|𝑖 − 𝑗|𝑎 , 𝜎𝑖 = ±1,

where 1 < 𝑎 < 2 and 𝐽 > 0. The Dyson hierarchical model
Hamiltonian is

𝐻D(𝜎) = −𝐽∑
𝑖≠𝑗

𝜎𝑖𝜎𝑗
𝑑(𝑖, 𝑗)𝑎 ,

where 𝑑(𝑖, 𝑗) is the hierarchical (2-adic) distance. Since
𝑑(𝑖, 𝑗) ≥ |𝑖 − 𝑗|, the interaction in the Dyson hierarchical
model is weaker than in the originalmodel with the power-
like interaction, hence byGriffiths’ inequality the existence
of the long range in the Dyson hierarchical model implies
the one in the power-like model. Dyson derives a recur-
rence inequality for the magnetization in the hierarchical
model under doubling of the volume, and proves that it re-
mains greater than a positive constant at low temperatures
as the volume goes to infinity. This proves the existence
of the thermodynamic limit magnetization at low temper-
atures in the classical spin chain with the power-like inter-
action.

The Dyson hierarchical model is of great interest for
the theory of phase transitions and critical phenomena,
because for this model the renormalization group trans-
formation reduces to a nonlinear integral transformation,
and this allows a study of critical phenomena unavailable
in other models.

AUGUST 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1147



In January 1992, Freeman, Joel, Zheming, and I were
working on the limiting distribution of the error function
in lattice problems and quantum integrable systems. We
began with the classical circle problem about the asymp-
totics, as 𝑅 → ∞, of the number of lattice points in a circle
of radius 𝑅,

𝑁(𝑅) = # {(𝑖, 𝑗) ∈ ℤ2 | √𝑖2 + 𝑗2 ≤ 𝑅} .
Heath-Brown proved that the normalized error function

𝐹(𝑅) = 𝑁(𝑅) − 𝜋𝑅2
𝑅1/2

has a limiting probability density 𝑝(𝑥) in the ergodic sense,
so that for every bounded continuous function 𝑔(𝑥) on the
line,

lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑔(𝐹(𝑅))𝑑𝑅 = ∫

∞

−∞
𝑔(𝑥)𝑝(𝑥)𝑑𝑥.

Heath-Brown proved that the density 𝑝(𝑥) is an entire func-
tion, and it decays, as 𝑥 → ±∞, faster than polynomially.
We extended this result of Heath-Brown to the shifted cir-
cle problem, with

𝑁(𝑅; 𝛼)

= # {(𝑖, 𝑗) ∈ ℤ2 |√(𝑖 + 𝛼1)2 + (𝑗 + 𝛼2)2 ≤ 𝑅} ,

𝛼 = (𝛼1, 𝛼2), 0 ≤ 𝛼1, 𝛼2 ≤ 1,
and we proved that the normalized error function

𝐹(𝑅; 𝛼) = 𝑁(𝑅; 𝛼) − 𝜋𝑅2
𝑅1/2

has a limiting probability density 𝑝(𝑥; 𝛼), which is an en-
tire function. Most importantly, we obtained estimates of
𝑝(𝑥; 𝛼) as 𝑥 → ±∞. We showed that for all 𝜖 > 0,

lim
𝑥→±∞

log 𝑝(𝑥; 𝛼)
|𝑥|4+𝜖 = 0,

and

lim
𝑥→±∞

log 𝑃±(𝑥; 𝛼)
|𝑥|4−𝜖 = ∞,

where

𝑃±(𝑥; 𝛼) =
|
|
|
∫

±∞

±𝑥
𝑝(𝑥; 𝛼) 𝑑𝑥

|
|
|
.

Roughly speaking, 𝑝(𝑥; 𝛼) decays at infinity as exp(−𝑐𝑥4).
I returned to the IAS the following fall, this time for

two semesters (later it was extended to the third semester).
During my stay at the IAS, Freeman and I worked on var-
ious projects. One project was about the variance of the
limiting probability density in the shifted circle problem
𝑝(𝑥; 𝛼). We showed that

∫
∞

−∞
𝑥𝑝(𝑥; 𝛼)𝑑𝑥 = 0,

and we studied the variance

𝐷(𝛼) = ∫
∞

−∞
𝑥2𝑝(𝑥; 𝛼)𝑑𝑥,

as a function of 𝛼. We showed that 𝐷(𝛼) is a continuous
function, and for every rational 𝛽 ∈ ℚ2, there exists the
limit

lim
𝛼→𝛽

𝐷(𝛼) − 𝐷(𝛽)
|𝛼 − 𝛽| | log |𝛼 − 𝛽|| = 𝐶(𝛽) > 0.

Thus, 𝐷(𝛼) is a “wild” function, with a sharp local maxi-
mum with infinite derivative at every rational point.

Another project concerned themean square limit for lat-
tice points in a sphere. Let

𝑁(𝑅) = #{𝑛 ∈ ℤ3 | |𝑛| ≤ 𝑟}
be the number of integral points inside a sphere of radius
𝑅 centered at the origin, and let

𝐹(𝑅) =
𝑁(𝑅) − 4𝜋𝑅3

3
𝑅 .

Then we prove that the following limit exists:

lim
𝑇→∞

1
𝑇 log 𝑇 ∫

𝑇

1
𝐹2(𝑅)𝑑𝑅 = 𝐾,

where

𝐾 = 32𝜁(2)
7𝜁(3)

and 𝜁(𝑠) is the Riemann zeta function.
During my stay at the IAS, I often had lunch with Free-

man, and we discussed various topics. He told me about
his life in Cambridge and his teachers, Hardy, Besicovitch,
Dirac, and others. In his office at the IAS there were several
Russian books, including Dostoevsky and Tolstoy. Free-
man learned Russian in Cambridge, talking to Besicovitch
and some other Russians. This is brilliantly described in
his autobiographical book Maker of Patterns.

Once, at lunch, I told Freeman about the problem of
spacings between energy levels in quantum linear systems,
the problem I was working on at the time. The problem
is as follows (I use notations from Freeman’s later notes).
Let 𝐰 be a vector of frequencies, whose components 𝑤𝑗,
𝑗 = 1, … , 𝑑, are a set of 𝑑 real numbers linearly independent
modulo 1. Let 𝑅1 be a bounded convex region including
the origin 𝑂 in Euclidean space of 𝑑 dimensions, and let
𝑅𝑧 be the region 𝑅1 expanded homothetically by a factor
𝑧 leaving 𝑂 fixed. Let 𝑀𝑧 be the set of integer points 𝐦 =
(𝑚1, … ,𝑚𝑑) in 𝑅𝑧. Let the number of points in 𝑀𝑧 be 𝑁𝑧.
Consider the set 𝑄𝑧 of linear combinations modulo 1,

(𝐦,𝐰) =
𝑑
∑
𝑗=1

𝑚𝑗𝑤𝑗 mod 1,
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a set of𝑁𝑧 distinct real numbers which we imagine to be ar-
ranged in sequence around a circle of circumference 1. Let
𝐷𝑧 be the number of different distances that occur between
pairs of nearest neighbors in𝑄𝑧. The question I asked Free-
man is how does𝐷𝑧 behave as 𝑧 becomes large? In the case
𝑑 = 1, it is easy to prove that 𝐷𝑧 is always either 2 or 3. I
examined the case 𝑑 = 2 numerically for various choices of
𝐰 and found that 𝐷𝑧 varies remarkably little. I found that
𝐷𝑧 is usually about 12 and shows no systematic tendency
to increase with 𝑧. I was especially interested in the case
when the frequencies 𝑤𝑗, 𝑗 = 1, … , 𝑑, together with 1, form
a basis in the set of real algebraic integers in an algebraic
field. My conjecture was that in this case 𝐷𝑧 is bounded,
and the set 𝑄𝑧 exhibits some self-similarity properties in
𝑧. About four weeks later Freeman brought a marvelous
proof of the following theorem.

Theorem (Dyson). Let 𝑤𝑗, 𝑗 = 1, … , 𝑑, be real algebraic in-
tegers, all belonging to the same field Φ of degree (𝑑 + 1), and
are linearly independent over the rationals modulo 1. Then 𝐷𝑧
has a bound independent of 𝑧.

Freeman’s proof can be divided into two parts. In the
first part, the finiteness of 𝐷𝑧 is proved for any badly approx-
imable vector 𝐰, so that for some 𝐾 > 0,

(𝐦,𝐰) ≥ 𝐾
|𝐦|𝑑 ∀𝐦 ≠ 𝟎;

and in the second part, a theorem of Perron is invoked,
which shows that under the conditions of Dyson’s theo-
rem, the vector 𝐦 is badly approximable.

In May–June 2019 I came to the Institute for Advanced
Study for several days for a conference. I was very glad to
see Freeman in good health and spirits (hewas 95 years old
at that time). Freeman asked me about my recent work. I
told him about my work with Vladimir Fokin, Karl Liechty,
and Thomas Bothner on random matrices and exact solu-
tions of the six-vertexmodel of statistical physics. Freeman
listened very carefully and asked many questions. Then he
asked if the results were published. I said yes, there were
several papers and alsomy book with Karl Liechty, Random
Matrices and the Six-Vertex Model. Freeman asked if I could
send him the published results. I said yes, and I was very
glad to send him a copy of our book with Karl.

This was my last meeting with Freeman, and I believe I
am a lucky man to have known him, talked to him, and
collaborated with him on various projects.
2.4. Jennifer T. Chayes. I first met Freeman in 1980 at
a Mathematical Physics lunch in Princeton’s Jadwin Hall,
room 343, during my second year of grad school. The
room was filled with legends and future legends of math-
ematical physics. None was warmer and more encour-
aging to me than Freeman. The lunches were glorious,
unstructured brown bags, where someone would, often

Figure 3.

spontaneously, go to the blackboard and talk not about
a research accomplishment, but about how he (it was al-
most always he) was stuck on some problem. During the
lunches in 1980–83, the remainder of my years at Prince-
ton, we would often discuss atomic physics or statistical
physics, areas in which Freeman had made fundamental
and beautiful contributions.

The work of Freeman that I studied as a grad stu-
dent always started with a question in physics, and then
took a journey through some lovely mathematics. Free-
man is probably most famous for his quantum electrody-
namics, but it is his statistical physics that captured my
heart and my imagination. One of the problems which
Freeman studied was the one-dimensional 1/𝑟2 ferromag-
netic Ising model—a simple chain of Ising spins which
would have been trivial if they had nearest-neighbor cou-
plings, but was highly nontrivial due to the long-range
interactions, especially the magical power of 2. Many
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legends had made contributions to this problem—among
the physicists, Thouless, who conjectured a discontinuity
in the magnetization (1969), and Anderson, Yuval, and
Hamann, who did an early renormalization group analysis
(1971). Among the mathematical physicists who proved
some of the physics conjectures were many legends—
including Dobrushin and Ruelle, in addition to Freeman,
around 1970, and Fröhlich and Spencer about a decade
later. Freeman in particular had a spectacularly clever and
beautiful analysis where he introducedwhat is now known
as the “Dyson hierarchical model,” for which renormal-
ization properties could be easily established, and used
it to bound the actual model and thereby prove one side
of the existence of the phase transition. As with much
of Freeman’s work, he not only established a rigorous re-
sult, but also introduced a new way of thinking about the
problem (in this case, a model designed for renormaliza-
tion) which physicists and mathematicians use decades
later. In 1988, in collaboration with Michael Aizenman,
Lincoln Chayes, and Charles Newman, we proved the dis-
continuity in the magnetization using many of the ideas
going back to Freeman’s original work. Upon seeing
me shortly after this, Freeman said, “I knew you would
do something important”—which was probably the most
thrilling compliment I ever received!

Freeman continued to be an inspiration to me on so
many levels. During 1994–95 and 1996–97, when I was
a member of the Institute for Advanced Study, I would
often stop by and chat with him as he was having lunch
(mostly by himself) or having tea in the Fuld Hall lounge.
He was my model of how to move through the world, al-
ways grounded by mathematics, while venturing bravely
into fields over which we have so much less control.
2.5. Jürg Fröhlich. I first heard of Freeman Dyson as an
undergraduate student of Mathematics and Physics at the
ETH in Zurich, during the second half of the sixties. Two
of my teachers, Klaus Hepp and the late Res Jost, who was
a close friend of Dyson, followed his scientific work. At
that time, Dyson’s and Lenard’s analysis of Stability of Mat-
ter looked particularly exciting to them. Hepp and Jost
greatly admired Dyson as the leading mathematical physi-
cist after WorldWar II, and they conveyed their admiration
to us students. Thus, for me, Dyson was the epitome of a
highly successful theorist whose example one would have
to try to follow. In a seminar for undergraduate students,
in 1968, we had to give talks about relativistic quantum
field theory, and this was the occasion for us to learn about
Dyson’s celebrated work on quantum electrodynamics of
1949 [Dys49]. In passing, I might say that, in retrospect,
I find it perplexing that, during that seminar, we neither
heard nor talked about the work of the eminent Swiss the-
orist E. C. G. Stückelberg, a professor at the Universities

of Geneva and Lausanne, who had invented a manifestly
Lorentz-covariant form of perturbation theory in RQFT al-
ready back in 1934 and had introduced the ideas of a
positron representing an electron traveling backwards in
time and of diagrams to label terms in the perturbation
series of a quantum field theory, in 1941, several years
before Feynman. To return to Dyson, I should add that
we also learned that he had contributed important ideas
and results to a development that flourished at the ETH, at
the time, namely axiomatic quantum field theory, in the
sense of the late Arthur S. Wightman. As an example, I
recall that there is a remarkable integral representation of
commutators of local fields in RQFT, called Jost–Lehmann–
Dyson representation, which has various interesting applica-
tions, among them a general proof of Goldstone’s theo-
rem, which says that, in RQFT, the spontaneous breaking
of a continuous symmetry is accompanied by the appear-
ance of a massless boson in the particle spectrum of the
theory. It should also be mentioned that the outstanding
work of Klaus Hepp on renormalized perturbation theory
in RQFT built on ideas originally proposed by Dyson (and
Stückelberg). Thus, there were many intellectual connec-
tions between Dyson and people in the environment in
which I grew up as a student. The work of Thomas C.
Spencer (IAS) and myself on the phase transition in the
1/𝑟2 ferromagnetic Ising chain was inspired by some of his
earlier results.

During several stays at the Institute for Advanced Study
between 1984 and 2016, my wife and I developed very
friendly ties with Freeman Dyson and his wife Imme. Not
only have I lost a colleague whom I deeply admired, we
have lost a friend.
2.6. Joel Lebowitz. The recent deaths of Freeman Dyson
and Phil Anderson, whose birthdays were just two days
apart and whose domiciles were less than two miles apart,
mark the end of an era inmathematical/theoretical physics.
I describe below a few of my interactions with Freeman
over a period of more than sixty years.

Freeman’s death came as a sad surprise to me, despite
the fact that I knew that he was in poor health. In fact, just
a few days before his death, as we walked together from
the physics building to the dining room of the IAS, I asked
Freeman about his health. His answer was “I could talk
about it for hours, but I will not.” The accent on the last four
words was emphatic. His voice had lost almost none of
the resonance which thrilled so many varied audiences for
so many years. These audiences included mathematicians,
physicists, philosophers, and politicians as well as college
and high school students.

I first met Freeman in the spring of 1953, when I was a
first-year graduate student at Syracuse University. I drove
with my thesis advisor Peter Bergmann from Syracuse to
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Ithaca for a seminar at Cornell by Joe Doob, the prob-
abilist from Illinois, who was also in the car with us.
After the seminar we were invited for drinks at Dyson’s
house—Freeman was already a famous professor there. Af-
ter drinks we all went to an Italian restaurant and Freeman
paid for my dinner which, given the fact that my graduate
assistant salary was not very large (I believe it was $1,500,
per academic year), wasmuch appreciated. I have been the
recipient of many kindnesses from Freeman since then.

My next close encounter with Freeman was during the
academic year 1967–1968, when he was a visiting profes-
sor at the Belfer Graduate School of Science, Yeshiva Uni-
versity, where I was a faculty member. I remember Free-
man giving a wonderful course on astrophysics. I have
not been able to find any references to those lectures ex-
cept for an article by Freeman in the October 1968 issue
of Physics Today, entitled “Interstellar transport.” The arti-
cle describes two designs of spaceships powered by nuclear
bomb detonations which could enable interstellar voyages
“in about 200 years time.” At the end of the article Freeman
writes “This article is based on a lecture given at the Belfer
Graduate School of Science, Yeshiva University, in January
1968, as an entertainment between semesters.”

My contact with Freeman and his wife Imme increased
greatly after my wife Ann and I moved to Princeton in the
late ‘70s, to be closer to Rutgers University where I still
work. I spent part of the 1980 academic year at the IAS as
a guest of Freeman. We saw each other quite often at sem-
inars and also socially. Whenever we met socially, Ann
would kiss Freeman on the cheek, which I think he en-
joyed but made him feel a bit uncomfortable. It was not
in the style of his British upbringing. He was, however,
far from stuffy. He was a good dinner companion, having
informed and strongly held beliefs, almost never the con-
ventional ones, about almost any subject. I did not always
agree with him but we remained friends.

Let me now come briefly to our direct scientific inter-
actions as mathematical physicists. A quote from Dyson’s
book Eros and Gaia (pp. 164–165) describes his attitude
to the subject:

To make clear the real and lasting importance
of unfashionable science, I return to the field
in which I am an expert, namely mathematical
physics. Mathematical physics is the discipline
of people who try to reach a deep understanding
of physical phenomena by following the rigorous
style andmethod ofmathematics. It is a discipline
that lies at the border between physics and math-
ematics. The purpose of mathematical physics
is not to calculate phenomena quantitatively but
to understand them qualitatively. They work
with theorems and proofs not with numbers and

computers. Their aim is to qualify withmathemat-
ical precision the concepts upon which physical
theories are built.

My first direct contact with Freeman’s scientific work
came in 1968 when I was working with Elliott Lieb on
showing in a “mathematical physics” sense that statistical
mechanics can provide a basis for the equilibrium ther-
modynamics of real matter consisting of electrons and
nuclei interacting via Coulomb forces. A very crucial in-
gredient in our analysis was Dyson’s proof with Andrew
Lenard (1967) of the stability against collapse of macro-
scopic Coulomb systems. To quote from the paper with
Lieb: “The Dyson-Lenard theorem is as fundamental as it
is difficult.”

My next scientific interaction, indeed collaboration,
with Freeman, concerned the distribution of lattice points,
a problem going back to Gauss. Consider a two-
dimensional square lattice ℤ2. Take a disc with radius 𝑅
centered at the origin. Find a bound on the deviation of
𝑁0(𝑅), the number of lattice points in the disc, from its
average value of 𝜋𝑅2.

The Gauss problem is related to the distribution of en-
ergy eigenvalues of a particle in a unit torus. In the early
‘90s, Pavel Bleher, Zheming Cheng, Freeman Dyson, and
I considered the following more general problem. Take
𝑎 ∈ [0, 1]2 and define𝑁𝑎(𝑅) as the number of lattice points
in a disc of radius 𝑅 centered at 𝑎, so that the Gauss prob-
lem corresponds to 𝑎 = 0. So far no randomness. From
the point of view of energy level statistics we are interested
in the behavior of 𝐹𝑎(𝑅) = (𝑁𝑎(𝑅) − 𝜋𝑅2)/𝑅1/2 as 𝑅 varies
over some range, e.g., 𝑅 varies uniformly between 1 and 𝑇.

Following ideas by Heath-Brown, we proved the follow-
ing result. The probability that 𝐹𝑎(𝑅) lies in the interval
(𝑥, 𝑥 + 𝑑𝑥) approaches 𝐴exp[−𝑏𝑥4]𝑑𝑥 weakly as 𝑇 → ∞.

Let me conclude with one of my favorite Dyson quotes,
from his wonderful book, Infinite in All Directions [Dys88a,
p. 118]:

Tome themost astonishing fact in the universe . . . .
is the power of mind which drives my fingers as I
write these words. Somehow, by natural processes
still mysterious, a million butterfly brains work-
ing together in a human skull have the power to
dream, calculate . . . to translate thoughts and feel-
ings into marks on paper which other brains can
interpret . . . . It appears to me that the tendency of
mind to infiltrate and control matter is a law of na-
ture. . . . Mind has waited for 3 billion years on this
planet before its first string quartet. It may have to
wait for another 3 billion years on this planet be-
fore it spreads all over the galaxy. Ultimately, late
or soon, mind will come into its heritage.

I miss Freeman greatly.
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2.7. Juan M. Maldacena. Freeman Dyson made crucial
contributions to quantum electrodynamics. This is the the-
ory that describes how electrons interact with light, with
both electrons and light treated according to the laws of
relativistic quantum mechanics. Before Dyson entered
the scene, Feynman, Tomonaga, and Schwinger had devel-
oped apparently different theories. Feynman’s theory led
to easy recipes for computation, but essentially nobody
else understood it. Tomonaga’s and Schwinger’s theory
was more complicated but it seemed to rest on a more
solid foundation, describing the system in the more stan-
dard quantum mechanical language. Dyson understood
how these different approaches were related. He derived
how Feynman’s simple rules followed from the more basic
rules of quantum mechanics. Dyson popularized the use
of Feynman diagrams, by explaining how to use them to the
researchers visiting the Institute for Advanced Study. After
this outstanding contribution, he was made a permanent
professor there.

We should emphasize that these theories had confus-
ing aspects. In particular, corrections to some quantities
seemed infinite. These infinities were removed by correct-
ing the input parameters, such as the mass of the electron
by infinite amounts. For many physicists and mathemati-
cians this process seemed to be totally unjustified. The
physical significance of these apparently infinite quantities
was better understood through the work of Wilson in the
‘70s. Dyson jumped into a murky problem and developed
clear mathematical rules that all students today learn and
apply to describe nature. It is rather paradoxical that this
seeminglymathematically ill-defined theory is actually the
most accurate of all of science. In fact, there is a particular
property of the electron which has been both computed
and measured with agreement up to 12 significant digits.
Let us say a few words about this quantity. The electron
can be pictured as a spinning charged particle. Since a
moving charge generates a magnetic field, this behaves as
a small magnet. The quantity in question is the strength of
this magnet. The Dirac equation predicts a certain value in
terms of the charge of the electron and its mass. The theory
of quantum electrodynamics corrects it. These corrections
come from the fact that, in this theory, the electron is sur-
rounded by a cloud of “virtual particles” which modify its
properties slightly. This has been calculated and measured
with increasing precision since the fifties. When Freeman
heard about themost recentmeasurements a few years ago,
he sent a congratulatory letter to the team that had done
the measurement and said, “I remember that we thought
of QED in 1949 as a temporary and jerry-built structure,
with mathematical inconsistencies and renormalized in-
finities swept under the rug. We did not expect it to last
more than 10 years before some more solidly built theory

would replace it. Now, 57 years have gone by and that
ramshackle structure still stands... It is amazing that you
can measure her dance to one part per trillion and find her
still following our beat.”
2.8. HughMontgomery: Amemorable conversation. In
the autumn of 1971, I derived an incomplete result con-
cerning the zeta function, and formulated a conjecture de-
scribing what I thought lay beyond what I could prove. In
that era, in order to establish that a finding concerning zeta
was new, one had to first show it to Selberg, in case it was
already in his desk drawer. So I arranged to pay a brief
visit to the Institute in April 1972. I described my work at
the blackboard in Selberg’s office, and he remarked that it
was “interesting.” That afternoon at tea I made small talk
with Chowla, who noted that Dyson was standing across
the room from us. He asked me if I had met Dyson, and
when I said no, he insisted on draggingme over to be intro-
duced. Dyson listened patiently to Chowla’s presentation,
turned to me, and his first words were, “So what are you
thinking about?” I replied, “I think that the differences be-
tween the zeros of the zeta function are distributed with
a density one minus the quantity sine pi u divided by pi
u, quantity squared.” Without the slightest hesitation, he
calmly responded, “That’s the pair correlation of the eigen-
values of a random hermitian matrix.” To say that I was
stunned would be an understatement. Hilbert and Pólya
had speculated that RH is true because of the existence of a
certain unknown hermitian operator, but there had never
been any evidence to support that idea. I had suspected
that there might be some lesson to be learned from my
conjecture, and was troubled that I didn’t know what it
was. Now Dyson was telling me that the zeros of the zeta
function seem to be distributed in the way that one would
expect, if they were eigenvalues. The conversation lasted
a few minutes longer, but I have no recollection of what
was said. Perhaps Dyson could tell that the poor graduate
student standing in front of him was struggling to process
further information, because when I went to bid my adieu
to Selberg the next morning, he handed me a note from
Dyson, in which he specified the exact pages in Mehta’s
book that I should read.

Maybe at the time of this conversation I thought that I
was lucky to have had a chance encounter with a physicist.
I soon realized that random matrix theory to which Dyson
referred was constructed in the 1960s by Dyson himself,
with just a few others. So it wasn’t a matter of a physicist
but rather that physicist. I have sometimes wondered how
long it would have taken for the connection to be made,
if Chowla had not so strenuously insisted that I be intro-
duced to Dyson. It might have taken decades. Certainly
it was fortuitous that the connection was discovered at the
first possible instant.
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2.9. Andrew Odlyzko. Freeman Dyson was one of the
most remarkable people I have met, even though I was ex-
posed to only a few facets of his long and astonishingly
multifarious and productive life. One of my great regrets
is that I did not get to knowhim earlier and did not interact
with him more.

A much smaller but still substantial regret is that I am
able to provide only very limited details about my most
important contacts with Freeman. This is due to the
restrictions on building access caused by the COVID-19
pandemic, which keep me from the personal hard copy
archives that contain my correspondence with him on the
main topic that brought us together in the first place. That
subject was the distribution of zeros of the zeta function
and its conjectured connection with random matrix the-
ory.

This connection resulted from a chance conversation be-
tween Freeman and Hugh Montgomery. It occurred at the
usual afternoon tea at the Institute for Advanced Study in
the spring of 1972. However, I did not become interested
in this topic until the late 1970s. At that time I was work-
ing at Bell Labs and occasionally drove down to Princeton
for interesting lectures. One of them was by Montgomery
on his work on the pair correlation of the zeros of the zeta
function and its likely link to eigenvalues of random ma-
trices. That lecture arousedmy interest in the computation
of precise values of large sets of zeros of the zeta function,
and in the development of new algorithms for that pur-
pose. It was during this work, in the early 1980s, that I
was introduced to Freeman. He had been pointed out to
me on early visits to the Institute, back in the mid-1970s,
but in those days I did not have any incentives to talk to
him. That changed, however, with my dives into the mys-
teries of the distribution of zeta zeros.

I had extensive correspondence (via regular mail, as he
was not using email during that period) and personal con-
versations with Freeman on eigenvalues of random matri-
ces and ways to test the extent to which they behaved like
zeta zeros. He suggested and enthusiastically supported
many of the detailed numerical studies that I carried out.
He was extremely knowledgeable about random matrices,
as was to be expected given his seminal contributions to
that subject. But he also knew a lot about the Riemann zeta
function, and in general had great insight into many math-
ematical areas. Freeman had promised to write a preface
to my planned book on the conjectures and computations
about the zeta function. Unfortunately he passed away be-
fore I could call on him to fulfill that promise.

While Freeman’s main technical contributions were in
physics, he started out in number theory. This contributed
to his appreciation of the different goals and approaches
taken by mathematicians and physicists, and the different

attitudes towards rigor in proofs. He was a major figure of
20th century science, and will be greatly missed.
2.10. Craig Tracy and Harold Widom. Freeman Dyson,
in the early 1960s, laid the foundation for much of ran-
dom matrix theory. Motivated by the work of Wigner,
Mehta, and Gaudin, Dyson’s papers had a number of nov-
elties that continue to this day to influence current re-
search. To quote from Dyson’s Selected Papers:

I replaced Wigner’s ensembles of symmetric matri-
ces by ensembles of unitary matrices. Since uni-
tary matrices form a group, this allowed me to
bring the powerful methods of group theory into
the analysis. The other novelty was a proof that the
eigenvalues of the unitary matrices have precisely
the same statistical behavior as the positions of
classical point charges distributedwith a fixed tem-
perature around a circular wire. The well-known
tools of classical statistical mechanics could there-
fore be applied to the eigenvalues.

A particularly prescient paper is Dyson’s “A Brownian-
motion model for the eigenvalues of a random matrix,”
which is a precursor to the Airy2 process that is central to
current research in stochastic growth models. In a 1970
paper, Dyson returned to the orthogonal and symplectic
ensembles to “complete the determination of eigenvalue
correlations by finding explicit formulae for all the 𝑃𝑛𝛽 with
𝛽 = 1, 4.” [Here 𝑃𝑛𝛽 are the 𝑛-level correlation functions.]

Our first correspondence with Dyson dealt with the ac-
curacy of his classical Coulomb fluid model as applied to
the Gaussian ensembles. This resulted in our first publi-
cation (together with Estelle Basor) in the field of random
matrices. Subsequently we benefited from correspondence
with Dyson concerning the orthogonal and symplectic en-
sembles.
2.11. Horng-Tzer Yau: Freeman Dyson and random ma-
trix theory. In the 1980s, when I studied with Elliott Lieb
toward my thesis, Freeman Dyson was a towering figure in
every direction I studied. His celebrated work with Lenard
on the stability of matter inspired the Lieb-Thirring in-
equality and stimulated many subsequent works on rigor-
ous analysis of quantum many-body systems. In another
work, Dyson established a rigorous upper bound on the
ground state energy of hard-core bosons at low density.
This upper bound was given a matching lower bound by
Lieb and Yngvason in 1998. This has led to many rigor-
ous works concerning Bose gas and in particular the Gross–
Pitaevskii equations for the Bose–Einstein condensates.

To many pure mathematicians, Dyson’s most famous
works are perhaps those related to random matrices. Af-
ter a teatime conversation with Hugh Montgomery in
1972, Dyson wrote to Atle Selberg saying that, “the pair
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correlation function of the zeta function [as computed by
Montgomery] is identical with that of eigenvalues of a
random complex matrix of large order.” Given this, one
might think that Dyson had worked on the subject for an
extended period of time. In fact, most of Dyson’s pub-
lished works on random matrices occurred between 1962–
63. He published a series of five papers under the title,
“Statistical theory of the energy levels of complex systems”
and the closely related article [Dys62b]. The main conclu-
sions of these six papers include calculations of level cor-
relation functions and the groundbreaking classification
(𝛽 = 1, 2, 4) of random matrix ensembles by the funda-
mental physical symmetries of the underlying quantum
systems, i.e., Dyson’s threefold way. In addition, he wrote
another article at the time titled, “A Brownian-motion
model for the eigenvalues of a randommatrix.” After 1963,
Dyson rarely published papers on random matrices.

The random matrix theory community in the 1960s
consisted of several nuclear physicists and mathematical
physicists. The subject was founded by Eugene Wigner
[Wig58] who, according to Dyson in The Oxford Handbook
of RandomMatrix Theory, envisioned that “a randommatrix
would be a possible model for the Hamiltonian of a heavy
nucleus.” Besides the works of Wigner and Dyson, major
rigorous works on random matrices were done by Gaudin
[Gau61] andMehta [Meh60]. The works ofWigner, Dyson,
Gaudin, and Mehta then laid the foundation of the math-
ematical theory of random matrices.

Dyson’s Brownian motion paper is very different from
his other papers in this direction. In this groundbreak-
ing work, Dyson sought to find dynamics which leave the
eigenvalue distribution of a Gaussian random matrix en-
semble invariant. I remember that in one dinner conver-
sation with Dyson several years ago, I asked him how he
came up with his Brownian motion construction. Dyson
replied that he made a huge effort to construct a Newto-
nian mechanics that leaves the Coulomb gas distributions
(which are the eigenvalue distributions of random matri-
ces) invariant. After many failures, he realized that it’s im-
possible to do that with purely Newtonian mechanics; the
only possible way is through a friction which is exactly the
Brownian motion.

While the importance of this paper is now well rec-
ognized, its relevance to random matrix theory was not
known to my generation of mathematical physicists (or
mathematicians for thatmatter) even up to the early 2000s.
I first looked intoDyson’s Brownianmotion around 2006–
07. At the time, Erdős, Schlein, and I were interested
in the universality conjecture of the eigenvalue statistics
of random matrices and had no ideas at all. We were
bombarded almost daily at Harvard by the idea of us-
ing dynamics (Ricci flow) in the solution of the Poincaré

conjecture. Coming off working on dynamics of Bose gas
and the Gross–Pitaevskii equations, we were curious if the
universality conjecture could be solved by some dynami-
cal idea. From our training, it was natural to start with a
matrix Brownian motion and then look into the dynamics
of the eigenvalues. After a while, we realized that what we
had tried was exactly Dyson’s Brownian motion.

Dyson’s Brownian motion turned out to be the key
tool in the resolution of the universality conjecture on
the eigenvalue statistics of random matrices, which many
considered to be one of the most fundamental theorems
in random matrix theory. Even more surprisingly, nearly
sixty years after his paper was written, the universality the-
orem can still only be proved by invoking Dyson’s Brow-
nian motion at some stage of the proof. Although Dyson
never mentioned the dynamics he constructed in connec-
tion with the universality conjecture (in fact, this conjec-
ture was formulated several years later by Mehta in his
book, Random Matrices), his motivation to construct dy-
namics leaving the eigenvalue distributions of Gaussian
random matrices invariant was clear.

While random matrix theory is a great success today, it
is interesting to note that at the time random matrix the-
ory had failed in its original purpose to serve as a model
for nuclear physics. Writing for the foreward of The Oxford
Handbook of Random Matrix Theory, Dyson recalled, “All of
our struggles were in vain. 82 levels were too few to give a
statistically significant test of the model. As a contribution
to the understanding of nuclear physics, random matrix
theory was a dismal failure. By 1970 we had decided that
random matrix theory was a beautiful piece of pure math-
ematics having nothing to do with physics. Random ma-
trix theory went temporarily ’to sleep.’” By the mid 1970s,
Dyson seemed to leave random matrix theory completely.
Random matrix theory, however, soon started to take off
in many areas of mathematics and physics. The connec-
tion between random matrices and zeta functions discov-
ered by Montgomery and Dyson led to many subsequent
works by Katz, Rudnick, Sarnak, Keating, and Snaith. In a
separate direction, random matrix theory has made major
impacts in condensed matter physics and the connection
with quantum chaos conjectures was made by Bohigas–
Giannoni–Schmit in the 1980s. Going into the 1990s and
2000s, many new aspects of random matrix theory were
discovered at an astonishing rate. Random matrix theory,
initiated by Wigner, Dyson, Gaudin, and Mehta, has be-
come a fundamental theory in mathematics and physics.

As we reflect on Dyson’s work today, it’s amazing to me
how far he was ahead of his time. In the 60s, the pre-
vailing tool of quantum many-body systems was perturba-
tion theory. Dyson showed us that there is a life in the
rigorous treatment of quantum many-body systems. In
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random matrix theory, Dyson did fundamental work re-
garding its classification and level statistics calculations.
Above all, Dyson’s work on matrix Brownian motions is
one of the earliest dynamical approaches to stationary
problems in mathematics. Many time-dependent meth-
ods in mathematics, e.g., Hamilton’s work on the Ricci
flow, only gradually emerged in the 1970s. Dyson was a
pioneer of his time who was always full of new insights
and original ideas.

Dyson once told me that he considered himself an ap-
plied mathematician in the sense that he only uses mathe-
matics, but does not work on “puremathematics.” He said
that it is too difficult to invent new mathematics and that’s
why he only “uses” mathematics. I did not know how to
reply to his statement. I was wondering if what he did was
not inventing mathematics, what else could it be?
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