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Abstract

A biform is a function depending on two vector-valued variables which is a homo-
geneous polynomial function in each variable separately. In this paper, the foundations of
classical invariant theory and the symbolic method as developed for forms are extended to
the theory of biforms. Specific results for biquadratics in the plane, including an
interesting identification of discriminants, are presented in detail. Applications of these
results to the equivalence problem for quadratic Lagrangians and the determination of
canonical elastic moduli are indicated.
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1. Introduction.

Classical invariant theory is concerned with the properties of homogeneous
polynomials or forms, which are are not affected by linear changes of variables. Of
particular interest is the explicit determination of particular functions depending on the
coefficients of the underlying form, known as invariants and covariants, whose value does
not change (except for a determinantal factor) under the prescribed changes of variables.
Invariants and covariants will determine fundamental geometric properties of the form
which do not depend on the particular coordinates it is written in. A basic constructive
method developed in classical invariant theory for producing covariants is the powerful
symbolic method or umbral calculus of Aronhold. Applications include solutions to the
equivalence problem, which asks when are two different pélyrionﬁals actually the same
under a linear change of variables, and the carnonical form problem, which seeks to
determine a collection of simple "canonical forms" for polynomials of a given degree, with
the property that every polynomial is equivalent to precisely one of the canonical forms on
the list. References for classical invariant theory include the books by Grace and Young,
[1], and Gurevich, [2], and the recent paper of Kung and Rota, [3]. |

The purpose of this note is to extend classical invariant theory to the study of
homogeneous polynomial functions of two vector-valued variables. Specifically, a biform
of bidegree (m,n) is a real-valued function Q(x,u) depending on x € RP and ue R4
which, for fixed u, is a homogeneous polynomial function of degree m in x, and, for

fixed x, is a homogeneous polynomial function of degree n in u. The underlying group
which provides the appropriate changes of variable is thus the Cartesian product GL(p,R)

x GL(q,R); two biforms are equivalent if they can be mapped to each other by a suitable

group element. (Of course, one can also study complex-valued biforms with respect to
complex changes of variables.) Turnbull, [7], treated the case of bilinear biforms, i.e.
m =n =1, butI am unaware of any attempt to treat the covariants of more general
biforms. All of the general results in classical invariant theory as well as the powerful
symbolic method of Aronhold are readily generalized to the case of biforms, and this is
discussed in the first half of the paper. The second half of the paper is devoted to the
invariant theory of binary biquadratics, i.e. p=q =2, m =n =2, which is of importance

for planar elasticity.

The principal motivation for this enterprise comes from the study of quadratic



variational problems

oM oMb
f,[u] = '[Z a?? axl —éx—]dx’

in particular those arising in linear elasticity. The results of this paper provide the key to
the solution of the equivalence problem, which is to determine when two quadratic
Lagrangians are equivalent under a linear change of variables x — Ax,u — Bu.
Essentially, the Lagrangian equivalence problem is translated into the biform equivalence
problem by replacing the Lagrangian by its symbol

Q(x,u) =2, a‘i‘% xI 3 u® ub,

which is a biform of bidegree (2n,2). Indeed, [5] determines a complete list of canonical
forms for first order quadratic Lagrangians in the plane, i.e. n =1, p=q = 2, aresult that
has important applications in linear elasticity, cf. [6].

The invariant theory of higher order biforms, as well as biforms in more than two
dimensions, is completely undeveloped. The most interesting case is that of a ternary
biquadratic, i.e. p=q =3, m =n =2, as this directly relates to the study of quadratic
variational problems in three-dimensional space, and, in particular, the study of linear

three-dimensional elasticity.

Many of the complicated explicit computations of invariants and covariants were
initially done on an Apollo workstation using the symbolic manipulation language SMP.
Listings of the SMP programs that implement the calculations of the symbolic method, both
for ordinary forms as well as biforms, are available from the author.

2. The Symbolic Method for Biforms.

Consider a general biform
Q(x,u) = z (IF) (?) ary x! ! (1)
I1

of bidegree (m,n), defined for x = (x!, ..., xP) e RP, u = (u', ..., u9) e RY%. Here the

sum is over all multi-indices I = (iy, ..., ip) of degree m = i1+...+ip, and J = (jy, ...,jq)



of degree n=j; +..+ jq, and x! = (xl)ll-...-(xp)lp. Under the linear change of variables
X = AKX, u— B,

determined by the group element A = (A,B) € GL(p,R) x GL(q,R), Q gets mapped into

another biform of the same bidegree

~

hence the coefficients a;; of Q get transformed into new coefficients ay; of (5 The

explicit formulas for the a7 j, while easy to write down, are not particularly useful.

Definition 1. A covariant of biweight (g,h) of the biform Q is a polynomial
function J(a,x,u) depending on the coefficients a =(a;;) and the independent and

dependent variables x, u, which, up to a determinantal factor, does not change under the
action of the group GL(p,R) x GL(q,R):

J(@ X ,0) = (det A)® (det B)P J(a,x,u), A = (A,B) e GL(p,R) x GL(q,R).
An invariant I1(a) is just a covariant which does not depend on the variables x or u.

One can also define contravariants and mixed concomitants of general biforms, cf.
[2]; however, for simplicity we will concentrate just on covariants and invariants here, and
avoid the introduction of additional contragredient variables.

The simplest biform Q(x,u) of bidegree (m,n) is the "bipower"
(o x)™ (o w)" (2)
of two linear monomials
@x)=(@'x'+...+0PxP) and (pu) =(¢'ul+ . ud).

The coefficients of (2), which are the power products aj; = o (p] , will serve to determine

the symbolic expressions for the covariants of more general biforms of the given bidegree.
Mimicing the symbolic method for ordinary forms, we are lead to introduce an alphabet

A = {(a1’(P1), (O‘Za(PZ)’ ((X}’(P})’ oo }a



whose elements are ordered pairs of umbral letters: ;= (ocil,...,ali)) and @; = ((pli,...,(p?);
the letters «; and @; in any pair are said to be linked. The coefficient aj; of Q will thus

have the symbolic expression as a product of powers
S N

where (o,9) are any of the linked pairs of umbral letters in A. Thus, a symbolic

representative of the monomial
(H ap 1, ) XK ul
v
will be
(T o o) <
A%

The umbral space U is the space of polynomials P(oy,...,00,01,...,P,X,u), depending
on the symbolic letter pairs (0t1,9;), ..., (04,9, ), which are homogeneous of degree m in
the a's and of degree n in the ¢'s. The symbolic representative of a polynomial

J(a,x,u) 1is not unique, as we can always interchange the symbolic letter pairs. (If we
replace o, by «., then we must also replace @; by (pj.) A symbolic polynomial is

symmetric if it is unchanged by such interchanges.

Proposition 2. Each homogeneous polynomial J(a,x,u) of degree k in the
coefficients a = (a; ;) of a biform Q has a unique symmetric symbolic representative in

U depending on the first k letter pairs (0t},®;), ..., (04, in the alphabet A.

In the invariant theory of ordinary forms, there are two types of symbolic factors or
brackets, cf. [2; §18.2]. (As above, we are leaving aside contravariants, which introduce
yet a third type of bracket factor.) For biforms, there are correspondingly four kinds of

brackets: two kinds of determinantal ones only involving only umbral letters:

[0 0] = det(oc]‘-) and  [¢g... 9] = det((pj‘),
and two linear ones involving the variables x and u:
(@x) = 2 ol x! and (ou) = 2 ¢ ul.



Note that we are not allowed to mix the two types of umbral letters in either type of bracket.
A bracket polynomial, i.e. a polynomial in the four bracket expressions, is said to be
homogeneous if the same number of bracket factors of each of the four kinds appear in
each constituent monomial. The biweight (g,h) of a homogeneous bracket polynomial is
the number of each kind of determinantal bracket factor in any constituent monomial. An
easy extension of the proof of the First Fundamental Theorem for ordinary forms, cf. [2;
§17], immediately leads to a version for biforms:

Theorem 3. A homogeneous polynomial J(a,x,u) is a covariant of the biform
Q(x,u) of biweight (g,h) if and only if its symmetric umbral representative is a homo-
geneous bracket polynomial of biweight (g,h). Conversely, any homogeneous bracket
polynomial of biweight (g,h) is an umbral representative of a covariant of biweight (g,h).

Finally, we note that there is a straightforward extension of the Basis Theorem of
Hilbert, cf. [2; theorem 21.3], [3; theorem 6.1], that shows that the space of covariants of a
biform of a given bidegree is finitely generated.

Theorem 4. Let Q be a biform of a given bidegree. Then there is a finite set of
covariants Cy, ..., Cy with the property that any other covariant can be expressed as a
polynomial P(Cy, ..., Cy) in these basic covariants.

It should be relatively easy to adapt the procedure of Gordan, cf. [1], [2], to
actually compute the generating set of covariants of biforms of low degree. However, even
for the simplest nontrivial case of a binary biquadratic, this appears to be very complicated,
and remains an open problem. However, since there is a complete classification of the
canonical forms for binary biquadratics in [5] this question is of less direct interest for the
applications to variational problems and elasticity.

3. Elementary Covariants of Binary Biquadratics.

We now illustrate the general considerations of the previous section with the first
nontrivial case of a biform, i.e. a binary biquadratic (p =q =2, m =n = 2), and construct
some of the basic covariants using the symbolic method. The general binary biquadratic is

2

Q(x,u) = aﬂxzu2 + Zaiéxyuz + aééyzuz + 2aﬁx uv + 4a£xyuv +

+ 2azlg‘y2uv + aﬁxzv2 + 2a£xyv2 + a%%yzvz

>



where Xx = (xl,xz) = (X,y) and u = (ul,uz) = (u,v) are both in R2, Note that the
symbolic forms of the coefficients of Q are

aﬁ_]g‘ ~ ol od ‘Pk (PQ. ,
where (OL,Q) = ((ocl,ocz),((pl,(pz)) are any of the umbral letter pairs in our alphabet.
Consider first the covariant with symbolic bracket expression

[0ty 0] (03 ) (9, W2, @)
where (4(,9;), (0,,¢,) are two distinct umbral letter pairs. It represents a polynomial
which is a quadratic function of the coefficients aligg‘, and a quartic polynomial in u. A
short computation shows that it is the same as the discriminant

| 2QQ

1 2
Ay() = T(QexQyy — Qxy) 'y I(x,y)?

of the quadratic polynomial Q with respect to the variables x, which is a covariant of
biweight (2,0). (The subscripts on Q indicate partial derivatives, and the second
expression is the hyperjacobian notation introduced in [4], which generalizes the classical
transvectant notation.) Similarly, the covariant with symbolic bracket expression

(¢4 (92]2 (o4 x)2 (0 x)2 (3)
represents the u-discriminant

92(Q,Q)

1
8= 5 Qu Q== § T2 |

which has biweight (0,2). These discriminants have the usual properties of a discriminant
of an ordinary quadratic polynomial; for instance, A,(ug) =0 implies that Q(x,uy) is a

perfect square, etc. The symbolic form
[ty 0] [0 @5 (0 X) (0 X) (@7 1) (P 1),

represents a mixed biquadratic covariant of biweight (2,2), which has the explicit formula



| PQQ

1 - % T s
C2 =2 (qu va QXV Qyu) 8 a(u,V) a(X,Y) .

The simplest invariant of Q has bracket expression
[ay 0,12 [0 9512 G

In terms of the coefficients of Q, it has the explicit formula
11.22 11.22 11,22 12 12 12,2
Iy = 2a) a5, — 4apyay; + 2aya1] — 44172, + 4(a;5)%,

and has biweight (2,2). There is a single cubic invariant, and it has bracket expression
[oy oy [0 0z] [0 03] [@7 @] [0 P51 [0 @3] . (5)

It is of biweight (3,3), and the explicit formula is

L o_allglz22 111222 111222 11,1222 111222 11,12 22
3 = dy18y78y) = d118958 9 — 198y 1dyy + Ap@p5dy g + dg581 18 ) — dypd8198y

where we have dropped a common factor of 12. Still more complicated is the fourth order

invariant with symbolic expression
[ory 01° [ty 01T [ 9317 [0 9417 (6)

and biweight (4,4). A fairly lengthy computation shows that, up to a factor of 2, it has the
explicit expression

[ oallal222_ ,11,12.22 111222 11,1222 111222 11,1222
4 = 11819899 = 411857815 — &y5d1 1855 + A1y 81 T dxp87181p — dprd;pdy -

4. Quartic Invariants and Biquadratics.

We can indicate some further developments in the the invariant theory of the binary
biquadratic by applying the technique of composition of covariants. If Q is any (bi)form,
and J is a polynomial covariant for Q, then we can regard J itself as a (bi)form, whose
coefficients are certain polynomial combinations of the coefficients of Q. Any covariant

K, which depends directly on the coefficients of J, is then, by composition, a covariant of
Q, denoted by K-J.



We recall that for a binary quartic
f(x) = ax? ¢ 4b-x3y + 6c-x2y2 + 4d-xy3 + e-y4,
the Hessian

1 az(Au, A

- @ _
H=00"= w5y

is a covariant of weight 2, and the two important invariants

o4, )
. _ @ _ L7 o 2
i=(1) _5768(x,y)4 2a-e — 8b-d + 6¢4,
and
@ 1 64(f, H) abc
J_ (f’H) Wa( ,y)4 - 6det b C d >

have weights 4 and 6 repectively, cf. [1; §89]. (Here, (f,g)(k) denotes the classical kth
transvectantof f and g.)

Since the discriminant A (x) of a binary biquadratic form is a binary quartic form

in the variables x = (x,y), the corresponding covariants are, by composition, covariants of
the original biquadratic Q. Thus we have the Hessian of the u-discriminant

L1 32(A,A,)
- 44 axy)?

H,&x)=H-4A,
which is again a binary quartic in x, and a covariant of biweight (2,4), as well as the two
invariants

B 1 a4(Au’Au) d i mieA - 1 a4(Au’Hu)
T376 o,y MY T T TS Tyt

1u=1°Au

which have biweights (4,4) and (6,6) respectively. Similarly, we can compute covariants

of the x-discriminant, leading to the alternative Hessian



1 a2(Ax’ Ax)
W = A= T 50 w7

of biweight (4,2), and the two invariants

R B AL G 4 iea L oMAGHY
TUATSE B M KT AT IR a0

of biweights (4,4) and (6,6) respectively. The two Hessians are easily seen to be different
quartic polynomials (even if one identifies the variables x and u). Remarkably, the i
and j invariants of the two discriminants are the same invariants of the original biquadratic
polynomial Q. This is a key result for the canonical form problem, treated in [5].

Theorem S. Let Q be a binary biquadratic form. Let A (u) and A (x) be the

two discriminants, which are quartic forms in u and x respectively. Then the invariants
of these two quartic forms are the same:

i =icA, =i =i°A,, Ix =08 =jy=J°4y.
Corollary 6. The cross ratios of the roots of the two discriminants A (u) and
A,(x) of a biquadratic are the same.

32

This follows immediately from the result [1; page 205] that the ratio 1i°/j

essentially determines the cross ratio of the four roots of the quartic.

Corollary 7. The two discriminants A (u) and A (x) of a binary biquadratic

either both have all simple roots, or both have repeated roots.

Indeed, the discriminant of a quartic, whose vanishing indicates the presence of
repeated roots, is given by A= 517(9 - 6j2), cf. [1; page 198]. Therefore theorem 5

implies that the two quartics A (u) and A,(x) have the same discriminant, and the coro-

llary follows immediately. Note that it is not asserted that A,(u) and A, (x) have

identical root multiplicities! For example, the biquadratic form Q = x2u? + xyv2 has u-

discriminant A, = - 4x3y, which has a triple root at 0 and a simple root at co, whereas

the x-discriminant A, = v* hasa quadruple root at eo. The complete description of the

possible root configurations of a biquadratic form follows from the general classification

theorem presented in [5].

10



There are at least three possible ways to prove theorem 5. One is to explicitly write

out the invariants i, j,,i, and j,, and compare terms. This was the original version of

the proof, and was effected on an Apollo computer using the symbolic manipulation
language SMP. The explicit formula for Jy Tuns to two entire printed pages! A second
approach is to write out the formulas in terms of the partial derivatives of the biquadratic
form Q; this looks feasible, but I have not attempted to do this. The final approach is to
work entirely symbolically, using the transvectant calculus of Gordan. The goal is to
obtain the complete symbolic bracket expressions for the two pairs of invariants and prove
them the same. Since the two pairs of invariants are constructed in completely analogous
fashion, exchanging the roles of the x and u variables, we are lead to consider the
following concept.

Definition 8. For a biform Q(x,u), in which x and u both lie in RP, define

the interchange involution which maps Q to the new biform é(x,u) = Q(u,x).

The interchange induces an involution on the coefficients of Q, mapping a}ija to

ali(jo‘ , and hence on the covariants themselves. For instance, the interchange involution

clearly takes the covariants A Hyd to Ay, H,,1i,,],, respectively. Moreover,

w’ Ju
the interchange involution acts on the symbolic expressions by interchanging the various
umbral letter pairs: o, <> ¢;. We will call a covariant interchange symmetric if it is
unchanged by this involution; easy examples are the invariants I, I5, I, constructed in
section 3, as well as the covariant C,. Theorem 5 will be proven if we can show that, in
addition, the invariants i, and j, are interchange-symmetric. More to the point, we need
to show that if we have an symbolic representative for i, or for j,, and we interchange
all the umbral letter pairs o «> ¢;, then we obtain another symbolic representative for the

same invarant 1y or ]u.

We begin with the simpler of the two invariants i, which is the fourth transvectant
of the discriminant A, with itself. Thus we must transvect the symbolic expression (2)
four times with itself using the umbral letters o, . (See [1] for the mechanics of
transvection.) We find that the resulting transvectant is a linear combination (the precise
numerical coefficients are not important) of two different symbolic bracket expressions.
The first has the form

[o 012 [o, 0,12 [9; 9,12 [ 9,]2. (7)

11



where (o, ¢;), 1= 1,2,3,4, are the linked letter pairs. This one is just the symbolic form

of the invariant I4, cf. (6), and so is interchange symmetric. We can also see this

symbolically: if we interchange each o and ¢, in (7), and then use the fact that the letter
pairs themselves are all interchangeable, so we can excahnge the pairs (o,, ¢,) and
(03, ¢3), we revert to the same symbolic expression (7), which proves the symmetry.

The second contribution to the transvectant for i, is a multiple of

[oy o] oy o] [0y o] [ o] (9 0,12 [0 9,12 (®)

which is not so clearly symmetric under the interchange involution. However, we now
appeal to the fundamental syzygy among the bracket factors: '

[on B] [y 8] = [ouy] [B 8] + [ 8] [y B, 9)

cf. [3; lemma 3.1]. (Here «, B, Yy, d are umbral letters of the same kind.) If we use this
relation on the second and third bracket factors in (8), i.e. set o0 = Qg B= Oy, Y= 0y,
d = oy, we find that (8) is equal to a sum of the bracket polynomials

Lo 012 [ory 0,2 [ 0,12 [y 9,12
which is just the symbolic expression (6) for the invariant 5, and
A = [oy o] oy o] [oy o] [oy o] [0 0,12 [0 9,12, (10)

Using the syzygy once again, this time on the first and fourth bracket factors of (10), we
find that A =B + C, where

= [oy o] [oy o] [y, o] [or, o] [ 9,)2 [y 1%
If we exchange (03,05) with (0t,04), we see that C =—-A, hence A = —%—B. However,

B is just the symbolic expression for the square of the invariant 1,, cf. (4), and is

12



obviously interchange-symmetric. Thus (8) is interchange-symmetric. Since both
summands (7), (8), in the full invariant i, have been shown to be interchange-symmetric,

i, itself must be interchange-symmetric, and we conclude that i, = 1., as desired.

Turning to the invariant j,, we see that we first need the symbolic form for the
Hessian H which is the second transvectant of A, with itself. This will be a linear

combination of the two bracket expressions

Lo, 012 [ 0,12 [p; 0,12 (o0 %) (ot x)?

and
[or, o] [y o] [9) 9,12 [0 9,12 (ot X) (ot %) (0 %) (0, X)

These in turn must be transvected four times with A,. A long computation shows that

there are five distinct bracket expressions entering into the final expression for j
2 2 2 2 2 2
D Lo, o ]< [0y o 1= [ o 1209 @, 1% (@ ¢, 1% [9, @],
which is clearly interchange-symmetric.
2 2 2 2
2) [oo, o ][, e o o ] [o o J oy, o 50, @, 1% [0 ¢, 17 [, ¢ 1%

Here we use the basic syzygy (9) on the first and fourth factors to rewrite this as a sum of a
bracket expression of type 1 and the expression

20 fog o) oy o) Lo e ) o o] [y o 1200 0,12 19,12 [, ¢ 12

A second use of the syzygy, this time on the second and fourth factors shows that this

equals —-;- times the reducible bracket expression

lo 012 o o 12 [ o 12 [, 0,12 [, ¢, 12 [, 012,

which is clearly interchange-symmetric.

3 lay oglloy o] ey o] [oy o] [oy, o] [o o 1[0 @12 @) 9,12 [0, ¢,]2

13



Performing the syzygy on the second and sixth factors, we get a sum of an expression of
type 2) and the expression

2 2
3a)  lo o Jlo o] oy o] [oy o] oy o] [y o] [0 9,12 [0 ¢,1% 9 @]

A second syzygy on the second and third factors leads to a sum of the same expression,
with a minus sign, and the reducible bracket expression

o) oc2]2 (o, o] [ o ] [0, o] o o ] [ @2]2 Lo, @4]2 (o @6]2,

which is the symbolic representative for the product of the invariants 1, and (8), which was

proved to be interchange-symmetric earlier. Thus 3a) itself is interchange-symmetric.
2 2 2
4) [o o Tl o] o o] [or o] oy o] [ o 1[0 @,1% (@ ¢,1% [¢, @]

A syzygy on the fifth and sixth factors shows that this equals a sum of expressions of type
3) and of type 3a), and so is interchange-symmetric.

5)  la o ]fa, o] [oy o] oy o] [oy o] o o 109 @12 (@, 0,12 [0 ¢ ]2

Performing a syzygy on the first and third factors shows that it equals a sum of types 2a)
and 3), and so is interchange-symmetric. Thus the entire invariant j, is interchange-

symmetric, which completes the proof of the theorem.

14
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