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Abstract. Given n distinct points x1, . . . ,xn in Rd, let K de-
note their convex hull, which we assume to be d-dimensional, and
B = ∂K its (d − 1)-dimensional boundary. We construct an ex-
plicit, easily computable one-parameter family of continuous maps
fε : Sd−1 → K which, for ε > 0, are defined on the (d − 1)-
dimensional sphere, and whose images fε(Sd−1) are codimension
1 submanifolds contained in the interior of K. Moreover, as the
parameter ε goes to 0+, the images fε(Sd−1) converge, as sets, to
the boundary B of the convex hull. We prove this theorem us-
ing techniques from convex geometry of (spherical) polytopes and
set-valued homology. We further establish an interesting relation-
ship with the Gauss map of the polytope B, appropriately defined.
Several computer plots illustrating these results are included.

1. Introduction

Given a configuration X = (x1, . . . ,xn) of n distinct points in Rd,
computing their convex hull K = Conv(X) is a famous problem in
Computational Geometry. Many algorithms have been developed for
this task, including the Gift Wrap or Jarvis March algorithm, the Gra-
ham Scan algorithm, QuickHull, Divide and Conquer, Monotone Chain
or Andrew’s algorithm, Chan’s algorithm, the Incremental Convex Hull
algorithm, the Ultimate Planar Convex Hull algorithm, and others.
See, for instance, [3] and the references within.

In this paper, we develop an alternative, direct approach to this prob-
lem that does not rely on any underlying computer algorithm. Instead,
assuming dimK = d, meaning that its interior K◦ is a nonempty open
subset of Rd, we construct a one-parameter family of approximations to
its (d−1)-dimensional boundary B = ∂K, which is a convex polytope,
as the images of continuous maps fε : Sd−1 → Rd for ε > 0, that are
defined explicitly, and fairly simply, in terms of the points x1, . . . ,xn.

Initial computer generated plots suggested that the images fε(Sd−1)
of our family of maps provide excellent approximations to the boundary
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B for all configurations that we have tried; see Figures 1 and 2 for
some representative examples. Our main result, Theorem 2.1, states
that the images fε(Sd−1) converge, as sets, to the boundary B as the
parameter ε → 0+. We will also explain in detail the mechanism of
convergence. We then establish a relationship with the Gauss map of
a smooth surface, [8], thereby defining set-valued versions of the Gauss
map and its inverse for the boundary of the convex hull. Indeed, our
proof of the main theorem relies on techniques from the theory of set-
valued homology.

On the other hand, the convergence of the approximating sets fε(Sd−1)
to the boundary B is highly non-uniform. Indeed, as we will see, the im-
ages fε(n) of almost every point n ∈ Sd−1 converge to one of the vertices
of B. Thus, if one discretely samples Sd−1 by a large but finite num-
ber of points y1, . . . ,yN , most of their image points fε(yk) ∈ fε(Sd−1)
will accumulate around the vertices of B, and the remainder of B will
be increasingly sparsely approximated as ε → 0+. This non-uniform
sampling property can be observed in the three-dimensional illustrative
plots in Figure 2.

The primary focus of this paper is to prove the convergence theorem
and to establish interesting and potentially useful connections with con-
vex analysis, with the geometry of polytopes and spherical polytopes,
and with the Gauss map from differential geometry. A future research
project that has served to inspire these constructions will be the devel-
opment of potential new practical algorithms for approximating and/or
computing the convex hull of a point configuration. An interesting fur-
ther extension of our techniques could be to the approximation of Wulff
shapes of crystals, [15].

Methods for approximating the boundary of convex polytopes by
smooth submanifolds date back to Minkowski, [14]; see [7] for more re-
cent results, while [6] constructs approximating algebraic sets. In these
approaches, one is required to a priori know the facets of the polytope,
whereas our method works directly on the point configurations them-
selves.

2. A Family of Maps defined by a Point Configuration

Let us begin by introducing the basic set up and our notation, before
defining the family of maps that will be our primary object of study.

Let Cn(Rd) denote the configuration space of n distinct points in Rd;
in other words, X = (x1, . . . ,xn) ∈ Cn(Rd) means that each xi ∈ Rd

and xi 6= xj whenever i 6= j. Assuming n ≥ d+1, let C∗n (Rd) ⊂ Cn(Rd)
denote the dense open subset of nondegenerate configurations, meaning
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those whose points do not all lie on a proper affine subspace of Rd. From
here on we fix the nondegenerate point configuration X ∈ C∗n (Rd), and
suppress all dependencies thereon.

Let K = Conv(X) ⊂ Rd denote the convex hull of the points in X,
which, by nondegeneracy, is a bounded convex polytope of dimension
d whose interior is a nonempty open subset K◦ ⊂ Rd, [9, 18]. Let
B = ∂K = ∂ Conv(X) be its boundary, which is a closed polyhedral
(piecewise linear) hypersurface in Rd.

Let R+ = {0 < t ∈ R}. Given any pair of indices 1 ≤ i, j ≤ n with
i 6= j, we define real-valued functions cij : R+ × Sd−1 → R+ by

cij(ε,n) = ε+ max{0, −〈n ,nij 〉}, ε > 0, n ∈ Sd−1, (2.1)

where 〈 · , · 〉 denotes the Euclidean inner product in Rd, and where

nij =
xj − xi
‖xj − xi‖

∈ Sd−1, i 6= j, (2.2)

is the unit vector pointing from xi to xj, with ‖ · ‖ denoting the Eu-
clidean norm. Note that nij = −nji. The cij in (2.1) are con-
tinuous maps; moreover, cij(ε,n) > 0 since we are assuming (for
now) that ε > 0. We further define, for any 1 ≤ i ≤ n, the map
ci : R+ × Sd−1 → R+ by the (n− 1)-fold product

ci(ε,n) =
∏

1≤j≤n
j 6=i

cij(ε,n). (2.3)

Finally, let us set

λi(ε,n) =
ci(ε,n)

∆(ε,n)
, i = 1, . . . , n, (2.4)

where

∆(ε,n) =
n∑
j=1

cj(ε,n) > 0 for all ε > 0, n ∈ Sd−1. (2.5)

Thus,

0 < λi(ε,n) < 1, and
n∑

i= 1

λi(ε,n) = 1. (2.6)

Given a point configuration X ∈ Cn(Rd), we can now define the
main object of interest in this paper: the one-parameter family of maps
fε : Sd−1 → Rd defined by

fε(n) =
n∑

i= 1

λi(ε,n) xi, ε > 0, n ∈ Sd−1. (2.7)
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(a) n = 3 (b) n = 4 (c) n = 5

(d) n = 7 (e) n = 10 (f) n = 15

Figure 1. Plots of planar point configurations X and
the image fε(S1), with ε = 0.01.

From (2.6), (2.7), one immediately deduces that

fε(n) ∈ K◦, for any ε > 0, n ∈ Sd−1.

Inspection of Figures 1 and 2, and others that can be easily generated
by computer, indicates that, for a given X ∈ C∗n (Rd) and small ε > 0,
the image of Sd−1 under fε may be used as a good approximation of
the boundary B = ∂K ⊂ Rd of the convex hull of X. More precisely,
the Main Theorem to be proved in this paper is as follows:

Theorem 2.1. Given a nondegenerate point configuration X ∈ C∗n (Rd),
let K = Conv(X) be its convex hull, which has dimension d. Let fε be
defined by (2.7). Then, for ε > 0, the images of the unit sphere under
fε lie in the interior of the convex hull of X, so fε(Sd−1) ⊂ K◦, and,
moreover, converge to its boundary as sets in Rd:

lim
ε→0+

fε(Sd−1) = ∂K. (2.8)
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(a) tetrahedron (b) cube

(c) dodecahedron (d) icosahedron

Figure 2. Plots of the images of ≈ 15, 000 sample
points on S2 under the map fε with ε = 0.1 correspond-
ing to point configurations X consisting of the vertices
of four of the regular polyhedra in dimension d = 3.

The set theoretic convergence in (2.8) is uniform in the sense that
the images fε(Sd−1) lie in an O(ε) neighborhood of the boundary ∂K,
even though their pointwise convergence is highly nonuniform. See
below for precise details on what this means.

Remark : On the other hand, if the point configuration is degen-
erate, meaning X ∈ Cn(Rd) \ C∗n (Rd) and so its convex hull K =
Conv(X) has dimension strictly less than d, then one can show that
limε→0+ fε(Sd−1) = K. Indeed, observe that the maps fε depend con-
tinuously on the point configuration. If one slightly perturbs X to a
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Figure 3. X consists of the vertices of a triangle, with
ε = 0.1. One can see that fε(S1) is indented at the points
fε(n), shown as small red rectangles, which correspond
to n ∈ Sij, for 1 ≤ i, j ≤ 3 and i 6= j.

nondegenerate configuration Xδ ∈ C∗n (Rd), then their perturbed con-
vex hull Kδ is of dimension d and, by the Theorem, fε(Sd−1) → ∂Kδ.
But as δ → 0, their boundaries converge to the entire convex hull:
∂Kδ → K, which enables one to establish the result. Since this case is
of less importance for our purposes, the details are left to the reader.

Remark : In this article, we have employed the language of conver-
gence of sequences (or nets) of compact subsets of an ambient metric
space (upper limits and lower limits). According to [2], these notions
originated with Painlevé in 1902, although they are usually named after
Kuratowski, who popularized them in his book [10]. In our case, the
ambient metric space is the convex hull K = Conv(X) of the points.
Because K is compact, the convergence of a sequence of compact sub-
sets in the Kuratowski sense is equivalent to the convergence of the
same sequence with respect to the Hausdorff metric. Thus, under the
conditions of Theorem 2.1, our result also shows that the limit, in the
Hausdorff metric, of fε(Sd−1) as ε→ 0 is ∂K.

In Section 3, we present notions from convex geometry that are rel-
evant to this work, including normal cones and normal spherical poly-
topes. The latter enable us to associate with a convex polytope B a
spherical complex S∗B, [13], meaning a tiling of Sd−1 by spherical poly-
topes, with the property that it has the same combinatorial type as the
dual polytope B∗. Then, in Section 5, we connect our constructions
with the differential geometric concept of the Gauss map of a convex
hypersurface, generalized to the boundary of the convex polytope. We
explain how our maps converge to the inverse Gauss map of the bound-
ary of the convex hull of the point configuration, which is viewed as a
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set-valued function. Finally in Section 7, we prove our main result us-
ing a combination of convex geometry and set-valued homology theory,
the latter described in Appendix A.

3. Convex Geometry, Polytopes, and Spherical Polytopes

Let us recall some basic terminology and facts about convex sets
and cones, and both flat and spherical polytopes, many of which can
be found in [4, 17]. The closed cones appearing in this paper are convex,
pointed, meaning they do not contain any positive dimensional linear
subspace of Rd, and polyhedral, meaning they can be characterized as
the intersection of finitely many, and at least two, closed half spaces,
[5, 18]. On the other hand, for us an open cone N ⊂ Rd is a cone such
that N \ {0} is an open subset of Rd and such that its closure N is of
the above type.

Let us fix a nondegenerate point configuration X ∈ C∗n (Rd) consist-
ing of n distinct points x1, . . . ,xn ∈ Rd. Let K = Conv(X) ⊂ Rd

denote the convex hull of the points in X, which is a bounded con-
vex d-dimensional polytope, [9, 18]. Let B = ∂K = ∂ Conv(X) be its
boundary, which is itself a polytope of dimension d − 1, and hence a
closed, convex polyhedral hypersurface in Rd. Assume, by relabelling
if necessary, that x1, . . . ,xκ are the vertices of K, while xκ+1, . . . ,xn
are the remaining points, which may either lie in the interior K◦ or at
a non-vertex point of the boundary B. The faces of B range in dimen-
sion from 0, the vertices, to 1, the edges, up to d− 1, the facets. Two
vertices are adjacent if they are the endpoints of a common edge. Note
that each face F ⊂ K is itself a convex polytope. If 0 < m ≤ d − 1,
we denote the interior of an m-dimensional face F by F ◦ = F \ ∂F ,
which is a flat m-dimensional submanifold of Rd. (Keep in mind that
this is not the same as its interior as a subset of Rd, which is empty.)

Define the normal cone at the point xi by

Ni =
{

y ∈ Rd
∣∣ 〈y ,nij 〉 ≤ 0 for all j 6= i

}
=
⋂
j 6=i

Hij, (3.1)

where the unit vectors nij ∈ Sd−1 are given in (2.2), and

Hij =
{

y ∈ Rd
∣∣ 〈y ,nij 〉 ≤ 0

}
(3.2)

is the closed half space opposite to nij. Further let

N◦i =
{

y ∈ Rd
∣∣ 〈y ,nij 〉 < 0 for all j 6= i

}
(3.3)

denote the interior of the normal cone Ni. It is easy to see that N◦i 6= ∅
if and only if xi is a vertex. Also, N◦i ∩N◦j = ∅ whenever i 6= j. Indeed,
if y ∈ N◦i , then 〈y ,nij 〉 < 0. But then 〈y ,nji 〉 = 〈y ,−nij 〉 > 0,
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and hence y 6∈ N◦j . Furthermore, the union of the vertex normal cones
is the entire space:

κ⋃
i=1

Ni = Rd, (3.4)

i.e., every vector is in one of the normal cones. This is a direct con-
sequence of the Supporting Hyperplane Theorem; see, for instance, [4,
pp. 50–51].

A spherical polytope is characterized as the intersection of finitely
many closed hemispheres that does not contain any antipodal points,
cf. [5, §2.2]. It can alternatively be characterized as the intersection
C ∩ Sd−1 of the unit sphere with a pointed polyhedral cone C ⊂ Rd.
Let us consequently define the normal spherical polytope

Si = Ni ∩ Sd−1 =
{

n ∈ Sd−1
∣∣ 〈n ,nij 〉 ≤ 0 for all j 6= i

}
, (3.5)

associated with the point xi. Its interior

S◦i = N◦i ∩ Sd−1 =
{

n ∈ Sd−1
∣∣ 〈n ,nij 〉 < 0 for all j 6= i

}
(3.6)

is nonempty if and only if xi is a vertex, in which case it is an open
submanifold of the unit sphere. Note that, by (3.4) and the preceding
remarks,

κ⋃
i=1

Si = Sd−1, S◦i ∩ S◦j = ∅, i 6= j. (3.7)

The normal cone and normal spherical polytope associated with a
general point x ∈ K in the convex hull are similarly defined:

Nx =
{

y ∈ Rd
∣∣ 〈y , z− x 〉 ≤ 0 for all z ∈ K

}
,

Sx = Nx ∩ Sd−1 =
{

n ∈ Sd−1
∣∣ 〈n , z− x 〉 ≤ 0 for all z ∈ K

}
.

(3.8)
As above, Nx = {0} if x ∈ K◦, while Nxi

= Ni when xi is a vertex.
More generally, if F ⊂ B = ∂K is an m-dimensional face, then the
normal cone Nx is independent of the point x ∈ F ◦ lying in its interior,
and we thus define NF = Nx for any such x ∈ F ◦. If the face F has
dimension m, then NF is a (d−m)-dimensional cone. Define its interior
to be N◦F = NF \ ∂NF , which is a (d − m)-dimensional submanifold
of Rd. Warning : unless m = 0, so F is a vertex, N◦F is not the same
as the interior of NF considered as a subset of Rd, which is empty. In
particular, if F is a facet, i.e., a (d − 1)-dimensional face, then NF is
a one-dimensional cone, i.e., a ray in the direction of its unit outward
normal nF , with N◦F = { cnF | c > 0 }. Observe that if H ⊂ ∂F is
a subface, then NF ⊂ ∂NH . Further, convexity of K implies that
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N◦F ∩ N◦G = ∅ whenever F 6= G are distinct faces of B; in particular,
nF 6= nG whenever F 6= G are distinct facets.

The collection of the interiors of all the normal cones to the faces of
B form the complete normal fan associated with the polytopes B and
K, and their disjoint union fills out the entire space, except for the
origin (which can be identified with NK):

Rd = {0} t
⊔
F⊂B

N◦F , (3.9)

where we use the symbol t to emphasize that the union is disjoint.
We further define the normal spherical polytope associated with the

m-dimensional face F as SF = NF ∩ Sd−1. When m < d − 1, its
interior S◦F = N◦F ∩ Sd−1 is a (d−m− 1)-dimensional submanifold of
Sd−1, while for m = d− 1, the normal spherical polytope SF is a single
point, namely the facet’s unit outward normal nF . As an immediate
consequence of the complete normal fan decomposition (3.9), we can
write the sphere as a disjoint union

Sd−1 =
⊔

dimF<d−1

S◦F t
⊔

dimF=d−1

SF , (3.10)

where the second term runs over the facets and the first over all other
faces of B = ∂K. As above, if H ⊂ ∂F is a subface, then SH ⊂ ∂SG.

The collection of all normal spherical polytopes SF , where F runs
over all faces of B, forms a spherical complex, [13], denoted S∗B, that
tiles the sphere by spherical polytopes as shown in (3.10). We note
that S∗B has the same combinatorial type as the dual polytope B∗, [9],
and hence we regard the normal spherical complex S∗B as the spherical
dual to B.

We can explicitly characterize where a given unit vector lies in this
complex as follows. For n ∈ Sd−1 and i = 1, . . . , n, define

µi(n) = min {− 〈n ,nij 〉 | 1 ≤ j ≤ n and j 6= i } . (3.11)

According to (3.5), (3.6), if µi(n) > 0 then n ∈ S◦i and all other
µj(n) < 0, while if

n ∈ T = Sd−1 \ S, where S =
k⊔
i=1

S◦i , (3.12)

then all µi(n) ≤ 0 for i = 1, . . . , n. In more detail:

Proposition 3.1. Let n ∈ Sd−1. Then

(i) n ∈ S◦i for some i = 1, . . . , n if and only if µi(n) > 0, while
µj(n) < 0 for all j 6= i.
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(ii) n ∈ S◦F for some face F with 0 < dimF < d − 1 or n ∈ SF for
some facet F if and only if µi(n) ≤ 0 for all i = 1, . . . , n and
µj(n) = 0 whenever xj ∈ F . In other words, F is the convex hull
of the points xj for which µj(n) = 0.

Proof : We already established part (i). As for part (ii), we need only
note that if xi,xj ∈ F and n is normal to F , then 〈n ,nij 〉 = 0. Q.E.D.

Remark : Maehara and Martini, [12], propose a similar construc-
tion, that they call the “outer normal transform” of a convex polytope
B ⊂ Rd of dimension d− 1. They associate each facet F ⊂ B with its
outward normal nF ∈ Sd−1 ⊂ Rd. The outer normal transform of B
is defined to be the convex hull of the facet normals in Rd. They ob-
serve that, unlike the spherical dual, their transform is not necessarily
combinatorially equivalent to the dual polytope B∗.

On the other hand, if we flatten all the normal spherical polytopes of
the spherical dual S∗B, meaning we replace each SF ⊂ Rd by the convex

hull of its vertices, the result will be a polytope B̂ ⊂ Rd contained
within the unit ball, all of whose vertices lie on the unit sphere. Al-

though the resulting polytope B̂ also has the same combinatorial type
as B∗, it is not necessarily convex. The outer normal transform of B

can thus be identified with the convex hull of B̂, and so, when B̂ is not
convex, will possess a different combinatorial structure than B∗.

Indeed, counterexamples to the problem of inscribing convex poly-
topes of a given combinatorial type in spheres, [16], are of this form.
For example, the dual to the truncated tetrahedron, known as the tri-
akis tetrahedron1, is not inscribable in a sphere; see Figure 4. The
flattened version of the spherical dual to a truncated tetrahedron is a
cube with diagonals that bisect each square into a pair of triangular
facets, and form the edges of an interior tetrahedron. Both the spheri-
cal dual and the resulting flattened cube with diagonals have the same
combinatorial type as the triakis tetrahedron. However, the cubical
triakis tetrahedron, while inscribed in the unit sphere, is not a convex
polyhedron since it has pairs of coplanar triangular facets possessing a
common normal. It is, of course, the set-theoretic boundary of a convex
subset of R3, namely the inscribed solid cube, whose cubical boundary
(without the diagonals) can be identified as the outer normal transform
of the original truncated tetrahedron, and is not combinatorially equiv-
alent to the triakis tetrahedron. Furthermore, slightly perturbing the

1A triakis tetrahedron is obtained from a regular tetrahedron by gluing a simplex
to each of its four faces. If the altitudes of the simplices are sufficiently short, the
result is a convex polyhedron with 12 triangular faces.
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(a) Truncated (b) Triakis (c) Cubical triakis
tetrahedron tetrahedron tetrahedron

Figure 4. Polytopes.

original truncated tetrahedron leads to a perturbed spherical dual and
a perturbed cube with diagonals that is inscribed in the sphere, again
both having the same combinatorial type as the triakis tetrahedron.
However, although its triangular faces are no longer coplanar, the re-
sulting polyhedron is not the boundary of a convex subset of R3, and
hence not equal to its outer normal transform, which is the convex hull
of this nonconvex perturbed cube. All this is a necessary consequence
of the non-inscribability of the triakis tetrahedron.

In general, if the flattened spherical dual of a polytope is convex
then it has to coincide with its outer normal transform, which is then,
by the above remarks, combinatorially equivalent to the dual polytope.
On the other hand, if it is not convex then its convexification, which
is the outer normal transform, cannot be combinatorially equivalent to
the dual. Thus, we have established the following result.

Proposition 3.2. Let B ⊂ Rd be a convex polytope of dimension d−1.
Then the outer normal transform of B is combinatorially equivalent to
the dual polytope B∗ if and only if the flattened spherical dual of B is
convex.

Finally, for later purposes, we will introduce some useful open subsets
of the normal spherical complex (3.10). If F ⊂ B is a facet with
outwards unit normal nF ∈ Sd−1, so SF = {nF}, set

WF = SF t
⊔
G(F

S◦G, (3.13)
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where the union is over the proper subfaces G ( F . On the other hand,
if F ⊂ B is a face with 1 ≤ dimF < d− 1, set

WF =
⊔
G⊆F

S◦G. (3.14)

Lemma 3.3. Under the above definitions, WF is a relatively open sub-
set of Sd−1.

Proof : This follows from the fact that the corresponding union of nor-
mal cones

VF = {0} t
⊔
G⊆F

N◦G

is an open cone and WF = VF ∩ Sd−1. Indeed, one can use a perturbed
version of the Supporting Hyperplane Theorem that says that if H is
a supporting hyperplane such that H ∩ B = F where F is a face, and

H̃ is a supporting hyperplane that is a sufficiently small perturbation

of H, then H̃ ∩ B = G for some subface G ⊆ F . Keep in mind that
the subface could be a vertex. Q.E.D.

The last result of this section is a technical construction, that is key
to our proof of the Main Theorem 2.1. The reader may wish to skip it
for now, and return once the proof is underway.

Proposition 3.4. Let F ⊂ B be a face of dimension 1 ≤ m ≤ d− 1.
Let SF be its normal spherical polytope and WF ⊂ Sd−1 the open subset
given by Lemma 3.3. Let G1, . . . , Gk be its (m − 1)-dimensional sub-
faces, so that ∂F =

⋃
k
i=1 Gi. Suppose N ⊂ WF ⊂ Sd−1 be a connected

m-dimensional submanifold such that either (a) if F is a facet, of di-
mension d− 1, with unit outwards normal n0 = nF , then N is an open
neighborhood of n0, or (b) if 1 ≤ m = dimF < d−1, then N intersects

S◦F transversally at a single point n0 ∈ N ∩ S◦F . Then if Ñ ⊂ N is a

sufficiently small open contractible submanifold with n0 ∈ Ñ , which im-

plies n0 ∈ ∂(Ñ ∩ S◦Gi
) for all i = 1, . . . , k, we can decompose its bound-

ary ∂Ñ =
⋃

k
i=1Li into the union of (m− 1)-dimensional submanifolds

that only overlap on their boundaries, meaning Li ∩ Lj = ∂Li ∩ ∂Lj
whenever i 6= j, with the property that each Li ⊂ WGi

intersects S◦Gi

transversally at a single point ni ∈ Li ∩ S◦Gi
= ∂Ñ ∩ S◦Gi

.

Proof : Choose r > 0 sufficiently small so that the relatively open sub-
manifold Nr = {n ∈ N | ‖n − n0‖ < r } has boundary ∂Nr = {n ∈
N | ‖n − n0‖ = r }. Moreover, reducing r if necessary, we claim that
∂Nr intersects each S◦Gi

transversally at a single point ni ∈ ∂Nr ∩ S◦Gi
.
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Indeed, in a small neighborhood n0 ∈ U we can choose local coor-
dinates centered at n0 such that, locally, S◦F ∩ U is a (d − m − 1)-
dimensional subspace, Nr ⊂ U is a transverse m-dimensional subspace,
while S◦Gi

∩ U is a (d−m)-dimensional half space with local boundary
∂SGi

∩ U = S◦F ∩ U , from which the preceding claim is evident.

We now set Ñ = Nr. Since SF ⊂ ∂SGi
, this immediately implies

n0 ∈ ∂(Ñ ∩ S◦Gi
). The final task is to decompose ∂Ñ =

⋃k
i=1 Li as

in the statement of the Proposition. It is reasonably clear that there
are many ways to do this, but for definiteness here is one possible
construction. First we note that, by (3.13), (3.14), either

WF \ {nF} =
k⋃
i=1

Wi, or WF \ S◦F =
k⋃
i=1

Wi,

according to whether F is a facet or not. We thus, for each i = 1, . . . , k,

need to choose Li ⊂ Ñ ∩ Wi with the requisite properties.

First, define the closed subset Li ⊂ ∂Ñ to be the set of all n ∈
Ñ ∩ Wi such that if n ∈ Ñ ∩ S◦H for some adjacent subface H ( Gi,
then dist(n,ni) ≤ dist(n,nj) for all other adjacent (m−1)-dimensional
subfaces Gj, meaning that H ( Gj. Clearly N =

⋃
Li and, moreover,

Li and Lj only overlap on their common boundary, which could be
either part of a boundary of an SH or a point n ∈ N ∩ S◦H that is
equidistant to ni and nj. We then set Li = L◦i to be its interior2 relative

to ∂Ñ . Since ni ∈ L◦i , transversality of ∂Ñ to S◦Gi
at ni immediately

implies the same for the relatively open submanifold Li. We conclude
that the resulting submanifolds satisfy the required conditions. Q.E.D.

4. Set-valued Functions

We now introduce an important generalization of the notion of a
function; see [1, 2] for details. A set-valued function, also known as a
multi-valued function, from a space D to a space Y means a mapping3

f̂ from D to the power set 2Y , i.e., the set of subsets of Y . In other

words, the image of x ∈ D is a subset f̂(x) ⊂ Y . More generally, a
set-valued function maps subsets of its domain to subsets of its range in

the evident manner. We say that f̂ has closed values if f̂(x) is a closed

2It may happen that the closure of Li is strictly contained in Li; this can occur
if there exist nl associated with nonadjacent faces Gl that lie closer to the points

n ∈ Ñ ∩ S◦
H than those in any adjacent face Gi. But this does not affect the

construction since every point in Li \ Li is contained in the boundary of some Lj .
3We will place hats over set-valued functions so as to distinguish them from

ordinary functions.
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subset of Y for all x ∈ D. The range R ⊂ Y of f̂ is the union of all

the images of points in its domain D, so R = f̂(D). In particular, any
ordinary function f : D → Y can be viewed as a set-valued function,
with closed values, by identifying the image y = f(x) of a point x ∈ D
with the singleton set {y} ⊂ Y .

In convex analysis, the normal cone (3.8) is often viewed as a set-

valued function f̂ from B = ∂K to Rd, that maps a point x ∈ B to

its normal cone f̂(x) = Nx ⊂ Rd. (One can, of course, extend it to
all of K but the values on the interior K◦ are trivial.) Similarly, we
can view the normal spherical polytope construction as a set-valued
function γ̂B from B to Sd−1, mapping a point x ∈ B to its normal
spherical polytope: γ̂B(x) = Sx ⊂ Sd−1.

We will be interested in the convergence of set-valued functions. Here
is a simple example:

Example 4.1: Consider the ordinary functions

fε(x) =
2

π
(1− ε) arctan

x

ε
for x ∈ R, ε > 0. (4.1)

In the usual function-theoretic sense of convergence,

lim
ε→0+

fε(x) = signx =


1, x > 0,

0, x = 0,

−1, x < 0.

Thus, for almost every point x ∈ R, the value of fε(x) converges to
either −1 or 1. However, if you look at their graphs as subsets of R2,
they converge, as sets, to the curve consisting of the union of the three
line segments

{ (x,−1) | x ≤ 0 } ∪ { (0, y) | −1 ≤ y ≤ 1 } ∪ { (x, 1) | x ≥ 0 } .
We can interpret this curve as the graph of the set-valued function

f̂ : R −→ 2R given by f̂(x) =


{1}, x > 0,

[−1, 1], x = 0,

{−1}, x < 0.

(4.2)

The domain of f̂ is D = R and its range is the interval R = [−1, 1] =

f̂(R). Furthermore, the ranges Rε = fε(R) = (−1 + ε, 1 − ε) of the
functions (4.1) are open intervals that converge, as sets, to the closed
interval [−1, 1] forming the range of the limiting set-valued function.

In general, given spaces D,R, let D×R denote their Cartesian prod-
uct, and πD : D × R → D and πR : D × R → R the standard projec-
tions. Any subset S ⊂ D×R which projects onto both D = πD(S) and
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R = πR(S) defines a set-valued mapping f̂ with domain D and range

R, given by f̂(x) = πR(S∩π−1D {x}). Its inverse f̂−1 is also a set-valued

mapping from R to D, given by f̂−1(y) = πD(S ∩ π−1R {y}), [2]. For the

above example (4.2), f̂−1 : [−1, 1]→ 2R is given by

f̂−1(y) =


(−∞, 0], y = −1,

{0}, −1 < y < 1,

[0,∞), y = 1.

(4.3)

Note that any ordinary function thus has a set-valued inverse.
Finally, we note that the concept of continuity does not extend

straightforwardly to set-valued functions. The most important ana-
log is contained in the following definition.

Definition 4.2. Let D and R be topological spaces. A set-valued

function f̂ : D → R is called upper hemicontinuous at x0 ∈ D if and

only if, for any open neighborhood V of the set f̂(x0), there exists a

neighborhood U of x0 such that f̂(x) ⊂ V for all x ∈ U . We say that f̂
is upper hemicontinuous if it is upper hemicontinuous at every x0 ∈ D.

It is straightforward to verify that Example 4.1 satisfies the upper
hemicontinuity condition.

Warning : A few authors, including [2], use the expression “upper
semicontinuous” instead of “upper hemicontinuous”. However the lat-
ter terminology seems to be more accepted by the broader community,
particularly as it is not in conflict with the notion of semicontinuity of
ordinary functions.

5. The Gauss Map of a Convex Polytope

Let us now identify the preceding constructions with a set-valued
version of the Gauss map of a hypersurface. Recall, [8], that the Gauss
map of a smooth closed hypersurface, i.e., a (d−1)-dimensional oriented
submanifold M ⊂ Rd, is defined as

γM : M −→ Sd−1, γ(y) = ny, y ∈M, (5.1)

where ny denotes the unit outward normal to M at y. If M is strictly
convex, then its Gauss map is one-to-one and onto, with smooth inverse
γ−1M : Sd−1 →M .

We can identify the normal spherical polytope map γ̂B associated
with a closed convex polyhedral hypersurface B ⊂ Rd (a convex poly-
tope) as its set-valued Gauss map. If Mε for ε > 0 are a parametrized
family of smooth closed convex hypersurfaces converging uniformly to
the polytope, Mε → B as ε → 0+ then, under suitable conditions, we
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would expect their Gauss maps γMε → γ̂B to converge, in the sense of
set-valued functions, to the set-valued normal spherical polytope map.
Since this is not central to our results, we will not pursue this idea
further here.

As for our construction, the Main Theorem 2.1 shows that the func-
tions fε : Sd−1 → Rd converge, in the set-valued sense, to a limiting

set-valued function f̂0 : Sd−1 → B defined as follows:

f̂0(n) =


xi, n ∈ S◦i ,

F,
n ∈ S◦F , 0 < dimF < d− 1,

or n ∈ SF , dimF = d− 1.

(5.2)

Here F refers to the various faces of B. Proposition 3.1 gives an explicit
characterization of the normal spherical complex sets SF , S

◦
F ⊂ Sd−1,

cf. (3.10). The fact that the set-valued mapping f̂0 is the set-valued
limit of fε as ε→ 0+ will follow from the proof of Theorem 2.1.

Moreover, we can identify the set-valued map (5.2) with the set-
valued inverse of the Gauss map associated with the boundary of the

convex hull: f̂0 = γ̂−1B . On the other hand, the fε are certainly not
inverse Gauss maps themselves. Moreover, simple examples, e.g., that
in Figure 3, show that the image fε(Sd−1) is not in general a convex
hypersurface. On the other hand, it might be worth investigating the
set-theoretic convergence of their possibly multi-valued Gauss maps.

6. Some Computational Lemmas

Before launching into the proof of the Main Theorem 2.1, let us col-
lect together some elementary computational lemmas for the functions
used to form the maps fε defined in (2.7).

Recalling (2.1) and (2.3), let us set

cij(n) = lim
ε→0+

cij(ε,n) = max{0,−〈n ,nij 〉}, n ∈ Sd−1. (6.1)

and

ci(n) = lim
ε→0+

ci(ε,n) =
∏

1≤j≤n
j 6=i

cij(n), n ∈ Sd−1.
(6.2)

We can thus write

ci(ε,n) = ci(n) + ε bi(ε,n), (6.3)

where bi is a polynomial in ε of degree n−2. In view of (3.6) and (3.7),
ci(n) > 0 if and only if n ∈ S◦i , whereas ci(n) = 0 for all i = 1, . . . , n if
and only if n ∈ T , the complement of the union of the S◦i , cf. (3.12).
We have thus established the following result.
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Lemma 6.1. Given n ∈ Sd−1, either all ci(n) = 0, or precisely one
ci(n) > 0, and the rest are all zero. Moreover, in the latter case, xi is
a vertex.

Indeed, if n ∈ S◦i , then, referring to (2.3), (6.3), ci(n) > 0 and
bi(ε,n) > 0 for all ε > 0, whereas

cj(ε,n) = ε1+kj aj(ε,n) for j 6= i, (6.4)

with aj(ε,n) > 0 for ε > 0. The nonnegative integer kj ≥ 0 denotes the
number of points xk with k 6= i, j that satisfy the distance inequality
dist(xk, Pi(n)) ≤ dist(xj, Pi(n)) where Pi(n) = xi + n⊥, with n⊥ =
{y ∈ Rd | 〈y ,n 〉 = 0 } denoting the affine hyperplane orthogonal to n
passing through xi. Note that there is either one or no value of j for
which kj = 0.

Let us finish this section by establishing a more detailed version of
Lemma 6.1, valid for an arbitrary face F ⊂ B.

Lemma 6.2. Let F ⊂ B be a face of dimension 1 ≤ m ≤ d − 1, with
vertices x1, . . . ,xk. Suppose F contains l additional non-vertex points
xk+1, . . . ,xk+l, where l may be zero. Then, given n ∈ S◦F ,

ci(ε,n) = εk+l−1di(n) + εk+lpi(ε,n), i = 1, . . . , k + l,

cj(ε,n) = εk+lpj(ε,n), j = k + l + 1, . . . , n,
(6.5)

where di(n) > 0, while p1(ε,n), . . . , pn(ε,n) are polynomials in ε.

Proof : Let n ∈ S◦F . Note that cij(ε,n) = ε whenever xi,xj ∈ F , so
that 〈n ,nij 〉 = 0. On the other hand, 〈n ,nij 〉 < 0 whenever xi ∈ F
and xj 6∈ F , which, vice versa, implies cji(ε,n) = ε. The proof is
completed by recalling the definition (2.3) of ci(ε,n). Q.E.D.

7. Proof of the Main Theorem

Now we turn to the proof of the Main Theorem 2.1, on the conver-
gence, as ε → 0+, of the hypersurfaces fε(Sd−1) ⊂ K◦ ⊂ Rd to the
boundary of the convex hull B = ∂K of the point configuration X.

If we formally set ε = 0 in the preceding definition (2.7) of the map
fε, Lemma 6.1 implies

lim
ε→0+

fε(n) =

{
xi, n ∈ S◦i ,
undefined, n ∈ T = Sd−1 \

⊔κ
i=1 S

◦
i .

(7.1)

Thus, for almost every point n ∈ Sd−1, the images fε(n) converge to one
of the vertices of the convex hull. However, as in Example 4.1, this does
not imply that, as a set, fε(Sd−1) converges to the set of vertices V =
{x1, . . . ,xκ}. Our goal is to prove that the images fε(Sd−1) converge,
as sets, to the entire boundary B as ε→ 0+. Specifically, we will show:
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• Given any neighborhood W ⊃ B, no matter how small, we can
find ε0 > 0 such that fε(Sd−1) ⊂ W for any 0 < ε < ε0.

• Given any x ∈ B, there exist points yε ∈ fε(Sd−1) for ε > 0
such that yε → x as ε→ 0+.

In the language of set-theoretic limits, [2], the first statement shows
that the outer limit of the sets fε(Sd−1) is a subset of B. The second
statement proves that B is a subset of their inner limit. Since the inner
limit is always a subset of the outer limit, this then implies that the
inner and outer limits coincide and are equal to B.

First, recall that, for r > 0, the r-neighborhood Ur of a subsetD ⊂ Rd

is the set of points that are a distance less than r (in the Euclidean
norm) from D, i.e., Ur = {x ∈ Rd | dist(x,D) < r }. In what follows,
when we refer to an O(ε) neighborhood of a set, by which we mean an ε
dependent system of r-neighborhoods in which, for ε sufficiently small,
r = c ε for some unspecified constant c.

In order to understand the set-theoretic limit, we will investigate the
behavior of the images fε(A) of certain subsets A ⊂ Sd−1, gradually
building up to the entire sphere. Let us begin with the simplest case:
the images of a curve C ⊂ Sd−1. If C ⊂ S◦i is entirely contained in the
interior of the normal spherical polytope associated with a vertex xi
for some 1 ≤ i ≤ κ, then, by (7.1), fε(C)→ {xi} as ε→ 0+.

The next simplest case is when the curve C is contained in the union
of two adjacent vertex spherical polytopes. Thus, by relabeling, let
x1,x2 be adjacent vertices of B. Let

E = {λ1 x1 + λ2 x2 | λ1, λ2 ≥ 0, λ1 + λ2 = 1 } ⊂ B

denote the edge connecting x1 to x2. Suppose that its interior con-
tains l ≥ 0 additional points in the configuration, which we number
as x3, . . . ,xl+2 ∈ E◦, while the remaining points xl+3, . . . ,xn ∈ K \E.
We note that we can also write, redundantly,

E =

{
l+2∑
i= 1

λi xi

∣∣∣∣∣ λi ≥ 0,
l+2∑
i= 1

λi = 1

}
. (7.2)

Let S1, S2 ⊂ Sd−1 be the normal spherical polytopes associated with
x1,x2, respectively, while SE = ∂S1 ∩ ∂S2 is the normal spherical
polytope associated with the edge E. Thus S◦1 , S

◦
2 are open subsets of

Sd−1, while S◦E is a (d− 2)-dimensional submanifold. Consider a curve
C ⊂ S◦1 ∪ S◦2 ∪ S◦E ⊂ Sd−1 such that one endpoint of C lies in S◦1 and
the other lies in S◦2 , which, by connectivity, imply C ∩ S◦E 6= ∅. Our
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goal is to prove that the image curves fε(C) converge, as sets, to the
edge E.

Now, if n ∈ C ∩ S◦1 , Lemma 6.1 combined with equations (2.4) and
(6.4) imply

λ1(ε,n) = 1 + ε q1(ε,n), λj(ε,n) = ε qj(ε,n), j = 2, 3, . . . , n, (7.3)

where q1, . . . , qn are rational functions of ε depending continuously on
n ∈ C. Thus, (7.3) re-establishes the fact that all of the points in
fε(C ∩ S◦1) converge to the vertex x1 as ε → 0+. A similar statement
holds for n ∈ C ∩ S◦2 :

λ2(ε,n) = 1 + ε q2(ε,n), λj(ε,n) = ε qj(ε,n), j = 1, 3, . . . , n. (7.4)

Finally, if n ∈ C ∩ S◦E, in view of (2.4), (2.5), (6.5), we have

λi(ε,n) =


di(n) + ε pi(ε,n)

D(n) + ε P (ε,n)
, i = 1, . . . , l + 2,

ε pi(ε,n)

D(n) + ε P (ε,n)
, i = l + 3, . . . , n,

(7.5)

where

D(n) =
l+2∑
i= 1

di(n) > 0, P (ε,n) =
n∑

i= 1

pi(ε,n).

Comparing with (7.3), (7.4), (7.5), we find that for any n ∈ C,

l+2∑
i= 1

λi(ε,n) = 1 + εQ(ε,n), fε(n) =
l+2∑
i= 1

λi(ε,n)xi + εR(ε,n),

(7.6)
where both Q and R are continuous functions of n ∈ C, including when
n ∈ S◦E, and rational functions of ε with nonvanishing denominator.
Since C ⊂ Sd−1 is compact, they can thus be bounded by an overall
constant independent of ε ∈ (0, ε0]. This holds even at the singular
point n ∈ C ∩ S◦E when there is cancellation of powers of ε in numerator
and denominator, whence (7.5). Thus, comparing with (7.2), we deduce
that, for 0 < ε ≤ ε0, there exists an O(ε) neighborhood Uε of the edge
E such that the images fε(C) ⊂ Uε. This immediately implies that
the limiting set is contained within the edge: limε→0+ fε(C) ⊂ E. The
remaining task is to prove that every point in E is contained in the
limit, and therefore limε→0+ fε(C) = E.

We already know that both endpoints x1,x2 are contained in the
limiting set. Thus, given a point x ∈ E◦, we need to find points
yε ∈ fε(C) that converge to x = limε→0+ yε. Although it is possible to
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do this by a careful analysis of the underlying formulae, we prefer, for
later purposes, to use a simple topological proof.

To this end, let Zx be the affine hyperplane passing through x that
is orthogonal to E, and define Zx,ε = Zx ∩ Uε. We claim that there
exists yε ∈ fε(C) ∩ Zx,ε. If true, then we have produced the desired
points. To prove the claim, observe that Uε\Zx,ε consists of two disjoint
open subsets, say U1

x,ε, U
2
x,ε with xi ∈ U i

x,ε for i = 1, 2. Moreover,
since we know that all the points in fε(C ∩ S◦i ) converge to xi, if
we choose ε sufficiently small, then fε(C) ∩ U i

x,ε 6= ∅. Therefore,
fε(C) ∩ Zx,ε = ∅ would contradict the connectedness of fε(C). This
contradiction establishes the above claim. We thus conclude that, as
sets,

fε(C) −→ E as ε −→ 0. (7.7)

For later purposes, we need slightly more than mere set-theoretic
convergence (7.7). Namely, we require the existence of a continuous set-
valued homotopy that connects the images of fε : C → K for ε > 0 to a

set-valued map f̂0 : C → 2K with range equal to the edge E = f̂0(C), a
model being Example 4.1. Rather than write down an explicit formula
for this homotopy, we will instead construct its graph.

Consider the graph

Γ =
{ (

ε,n, fε(n)
) ∣∣ 0 < ε ≤ ε0, n ∈ C

}
⊂ (0, ε0 ]× C ×K

of the map F (ε,n) = fε(n) for 0 < ε ≤ ε0 and n ∈ C. Let Γ = Clos Γ
be its closure in [0, ε0] × C ×K. According to the preceding proof, Γ
is the graph of the set-valued map F : [0, ε0]× C → 2K given by

F (ε,n) =


fε(n), ε > 0,

x1, ε = 0, n ∈ C ∩ S◦1 ,

x2, ε = 0, n ∈ C ∩ S◦2 ,

E, ε = 0, n ∈ C ∩ S◦E,

(7.8)

its final value being the entire edge E ⊂ K. Moreover, since Γ is closed
and K is compact and Hausdorff, the Closed Graph Theorem for set-
valued functions, [2, Prop. 1.4.8], implies that the set-valued function F
is upper hemicontinuous, as per Definition 4.2. Thus, for all 0 < ε ≤ ε0,
(7.8) defines an upper hemicontinuous homotopy from each fε : C → K

to the set-valued map f̂0 : C → 2K with f̂0(n) = F (0,n), whose range

f̂0(C) is the edge E.
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Remark : An alternative approach, that avoids set-valued homotopies
and, later, set-valued homology, is to “tilt” the subset Γ so that it be-
comes a graph by introducing new coordinates on the Cartesian prod-
uct space [0, ε0] × C ×K. However, this is more technically tricky to
accomplish in the higher dimensional cases to be handled below, and
the set-theoretic approach provides a cleaner path to the proof.

The remainder of the proof works by induction on the dimension
of the face F . Thus, the next case is that of a two-dimensional face
F ⊂ B ⊂ Rd. The main steps of the proof in this situation will
then be straightforwardly adapted to any higher dimensional face. Let
x1, . . . ,xk be the vertices of F and let E1, . . . , Ek be its edges. We label
the vertices and edges so that Ej connects xj to xj+1, with indices taken

modulo k throughout, whence xk+1 = x1. Thus E =
⋃k
j=1Ej = ∂F

is the polygonal boundary of F . We assume that there are l ≥ 0
additional points xk+1, . . . ,xk+l ∈ F \{x1, . . . ,xk}, while the remaining
points in the configuration xk+l+1, . . . ,xn ∈ K \ F . Keep in mind that
F is convex.

Let Si, S̃j, SF be the normal spherical polytopes of xi, Ej, F , respec-

tively, so that S̃j ⊂ ∂Sj ∩ ∂Sj+1 and SF ⊂ ∂S̃j for all j = 1, . . . , k.
Let WF ⊂ Sd−1 be the open set given by (3.13) or (3.14), and let

Ñ ⊂ N ⊂ WF be the two-dimensional submanifolds satisfying the
hypotheses of Proposition 3.4. As in (7.6), applying Lemma 6.2, we
find

k+l∑
i= 1

λi(ε,n) = 1 + εQ(ε,n), fε(n) =
k+l∑
i= 1

λi(ε,n) xi + εR(ε,n),

(7.9)
where both Q and R are continuous functions of n ∈ N , and rational
functions of ε with nonvanishing denominator. These formulae again
imply that the images fε(N) lie in an O(ε) neighborhood Uε of the face
F , and hence limε→0+ fε(N) ⊂ F . The remaining task is to prove that
every point in F is contained in the limit, a result that requires a more
sophisticated topological argument than in the curve case.

For this purpose, we replace N by Ñ . Clearly, if we can prove

limε→0+ fε(Ñ) = F , by the preceding result the same is true of N ⊃ Ñ .

According to Proposition 3.4, Ñ ∩ S◦j 6= ∅ and Ñ ∩ S̃◦j 6= ∅ for

all j = 1, . . . , k, and either nF ∈ Ñ when d = 3, where nF is the

unit outward normal to the polyhedral facet F , or Ñ ∩ S◦F 6= ∅
when d > 3. Moreover, the boundary L = ∂Ñ can be decomposed
into curves L1, . . . , Lk any two of which overlap only on their common
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boundaries, that satisfy Lj ⊂ S◦j ∪ S̃◦j ∪ S◦j+1, again modulo k. Let
{nj } = Lj−1 ∩ Lj ⊂ S◦j denote the common endpoints of adjacent

curves in L = ∂Ñ .
Let us set I = [ 0, ε0 ] for ε0 > 0 sufficiently small. According to the

preceding curve proof, fε(Lj)→ Ej as sets and, moreover, there exists
an upper hemicontinuous homotopy (of set-valued mappings) from each

fε : Lj → K for all 0 < ε ≤ ε0 to the set-valued limit f̂0 : Lj → 2K with

range equal to the edge Ej = f̂0(Lj). The graph of this homotopy,

Γj ⊂ I × Lj ×K ⊂ I × S2 ×K,
is a closed subset of the indicated Cartesian product space.

We now piece together these homotopy graphs to define a homotopy
from fε(L) to E = ∂F whose graph is

Γ =
k⋃
j=1

Γj ⊂ I × L×K ⊂ I × S2 ×K. (7.10)

Note that Γ is a closed subset that defines the graph of an upper hemi-
continuous function because each Γj is closed and, moreover,

Γj−1 ∩
(
I × {nj } ×K

)
= Γj ∩

(
I × {nj } ×K

)
,

including when ε = 0, since fε(nj)→ xj, and so

Γj−1∩
(
{0} × {nj } ×K

)
= {(0,nj,xj)} = Γj ∩

(
{0} × {nj } ×K

)
.

Given x ∈ F ◦, we seek yε ∈ fε(Ñ) that converge to x as ε→ 0+. Let
Zx be the affine subspace of dimension d− 2 passing through x that is
orthogonal to F . Define Zx,ε = Zx ∩ Uε. Again, if we can prove there

exists yε ∈ Zx,ε ∩ fε(Ñ), we are done. Suppose not, i.e., suppose that

fε(Ñ) ⊂ Uε \Zx,ε. The idea is to demonstrate that this is topologically

impossible due to the contractibility of Ñ , and hence contractibility

of fε(Ñ), whereas fε(L) = fε(∂Ñ), for ε sufficiently small, defines a
nontrivial homology class in Uε \ Zx,ε.

If we were dealing with ordinary mappings, this topological argument

would be straightforward. But because f̂0 is a set-valued mapping, we
will need some more sophisticated tools from set-valued algebraic topol-
ogy to establish the contradiction. We summarize the basic theory,
based on a paper of Yongxin Li, [11], in Appendix A. In accordance
with the notation introduced there, we use roman Hn(X) to denote the
standard n-th order singular homology groups of a topological space
X, and calligraphic Hn(X,U) to denote the corresponding n-th order
set-valued homology groups relative to a chosen open cover U . (As
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H1(∂Ñ)

H1(Uε \ Zx;ε, V)

H1(Uε \ Zx;ε, V)

H1(Uε \ Zx;ε)H1(Ñ) = 0

(f̂0)∗

(fε)∗

fε,∗

Id

i]ι∗

fε,∗

Figure 5. Commutative Diagram

noted in the appendix, if one does not choose this cover carefully, the
set-valued homology groups are all trivial, and would hence be useless
for the present purposes.)

In this situation, we select the particular open covering V of Uε \Zx;ε

consisting of all open sets of the form

V = H ∩
(
Uε \ Zx;ε

)
such that x ∈ ∂V, (7.11)

where H is an open half-space in Rd. We claim that V satisfies Li’s
contractible finite intersection property, because the intersection of any
finite collection of such open sets, if non-empty, is homeomorphic to
the Cartesian product of an open (d−2)-dimensional ball with an open
circular sector, meaning the intersection of an acute-angled open planar
cone with the unit disk (a pizza slice), which is clearly contractible.

The limiting set-valued function f̂0 : L → 2E, whose range is the

polygonal boundary of the face f̂0(L) = E = ∂F , is compatible with

the open covering V , because f̂0(n) is either a vertex or an edge Ej.
Moreover, when ε > 0, the map fε is continuous and single-valued,
which implies trivially that its restriction to L is compatible with any
open covering of Uε \ Zx;ε.

The family of maps {fε, f̂0} thus defines, by varying ε, an upper hemi-
continuous homotopy of multi-valued functions with closed values. It
follows from [11, Prop. 6] that the upper triangle in Figure 5 com-
mutes. In the same figure, the square is divided into two triangles. It



24 J. MALKOUN AND P.J. OLVER

follows from the definitions that the top right triangle in the square
commutes. As noted in the Appendix A, the map i] on the bottom

right is an isomorphism. Finally, the map ι : L = ∂Ñ → Ñ denotes
the inclusion map, and so it is a standard fact from ordinary singular
homology theory that the bottom left triangle commutes.

Let 0 6= c = [∂Ñ ] ∈ H1(∂Ñ) be the homology class representing ∂Ñ ,

which is, in fact, a generator. We claim that4 (f̂0)∗(c) is a non-zero

element of H1(Uε \ Zx;ε, V). Indeed, (f̂0)∗(c) = i]
(

[E]
)
6= 0 since the

homology class [E] = [∂F ] ∈ H1(Uε \ Zx;ε) is nonzero and i] is an
isomorphism. This thus proves the claim that

(fε)∗(c) = (f̂0)∗(c) 6= 0, and hence fε,∗(c) = i−1]
[

(fε)∗(c)
]
6= 0.

On the other hand, the bottom left triangle in the square in figure 5

shows that fε,∗ vanishes identically on H1(∂Ñ), so that fε,∗(c) = 0, thus
leading to the desired contradiction and thus establishing the existence

of yε ∈ fε(Ñ). This finishes the proof that every point of F belongs to

the inner limit of fε(Ñ), as ε → 0. We conclude that both fε(Ñ) and
fε(N)→ F as sets as ε→ 0+.

Finally, to establish the existence of a set-valued homotopy connect-

ing the maps fε : N → K to the set-valued map f̂0 : N → 2K with range

F = f̂0(N), we proceed as follows. As in the curve case, we construct
its graph Γ ⊂ I ×N ×K as the closure of the graph

Γ = { (ε,n, fε(n) | n ∈ N, 0 < ε ≤ ε0 } ⊂ (0, ε0 ]×N ×K

of the continuous map F (ε,n) = fε(n). Again, by the Closed Graph
Theorem for set-valued functions, Γ is the graph of an upper hemicon-
tinuous set-valued function F : I × N → 2K , which, for 0 < ε ≤ ε0,
defines the required upper hemicontinuous homotopy.

Finally, let us outline the proof in the general case. To this end, we
establish the following result by induction on the dimension m of the
face, using the preceding two-dimensional case as a model.

Proposition 7.1. Let F ⊂ B be an m-dimensional face, and let
N ⊂ Sd−1 be an m-dimensional submanifold satisfying the conditions of
Proposition 3.4. Then, the set-theoretic limε→0+ fε(N) = F . Moreover,
for ε > 0 sufficiently small, there is a continuous set valued homotopy

from fε : N → K to the set-valued map f̂0 : N → 2K whose range is the
entire face: f0(N) = F .

4As in Appendix A, the parentheses indicate the induced maps on set-theoretic
homology.
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Referring back to the preceding argument for two-dimensional polyg-
onal faces, the key formulae (7.9) work exactly as before, with x1, . . . ,xk
the vertices of F and xk+1, . . . ,xk+l additional points in the configu-
ration, if any, in F \ {x1, . . . ,xk}. These in turn imply that, for ε
sufficiently small, the images fε(N) lie in a O(ε) neighborhood of F ,
thus proving that limε→0+ fε(N) ⊂ F .

To prove that every point in x ∈ F is contained in the limit, we

replace N by the open submanifold Ñ ⊂ N given in Proposition 3.4.

Again assume the contrary, that fε(Ñ) ⊂ Uε\Zx,ε, where Zx,ε = Zx ∩Uε
with Zx the affine subspace of dimension d − m passing through x
orthogonal to F . According to the inductive hypothesis, its (m − 1)-

dimensional boundary component Li ⊂ ∂Ñ satisfies limε→0+ fε(Li) =
Gi, the corresponding (m − 1)-dimensional subface of F , through an
upper hemicontinuous homotopy from fε : Li → K to the set-valued

map f̂0 : Li → 2K with range Gi = f̂0(Li). We then, as in (7.10),
piece together these subface homotopies so as to construct an upper

hemicontinuous homotopy from fε : ∂Ñ → K to the set-valued map

f̂0 : ∂Ñ → 2K whose range is all of ∂F = f̂0(∂Ñ).
The topological argument then proceeds in an identical manner, the

only difference being that the open cover V is constructed as in (7.11),
but now the intersections are homeomorphic to the contractible Carte-
sian product of a spherical sector of dimension m with a ball of di-
mension d − m. Further, we use the same commutative diagram as
in Figure 5 but with the first homology group H1 replaced by Hm−1
throughout. The resulting topological contradiction proves that

lim
ε→0+

fε(Ñ) = lim
ε→0+

fε(N) = F.

Finally, the construction of the corresponding upper hemicontinuous

set-valued homotopy from fε : N → K to f̂0 : N → 2K with range

f̂0(N) = F proceeds exactly as before.
The final step in the proof of the Main Theorem 2.1 is to prove

that limε→0+ fε(Sd−1) = B. For this, we split up B into its facets
B = F1 ∪ · · · ∪ Fk. For each Fi, by combining Lemma 6.2 with
the argument following (7.9), we deduce that limε→0+ fε(SFi

) ⊂ Fi,
and hence limε→0+ fε(Sd−1) ⊂ B. On the other hand, by the case
m = d − 1 of Proposition 7.1, there exists a (d − 1)-dimensional sub-
manifold Ni ⊂ Sd−1 such that limε→0+ fε(Ni) = Fi. We conclude that
limε→0+ fε(Sd−1) = B, as desired. Moreover, we can similarly piece
together the set-valued homotopies for each facet to find a set-valued
homotopy from fε : Sd−1 → K to the set-valued inverse Gauss map (5.2)
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mapping the sphere to the boundary polytope B = ∂K. This, at last,
completes the proof.

Appendix A. Set-Valued Homology

In this appendix, we review the basics of set-valued singular homol-
ogy following Y. Li, [11]. For simplicity, we will use Q as the ring of
coefficients throughout.

Let X, Y be connected normal Hausdorff topological spaces. Given
a set-valued mapping F : X → 2Y and an open covering U of Y , we
say that F is compatible with U if and only if for any x ∈ X, there is
some U ∈ U such that F (x) ⊂ U . Define

C(X, Y,U) =
{
F : X → 2Y

∣∣∣ F is an upper hemicontinuous mapping

with closed values compatible with U

}
.

(A.1)
Let

∆n =
{
x = (x0, . . . , xn) ∈ Rn+1

∣∣ xi ≥ 0, x0 + x1 + · · · + xn = 1
}

denote the standard n-dimensional simplex. For i = 0, . . . , n, let

ϕi(x0, . . . , xn) = (x0, . . . , xi−1, 0, xi, . . . , xn)

map the (n − 1)-dimensional simplex ∆n−1 to the i-th face ∆(i)
n =

∆n ∩ {xi = 0} of the n-dimensional simplex.
Given an open cover U of Y , we define the n-th set-valued chain

group Cn(Y,U) to be the free abelian group generated by C(∆n, Y,U).
We then define the boundary operator ∂n : Cn(Y,U)→ Cn−1(Y,U) by

∂ncn =
n∑
i=0

(−1)i cn ◦ϕi. (A.2)

Thus, ∂n ◦ ∂n+1 = 0, which is usually abbreviated by ∂2 = 0.
The n-th set-valued homology group of (Y,U) is then given by

Hn(Y,U) = Ker ∂n/ Im ∂n+1. (A.3)

As noted by Li, [11], if one is not careful when choosing the cover U ,
all set-valued homology groups are trivial, and would thus be of no
help establishing the desired topological result. To avoid this difficulty,
Li imposes the contractible finite intersection property on the cover U .
This property requires that the intersection of any finite collection of
elements of the cover is either empty or contractible.

Since ordinary functions can be viewed as set-valued functions, there
is a natural inclusion map i from the n-th chain group Cn(Y ), as defined
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in the usual singular homology theory, to Cn(Y,U). The inclusion is a
chain map, and thus induces a group homomorphism

i] : Hn(Y ) −→ Hn(Y,U), (A.4)

which, according to [11, Theorem 11], is actually an isomorphism.
Moreover, an upper hemicontinuous set-valued mapping F : X → 2Y

with closed values induces a chain map from Cn(X) to Cn(Y,U), and
thus induces a group homomorphism

(F )∗ : Hn(X) −→ Hn(Y,U). (A.5)

In general, we will place parentheses around (F )∗ in order to distinguish
the set-valued homology group homomorphism from the usual group
homomorphism f∗ : Hn(X) → Hn(Y ) on the corresponding singular
homology groups induced by a continuous (ordinary) function f : X →
Y . Further results of Li, [11], are quoted in the text as needed.
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