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Abstract

A theory of higher order differential forms, called diffgrential
hyperfbrms, based on the théory of Schur functors, is constructed over
Euclidean space. Generalizétions of the deRham complex lead to the
notions of a hypercomplex and hypercohomology theories based on higher
order derivatives. Applications include the systematic derivation of
higher order divergence identities for hyperjacobians and a wide variety
of interesting higher order Pfaffian systéms with integrability criteria.
New, explicit formulae in the algebraic theory of Schur functors are

also presented.
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1. Introduction

This is the first of two papers in which a new theory of higher order
differential forms, or "hyperforms," is introducéd, based on the recently
developed and, in my view, fundamentally importanf theory of Schur functors.
This paper is devoted to the construction of hyperforms over Euclidean
space, but with no consideration of their behavior under changes of coor-
dinates. The sequel will do the more difficult constructions over arbitrary
smooth manifolds. Although a regrettably extensive amount of algebraic
machinery must be developed before these hyperforms can be properly considered,
I hope that the intrinsic beauty of the identities which can be found, as
well as the range of potential applications in both differential geometry
and partial differential equations will make the readers éffort En assimilating
the material worthwhile.

When I first learned about differential forms and theilr applicétions in
differential geometry, especially deRham's theorem, [28], I was always
struck by the fact that these constructions only involved first order der-
ivatives - either of the coefficients of the forms, or the functions giving
changes of coordinates. Indeed, the only places in which higher order deri-
vatives make their appearance in differential geometry are a) in jet bundles
and overdetermined systems of differential equations, [1Lk], [26], b) the
more or less equivalent, but far less sophisticated theory of extensors, cf.
[21] and references therein, c) the theory of higher order frame bundles
or tangent vectors, eg. [16], [28, § 1.26]. Although extremely interesting

and useful, none of the above mentioned theories has any of the flavor of



differential forms with differentials, exact sequences and cohomology in
any truly higher order sense. I propose that the theory of differential
hyperforms fills this long neglected gap, and provides a correct setting
for the systematic development of a differential geometry based on higher
order derivatives with many potential applications. In particular, higher
order cohomology, characteristic classes, etc., are among the ideas

that remain to be developed, all of which must be dealt with in later
investigations.

Be that as 1t may, the original motivation for my development of this
theory came from a question raised in the study of variational problems of
interest in nonlinear elasticity, [3], on what homogeneous differential
polynomials could be written as higher order divergences, the first non-

trivial example being the curvature identity

2 2,1 2 2, 1 2
uxxuyy - U =T Dx(-E uy) + Dny(uxuy) - Dy( 5 uX) , (1.1)

the D's demoting derivatives. This problem was solved in [23]; the
most general such polynomial is a linear combination, of polynomials I
called hyperjacobians as they were higher order analogues of the classical
Jacobian determinants - see section 15. It was also of'interest to
actually construct the explicit identitles for these hyperjacobians, and to
do this a some what unsophisticated version of differential hyperforms was
proposed.

At the saﬁe time as [3], [23] were being written the concept of a
Schur functor, or shape functor having been introduced by Towber, [27],

and Lascoux, [17], was being developed by Akin, Buchsbaum and Weyman,



[1], [2], [30], for the purpose of resolving certain determinantal ideals.
Although results.in [3], [23] required detailed knowledge of certain pro-
perties of these determinatal ideals I was unaware of the existence of
Schur functors until. I heard David Buchsbaum lecture in Minnesota in
January, 198l. I realized that my primitive algebraic constructions of
hyperforms in [23] were just a special case of a much grander theory of
Schur functors, thereby considerably gaining in power and range of
applicability. This paper is the first fruit of this marriage of the powerful
new algebraic tenchiques to differential geometric ideas. It is, in my
opinion, Jjust the beginning of the application of these fundamentally
important functors to a wide range of geometric, topological and even
physical problems.

The basic idea behind differential hyperforms is as follows. On the

Euclidean space M = IRp

, corresponding to each shape (Young aiagram) A

is a hyperform bundle Ekcmtained by applyiﬁg the Schur functor L, point-
wise to the cotangent bundle T*M ; smooth sections of EX are called A -
hyperforms. For each shape pDX there is a differential 'di taking

A - hyperforms to p-hyperforms, so that the coefficients are differentiated
|u /A| times. The differentials d; cormute in the obvious sense,

and, moreover d& =0 1if u,/k has two or more boxes 1in any columm. For
l:=1k a2 single column, EX Ziﬁk¢* , and d; for u::lk+l is the ordinary
differential. Thus the deRham complex forms a small part of the much larger

differential hypercomplex formed by the hyperform bundles and differentials.

In this paper, since d; only involves |u,/l] order differentiations,

and no lower order, it cannot be invariant under changes of coordinates,



which is why only Euclidean spaces are considered here.

The differential hypercomplex is also exact in a certain sense. The
simplest manifestation of exactness occurs for shapes ACpCv with
u//k and v,/u each consisting of a single row of boxes, in consecutive
rows, and which overlap in precisely one column; for instance r=(3,1) ,

w=10(3,3) , v=(3,3,2) . Then a given p-hyperform 7T satisfies
TR
d,"i—_ﬂ (1.2)

for some A-hyperform & if and only if

il
O

Vv
a, (1.3)

(Note d:dgtg:d;g:o for all € .) If |p/M =k, |v/u|=t,

then (1.2) forms a large system of k-th order nonhomogeneous }inear constant
coefficient partial differegtial equations in the coefficient functions of

E , and (1.2) constitute the full set of &4-th order integrability conditions
for their solution. By suitable choice of RI, W , v one can find

systems of any desired order k with integrability conditions of some other
predetermined order 4 . Often these systems are nontrivial - see |
section 16. For more general ACyu , the system (1.2) will still be of
order |uw/A| , but the integrability conditions will consist of several
systems of the form (1.3) corresponding to different viiﬁu with possibly
different orders Ivi,/ul . Again, any desired orders can be found by

a suitable choice of A , i . The exactness also Includes systems of

mixed order with integrability conditions of various orders. These systems

can be viewed as true, nontrivial higher order generalizations of the



classical Pfaff systems, [12], [25]. They could be valuable as specific,
nontrivial examples for further investigations into the Spencer-Gold-
schmidt theory of overdetermined systems of differential equations, [14],
[26]. For manifolds, the lack of exactness of the hypercomplex will
introduce new types of cohomology, but we will defer this to the second paper.
(A similar type of hypercomplex has been introduced by Delong, [7], in his
study of Killing tensors. It is of great interest to study the connection
between our hyperformsand his differentials, which require a Riemannian
connection.)

The Schur functors required for these constructions only involve real
or complex vector spaces. This restriction to characteristic zero throughout
leads to several simplifications in the underlying Schur functor theory,
the most notable being the lack of distinction betweenk£he symmetric and
divided power algebrés and”hence between Schur and co-Schur functors, cf. [2]
Actually, our definitions are a slightly hybridized version of co-Schur
functors, but for simplicity the extraneous co- has been dropped.

For a vector space V , the Schur spaces Lk\] have been around for
a long time; they are just the irreducible representation modules of the
general linear group GL(V) , [4], [20], [29]. Towber, [27], uses a
second definition in terms of tensor powers of the symmetric algebra of

V modulo an ideal of relations. Yet a third definition, used by Akin, Buch~

sbaum and Weyman, [2], is as the image of certain maps on these tensor
powers. Each definition has its own particular advantage - the first,
in conjuction with functoriality and Schur's lemma reduces otherwise
impossible identities to the computation of a single constant; the

second is best for specific computational examples; the 4ast has the
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advantage in the development of the underlying theory. All three are
used at one point or another here, and I see no reason to prefer one over
the other.

* Although a substantial amount of vital theoretical groundwork has
been laid by Lascoux, [17], and Akin, Bucksbaum and Weyman, [2], I have,
for the most part, found their constructions of maps between Schur spaces
far too unwieldy to work with when it ccmes to specific computations, many
of which are vital in the development of the theory. This is especially

true in the so-called Pieri formuls for decomposing certain tensor products.

Sections 5 and 6 redo this important result with explicit, easily com-

putable expressions for the relevant maps which have not appeared so far.
(This redevelopment is one explanation for the somewhat inordinate length
of this paper.) In essence, the Pieri formula provides a product between
a vector veV and a hyperform w€l ‘

AV to give a hypérform v*wGL“V

for any uw>MA with |p/A| =1 . This Pieri product lends to an algebraic

version of the differential hypercomplex, which we call the Schur hyper-
complex, and which has similar properties of conmutativity, closure and
exactness - see Section 8.

It is also possible to define products between hyperforms, but here
one runs into the problem that, according to the Littlewood-Richardson
rule, the Schur space IM‘V may occur with multiplicity greater than one
in the tensor product Lk‘J ® Iﬁ V , and hence there mayvbe more than
one type of invariantly defined product between a A-hyperform and a p-
hyperform giving a v-hyperform. For this reason, except for one special

"

case, we have not investigated the complete "shape algebra " in any great

detail.



If, however, A,u,v are all of the form nlr for fixed n » 0<r<nm ,
which we call "n-fat shapes”, then there is a uniquely defined product,
up to constant multiple. These fat hyperforms and products are exactly
the hyperforms that were introduced in [23] for constructing hyperjaccbian
identities. As in [23], these products are nonassociative unless certain
restrictions on the remainders r are met; this nonassociativity is another
manifestation of the appearance of Schur spaces with multiplicity greater

than one, this time in triple tensor products. Finally, the hyperjacobian

identities are constructed using a version of Leibnitz' rule for hyper-
forms, which in turn relies on the notion of the algebraic differential

‘of a functorial product between hyperforms; see sections 11, 12, 1k. Thus,

2

- 2 .
for instance, the identity (1.1) is just the coefficient of dx ®dy in

the hyperform identity . -

dg(du* du) = C d%u * 3°u

>

where C 1is a constant, depending on the explicit definitions of the
above * products. See section 15 for details. The Schur functor-hyper-
form theory becomes a powerful tool for constructing these complicated,
but beautiful identities.

Som2 words of advice on how to approach the paper might help th=
reader. One needs a certain familiarity with the concept of a Schur
functor, although all necessary definitions are provided in section.3.
The reader completely unfamiliar with these obJects michf need to
consult the basic references given in that section before proceeding.
Much of sections 2-4 consists of technical definitions and results
which are best left until required in subsequent parts. The first
important concept is the Pieri map, introduced in section 5. Tt is

helpful to play with some of the simpler examples, e.g. example 5.3,



rather than on first reading trying to fathom the most general case.
Skipping section 6, the key concept of a hypercomplex is introduced
in section 7, of which only the first 3 pages need be read Initially,
followed by the algebraic Schur hypercomplex in section 8. Here, :
analysis of the examples and further computations of simple cases
are essential to gain familiarity. At this stage, it is adwvisable
to skip ahead to section 13 to understand the corresponding differential
hypercomplex, whose exactness properties are in section 16, including
a number of examples. The hyperjacobian identities, dicussed in section
15, then rely on the omitted material in sections 9-12, 1k. With this
overview complete, the more complicated proofs and properties can
now be properly appreciated.

Finally I would liké to thank P. Delong, J. Eagon, L. Green,
R. Gulliver, S. Johnson, E. Kalnins, W. Miller, Jr., 5; Roberts,
ana J. Thompson for patieﬁﬁly attending a seminar in which these
ideas were first presented, and offering numerous helpful comments

and suggestions.



- 2. Shapes and tableaux

[--]
let I denote the set of infinite sequences of nonnegative integers
a = (al,ae,.. .) with only finitely many nonzero terms. Finite sequences

a

[=~4
(a_L,. . ,am) are viewed as elements of I by appending zeros:
Q= (al, ‘e .,am,o,o,. ..) . A seq_uence. o€ N is identified with an array
of boxes, called a (Young) diagram, with aj boxes in the j-th row of the

array (counting from the top down). A diagram A= (A s--+) is called

l’l2
a shape if the corresponding sequence is nonincreasing, i.e. ll > 12 > e -
Unless specifically mentioned otherwise, the symbols A,u,v will always

denote shapes, whereas «@,8 will denote arbitrary diagrams.

The weight of a diagram o is |af = O + Q@+ .. ; the number of rows
is m(a) = max[i|ai>0} . Gilven a, p=a+ J denotes the diagram obtained

by adding a single box to.the j-th row of « , so Bi =Q. iJT-,j R

Bj=aj+ 1 . 1In the case of shapes, the relation u=A+J presumes that

the resulting diagram is actually a shape, i.e. A A. if J>1 . Given

31705
(3,k) positive, let B = a/(j,k+) be the diagram obtained by deleting
all boxes in the j-th row of « in all columns beyond (and including)
the k th column, so B, =qa; for i +i, 6j=min{aj,k-l} .

The diagrams, and hence the shapes, are partially ordered so QCB
if O:J. < BJ. ,for all j , i.e. the diagram o« 1is contained in the dlagram
B. If aC B, a$ B, wevwrite aC B . If ACp are shapes, the
skew-shape p./?\ denotes the array obtained by deleting -the boxes in A
from p . (This is not in general a diagram any longer.) If A is a

shape, the dual shape X 1is obtained by interchanging rows and colums, so

A=t {ifa, 2 3} .



Shape A = (4,2,1)

m(}) = 3

Skew-shape p/ A ,
W= O+;3)2:2)

Dual shape:
X = (3,2,1,1)
h
Hook 13 in o
(filled in boxes)
Tableau of shape A

S = {132:3:h}

Standard tableau of

shape A , same

Simple and canonical

tableaux of shape

3 .

A
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Given a shape w , define

s(w) = {A|rcul ,

8. (W) = IMrcu , [w /X =k},

Sl(p.) = {A]ASu , /N has no colum with two or more boxes}
2 1
87 (n) = 8(u) ~ 87 (u)
i -
8, () =8 (wns(w , i=1,2,

() = Dvjucvl

5 () = {vfucy , |v/u| =},

:Sl(u) = {v]p.Cv s \)'/p. has no colum with owo or more boxes} |,
2 1

41 (LL) = 3(“) ~ g (U‘) 3

T = THWNT () , 1=1,2
k ] - b k H > 1=4, .

Given y = {vl...,vk}<: Sl(u) , let
1 1 2, 1 2, k
S7(u,p) =8 (W)N8“(v)n...Nns%(v7) .

Note Sl(p,g) + 4 . A shape %.ES;(u,g) is maximal if no other shape
in Sl(u,g) contains A ; the set of maximal shapes is denoted So(uzx) .

1 j 1
,"'913} < 87 (k) 5 let

Similarly, given A = {A
(L) = 7Hw) Nz n .. nTlod)

A shape v Eﬂl(b,p) is minimal if no other shape in SI(L,u) is contained
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in v, 'JO(L,p.) denotes the set of all minimal shapes.

Note that for chl(p) R

8%(,5°(A,m)) = A

but, in general, for y_CIIl(u.)

57(8%(u,y),m) + v -

However, equality will hold if Vi = My

A4,y will be called min-max related if

for all vEX . The sets

L=80(u,2) and 3=3°(},,u)

If A= {A} or N = {v} consists of a single shape, then we will drop the
bold-face and write Sl(p,,v) , ete. 1In particular,""éhapes Ao,V

are min-max related if and only if w/A and v/u both are single rowed,
lying in consecutive rows and overlapping in a single column; in other

words,

A = U'/(i’vj_+1+) s b= v/(1,0+),

for some 1i>0, j>O.

Example 2.1
Let W

I

(3,2,1) . If v = (3,3,2) , then

A =8%0,v) = {(2,2,1) , (3,1,1)}

It
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and A,u,v are min-max related. If v={(3,3,1,1) , (3,2,2,1)} , then

(o}

A =8 G,y = (3,2, (2,1,1)]
and again },u,¥ are min-max related.

Lemma 2.2 Let A,u,¥ be min-max related. If p€3’l(p.) with

pZv for all vEy , then there exists AEX with p EEl(l) :

Proof
If »p /u, congists only of boxes in the first row, then any X will
do. Otherwise Sl(u,gU{p}) < Sl(p,,’\‘)’) is nonempty, so let KO be an

element. Let X € ) contain A_. If o f.{{)'l(k) , then L € Sl(u.,'gu{p}) >

so A cannot be 'u,y‘-maximal. Q-E.D.

Lemma 2.3 Let A,u,y be min-max related. Then

1) e U TTmUU T, (2.1)
AE) vEy
and
ii) Kl(k)ﬂ Ul(v) =g . For AEL , VEY . - (2.2)

Proof
The second:formula is obvious since if p>Dv for VvEyV then
P 6'52(1) for all XE€X . To prove (2.1), if o GB’l(u) , then either

pEUl(v) for some v€y (p can't be in 'Jg(v) for any v ), or
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pZv for all v€y , so, by Lemma 2.2, p € Ul(l) for some AEX .

Sometimes the exponential notation

A = kl N kE

kl > k2 > .. > kp > 0 will be used for a shape with ml rows of length
kl > M, TOWS of length k2 , ete.
A shape 1s n-bounded if lj_f n for all J , i.e. there are at

most n columns in the diagram. A shape is n-fat if it is of the

special form
A=n%r

for O0<r <n . Note that there ié precisely one n-fat shape of a
given weightihere q = q(A) and r = r(A) are the quotiént and remainder
respectfully obtained by dividing IA] by n .

The 1i,j hook , hij(x) , is the set of boxes consisting of a single
row and single column of boxes, contained in A , which connects the
last box in the i-th row of A (called the initial box of the hook)
to the last box in the j-th row (called the terminal box of the hook.)

The hook length, the number of boxes in the hook, is given by the formula

Lij(l)=li—>\j+3—1+l, i<

The total hook length of A\ 1s just the product of all the hook

lengths:

<

LAy = T L. () . 2.
(1) & 1q<> (2.3)
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If WD A, the total hook length of W mod A , denoted L(w,A) is
the product of the lengths of all hooks hij(u) whose terminal box
is in W /2

A tableau T ©Of shape X with values in a set 8 1is given by
amap T: A — S, or, equivalently, by filling in the boxes in A with

elements of S . If § 1is ordered, the tableau is called row standard

if the rows are nondecreasing, column standard if the columns are strictly

increasing and standard if both row and column standard. The content of
a tableau T with values in S is the map c: S — I with c(s) denoting

the number of occurrences of s in T . The simple tableau of shape

A 1s the standard tableau all of whose entries in the j-th row are the

integer Jj . The canonical tableau of shape A 1is the standard tableau

with entries 1,2,...,|X| arranged in increasing ordef; left to right,
top to bottom.
The number of standard tableau T: A — S can be calculated by

the following formulae, [k], [29].

Theorem 2.4 Suppose #S = p . Then the number of standard
tableau of shape A = (ll,...,lm) , m <p , with values in § is

P A(Llyéea"‘:L )

= D
Nl - A(p—l,p-2,..-,0) ? (2.&)

where
L.:Ri+p—i, (Xf@ i>m) ,

and A 1s the difference product
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(If m>p , Ny =0 .)

Theorem 2.5 Let |A| = n . The number of standard tableau of
shape A with entries in {l,...,n} , each entry occurring precisely
once, 1is

n! A('{’l7"‘7’t’ )

= ] v [3 b (2‘5)
My AL AR

where

L.=XA.+n-1.
i



-17-

3. Schur functg£§

In this section the basic theory of Schur functors in characteristic
zero is outlined. Proofs of the statements can be found in the basic
references [2], [17], [27]. ILet V be a fixed (real or éomplex) vector
space. The tensor, symmetric and exterior algebras of V are denoted by
@, =&V , 0, =0,V , A, = AV respectively. Each of these.is a graded

algebra, so ]V = @b ®iV , ete.

i>0
(=]
Given a graded vector space W =& Wi , and an element o € W ,

define the tensor product

For a shape A , define the map.

SX: ®K O* - ®xA*

by composing the tensor product of diagonal maps

remembering that the various copies of V occurring in the intermediate
tensor product are labelled according to their positions in the diagram
A . The Schur space Lk = LRV is then defined to be the image of 8k .

This is the definition of Schur functor favored by Lascoux, [17], Nielsen,

[22] and Akin, Buchsbaum and Weyman, [1], [2], [30].
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A-different construction was proposed by Towber, [27]. Let 4

denote the two-sided ideal in ®*©* generated by relations of the form

P+l
L xe® (x, ©9z) =0, (3.1)
. 1 i
i=1
called Young symmetries, for Xl""’xp+l €V, z € Oq_lV » and p>q,
where Xq = xiO cee © xi—l © Xi+l 0 ... © Xp+l . Then

ker 81 = Ja = 4N ® 9%
hence the Schur space
L, =@ 9, /J,

is the quotient space. For computational purposes it is useful to know

the following consequential relations, cf. [27].

Theorem 3.1 Let x=x,0 ... ©x_€0_,y€0 , 2€ 0 with
1 p p q r

P > g+r . Then the relations

x® (yoz) = (-—l)q z (xI 0y)® (XJ 0 z) (3.2)

are in the ideal 4 . 1In (3.2) the sum is over all multi-indices I,J

with TUJ = {l,...,p} , INJ =g and |J| =q, so S LI 0x,
1 q

3

etc.
The Schur space LX can be identified with the representation
space of the.irreducible representation Py of the general linear
group GL(V) corresponding to the shape A . This interpretation, which

can be inferred from the standard works on representation theory, e.g.
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4], [20], [29], leads to yet another definition of Ly in terms of
Young symmetrizers.

If |2 =n, let T, be the canonical tableau of shape X . The

Young symmetrizer for the shape A\ 1is, cf. (2.5),

oy = ET-Z sgn(n)m (3-3)

the sum being over all permutations x and p of {1,...,n} with x

e

preserving the columns and p the rows of T , cf. (L, page 1011,

[29; page 124]. This induces a map
Ty ®nV - ®nV s

where the permutations m,p 1in o permute the various copies of V

in the tensor product. With the above normalization, &l is a projection:

and

In fact, I clearly restricts to a projection

Oy B Oy 7 Ly

for which we use the same notation.

A decomposable element of ®AO* is of the form
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where each X; €V,
A with values in V

and can thus be identified with a tableau of shape

, the entries being the xé - This in turn defines

a decomposable element of LX , which we also write as x , from now on

omitting the maps BX or ch when there is no possibility of confusion.

In particular, if V has basis {el,...,ep} , then for each tableau of

shape A with values in {1,...,p} , there is a corresponding decomposable
-element e of . ®X@* R and'hence LX , oObtained by substituting the vector e for

T

the integer i wherever it occurs in ) . (For the standard tableau of Figure 1,

e = (elOe2©e2©eu) ® (e3©e3) ® <) .) The row standard tableaux T
provide a basis e of ®AO* , but these elements are no longer independent
when viewed as elements of L, - The following theorem, [2], [8] provides

a basis for the Schur space Ll .

Theorem 3.2 Let  dim V=p , and {el,...,ep} be a basis. Then

the elements eT for vT standard tableaux of shape A form a basis

for Lk . Therefore the dimension of LAV is Ni , as given in (2.4).

Given a nonstandard tableau T , it is useful to know how to

rewrite the element eT as a linear combination of basis elements of

LX ; this is known as a straightening law. Rearranging the symmetric

products in ep We may assume that T 1s at least row standard. Let
the last non-standard entry of T occur at position (i,j) . In other
words, t. . > t, 5 5 but ti',j, < ti,_l’j, for all (if,j') with
it >1i, or i* =1 and Jj' > J . Then use theorem 3.1 on the i-1 st

and i-th rows of e with x Dbeing the symmetric product of the e's

from the (i-l)st row of T , y +the product of the first j entries of
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the i-th row and =z any remaining entries in the i-th row. For
instance, for the nonstandard tableau of figure 1, (i,j) = (2,2) ,
SO we re-express e, as a linear combination of elements corres-

ponding to the tableaux

2 2
1 1
1| ] ;

L=
[ ==+
=

[FTo T e

the first and last with coefficients + 1 , the other two with coef-
ficients + 2 . (For tableau with repeated entries, this step must
sometimes be modified slightly by rearranging the equation if the original
tableau appears on both sides of the identity.) Of the resulting tableaux,
those which are not standard are again subjected to this procedure. The
entire process is guarénteedwto terminate in a finite number of steps,
since at each stage the lexicographic order, obtained by writing out the
entries of the tableau in reverse order, i.e. right to left, bottom to
top, increases! See Doubillet - Rota - Stein, [8], or DeConcini - Eisenbud -
Procesi, [6], for details.

Finally, we remark that if A = k consists of one row, then L

A

is the symmetric power Ok . If X = 1™ consists of one column, then
LX is Just the wedge power Am .

More generally, the .same methods can be used to define. Schur
functors Lu,/?\V for skew shapes p./?\ , cf. [2]. Our only interest

in these more general functors is in the following decomposition theorem

for direct sums.
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Theorem 3.3 Suppose V =W®Z . Then
k
Lv=orL )(w,Z) ) (3.5)
M k P

where each L&k)(W,Z) has a natural filtration, with associated
graded vector space
(k)
L\ Y(w,Z2) ~ @ LVe L /xZ R (3.6)
s reEs, () s
but the direct isomorphism is not natural.
The proof of this theorem can be inferred from [2] or [17].

We are primarily interested in the special case dim Z = 1 , when

k

0 7Z A€ Si(u) s
L 7 =
LA v e s

Since each symmetric power QkZ is also one-dimensional, we get the

following corollary

Corollary 3.4 Suppose V=W®Z , and dim Z = 1 . Then

_ (k)
L“'V =® Lu W (3.7)

where each L(k)w ig filtered, with assoclated graded vector space
W

%y e 1w, (3.8)

= A
1
res (u)

This corollary will be of key importance in proving an‘algebraic

version of the Poincaré lemma for hypercomplexes.
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L: Functorial Maps.

The category C 1is that of finite dimensional (real or complex)
vector spaces, the morphisms being linear maps between vector spaces.

A functorial map, or natural transformation, between two functors &

and % on C, is a linear map
Q: FV — AN
for V any vector space, which c¢commutes with the morphisms: if
A VW
is linear then
@ °‘§A = éﬁ > . | (4.1)

For a given pair of functors .%,& , the set of all functorial maps
¢: ¥ *.& forms a vector space itself under the obvious operations. (See
[24].)

Of particular interest are functors & consisting of combinations
of tensor, symmetric or wedge powers, or, more generally, Schur functors.
Any such algebraic functor applied to V , &V , oecomposes into a direct
sum of irreducible representations of GL(V) , i.e. a direct sum of
Schur spaces LV - This decomposition will be "functorialﬁ : independent
of the particular vectof space V provided dim V is’oufficiently large,
50 no LXV is zero. In particular, the multiplicities of the various
LXV in &V are independent of the particular vector space V . Schur’s

lemma then proves the following basic result.
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Theorem 4.1 Let & be a combination of tensor, symmetric, wedge
powers, or Schur functors. Then the vector space of functorial maps
©: & — Lu for any given Schur functor LH has dimension equal to the
multiplicity of Lu in & , i.e. the miltiplicity of LUV in &v for
any V. with LV # 0.

These multiplicities are only known in general for fairly simple
&'s , e.g. the tensor product of two Schur functors, see section 10.
More general functors lead into the difficult area of plethysm of which
only limited results are thus far known, [15], [18], [30], [32]. (all

except the third are written in terms of Schur functions).



5. The Pieri Maps

For a specific instance of the previous theorem, we consider

the Pieri Formula, [17], [30]

9, ®L

= &

b €T, (1)
2

decomposing the tensor product of a symmetric power with a Schur functor.

Combining with projections onto the various summands we obtain functorial

maps

b, -
o O ® Ly L, (5.2)

which we name Pieri maps. As a corollary of (5.1) and theorem L.1 we

have

Theorem 5.1 The Pieri maps are uniquely determined up to a
constant multiple (independent of any particular vector space).

It is helpful to have explicit formulae for the Pieri maps,
but, for simplicity, we restrict attention to the case L=1 .
Let X be fixed, and let u = A+k be the shape obtained by adding

a single box to the k-th row of X . The Pieri map

o -
oyt VO Ly = L

is then constructed as follows:

First consider the linear map

L0 ®0 -0 .80
T T g Yp-1° gl



given by
r(x®y) = T xT®(y G)xi)

for x = x;0... @xq decomposible. The (i,j) transposition

1
is the linear map on ®)\O* which is the identity on all factors

except the ith and jth, where it agrees with «r:

. ® - ® 0 .
%A 7Y, ,
i J i-1 H1l
(If i1i>j the order of the factors is reversed), If ki=0 > Tij =0 .
Note that im Tij < ®>" 9, , where )\J!_j is the diagram obtained from
ij

A by taking one box from the i-th row and adding onto the j-th row.

(lij is not necessarily a shape.) Multiple transpositions corres-

ponding to J = (jl,...,',jp) are defined by

L T P . .- (5.4)
J Jydo Jod

Given k<m , define

Ak.

m= {J = (jl)"',j

p)] m=jl>j2>...>jp=k} ,

where p = #J can range from 2 to m-k+ 1 .

Let
L: V®®)‘©* "'®l0* QV
be the interchange map

t{(vew =w®v,



and identify the latter space with @, 0y , where A = (Al,...,hn,l) .
+

Finally define

o Ve ®0, ~8 0

by ATx b *
by

-1

o = (TC ) o, (5.5)
the sum being over all ;TEA§+1 . The coefficients are

: p-1

q=2 q

p =#J , i.e. the product of the hook lengths of all hooks whose initial
box is in row k , and whose terminal box is in a row indexed by J

(except for jp =ml ).

Theorem 5.2 Let u =A+k . If mi is as defined in (5.6),

then
n -
(p.k(V ® .a)\) Ju .
Therefore @i induces the Pieri map
. -
2% Ve Lk Lu

n
A

Before proving this theorem, it is helpful to consider some

(the two "different” meanings of o, should not cause any confusion.)

examples.
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Example 5.3

Suppose A = (p,q) is a two-rowed shape. For u = (p+l,q) ,

q
% (v @ (x®y)) = (xov) 8y + T (x0y)®(y ov) , (5.7)

p-q+2i.=l i

Y1

theorem 5.2 is fairly routine in this example.

for x € Op , ¥ = Q... @yq € 'Oq , V€V . The verification of
Even simpler are the cases pu = (p,q+l) or u = (p,q,l) , where

x® (y 0v) wo= (p,ar1)

l

<PL{(V ® (x®y)) =

1l

X®Y®V e (p7Q7l)

In fact, if p = A+k , then @) only affects the i-th rows of
X € ®>‘O* for 1>k .

For X = (p,a,r) , w = (prl,q,r) , we have the more complicated

formula
. 1
= —_—— ®
q};(vg(x@y@z)) (x0V)®y®z + —— ?(x byi) (yﬁ@v) ®z +
1 %

£ (x0y;)@(y, 02,)®(z 0v)

1
b N(x0z.)@y®(z.0v) + -
pP-r+3 + T (-ar2)(p-r+3) i3 e J

The general formula (5.5) can now be fathomed.

Lemma 5.4 Let i #£j, k#4 . For §E®l®*,

(A -2)C i=L, i-k,
[Tij’Tk{,](g) = Tkj(g) i=21 bl j7{k')
"Ti,{’(g) j:k > i’J'L)

0 otherwise |
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(Here [f,g] = f°g - ge°f for linear f,g .).

The proof is trivial.

Proof of theorem 5.2

Note first that the relations (3.1) defining the ideal JX span

the image of in ®,0 for 1<2<n , hence it suffices to

Ty, ASx 2
prove that

[y > Ty g4n) = O (5.8)

for all such 1 . There are three cases depending on the relative
magnitudes of k and 4 .

Consider the case k=4 . Indices in A§+ split into two

1

classes:

J = (k,K) , J'" = (k,k+1,K) ,
.

where ¥ € AI;_I_]_ for some m>442 . Then by lemma 5.4 ,

g M) = T e T i) = 7T " Tmyiel

whereas

o) = T e T T, Tkge! T Gk Mt ey g

The latter coefficient is just the (k,k+1l) hook length of X , hence

using (5.6) ,

[C_l .+ C_l

g Tt e T Tl 70
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Summing over K proves (5.8).

Next consider the case k<. . Now the indices in A§+ split

1
into three classes: J = (I,4,K) , J' = (I,4+1,K) , J" = (I,2,5+1,K) .

k
for IE€ Aj , J<& , K€ Alrr;l , m>L+1 . Again by lemma 5.k,

= %
[TJ’TL,ull A
EE—
[TJy ’TL,*(J““l] T 2
R = - *
gy gend = (g = Ay g v D
where
*
TTTR T Tmer T ey 71
Therefore
-1 -1 -1
[y T+ Cgv Ty ¥ Cpn Tgn 5 Ty 4091 =05
since

-1 -1
Cyp = C; + (X

-1
'{/—kb‘}‘l_’_ l)CJ,. 5

as can easily be verified.
The remaining case 4 <k 1is treated similarly, and is left to
the reader.
It remains to check that the functorial maps cp;’:: V& L)\ - LU-
so constructed are not identically zero for all vector spaces V .
By functoriality, it suffices to prove this when V 1s of sufficlently

large dimension, and we need only check that cp&(v@zg) is nonzero for
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one element v®x . It is easy to see that if el,-..,eerl are
linearly independent in V , setting v = en&l_,_g = evT for To the

simple tableau of shape A , then each term in Q&(v¢§5) is a (nonzero)

multiple of a standard tableau of shape u . Thus by the basis theorem

3.2, @i(vﬁizj 4 JL , which completes the proof. (See also (9.10) for

a more explicit example.)
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6. Polarization Maps.

In his thesis, [30], Weyman introduced and studied the functorial

maps

A
X, b, "9 8L,
reversing the direction of the Pieri maps. (See also [31].) In the

special case that LH (and hence LA ) are symmetric powers, these

agree with the classical partial polarizations of symmetric polynomials,

hence the X; will be called polarization maps. It 1s easily shown that
xﬁ is uniquely determined up to a constant multiple, and, moreover,
when composed  with @& gives a multiple of the identity map 1 on L“

Weyman bases the construction of the X& on the composition of

maps
®MO* ®~A* 3 ® ®KQ* s
b
where A 1is a tensor product of diagonal maps Aj+l - VCSZ>/\'j on the factors

corresponding to columns with boxes in u/A , followed by symmetric multi-
plication on the 4 extra copies of V . Needless to say, this form-

ulation is not of great help when one is interested in readily computable
formulae. ol

Again, for simplicity we restrict attention to the case u =A+k ,

first define

x .
X, 8,0, "V @0,

by
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A P~ -1
Xu = L(-1) Cr 7y (6.1)

the sum being over all J € Ai , P=#J , the copy of V in the image

N . . . .o
of xu being given row index O . The modified constants are

Cp=Caln) = T (2 (w)-1) . (6-2)
Note that

ij(u) -l =, "p‘k'*'k"j .

Theorem 6.1 Tet pu=\+k .

With x; defined as in (6.1) we have

A
xu(-au) SR A

hence x& induces the partial polarization

N .
Xu: Lu - Ve Lk .

The proof is very similar to that of theorem 5.2, so we leave it

to the reader and content ourselves with a couple of easy examples.

Example 5.2

Let u = (p,q) be a two rowed shape. If Dp>q ,'so A = (p-1,q)
is a shape, then

A P
Xu(X®y)= L x, ®@x @y

i=1 i

= O e s e E = oo o h f
for x = x4 © Xp OP > V=V 0 © yq € © , whereas for
A= (PJQ']—) ’
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X (x®y) = qf y, ®x8y - ——
K i= i 3 p-ag+ 1.,

Similarly, if p=(p,q,r) , A=(p,q,r-1) ,

A 1 |
X, (x®y®z) =L 2z ®x®y®z - ——— T x ®(x_ 0z )0®y®z,
H k k & p-r+2 K 3 k &
1 i .
-——— I y.®x®(y 06z )®z+ L x.®(x0y.)®(y 02, )0z
g-r+ 1 i,k J Tk & (p-r+2)(g-r+1) 1,3,k i 273 j k &
Theorem 6.2 Let A+k=y . Then
o A_ W
cpl ° >&L = axﬂ_ on LP' s (6-3)
where
s
L. (1) L o.(n) -2
a& = (pk+-n-k) I le(u)-l II ZEJZETTTI ) (6.4)
i<k Vik\ i>k “kj

The proof requires an easy lemma:

Lemma 6.3 Let gE@ue*. If JEA;,mSn,pz#J,then

R _ (_1\P
Tom ° T8 = (17 0+ 8
for some § G.a“’ .
F €A, #J = K € a° _ t L= (kk K
or J Ak’ =D, An+l’k2—m<n’ set L = pofgseees q—l’k’
. o
3o ,Jq) € A Then

T ° T ° TJ(C) = Tom TL(Q)

1

(-1PHe w O+ &
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for some § € .a;L . Substituting (5.5), (6.2) into (6.3), we immediately
see that

)1

>

dy= T (1P gy (V)7

C (u
J,K P J

the sum being over all J € Alo( and all K € Aipl , D=#K . The proof

of (6.4) therefore reduces to the following series of easy combinatorial

lemas.

Lemma 6.4 The following formulae hold:

) T T () t= T ﬁ——éﬂ‘(u) (6.5)
i G - ; .5
Tea° e 1 < LilH) -1
k

1) z (-Pc, 7t i N (6.6)

i - C = 5 s .
ek K k<i<m ™M
m

where p = #K .
These reduce to the expansion of the products
H(xi + 1) /xi
for appropriate X -

Lerma 6.5 For k<m<n ,

. L .(A) -1
2 (-1DPqh (M s (uam-k) T —kJ—T— | (6.7)
< k, K K k<j<m g™

k

the sum being over K € Am-l 5

#K=p, k,<m .
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Proof
Use induction on m . By (5.6), (6.6), the induction step from

m-1 +to m reduces to the formula

(b +m-k)(L,_ () -1)
(uk+-m-k-l) - Lkm?k) = RS >

't

which is easily checked, since

= A - - .
Lkm(k) " lm+~m k+ 1

From (6.5), (6.7) it is easy to verify (6.4).
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7. Hypercomplexes.

The Pileri maps

q’&(v®'):Lx—.Lu: uDk'a|u/1|:l>

lead one to the general notion of a hypercomplex. In this section,
the basic general results on hypercomplexes are presented, in pre-
paration for a more detailed discussion of the Pieri maps in the

following section.

Definition 7.1 A hypercomplex is given by a collection of vector

spaces W, indexed by shapes A , and linear maps

f‘{: Wy W

defined whenever u D A R |g,/x| = 1 subject to the two conditions:

a) Commutativity: The resulting collection of spaces and maps

forms a commutative dilagram. This allows one to unambiguiocusly define

maps

for any v 2 A Dby iterating the above maps fi in any convenient order

so as to reach W from W
v A

b) Closure The resulting maps £Y  are identically zero whenever

A

v!/l has two or more boxes in any column, i.e. A € Se(v) in the notation

of section 2.
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Within any hypercomplex, there are a number of interesting "sub-
‘complexes". First we generalize the notion of a complex as used in

homological algebra, [5].

Definition 7.2 An n-complex is given by a set of vector spaces

Wj indexed by nonnegative integers J , and linear maps

£, - W. =W
3% 7 "na

subject to the condition that the nt+l - fold iteration

vanishes identically for all j .

A complex in the ordinary sense is thus a l-complex. Of course,
any n-complex is also an n+l - complex. To exclude this ‘trivial case,
the term n-complex will usually imply that n-fold iterations
fj+n—l Y caew  * fj are not all identically zero.

Within any hypercomplex, there are distinguished n-complexes.
Namely, consider only the n-fat shapes, ordered by their weight, and
the maps f&; 2 Wy —°Wp‘ for A,u n-fat, |p/A| =1 . The closure

condition on the hypercomplex implies that these are indeed n-complexes.

There are also a large number of ordinary complexes. For any shape

» , define shapes p,J , with p.o =\, p,l =A+1,
3 ?\.i_l+l i<i,
Wi = j>2a.
i L z
A i>3,

Then it is easy tc see that
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FH1
f.=f”'J; P W oW
Jr

J ] HJ 2]
form a complex - fj+l o fj = 0 - called the A - subcomplex of the given
hypercomplex. For example, if X = (3,1) , then the A - subcomplex is

[ ] 11] _ :
[ ] sl — R — — —_2 cer,
- i

where we have suppressed the W's .

We now turn to the definition of exactness for a hypercomplex.

Definition 7.3 A hypercomplex i1s exact if for every shape % 0o,
every A C Sl(u) s LC Ul(p) with A,u,V min-max related (see section 2)

N ker £ = T im £ . (7.2)
v EY Booyea A

~ A \ .
Note: the sum is not ngcessarily direct.

The motivation fér thié definition comes from the exactness of
the Schur hypercomplex, to be discussed in the following section. Note
that in (7.1), by closure, the left hand side always contains the right

hand side. Thus we can define the cohomology of a hypercomplex:

Definition 7.4 Given a hypercomplex, and ‘3,u,x ‘min-max related,
the A,u,v - cohomology is
Hy =N kerf / T imf¥ .
__,:H-,,}’, vEv o L E% A
~ ~
We will not pursue the investigation of this cohomology theory
here in any detail.
To prove exactness of a hypercomplex, it actually suffices to

check exactness of the A - subcomplexes, and in fact, only special cases
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of those. This 1s a vital simplification in the exactness proof's

discussed subsequently.

Theorem 7.5 Given a hypercomplex fJ;: WX —’Wp‘ , suppose that for
all min-max related shapes A,u,v with |v/p| =1 (or, alternatively,

with |u /| =1)
\) .
ker flJ- = im f’;’; . . (7-2)
Then the entire hypercomplex is exact.

Proof

We do the case |v/u| =1, the other case being similar. Let
}_“,p.,‘g be min-max related. Note that no shape in Vv contains any
other shape therein. Tet v¥* be the smallest shape containing all
the shapes in y . Lét r = m(v¥ /u) >1 be the last row in which
v¥ contains boxes not in W , and let k = v; - W, be the number
of boxes in this last row. (Note r # 1 for the min-max relation to
hold.) The proof proceeds by induction, first on k , then r .

For the induction on k , if k>2 , let c=v’; . For each vle_\i , let

o be the shape obtained by deleting the box (r,c) from vt if

b
. i . i
it occurs. The o~ are all different. Let g ={o"} , so r(o*/p) =r
o} R
o - h, = k-1. Let p =38 (b,o) , end note that p,u,0, are min-max
related and there is a one-to-one correspondence between A € l‘,. and
pJ € p with pJ < 9

Consider the sequence of maps



L1

¥ F F F

1 2 3 L
@Wj-—e@wj———)wp‘—a@wi_)@wi
P X (o4 v
Xi vi
Here F,,F), are direct sums of 7., £, respectively, F2(® Xj) =
p . ©
i
=% (x.) , x. €W .,F (y) =8 7 (y) , ¥y €W . By the induction
Ay J 373 W b
hypothesis,
ker F3=m(F2‘Fl),

ker F) = im(F3 °,F2L

since
8%(c™ v < 8%(u,0),

as can easily be checked. Therefore

im F, + ker F

ker(Fu o F3) o 3

"

im F2+-1m(F2 . Fl) o

But this.is precisely (7.1) for A,u,v .
To do the induction step from r-1 to r we need an easy

"diagram - chasing”" lemma:

Lemma 7.6 Consider a commutative diagram of linear maps



oo

with the top and bottom rows exact. Then the conditions

i) ker(F5 * F,) = ker F +ker F

ii) im(Fu . Fl) = im FhrWim Fe
are equivalent. In particular, if either

a) F_ 1is surjective, or

3

b) F_. is injective,

5

then both i) and ii) hold.
Now suppose V¥ has a single box in the last row r>2 not in pu , in
colunn c=v¥ =p +1 . let x=p+r , o= w/(r-1l,c+) so
{a} = 8°,x) - (In this proof, @,B,Y,0 will all denote shapes.)
J J J

€y, set @ =vJ,,/(r,c+)Dp., SO °i=“'r' Let -

Given v
P = 5°(w,0) » 9 = {e9] . Note that A=p Ufla} . ILet Lj = (99 = 'Jo(p.,o"j) .
For o # v , set Bj = cj/(r—l,c+) , SO So(c'j,vj) = {Bj} . Note
that a'j Da . For r>2, set {Gj} = So(Bj,cj) , SO 69 Qiffers
from aj in the (r-2)nd row. Finally, if 5j £ a, let 'yj = {yjk} =
ﬁ'o(a,B‘j) . (See Figure 2 for illustrational purposes.)

Note that each 'r'jk differs from c‘j in at most one row, labelled

I‘J.k <r . It is not too difficult to show that if j 1is such that

O'j 7( v)  and BJ 7-[ a , then 'YJ can be constructed from LJ by setting
-~

'er/(r—l,c+) , T,
e Jk
-

<r-1,

Jk =r-
T rjk_r 1,
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and ignoring any Tjk with T =T Let Eﬁ = {rakrrjk <r-1}
Consider the commutative diagram, where the Fj are constructed
as in the induction step on Kk :
ew
gd
F1
F Vioor
W .__g_.> & W .__—2———5 SWw
a J Jk
B Y
B A
F7 F8 F9
W W 3 BW.—— 5 O&W
pi"“‘f? . o9 I
FlO C Fl;
F v’
12 ®
W ——— OW.,
It V9

(See figure 2 for an representative example.) The only nontrivial

question of commutativity corresponds to. TJk with rjk = r , since

noc corresponding ‘ij exists. But Tjk € KE(BJ) since the r and

r - 1st rows in Tjk,/Bj overlap, so that part of F9 ° F5 vanishes by
closure.

By the induction hypothesis, or (7.2), each short sequence consisting

of two consecutive maps in the same row or coclumn is exact, e.g. ker F = im F

8

(For Fg,Fiy , note that if od = v, F; . {0} ~w ; 1is injective. For
. . ) (a3
F2,F3 , if BJ =Q, F%: 1 j — {0} 1is surjective.)

‘ g



-
Fl \L
F F
2oy 3 &
Fhl F. J/ F,
S 4
11 F 1l ¥ F
o+ T N REN & &
u [
P10 l Flll
]
Flo
_
u [ |

Figure 2 r=5 c =1
A= {(3,3,2,1), (4,2,2,1), (4,3,L,1), (%,3,2)]
b= (8,3,2,1) |
v = (4,4,3,2,1)
n o= (4%,3,2,1,1)

g = (h‘:l":.?):g)

g = {(3,3,2,1) , (4,2,2,1), (%,3,1,1)]}
o= [kL,2) , (3,4,3,3) , (4,4,3,2,2)]
a = (4,3,2)

B = (4,43

v o= L0l (4,4,3,3) ]

6 = (4,h 1)

(The W's have been omitted leaving only the rveleva_nt shapes in the

diagram.)
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I claim that for each J the subdiagram

-
3, @
Hgd T2V gk

satisfies condition i) of lemma 7.6, i.e.

J J J J
ker Fy © FL = kKer F, + ker FZ . .
J_d L .. .. . J .
If o =Vv° , or =B , this is trivial since F6 : {0} W ik is
T

injective. Otherwise, note that
0, i a3 .
S (BJle) = {area} .

Moreover, the parts of F% corresponding to rj =r-1 or r are
injective, hence contribute nothing to the above kernels. Therefore,
by the induction hypothesis

J + im FJ

ker(F% ° FJ) = im F) 7,

3

50 by exactness, the claim 1s proven.
Now use lemma 7.6 on boxes B and A in the large diagram. Since
we have just shown condition i) holds for box A , by summing (7.3) over

condition ii) holds for box B . A second application of the lemma,

this time to boxes B and C shows that condition i) holds for box C .

But this is Jjust
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ker(F11 ° F8) = ker Fg + ker F,,

il

im F7 + im Fu 5

by exactness, which is precisely what we need to establish. This completes
the induction step on r , and hence the proof of the theorem.

One point to note in the definition of exactness for hypercomplexes
is that there is no compatible notion solely for n-complexes. For
instance, uw = (3,3,1) , v = (3,3,2) are both 3-fat, but in an exact

hypercomplex
ker £ = im £
o X

where A = (3,2,1) is no longer fat. This indicates that one must consider
the full hypercomplex, and not just n-subcomplexes, to get any meaningful

cohomological results.

The notions of hypercomplex, etc. can be dualized:

Definition 7.7. A cohypercomplex is given by spaces WY indexed

by shapes A , and linear maps

A W*‘ W*

ST
defined whenever W D A , |u| = |A +1 , subject to conditions of
a) Commutativity: The diagram of maps is commutative, which

allows us to unambiguously define

A * *

g, * WV—~—.1. Wk

for any v D A by iteration.
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b) Closure: gﬁ = 0 whenever \ € Sg(v) .

Note that the g& , for w,A n-fat, again form an n-complex.

Definition 7.8

A cohypercomplex is exact if for every J,u,v min-max
related,
: A
Z  im g“ =N ker g
vEv V. odrEA "
nr ~
There is an analogous theorem to theorem 7.5 for checking exactness
of cohypercomplex, which, for brevity, we do not state or prove explicitly.
Similarly one can define the homology of a cohypercomplex.
Finally we note that for finite - dimensional vector spaces, the

notions of hypercomplex and cohypercomplex are preciselybdual:%o each

other:

Lemma 7.9 If each WA in a hypercomplex is a finite - dimensional
*
vector space, then the dual spaces Wl and dual maps g: =

a cchypercomplex, and vice-versa. Exactness of one of these implies

(f;)* form

exactness of the other.
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8. The Schur Hypercomplex.

The Pieri maps of theorem 5.2 will now be used to define an algebraic
hypercomplex between the Schur spaces of a vector space V . For each
v € V the Pieri map m&(v@.) defines a linear function from L,
to Lu for any u 2D X, |u‘ = |X|+—l , uniquely determined up to

constant multiple by functoriality. We now fix this constant.

Definition 8.1 Let u = \A+J . The Pieri product

¥, : V® L,—aA L
J A W

is defined by

v*jC=cL{<pi(v®§),v€V,§€Lx, . b (8.1)

where m& is the Pieril map in theorem 5.2, and

Wt

AT (8.2

~

where L(E;i) is the total hook length of % mod A , as defined in

section 2. The subscript J on the Pieri product will be dropped

when there is no ambiguity. Set wi = c& @i .

The precise motivation for the choice (8.2) of the constants ci
will be discussed later: The fundametal result to be proved is

Theorem 8.2 Fix O s# v € V. Then the Pieri products

v¥ Ll—__9 Lp
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form an exact hypercomplex, called the Schur hypercomplex associated

with v .

The corresponding partial polarizations will be denoted

A
= : L VL
p Pu u———§ A
with

A L(EA) A
p“' - A XU- ? (8'3)
Mj- a‘/\
so that by theorem 6.2,

h. A = ﬁ. on L
¥ A b

The remainder of this section is devoted to a proof-of théorem
8.2. The three aspects of commutativity, closure and exactness are
treated in turn. For the time being, define the Pieri product by
formula (8.1), but leave the precise choice of the constants M

A

open.

Lemma 8.3 Let the Pieri product *j be defined by (8.1).
Let p=X+J ,p'"=%X+k , v=p+k=p"+J Dbe shapes. Then for

veEV, CE Ll 3
v (v 0 = Klvx (v* 0], NGRS

W

where K 1s a constant depending only on A,v and the Cy -
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Proof

It is easy to see that the compositions v*j(v* kg) or v*k(v*jg)

induce functorial maps
02 ® Ll———; Lv

since {V'OvﬂerV} spans 02 . By Pieri's formula and theorem 4.1, any

such functorial map is uniquely determined up to constant multiple, hence,
provided the left hand side of (8.4) is not identically zero (which we
show subsequently) the lemma is éroven.

To explicitly determine the constant K in (8.4), by functoriality
we need only consider vector spaces V of sufficiently large dimension.
Thus if m = m(A) , let €ys+-+5€, ; be linearly independent in V ,

with v =-¢e Let C = ¢

mel correspond to the simple tableau To of

T
o]

shape A . From the formula (5.5) it is easy to check that every summand

er occurring in v~*jg and Vv *k(v *jg) corresponds to a standard tableau
T , hence we need not worry about cancellations among terms. Thus to
determine K , we need only compare the ccefficients of one of these terms
in the two products, which, for ease of computation, we choose to be

eT , where T is the tableau of shape v coinciding with TO on A ,

and with m+1 1in the remaining two boxes in u/fl . For definiteness,
assume J <k

, the case J=k bYeing trivial.

For v *k(v *jg) , e, arises only from the leading terms in (5.5),

T

i.e. those corresponding to J = (k,n+t1l) (in the case of *i ). Therefore

e, appears with coefficient c& c: . However, in v *j(v *kg) , there
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are two ways in which ep can arise: 1In the formula for *k , only

il

the term in (5.5) with J

(k,nt1) will contribute, but in *, ,
J

both J = (j,mt1l) and J = (j,k,m+1l) will make contributions. Thus

e; appears in v *j(v *kg) with coefficient

cilc}(l4-ij(u')-l) = éi'c:,ij(l)(ij(l)-l)_l .

Thus we have proven

Iemma 8.4 The constant K in lemma 8.3 has the value

(VAR
i cy cu,ij(k)

K==
ey cu(ij(h)-l)

(8.5)

The geal now is to choose the constants ci in some conslstent
fashion so that the Pieri products actually commute, i.e. the constant
K in (8.5) is always 1 . Clearly there are several ways of doing
this, of which we mention four.

The first, and easiest to verify, is to define

k-1
o= Ll,A) = (A, - +k-1i) (8.6)
A - i 'k
i=1
as the total hook length of | mod A\ , for = X+k . The proof
that K =1 in (8.5) is simple. This choice has the undesirable

feature that the Pieri product on the wedge powers

% .
v n '’ /\n_l——>/\n

is not va , but rather
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¥ L =n' Ca
v*C=n] L~v

under the identification of L _~ A
1

This leads to the second choice

il

= LA /R, p= Ak (8.7)

Now, if A

]
)

s o= 1? N c& = 1 , so we do get the ordinary wedge
product. Note also that in both of these choices the products corresponding

to one-rowed Schur functors coincide with the symmetric product:
* = ~
vlg vec, CEL ~0 -

Alternatively, we can "dualize" the diagram by transposing all the
shapes and replacing the multiples by their reciprocals;;
_l.
)

Cp‘ = L(E:‘i

) ) (8.8)

The verification that K = 1 in (8.5) is slightly more tricky, but
still straight - forward. This choice no longer leaves the Pileri
product agreeing with the symmetric product on one-rowed Schur spaces,
so to rectify this we are led to the final choice (8.2). Both (8.7)
and (8.2) have the desirable features that the Pieri products agree
with symmetric and wedge products on the appropriate spaces. There

is little reascn to prefer one over the other. The only motivation
for our use of (8.2) is that the c& are all less than 1 , whereas

in (8.7) they are greater than 1, and the coefficients of formulae

involving the Pieri products rapidly become extremely large.
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The choice (8.2) has the additional advantage that Mo whenever
X C u are n-fat shapes.

We have thus proved the commutativity of the Pleri products with
our choicé (8.2) of the constants cL{ . More generally, polarizing

(8.4) leads to the identity.

Corollary 8.5 Let v,w.€ V . With the notation of lemma 8.2 we have

v *J(W *k.g) + W *j(v *kg) =V *k(w *jg) + W *k(v *.jg)’ (8‘9)

for all C’ELX°

Define the (modified) Pieri maps

[ VR

for |u| = |7\|+l s DA, SO
\h;i(v@g) =v* L. (8.10)

We have shown that the resulting diagram is commutative, hence we

can unambiguously define functorial maps.

Y
by 1 O ®Ly—> L (8.11)
for v> A, |v] = [A| +k , by iterating the maps ¢\{(v ® ) and
using the fact that {vk =vVve...0 v|v € v} spans @kV . By Pieri’'s
formula and theorem L.l, these maps must be identically zero whenever

v/k has two or more boxes in any column. This, therefore proves

the closure of the Schur hypercomplex.
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Lerma 8.6 Suppose A\ € Si(v) . Suppose Visee Yy € V. Then

* * L. % * E =
z vnl vn2 vnk 5 0

for any £ € LA . The sum is over all permutations x of {1,...,k} ,
and the Pieri products * are taken over any series of shapes
A i e I with Iui/p‘i—ll =1.
This follows immediately from the fact that Lv does not appear
in the Pieri decomposition (5.1) of 9 ® Ly -
We now turn to a proof of exactness. Fix O#Z v € V, let Z be
the one-dimensional subspace of V spanned by v and let W be any

complementary subspace, so V=W ©&©Z . We use the decomposition of

LV given in corollary 3.4.

Temma 8.7 Let 0# v EV , AE Si(u) . Then the linear map

u k - .
(v e ) LyW—y LV

is an injection. Moreover, summing over A € Si(u) 5
bk ooy (k)
Zq‘;)‘(v ® *) .GBLXW_;.L“' W,

is an isomorphism (cf. (3.8).)

Proof

Let J = (jl,---,jk) be a nondecreasing seqguence of ihtegers

1<§; <3, +-- 23, <m=n(y) , with #{i(ji=é}§uL . Order

these sequences lexicographically. TFor each J , let u-J denote the

diagram of boxes obtained by deleting boxes in rows jl’j2""’jk from u .
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For instance, if pu = (4,3,1) , J = (1,1,2,3) , then p-J = (2,2) .
We call J admissible if p-J is a shape, and u-J € S°(u) .
Conversely to each A € Sl(u) , there is an admissible J = J(R)
with A =p-J.

Given a decomposable y € Lﬁk)w CZLpV , let J(y) denote the
row numbers of boxes in which the k copies of v appear in the
tableau corresponding to - Now by the formula (5.5) for the Pieri
product , if x € LKW is decomposable,

w%(vk®f§) =cy+

Z
~

where ¢ # 0 » ¥ 1is decomposable with J(y) = J(X) , and z 1is a sum
of decomposable terms T 23 with J(gj) > J(y) in the lexicographic
ordering.

By induction, assume

T ke )
J(A) >4J

is an injection. Then if

= pH(v e x) =0
J(l)_>_J’Ol A

for % € LXW , the only decomposable terms ¥ appearing in this sum

with J(y) = J_ are those arising from L , and

\ with J(?\O) =J

o]
these appear with nonzero multiple. Thus X =

o}

o]

0 , and the induction

step is completed.
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Theorem 8.8

Let O;!VEV,U.C\),R='\)/LLt . Then

*:(vk ® L)y =0

if and only if

e = im #(F o), d=0/u] .
1ESO(F‘UV)

Proof

Using the direct sum decomposition (3.7), and the previous lemma,

=% = wﬁ(vﬂ ® 9, )
Ja GSJ.'(u,)
J
where 9)\ € wa is uniquely determined by ¢ . Now by commutivity of

the hypercomplex

Y

po=-% T (v E e o

X
3 1 1
X Egj(u) N Sj+k(\))

Again by lemma 8.6, ¢:(g) = 0 if and only if

1 L
91 = 0 for all X\ € Sj(u,) ﬂ$j+k(v)
Therefore
¢ € b im \s;‘;'\(v‘] ® -) .

A €M (w) Ns2(v)
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Finally, if A is not @,V - maximal, then there exists X' € Sl(u)rlgz(v)

with A C X' | and
im (v e ) - myt (v e )
since
Bl en =t e} (U o)

This completes the proof.

Corollary 8.9 The Schur hypercomplex is exact.

This follows directly from theorem 8.8 and theorem 7.5. (Note
that theorem 8.8 is stronger than exactness since vl d@es not have

to equal ul’.)

Example 8.9

o .
Let p = (3,2;1) s V= (3,3:2) » 80 § (U':\)) = {(2,2,1),(3’131)} -
The symbols x,y,z,w,u,v denote linearly independent elements of V ,

ordered in the manner indicated. We restrict attention to the summand

(D)
W

products and the straightening formulae, (omitting the symmetric

W ClLuV , with x,y,z,w,u € W . Then from the definition of Pieri

product symbol for simplicity)
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#:[Vg Q (xyv) @ (zw) ® u] = (xyv) ® (zwv) ® (uv) + % (xyv) ® (zwu) ® (vv)

=l

(xyz) ® (wuv) ® (vv) + 7 (xyw) @ (zuv) @ (vv)

I
ol
col

-3 (v @ (@) @ (v,

- 3 (a) @ (o) © (v)

$_:[v2 ® (xyz) ® (wv) @ u]

]

0 [V @ (xy2) @ () © v] (xyz) ® (wav) ® (vv) .
Therefore ker éf:(v.2®-) is spanned by elements of the forms
(xyv) ® (zw) ® u+ % [(xyz) ® (wv) ® u+ (xyw) ® (zv) ® u] +
+% (xyu) ® (29 ® v + %— [(xyz) @ (wu) @ v + (xyw) ® (zu) ® v},
2

and (xyz) @ (wv) @ u+ L (xyz) ® (wu) ® v .

But these are equal to

no

L
\L‘X[v ® (xy) ® (zw) ® u] , x = (2,2,1) ,

%w;[v ® (xyz) ® we® ul] , A" = (3,1,1) ,
respectively, hence we have

ker (v ® -) = im P (v ® -) + im H(ve -) .

o A X
in accordance with the theorem. Note that the sum is not direct, since
1
(xyv) ® (zv) ® w + 5 (xyv) ® (zw) ® v -

-—%(xyz) ® (wv) ®v+%(xyw) ® (zv) @ v
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lies in both. Indeed, the above element is just

WP e ) ®zew) , A= (2,1,1)

?

which clearly factors through both LAW and Lk'w .
The Schur hypercomplex sits inside a larger hypercomplex, whose
properties will be useful when we come to prove exactness of the differential

hypercomplex. Given A Cu , |p, /l| = k , define the map

¥y: 0,81, ~ 9,81
as the composition
Aol ® 1) 1® ¢

O ®L)‘__;O ®0 ®Lx—j'—‘7@ ®© ®L ____L_;O ®L|J.’

N

where A : O, — O, ® 9, 1is the dlagonal map on the symmetric algebra

~

of V., m: 9~ 0, 1is the {modified) projection ?{k(w) =0, wE€ QL )
Lk, 'x‘t’k(w) =kt w, we€ 0, (note the factor k! ) and

v, - : s

\71 : Ok ® L)\ Lp. is the Pieri map.

Lemma 8.10 For AC uCwv ,

VoV :
Bh=%* Y- . (8.10)
Proof

since {v'|v € V} generates 0, » it suffices to check (8.10)

on v ®E for € €L, arbitrary. Now if |u/A| =k , then

2ot = 2 Prek K ey (e
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for n > k+4 (and is zero if n<k+1) . The proof of (8.10) now

follows easily from the commutativity of the Schur hypercomplex.

Theorem 8.11 The polynomial hypercomplex ‘?J'{ 0 @ Ly 79y ® Ll&
is exact.
‘Proof

Commutativity and closure follow directly from (8.10) and the
corresponding properties of the Schur hypercomplex. The proof of

exactness rests on the following lemmé:

Lemma 8.12 Suppose A Cp , |p/A| = k , and suppose p € 'J‘tk(l) n 3i(u)

Then the diagram

i
Oy @ Ia—— 9 &L,
WP J, \l/ oP
)\ el W

b — 5

commutes. Here ¢ = (k+1)! /4! (The top map ‘Y"{ is really the restriction

1
of ¥ o 0, 0L 1)

Proof

By Schur's lemma, the bottom map must be a multiple of the identity

as all maps commute with the representation of GL(V) . To compute ¢ ,
by (8.11)

p k+2, k+4)! k

(50 e n)) = AL P (b g g s )

_ (k+4)! Yu.(vk+{, ®E) ,

1! A
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proving the lemma.

Clearly, to prove exactness of the polynomial hypercomplex it
suffices to look at homogeneous pieces. Let A,u,v be min-max related
with |w /A =k, |v/p| =24 . Using the Pieri formula (5.1}, we
have, for n>0 ,

1
Y
A 1
om—k+{,®Lk =y On+k®Lu — On®Lv

R 11 \! (8.22}

M "
A L
) L ® L ® L

p p
cew oy PETL ) ez

kL

By Schur's lemma, and lemma 8.12, if o 68::'}+R+L(X) N Uifk(u) ,. then
{)L{ILP H Lp = Lp is a nonzero multiple of the identity; otherwise

Q‘i’ I Lp vanishes. But by lemma 2.3,

1 1
En+k(u‘) = Umkﬂ,(l) v Unl(v) ?
1 %
3n+k+{,(>‘)n T,(v) = g

so the lower sequence is trivially exact. For -k < n.< 0 the
above still works, only the right-most terms in (8.12) are {0} .
Finally theorem 7.5 completes the proof.

The Schur and polynomial hypercomplexes are special cases of

the hypercomplex

‘*,\U-

A, DO, UW® LKV ~ O ® Lp‘V

3
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defined for any subspace W V . The Schur hypercomplex corresponds
toc the case W being one-dimensional, spanned by v € V . I am sure
that all these intermediate hypercomplexes are exact, but I have been
unable to generallze either proof to this situation. Even the decom-
position of theorem 3.3 is of little direct help, as the skew Schur

spaces Lp./lz are no longer irreducible under the rep'resentations

of GL(Z) . It would, however, be nice to have a proof of exactness

which works for all WC V.
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9. Duality and Interjor Products

Since we are working in characteristic zero, if V 1is a finite
dimensicnal vector space with dual V* , there is a natural isomorphism
(LXV)*(: LR(V*) identifying the Schur spaces of V* as the duals to
the Schur spaces of V . Let [el,...,en} ) {el,...,en} te dual bases
of V and V* respectively. It is an unfortunate fact of life, however,
that the corresponding bases {eT} and {ST} , for standard tableaux »T
of shape X , do not form dual bases for LXV and le* in any

natural way.

For instance, in L(g lym3, if one requires
b

((el Q) e2) ® e3> (el o) 62) ® €3> =1,
((el ) e3) Q e, ,»(el Q) 62) ® 63) =0,

then the relation (3.1) requires that
((82 o) 83) ® e (el 0 62) ® e3> = -1.

In other words, the only way to make {eT} s {GT} dual is to make the
pairing between L,V and LXV* depend on the order in which the
basis elements of V are written.

A more natural way to proceed is to induce the pairing between

L

A

* oL ¥
V and LKV from that on GKAxv, ®iA¥V . Namely define

(w,w*> = % (67\@ , SKw*> (9.1)

* *
for w € ®kO*V » w € &0V , and SX is the map in the definition
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of the Schur spaces. It is easy to check that ( , ) induces a non-
*
trivial pairing between LKV s LXV . The following lemma is a direct

consequence of (9.1).

Lemma 9.1 Let T,S be tableaux of shape X , let X(T,S)
denote the set of all triples of permutations (pl,n,pe) acting on
the diagram X ﬁith Py preéerving rows and g preserving columns,

such that pym pg(T) =8 . Then

1
<eT’€S> = 3 z sgn(n) . (9.2)
© K(T,s)
In particular, (eT,eS)==O if T and S have different contents.
. 3
Thus, for example, in L(2,1)H{ s
<(el © e2) ® es s (el Q 62) ® €3> =1,
((e. Oe)®e. , (e, 0€)®e) = =
1° %3 22 \®1 ¥ ¢ 3 5

2 2
® =
<el 82 R €l ® €;> 2,

etc. More generally, if T 1is any tableau with content ci(T)‘S 1

for each i . (i.e. each symbol appears at most once in T )}, then

(ep » ep) = 1. (9.3)

At the other extreme, if T_ is the simple tablesu of shape A , then
(eT s € Yo= Al . (9.4)

The Pieri products on LkV induce dual maps, the interior

*
products, on LRV :
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Definition 9.2 Let u = A+ J . The interior product

* *
_13. 1 V® Luv "LV, (9.5)

is defined so that
<C,VJJ.(D> = (v *jc,w> (9.6)

*
for all vEV, CE€ LV, o € LuV .

An explicit formula for the interior prcduct can be given in

terms of the partial polarization maps:
Theorem 9.3 For p=A+j , m(p) =m ,
va-_-b"{Ir@i[v@Xz(cu)] , - (9-7)

* . * * * .
for vEV,anLuV . Here n®4: veV ® L,V ~ L,V 1is the

*
pairing between V and V , and

¥y = L oA (9.8)
’ H3 k<j “ikH _
Proof
By (9.1), (9.7) is equivalent to the relation
1 A
(v¥E,0) =1y (ve& §,Xu(w)> (9-9)

for all § € L,V , where the right hand ( , ) is the pairing between

* *
V® L,V and V@@LV . By functoriality, we need only check (9.9)

e

. o . A .
for the specific choices v=e, , and E=¢e_ , 0= €y corresponding

o}



to the simple tableaux of shape A , 4 respectively. Now by (6.1)

Nicby A
xu(eo) = by ej ®e_+ ov

where the omitted terms are all of the form ek ®a for k<j.

From (9.4) ,

(e'j ® eﬁ 5 x&(e‘;)) = by - Al = pt

On the other hand, by the same techniques as used to prove theorem

6.2, it is not difficult to show that

B.+n-k L..(\) -1
Fle.@e) = k e . (9.10)
Ao J o) 1 ) o
Hj k>3 Yk

Substituting these last two identities into (9.9) and using (8.1),

completes the proof of the theorem.

Example 9.k

Let A = (3,1) , u = (3,2) . Then b; = 1 , hence

\
elJ(elOe @e)@(euee,

5 3 5 +(€2©€

Qe _)®c¢

1
:'§[<€2963O€h)®€ 39¢5 1;]

>

whereas
e5..l{el®eeOe3)®(euG)e5) = (el©e2Oe3) ®el:, .

The dual hypercomplex corresponding the Schur hypercomplex is based
on these interior products. As a direct result of lemma 7.9 and theorem

8.2 we have
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Theorem 9.5 Fix O % v € V . Then the interior products

*

. *
vd. LV -1,V
" A

form an exact cohypercomplex, called the Schur cchypercomplex.

There i1s also a dual cohypercomplex corresponding to the poly-

nomial hypercomplex. Namely, for p D A let

A o * * * *
Xu : *V & LMV O*V ® LXV
denote the dual map to ?ﬁ . In the special case [u,/kl =1, (9.9
implies the Xz can be obtained as the composition
woA
* *1®blxu * * *_’ * *
OV ®@LYV ——=—30,V 8V 8LV = oV @LV ,
* - % *
where the second arrow is the multiplication map OV &V — 0oV .

We immediately have
) A,
Theorem 9.6 The polynomial cohypercomplex Xu is exact.

The polynomial cohypercomplex can be characterized in a slightly
*
different way. Namely, if we identify o,V  with the space & of

polynomial functions on V , then by theorem 9.3,

A ‘ * *
xu=voJ.0®Luv £ 8LV , (9.11)

*
where v €V @V 1is the diagonal element given by

V:z€_®e.
e} 1 L

*
for dual bases on V,V . We leave the verification of (9.11) to

the reader.
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10. The Littlewood - Richardson Rule

More generally, we may consider the decomposition of the tensor
product of two §chur functors into irreducible representations. The
basic result was formulated by Littlewood and Richardson, [18], in the

context of Schur functions. To state this, we need the concept of a

word of Yamanouchi. This is a sequence Yys¥psene of positive integers
subject to the condition that in any subsequence yl,yg,...,yk any
integer '1 occurs at least as often as any larger integer j>1i .

Thus 1,2,1,3,2,1 1is a word of Yamanouchi, whereas 1,2,1,2,2 is not.

Theorem 10.1 For any vector space V

, the tensor product decomposition

y |
L, L, =@ N I, : ' (10.1)

holds. Here N;LL is the number of standard tableau T of shape

v /A with entries in {1,...,|n|} , of content p and such that the
sequence obtained by listing the entries of T row by row, but from
right to left in each row, forms a word of Yamanouchil.

For a proof see [2]. Note that N;LL= 0 unless v 2D A,u and
|v] = |A] + || - 1In practice, one obtains N;$L by finding all possible
ways to £ill in v\X with Wy 1's s p2.2's, ete. in such a way that
the resulting tableau is standard, and listing the rows from right‘tq_

left in order forms a word of Yamanouchi. Thus, for example, if

A=pn=(2,1) and v = 3,2,1, then N;‘L= 2 since there are two possible

ways to place 2 1's and 1 2 in v//l to form a word of Yamanouchi:
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See [15], [31], [32] for further examples.
Thus the space of functorial maps ¥ = %(L>‘®Lu-, Lv) is of
dimension N; i Each such map ¢ in % can be used to define a

Pieri - type product
P: Ll®Lp, = Lv 3

but now, unless N;:IJ‘Z 1 , there is much more freedom in the definition.

Repeated applications of the Littlewocod Richardson rule lead to
more general decompositions
= ® ... 9 = n ‘ .
®}‘L* L}L L)\m @ Nl LLL (10.2)

for tensor products of Schur functors, and hence N;t - dimensional

—

spaces v%(®kL* ) LU-) , each element of which defines a r-fold product
between Schur spaces.

Problems arise, however, 1f one tries to choose such products in
some consistent fashion so as to make them (at the very least) associative.

Indeed, if ¢ € %(LA®LR,,LH') , @€ %(Lu@:L L,) then

X" 3
§ o (p@f) €%(1, ®L,,®L,, , L) , but unless this latter space has
dimension 1 , this in general will not agree (even up to multiple)

L

with a composition % o (4 ®y) for ¢ E%(LK' OLyu u‘) R

v € ML, ®L,, , L) - In other words, no amount of juggling coefficients

will make the partial product 5((}3(5@1]) ®C) and ¥(E®¥(N®L)) agree,
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as the reader can check in simple examples. We thus leave aside problems
of defining products between elements of Schur spaces except in one

important special case, which we discuss in section-12.
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11. Algebraic Differentials

Given a functorial map on a tensor product of Schur spaces, there
are induced maps on slightly larger tensor products called the algebraic
differentials of the given functorial map. These will be important
when we establish a Leibnitz—type rule for differential hyperforms in
section 1k. 1In this section we introduce this concept and discuss

a few elementary algebraic properties.

Let A = (ll,...,lm) be an ordered k-tuple of shapes,with 8& L,

-

denoting the corresponding tensor product of Schur spaces, cf. (10.2).

Let Lu occur with positive multiplicity in ®1L* , and suppose

—

V@ Ly 7T

-r

is a functorial map. For 1<j<m , let

+1 m
AW LA,

A+J, = (Xl,...,XJ+-k s
(provided Ak is a shape). Further let vDp ,[v/p|=]_.

Definition 11.1 TFor {,A,u,v as above, the j-th tensor differential

of ¢ 1is the functorial map

given by the composition

o L ~vVe o L& Yyer 1
B3 * Aox —> VO L —> L,

» -~
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where the last map is the Pieri product w: . The j,k-th algebraic

differential of § is the map

¥ L, = L

I .
)Jk 2-’ + Jk * v
given by composing \k® j with the partial polarization
Pp: L. "L ®V,
Wik lj

cf. (8.3). 1If AY = (i), k=1, we denote ¥ . by gust ¥ .

»dq »d

Example 11.2

Let w = (2,1) , v=(3,1) . Consider the map

¥ .V ®V®V—'Lp’ -

given by

V(x®y®z) = (x 0y)®z .
Then

w,l : 02®V®V - Lv
is

5 .
i l((Xle2)®y®z) =3 (xq @x, ,02z) 8y ,

>

1
Oy)®@z --i(xl@x
‘wWhereas
' : VOV®0 —‘Lv

»3 2

is the different functorlal map
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2 2
(x®y®(z @zg)) = -—g(zlG)z 0x) ®y —-?;(ZlOngy)Q@x .

%43 1 2

Commutativity of the hypercomplex immediately gives

Lemma 11.3 For ¢ as above,

g ., = . =2 P 11.1
Yeones ™ Yeimes ~Ve(s,i) ( )
and
. . = - ., = . . . 11.2

",JK,J'R. W,J'K;,Jk W,JkJ'k« ( )

whenever both make sense.
Lemma 11.% For ¢ as above,
v .=2% ., (11.3)

the sum being over all k such that A+ k is a shape.
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12. Products and Differentials for Fat Shapes

In this section we restrict attention to the n-subcomplexes of
the Schur hypercomplex given by the n-fat shapes A = n%r » 0<r<n .
Throughout this section, all shapes are n-fat unless specifically

mentioned otherwise. The first step is to define a product

* . LX ® Lu - Lv

for |A| + |u| = |v|] . We first show that there is exactly one such

functorial product, up to constant multiple.

Lemma 12.1 Let A,u,v be n-fat shapes with |A|+|p| = |v| .

Then Lv' occurs with unit multiplicity in LX ®] LM

Proof

Let u = nr >, 0<r<n . In the implementation of the Littlewood -
Richardson rule, we must £fill v /X with nl's,n 2's, ... , nq's
and r g+ 1l's . Since v,/l has only n columns, and the resulting
tablezu must be standard, the positions of each of the symbols 1,...,g+ 1
is dictated. The resulting sequence is, furthermore, easily seen to

be a word of Yamanouchi.

Theorem 12.2 Let xl,...,xk,u be n-fat shapes with |u| =%|A%] .

Then Lu occurs with unit multiplicity in ®XL* (cf. (8.2)) if and only

A~

if either

iy = r(li) § n (12.1a)

or ii) Z,r(ki) > (k-1)n . (12.11)
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Proof

We prove case ii), the proof of case i) being similar, but easier
to implement. Assume, by induction, that the tensor product Ik fz...QDLXj
decomposes into a direct sum of Lu's corresponding to shapes of the
following three types.

a) p n-fat. This occurs with multiplicity 1 .

b) p's with Wy > n+l

¢) u's which are n-bounded, but have 2<4<j rows with less than
n boxes in them, satisfying

J
awn-lu] =3gn-Trh) . (12.2)
i=1
(This is the number of open boxes needed to complete p into -a rectangle.)

Tensoring with Ly where A = At , we must-investigate the
summands of Iifglh for each of the above types of shapes u .

For type a), by the previous lemma the n-fat shape v of size
|u]-+|l| appears with multiplicity 1 . Furthermore, by the
Littlewood - Richardson rule, the other constituents of chaLu are
either of type b), or, if n-bounded, have exactly two rows with fewer

than n boxes in them. (cf. the proof of lemma 12.1.) Moreover, the

number of open boxes, is

2n - r(p) -r(}d)

J .
on-( % r(A) - (§-1)n) -r(A)
i=1
*Loo
(j+n - =T r(A7) ,
i=1

so the shape 1s of type c).
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If p.l_>_n+l , and L\) appears in L,\®L}.L , then v Zp.lzn+l ,

1
so only shapes of type b) appear when u 1s of type b).
So far we have not used the restriction ii) in the sizes of

the kl . We need show that if u is of type c), then all summands

in L.®L , A =t
L S T

, are either of type b) or c¢). Assume Vv
is n-bounded, and appears with positive multiplicity in Lképr .
As in the proof of lemma 12.1, the positions of the n 1's,...,n
a=q())'s in v,/u in the implementation of the Littlewood - Richardson
rule are uniquely determined, so we need only discuss how to place the
remaining r = r(A) q+ 1's , keeping in mind that no two can go in
any one column. Since by (12.1b)
r0) > in- T el
i=1
comparison with (12.2) shows that one of the q+1's must appéar at
the bteginning of a new row of v . Thus there are at most j+1
rows with less than n boxes and
H1 R
(j+1)n - X r(Kl)
i=1
open boxes. Finally, since in the last column of p has at least two
open boxes, and Vv has one more row than (nq,u) , then v must still
have at least two rows with less than n boxes. Thus v  is of type c).
Conversely, a closer inspection of the proof will show that if
neither i) nor ii) is satiéfied, then tensoring Ll , A= lj+l with
u's of type ¢) will produce n-fat shapes with positive multiplicity,

so the theorem is proven.
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We now turn to an explicit formula for the map of lemma 12.1.

Given n-fat shapes A,u,v with |A|+ |u| = |v| , define the linear map

¥:@o, ® ® O 80

as follows: For

E =2’<®y = xl®... ®xq®y € ®AO* s (12.3)

M=x'®y' = x'l®...®xc'l' ®y' € ®“‘O*,

1!

| — |4 L} 4
where Xi5XY € On , ¥ = le...G) Ve € Or , ¥ le...G) Yo € Or, R

I\ = an+r , |u| = a'n+r' , we define

x®x'®(yoy'), r+r'<n,

WE®M) = (12.%)
(-7 Txe(yoy)@x @y, r+r'>n

where the sum is over all IUJ ={1,...,'} , INJ=¢ ,#T =n-r .
From the relations of theorem 3.1 it is easy to verify that these induce

nontrivial functorial maps on Schur spaces.
Lemma 12.3 The map # induces a functorial map (also denoted & )
y: Ll ® Lu‘ - Lv
for n-fat Schur spaces. We thus define a product
Ex M= y(E®M) (12.5)

for EGLA,T]GLH‘
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This product agrees, up to multiple, with the product introduced
in [23] for the hyperforms defined there. In particular, it shares
the basic properties of (anti-) commutativity and associativity under

appropriate restrictions:

Lemma 12.4 ITet |\| = an+r , |u| = g'n+r' . Then

* N = (-1)° 7 % € €L 12.6
S*N=(-17Nx5s  fEL ,MEL , (12.6)
where
nqq'’ r+r' <n,
S =
n(g+ 1) (q"'+1) r+r' >n,
Proof

By functoriality it suffices to check (12.6) for some particular
E,T which we take to be of the form (12.3) with y=v , y' =w  for
v,w € V . We concentrate on the case r+r' > n , leaving the other

to the reader. Now

r n-r-r'

Exm oo (_1\5( T ® n-r . )
SxM=(0CD ([ )x®(v ow ")ex @w (12.7)
by the definition (12.4). From the Young symmetry (3.1) we have
) i k 4. ., i-1 31 kel o 2-1
(J+L(x"oy)e(x 0y) + i(x oyl T)®(x Oy )=0
for any i+ J > k+4 . From this it is easy to prove that
t - v 1 r+ ' _
§x = (17T xe (VT ew yex ey T

from which (12.6) immediately follows.

(12.8)
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Lemma 12.5 Ld;|l|=qn+r,|u|=¢n+r',\vﬁzqh+r",
lo| = |A| + |u|+|v| . Then the * product for LyoLyshy, is
‘associative:
Ex(N*C) = (E*m *¢C (12.9)

provided either
i) r+r'+r" <n

or ii) r+r'+r" > 2n .

Proof

Again, we restrict attention to case ii). Note first that by
theorem 12.2 there is precisely one functorial map ¢: L)\ ® Lu.®Lv —'.Lp s
up to multiple, so it suffices to check (12.8) for the épécific

choices

S=x0®uw ,N=y®v ,L=z0w .
Then by (12.7)
(Exm*C= (17 DG )58 (BT eye (VT RAITEY) g g T
whereas

4Tt " ' "n_ _ ' ! ' "
£ % (1% ) (-1) r (n—rr')(r;—rr n)}'c@(urwn r)®z®(vr GOT )®5®wmr +r -2n

il

Some elementary manipulations using (12.8) proves that these two expressions

are indeed equal in L



~ Example 12.7

let n=3 . Consider the shapes A
M =v , then
2
g*n = 2(U. V) RV
in L On the other hand
(3,1)

N*¥E = 2(v2u) ®u ,
but by (3.1)

2(u2v) @V + 2(v2u) Ru

- -80-

p=v=(2)

= 0 5
sO
EXxMN = -N*E ,
which agrees with (12.6)
Purthermore, in T, .y, if ¢ =
(E%M) *C = -2(uov) ®vw .
However, by (3.1) again
(W) @ (v w) = -(w) @(a w)

so the product is associative.

- (ugw)

+(w v2) ® (uzw)

® (w v5),

Note that in this case

Ir '§=u2=u@u R

&

Exmn*¢
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is alternating in §,M,L € © hence defines a map

2 2

N8 7 L3 3y

Next we compute the differential of our product, but, as the

general computation is rather complicated, we do only one special case

here.
Lemma 12.8 Suppose |p| = |A|+k , r = r(X) , k<n . Define
v(x®E) = x*§
for xGOk,EGL)\,so x*gGLp‘. Then, if |[v| = [pu|+ 1 , the
differential ‘k,l : Ok+l ® Lk - Lv is given by
L y*§ k+ r<n
k+tl ? ?
® = - .
Q’l(y E) k+r-n+1 y*E k+r>n , k<n , (12.10)
k+ 1
0 k=n

}

f €9 .
oy k+l’g€Ll

Proof

The case k = n 1is trivial. Here we only do the case k+r>n ,
k<n , leaving the other, easier case to the reader. Recall that ¥ 1
3

is the composition of maps

of 10y *
@1 P
o .1 LX__>V®OK®LX___>V®L“‘._) L,

vhere D is the partial polarization (8.3). By lemma 12.1, ¢ l(y®§)
b
must be a multiple of y*¥E , so we need only evaluate the differential :

on the specific elements y = vk'*—l , & = zc’@wr for v,w € V. By (12.7),
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(M®y) (PO (y®EF) = v o ¥ (v & (x8u"))

k, r k _n-k ktr-n
= (-1) (n_k)v®(v Ow ) ®x®w s
hence, using (12.8),
_ k r k n-k kit ren
Vo(yes) = (D7) (v ew ) ex8(voew )
k+1 n-k r k1 n-k-1 ktr+l-n
= (—l) Tl n_k)(V Ow )@LC@W .

Comparison with y*E& completes the proof.
In the more general case ¥E®T) = E*T for & € L, > M€ LM ,

we have ¢ and V! both multiples of the product on the appropriate

s L 2
n-fat Schur spaces, but we leave it to the reader to ascertain.what these
multiples are!

Iet «a be an n—bbundeé.diagram, and ?a: Gbp* - L a functorial
map, with |u| = |@| , 4 n-fat. According to theorem 12.2, wa is
uniguely determined up to constant multiple provided either
a) |a <n orb) |al > (k-1)n , where k = m{(a) is the number of
rows in « . Moreover, since the * products are aésociative, we

can prescribe

l 3
¢a(x¥®...® xk) = xR, , x) € o, ’ (12.11)
J
where the ¥ ©products are taken in any convenient order provided either

a) or b) holds. We now compute differentials of Wa :
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Theorem 12.9 Let ¢ be n-bounded, and wa given by (12.11).

Then for 1<j<k = m{a) the j-th algebraic differential

¥ i 8 . -
QyJ g O* LV ’
|v| = |u]+21 , v n-fat, is given by
waq.J b |a|+l§n >
r+ 1
={ o - <
wa,j ozj+l o Sy e |a| P (k Ln ’ aj n.,
0 . =n .
J.
where r = r(p) = |a| - (k-1)n in the second case.

The proof is immediate from lemma 12.8 and the commutation formula

(12.6). The details are left to the reader.

Corollary 12.10 Let A = nk—l W= nk . Let n=sk+t , s>0,

0<t<k , and let a-= (n-—s—‘l)t(n<-s)k_t , so |al=|r] , B= (sa-l)tsk—t

Then the n-fold iterated differential wa :® 90, ~ LH is given by
2
t k-t
¥ - ((s-1)1) “(st) g : (12.12)
a,pB (nl)k_l ]

(Note by lemma 11.3 it doesn't matter what order the differentials

are taken.)

Example 12.11 Consider the case n=2 , k=2 , s0o u= (2,2) , O = (1,1)

wa: Ve v- L(2)

is given by



ﬁa(v Qw) =-vOow, v,w €V,
cf. (12.4). Then (12.12) shows that if 8 = (1,1) ,
¢ : 0. ® 0,

a,8° %2% % 7Lz 2

is given by

where
wu((va')mwow')) = (vov')®(wow)

considered as an element of L , as the reader can easily verify.

(2,2)
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13. The Differential Hypercomplex

In this section the theory of higher order differential forms
(hyperforms) will be developed over Euclidean space. Let M = RF
. . 1 *
with coordinates x = (x ,...,xp) . The cotangent bundle T M 1is spanned
1l
by the basis one ‘forms dx ,...,dxp , 80 for each x €M , T*M x
is a vector space of dimension p .

Define the hyperform bundle Ek so

E)\'X - LX(T*MIX)

for each x € M . A differential A - hyperform w is a section of

Il

z Thus, using the basis theorem 3.2, a X - hyperform is of the form
( = = : .
ol x) fo(x)dx, , | ‘ (13.1)

the sum being over all standard tableaux T of shape A with values

in {1,...,p} , and dx_ is the corresponding basis element of =

T A

The coefficient functions fT(x) will be in some function space J ,

e.g. Cm(M) , and we write T( 3) ~3 ®Z, for the space of all such

e A

[==]
J-valued sections. Most of the time T = C (M) , and we denote

[ -]
r (s 32C ) , the space of smooth sections of by I'E Note

;x, k'.
that all our algebraic operations on Schur spaces - Pileri products,
polarizations, ete. - carry over point wise to the hyperform bundles

Ek . In addition, the notion of exterior derivative 1s of great

interest.
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Definition 13.1 Let o be a A-hyperform given by (13.1). Then

given any u O\, |;_1,| = |)\| +1 , the XA,u exterior derivative

dw = d%w is the p-hyperform.

dw = T af, *dx, , ' (13.2)
T

—

where * 1is the Pleri product from T* ® ey to Ep. , and

af, = E vt /ax?.dx? is the ordinary differential of the function £, -

+1 -
Example 13.2 Tf X = 1%, u = 1% | so By~ ATXM

EI-L ~ Ak+lT *M , then the above exterior derivative agrees with the

ordinary exterior derivative of differential forms, since the Pieri

product agrees with the wedge product in this case.

Theorem 13.3 The exterior derivatives

ul

K —
: TE, T
d\ A "

form a . hypercomplex called the (smooth) differential hypercomplex

of Euclidean space.

Proof

To prove commutativity, suppose w=A+J , p' = A+k ,

Il

v=p+k=pu'+j . For w=f(x)de€

I

v L
du(d;w) d:(Z 0, dx ¥ dx,)

4

M (axt
Lz B0, f dx ¥y (ax™,dx,)
,

where O«L = ?)/bx{' - Equality of mixed partials and corollary 8.5 '

complete the proof of coinmutativityt
Vedh g V! '
du.(dl w) = du,(d.)‘ w)l.

The proof of closure follows similarly, using lemma 8.6.
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We defer the discussion of exactness to section 15. The fact that
the exterior derivatives mutually commute allows us to unambiguously

define iterated derivatives

whenever A C v . These vanish if v,/k has a column with two or

more boxes in it.

Example 13.4

Let A = (k) be a single row, so Ex:: 0, T*M . Then the

k-fold derivative

e = atr |
(o]

where f(x) 1is a smooth function, is Jjust the k-th order homogeneous

Taylor polynomial of £ ;

k k J
af = £ (1)d,f dx

2
surmed over all J = (jl,...%)) with |J| = k , and

‘ J J J 1,91 J
By oKLy ol P e (e e o (e P

Note that since dkf involves only the k-th order derivatives of
f , it cannot be invariant under changes of coordinates on .M . This
problem and 1ts resolution, using the theory of prolongation of the
general linear group GL(k)(p) , [16], will be dealt with in the sequel

to this paper.
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Example 13.5

Let M = IR2 with coordinates x,y . Consider the "smallest"

bundles over M corresponding to shapes
A= (1), w=(1,1) , u =(2) , v=(2,1)

The Young syrmetry properties and the formulae for the Pieri
- product (see example5.3)_ give the following formulae for the various
differentials:
K. - -
a) dy: f dx+g dy (fy gx)dx®dy

b)d&:

2
f dx+g dy — fxdx + (fy+ gx)dxdy+ gydy2

<

1 2
s dx®dy — = o ® a dxdy ®
c) du : dy 5 Xdx dy + . dy ® dy

v 2 - 2 1 2
d) du,. a dx"+b dxdy+c dy (ay— > bx)dx ®@dy + (by—2cx)dxdy®dx .

It is easy to check commutaﬁivity;

VoV Vot _"];
dl—dp,dk_ u'dl' fdx+gdy — 3 (fX

2

Ax“®dy+ (£ - dxdy ® dy -
) y(yygxy)dyy

v Bxx
Furthermore, if ¢(x,y) 1is any smooth function, then
v
do =0
. A . '
since do = do P = cpxd.x+ (pydy » proving closure at v . Conversely,

if d;i(f dx+ g dy) = O , then fy =g +¢ for some constant ¢ , hence

f dx+g dy = dp+c xdy .
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The reason "exactness" fails here is that O,A,v are not min-max
related. 1In general, adding boxes onto the first row always causes
probelms with "exactness" in the differential hypercomplex. (This

already crops up in the deRham complex when df = O implies f 1is

constant, not necessarily zero.)
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1k, Leibnitz' Rule

As remarked in the previous section, all the algebraic operations

on Schur spaces carry over to corresponding operations on hyperforms.

Thus, if A = (Xl,...,lk) are shapes and

<
P
Il
*
1!
I
"
@
R
{1
1
I

obtained by applying' ¥ pointwise over IM . Fach such map defines
a "product" between hyperforms. In this section we discuss the
"Leibnitz rule" for the differential of such a product.

First we introduce the notion of a tensor differential of a

hyperform. Given a shape A , and a X-hyperform w as in (13.1), define

d®w(x) =3 dx, ®d £, (1h4.1)
*
which as a section of the bundle EX ® T . By the Pieri formula,
*
= ~ @ =
A ®T ~ L2
the sum being over all | D A with |u//k| = 1 % hence, suming
over the same shapes,
= P
de® = z dl w . (1. 2)

Note in particular, if w = dkf €Er Ok for some smooth function f(x), then

g = & "1 (x) | (1k.3)
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since the only other summand in (1L.2) vanishes by closure of the
differential hypercomplex.

We now state our version of the Lelbnitz rule for hyperforms.

Theorem 1L.1 TLet V¥ : &L - Lp be functorial. Let v Doy ,
~
|v/u|l=1. TLet @y €T E.j be hyperforms . Then
A .

k
dv[w(wl@’---@ @)] = Z Vg - (ml®...® g ®...® @) (1h.4)

where %8j is the j-th tensor differential of ¢
The proof is almost immediate from the definition of the tensor

differential ¢®;j in section 11, and is left to the reader. 1In

a pl

for ¢ = (al,--.,Ok) , is tensorial, then

! X £ o, agl o

df¥(d 7 ®...0d )] = T ¥ .(d £®...04d ®...@ d fk), (14 .5)

jo1 09

k

1 :
for smooth functions £ ,...,f . This follows directly from the

definition 11.1 of “’j and (14.3).

b



-92-

15. Hyperjacobian Tdentities

We now again restrict attention to the differential subcomplexes
given by the fat shapes. As in section 11, all shapes in this section
will be n-fat unless explicitly noted, where n 1is some fixed positive
integer.

Given a € function u(x) , adu(x) € @J.T* is the j-th differential.

Let u = nk be rectangular. The hyperform

w = dnul*...*dnuk , (15.1)

[=~]
where u ,...,u € C , ¥ denotes the product (12.L), which takes

the particularly simple form

nJ+l

X*g = §®X E

Ii

for x € On , & € = 5o is of great interest.
n

Definition 15.1 Let T Dbe a standard tableau of shape A

The n-th order hyperjacobian

1 k
QE&E;LLLLLEJL = J;(u)

o (15.2)
is defined as E(T)!/’ki times the coefficieﬁt of dx, in (15.1).
Here o(T)! = él!... o ! , where the tableau T has El identical
columns, followed by 32 identical columns etc. For example, if
1{1f1]1|L|2 5
T=2233 , A=5,

then

~

e(T)t =21 31 1t =12 .
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Example 15.2 Let p=2,n=2, so

d2u = u dx2 + 2u dx @ dy + u dy2
XX Xy vy
Then for \ = (2,2) ,

dPu*dy = (

v u v, +u_ v
¥y Xy Xy ¥y XX

since

2
dx ®dy2+ 2(dxdy) ® (dxdy) = O .

Thus

hg(u v)
-— —’—2- = uxxv - 2ux v, + 1 Vo
b(x,y) Yy y Xy yy

which is the second order hyperjacobian introduced in [23].

In general, if T has entries m? , then we will write

be = d(x IERRREE: k)b(x SERRREE: k).

mooom o W

(15.3)

(15.L4)

in (15.2). The fact that the above definition of hyperjacobians agrees

with the constructive definition given in [23] depends on the row

expansion formulae for hyperjacobians, and proceeds along the

as the proof of Lemms L4.1Lk of that paper. We will not repeat

arguments here.

The basic fact, proved in [23], is that n-hyperjacobians

written as n-th order divergences, and that essentially these

same lines

the

can be

are all

the possible n-th order divergences depending exclusively on n-th order

partial derivatives of the relevant functions. The primitive version
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of differential hyperforms developed in [23] was used to construct

these hyperform identities. As these are equivalent to the present

Schur functor techniques for fat forms, the identities can be equivalently
constructed using hyperform theory. The first step is to express (15.1)

as the n-th order differential of some other hyperform.

k-
Theorem 15.3. Let A =n L , W= n® , and suppose n = sk+ ¢t

>

Il

s>0 , 0<t<k . Let d"  denote the differential =, =

A e
—s-1 1 _a- - _
set €= a¥ SRt x L %@ S ST x5S L Then
t k-t
n s-1)! !
¢ = s 1) (s (15.5)
k-1
(nt)
where w = dnul* el ¥ dnuk
Proof

This follows immediately from (1k4.3), theorem 1bk.1l and corollary
12.10.
The coefficient of d_xT , for T a standard tableau of shape u ,

in (15.5) will yield the hyperjacobian identity for g5

T(u) . We

illustrate this with a couple of examples, see [23; section L] for

more examples.
Example 15.4L Let p=n=k =2, and consider
w = dgu*dgv
as given in (15.3). According to (15.5),

1
w= 3 dg(du*dv)_
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Now

du * dv

- du 0 dv

2 2
= -
(u v adx + (_Ll vV _+uv )d:x:dy+u v dy )

using (15.4),

so, in L(2 2y
2
1.2 2 2 2 2
- . = * * *
w > [a (uxvx) dx” +d (uva+ uva) dxdy + d (uyvy) dy~ ]
= [—Dg(uv)+DD(uv +uv)—D2(uv)]dx2®dy2.
vy ox x Xy Xy yX XN yy

Therefore,

3

2

5 - y) +D.D (uxvy+u vx) —Dg(uxv )
> (x,y) v 7

v X

which, in the case u=v , reproduces (1l.1)

Example 15.5 Let p=k=n=3 . We construct the identity for

the third order hyperjacobian

?)3qu

u_ v W
3 XXX yyy 22z

-3 u}\::>Q<-\’5ryzwyzz * 6uxxyvxyzwyzz
d(X,y,2)

+ 3

W v w
XXy YYZ XZZ
where the omitted terms are obtained by permuting x,y,z and u,v,w

in all possible ways in the displayed terms, keeping track of the signs

of the permutation. Thus, for instance, u

xyzvxxzwyyz appears with

coefficient -6 . This differential polynomial is just the coefficient

of dx3 ®dy3® dz3 in the hyperform

w = d3u* d3v* d3w ,



-96-

cf. (15.2). According to (15.5),

1 2 1
@ = =z d3(d2u*d v*dgw) = —3-6~d3§ .

. 2 2
Now according to example 12.7, { actually depends on 4d u.Ad?v,Ad w
so its coefficients are determinants in the second order derivatives

2
of wu,v,w . Thus, for instance, the cocefficient of dx dy®dydz2 is

dlu,vow) Ly, DLu,v,w)

b(“’yyﬂzz) b(Xy,XZ,yZ) ?

where the first summand stands for

u u u
pod vy 2z

det v v v
XX vy ZZ

W w W
xx Yy @ zz

It is now a stralghtforward task to construct the rather pretty

identity
03 U, vow) _ D3 d(u,v,w) N DQD [2 d(u,v,w) _d(u,v,w) ]
3(x,y,2)° z  d(xx,xy,yy) 2oy S n(xx,xy,yz) | o(xx,yy,xz)
b 2

+DDD [bfu:vzw! N d(u,v,w)

+...
L7020 o,y z2) " D0,z y2) g
where the omitted terms are obtained by cyclically permuting x,y,z
in the displayed terms. This is a good illustration of the power of

our hyperform techniques for deriving otherwise umnmanageable divergence

identities.
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16. Exactness and Integrability

Finally we turn to the question of exactness of the differential

hypercomplex. The goal of this section is to prove

Theorem 16.1 The smooth differential hypercomplex dl;:: roE

is exact.

Rather than try to prove this directly, the most straight forward

method 1s to use the Fourier transform to change the differential

hypercomplex into the algebraic Schur hypercomplex, and then use our

previous exactness results. However, the implementation of this

program requires the sophisticated results or ghrenpreis and Malgrange

on the Fourier transform of distributions and the solution of the

"division problem" for systems of linear, constant coefficient partial

differential equations.

The proof will therefore be deferred unt

il

the end of this secticn, after we consider some applications of the

result.

First we write out the statement of the theorem in greater

detail: For every A,u,y

min-max related, the hyperform equation

(16.1)

where ﬂu €T =B e has a smooth solution Ex €T Ek , €A , if and

dv N =0 for all vE€v .
W ar

(16.2)
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These can be viewed in two ways; either (16.1) forms the general solution
for the homogeneous system of partial differential equations (16.2), or
(16.2) are the integrability conditions for the solution of the non-
homogeneous system of partial differential equations (16.1). In the
second interpretation, (16.1) form a higher order type of Pfaffian
system, [12], [25], (a "hyper-Pfaffian" system!). T have tried without
success to find any reference to such higher order Pfaff systems in the
literature.

Depending on the relative weights of A,u,Vw , there are a number
of possibilities on the relative orders of (15.1,2). 1In the simplest
case, A,= {k} s Y= {v} each consist of a single shape. If
lw/A| =k, |v/ul =4, then (16.1) is a k-th order system of
differential equations, with integrability conditions (16.2) involving
4-th order derivatives of the coefficients of ﬂu . It is possible
that X = {2} , but vy = {vl,...,vm} , so that the integrability conditions
for the k = |pl/l| - th order system (16.1) involve derivatives of orders
Lj = |Vj//p| , where the Lj may very well be different. Similarly
v might consist of a single shape, but _5 has several shapes of different
sizes, so a system involving variocus derivatives has integrability conditions

involving only 4'th order derivatives. We illustrate these possibilities

with a few'“easy"examples.

Example 16.2

Consider the part of the differential hypercomplex given in figure

3 , where the d& 's have been relabelled as di , 1=0,...,10 for

simplicity. Suppose M = IR3, with coordinates (x,y,z) = (xl,xg,x3)
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Here we explicitly display the systems (16.1) together with their integrability
criteria (16.2) for various choices of X,u,V -

We denote general sections of the relevant hyperform bundles as

follows
*
€ = fax+ & ay+ Elamer B, =T T
*
M = ﬂldx2+ ﬂgdxdy+ ﬂ3dxdz+ T]udy2+ T]5dydz+ ”ﬂ6d22 el 52 =T ®2T
C = l;ld_x3 + Qed_xgdy+ Q3dx2dz + gudxdy2+ §5d_xdydz +
— *
Caxaz?+ Tayd + Payaz+ dagaz®+ cPazder 2, =T o
*
a=ocldx®dy+a2dx®dz+a3dy®dz€1'"£ =T AT |,
(1,1) 2
B = Bldx2®dy+ Bgdx2®dz+ B3dxdy®dy+ Bud_xdy®dz +
ﬁ5d_xdz ®@dy + B6d§{dz ®dz + B7dy2® dz + Bdedz®dz €T = (2,1)
5
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L

=
U‘PJ

T
L]

dlol

Figure 3: Diagram for example 16.2. (The E have been suppressed.)
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. . L
v = yldx3®dy+ Ygdx3®dz+ y3dx2dy®dy+ Y dxgdy®dz+

+\?dg%z®dy+y6@£d2®dz+y7®My2®dy+y8@wy2®dz+

+ ‘Y9

R
+ yl3dy3 @dz + yl "Ldygdz ®dz+ yl

where the coefficients El

First consider the case

d.p

v = 4

is the first order system

viefel Y =Ee
RIS
¥ - B§+%B}6{ vl = 83_
v =ieleferee 2o
R ERERY

Ve elrzel v =g

, etc. are all functions

1 1 2 12
@dﬁm®dy+YO@dwh®dz+vjﬂmu ®dy+ v dmh2®dz+

dydz°®dz €T E

(3:1)’
of xX,y,2

X=(2,l) > U=(3:l) P \)=(3)3) Then

These have the second order integrability criteria

dlodg(Y) =0,

or, in components,
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1 2 1.7
_—— . :O

Yyy T3 kv T3 Vyy

1.2 .23 2.4 2 B L0
Nyz " Vyy T3 Yaz T3 Yay 3Y>5<y+ Vix 3 Vi T O
© L 2 2 2 2°6 1 10 111
Yzz_g‘yyz—gyxz_g\;xz_?:yxy—3YXX+§ szo’
2 gY6 1. 12 _
Y2273 Txz 3YXX— >

3,0k 1's5 o7 .8 39 W3 -
IR R BNy +5 Vot Wy = O
3 +2YLL S - 6 _2Y8 +2vll+vlh=o

ZZ vz vz y’y Xy XX ’
L1 2.6 2 10,211 2 12 115
Yzz—3v22 3 'yz 3 xz+3yxz+3yxy 3 XX—O
7 8 9 10 11 . 13 AR
Yoo ¥ Yy, w3, Yy 3V 6vxz+2vxy—o,

8 19 20,2 11 1 12 2 1k 1 .15
YZZ_ 3 Y2273 Y2 T3 Ve T3 Yy T3 Y P Vyy T O
A3 e Ak 1 15

2z 3 Yyt 3 Yyy T O

the corresponding equation is a coefficient.

An example of a second order system with second order integrability

conditions is given by X = (1) , u = (3) ,
simplicity, we illustrate on IR‘2 , S0 all dependence on
dz is omitted. Then

reads

3 3

dx~ ® dy

2

3®dy dz

dx
dx3 ® dyd22
ax> ® az3
dxgdy ® dygdz
d_xgdy ® dyd22
dxgdy ® dz3
d:»cdy‘2 ® dyd22
dxdy2 ® dz3

dy3 ® dz3

(3,3)

v = (3,2) , which, for

Z and
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1 1
g = gXX >
2 1 2
g = 2§Xy+ gX_X s
(16.14)
b 1 2
= 2 )
=g R
7 22
EE S
The integrability criteria are
or,
1 2 .2 1.4 3 2
- = = = ®
ny 3 by T3 %% =9 ax” ®@dy
. (16.5)
2 7 2 2
- = dx ®4d
oy ™ oyt 30 = 9 dy ® dy

In other words, exactness of the hypercomplex says that (16.4) have
a solution E% if and only if (16.5) are satisfied. The three-

dimensional case is similar, but more complicated.

For an example of a second order system with both first and second

order integrability conditions, consider

A= (2) s M= (3:1) s N T {(?);3)3(3:1’1\} .

Then

y =44 (M = d5d3<n)

is the system
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Y7:n§y_2niy’ .Y8:n§z'ﬂiy’
v - n§2+ﬂ3y 2ﬂiz n?cy ’ v - n§z+ﬂ§rz - n?(z gﬂf{y )

s .5 I
Y7o =T Gl

z2Z

This is solvable if and only if

The first of these is the second order system (16.3); the second, d7‘y =0,

is the first order system

2. 1.y L1

YZ‘Yy+§Yx'§Y§r=O’ x> ®dy®dz

o . 3 . 8 1 9 )

Y, T Yy T Ve T o ¥ T 9 G dy®dy®@dz
YZ _'Y§+ é'yio - Y)l(l =0, dxgdz®dy®dz R
YZ - y§+ 3yi3 =03 dxdy2®dy®dz >
9 10, , 1k

'YZ - ‘vy -+ 2'Yx = O s d_Xdy‘dZ ®dy®dz Py

-Y_ + Y= s dxd22®dy®dz .
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Both the first and second order integrability criteria must be satisfied

for (16.6) to have a solution.
Finally, consider 2‘;: {(19159(3)} ) W= (371) s V= (33231)

Exactness says

¥ = agay(a) + ag(0) (16.7)

if and only if

d8d7(y) -0 . (16.8)

Here (16.7) is the mixed system

DT el o

3 XX y 37
=z v -3,
v3=%a}lcy+ Qi—g
.Yu = i Qiz * iroiy * i oix * Qi h é gi >
R AT ERE NS
Vel -8
PR S T
i i il
Y9=~gag;z+éa§y—]2:a3xx+ci—2g ,
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Bt dd1dedd.
A R el
v —%asyf QZ_% gffi ’

whereas the integrability conditions (16.8) are purely second order:

11 1.2 1.3 1.4 1 18 1.9 3.2
= _. -= = - e = Rdy ®
2 sz 2 Yyy 6 Yxut 3 ny 6 Y?cy 6 Yex ¥ 157 Yax 0, & y ®dz,

1 2 14 2 16 110 1 11 3

) 1 2 1 1 - ® ®
Yoz sz+ 3 Yyz 73 Y)5(2 3 Vxy 76 Yax T3 Yxx O dx” @ dydz ®dz
l-2 13 7 3 8 1 9 © 13 2 2
- - _ = = - - R b2}
2 Vyz T2 Yyy Yz T2 Yy U Yxy 3 Vex = O G dy®ay ©dz
.Y2 -.’Y3 + Y7 ‘Y8 L0 e _ 0, dxgdy® dydz ®dz

zZ yz XZ XZ 2 Xy XX

Lo E TR R, adnesen,
Yzz -Yslrcz) _5 Ysl;+ o y2y Vii _o YE -0, dxdydz ® dydz ® dz

Other examples, of greater complexity, can of course be constructed

at will, but the explicit expressions rapidly get out of hand, even
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in low dimensional spaces. The above examples should give the reader
a taste of the variety of systems of partial differential equations
together with explicit integrability conditions which may be constructed.
It would be interesting to check these with the integrabllity conditions
of Goldschmidt, [14], but I have not attempted to do this.

Before tackling the general case of smooth hyperforms, we first
treat the question of exactness of differential forms with polynomial
coefficients. Let & denote the space of all polynomial functions

on M=TR’

Theorem 16.3 The polynomial hypercomplex

a: r(= P -~ T(= 29
is exact.

Proof

It suffices to note that this polynomial hypercomplex is isomorphic
to the polynomial hypercomplex discussed at the end of section 8,

for then theorem 16.3 is just a restatement of theorem 8.11. To this end,

we have for M = R° 5
* *
~ O M~ OM ,

* *
cef. [11]. Since M 1is a vector space, we can identify M ~ T M x

for each x € M , and hence

r 9~ 08 = * *
(;k))__, :‘K—'O*M ®LRM .
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Tt is easy to check that this is the reguired isomorphism between the
two polynomial hypercomplexes.

For the proof of theorem 15.1, we begin with a brief review of
the relevant distribution theory, using Ehrenpreis, [9], [10], Malgrange,
[19], and Gel'fand and Shilov, [13], for basic references. The
notation is that of Ehrenpreis. Let 8 = CZ(M) denocte the space of test
functions, and 8' the dual space of distributions. Let &€ = Cm(M) ,

which can be viewed as a subspace of §' . The Fourier transform

of a test function ¢ € 8§ is the entire function
~ -1 .
B(2) = Flo(x)] = [ o(x)eY T2 % ay
M

where z € CP is complex. The Fourier transform is a topological

isomorphism
F:8~D,

where D denotes the space of entire functions of exponential type
. . . . . -1
which are rapidly decreasing on IRP < cP The adjoint 'E of &

defines a topological isomorphism
F . 9' e DV 5
o~ ~

where D' 1s the dual of D with topology of uniform convergence

on bounded subsets. This restricts to a topological isomorphism

~ )

. T - !
& SF D

in the subspace S% C §' of distributions of finite order, which we
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also call the Fourier transform. [lote that & C Sﬁ , so 3§ further

restricts

where the dual space E" 1s rather complicated to describe explicitly,
but need not concern us here. Similar transforms exist on the Cartesian

product spaces 8" = Sx...x0 , etec.

If P denotes a linear, constant coefficient partial differential

operator, then its Fourier transform
Q=3P:D~D

is the operation of multiplication by an appropriate polynomial. By

duality, this extends to
Q=3(P) : DL~ D!,

where for S € Sﬁ s
PS(0) = 8(P'g) , © €0,

where : P' denotes the adjoint of P . Similarly, if

P Sm - Qn
s

is an nXm matrix of linear, constant coefficient partial differential

operators, the Fourier transform

8=30 : "D
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is given by multiplication by a matrix of polynomials.
The main result required here. is on the solvability of systems of

linear differential equations in the space &

Theorem 16.4 The system of constant coefficient partial differential

equations
E E =8 5 (169)
n . mo, .
for g € € has a solution f €& if and only if
~n e d
[ g(x) - n(x)ax = o (16.10)
L d
m .
for all B € 8 with
P h = 0.
-~ S

This result can easily be inferred from the corresponding result
for square matrices QE proved in [9; theorem 7].

By use of theorem 7.5, we first reduce the general problem of exactness
of the differential hypercomplex to the following problem: Given

by, v/ =1, tet (A} =8%(u,v) . Let w€r= . I

w = 0, (16.11)
W
then there exists w €T 2y with
o
SNER (16.12)

Now (16.12), when written out in full detail, forms a large system
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of constant-coefficient partial differential equations of the form
(16.9), where f stands for the coefficient functions of { and g
the coefficients of w , and m and n the dimensions of LXM .
L“M respectively, cf. theorem 2.4. These will be solvable provided
the integrability criteria (16.10) is satisfied, and this must be
shown to follow from (16.11). We thus have to investigate the
"adjoint" of d& .

Using the underlying metric on M , there is an induced identification
between EX and its dual obtained from the identification of T*

X

with T . The codifferential & : T E —=T28&8 is defined for
u & A

’u,/l| = 1 by the formula

A
z T =z .1
8, (E £(x) axy) afy - ax, (16.13)
*
where J: T ® Eu ECRY is the interior product (9.1) using the
identification of T* and T . (Compare the definition of the ordinary

co-differential used in the construction of the Laplace - Beltrami

operator on differential forms over a Riemannian manifold, cf. [28, page 221].)

Lemma 16.5 The codifferential 83 : T EM - F=, forms a
cohypercomplex.

The proof follows the same lires as theorem 13.3. Another easy
computation, using (9.2), (13.2) and (16.13) shows that the codifferential

. . . .
Su is (up to sign) the adjoint of the exterior derivative d&

Lemma 16.6 TLet |w/\| =k . Then for CET( 7y,E) , w €T Eu,@) ,
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jM< d& C,aydx = (-1)k fM <Q,83 wdx - (16.14)

This lemma combined with theorem 15.4 reduces the integrability

of (16.12) to the problem of whether

Jy (@8 dx = 0 (16.15)
for all 6 € I'( Eu’ﬁ) with

" 0 =0 . (16.16)

At this peoint we change to Fourier transform space. Given a

hyperform
¢ =2 (x)dx, €M(=,,80)

with distributional coefficients, define its Fourier transform

which is a (complex) hyperform with coefficients in Di

Lemma 16.7 Tet ACyu , |u/A] =1 . For QEI"(E)\,A‘J}L) s
F(ay ©) = v(2) *3(0) , (16.17)
where * 1s the Pieri product from E)\ to EM , and
v(z) = /-1 g z‘jdz‘j
J=1

Similarly, for o € T'( EM,SEL) ,
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5[53@] = w(z) A3 (16.18)

where J 1is the interior product (10.1) from E to 2, induced

by the metric on M .

Thus, by the Plancheral Formula, we need only check that

J“ (w(z),0(z)Ydz = O (16.19)
P
for all 6 €T( EM’D) satisfying

1

(v(z) ) 6(z) =0, in %, (16.20)

for all =z . (Here k= [p/%A] .) .

Now if z # O , then (16.20) is true if and only if
6(z) = v(z)d8(2) (16.21)

pointwise. To see that (16.21) holds when z = O , where v(z)

vanishes, we need to check that 6(0) = 0 . Write
5(z) = 8(0) +3(2) ,

where B(0) = 0 . Substituting into (16.19), the only terms of degree

(v(z) 1) 8(0) = 0,

the other terms vanishing to order (k1) or higher at =z = O .
But the exactness of the polynomial cohypercomplex, which by (9.9)

can be identified with the cohypercomplex
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v(z) d:eem weem, , /Al =1,

(see also theorem 16.3), implies that 5(0) = 0 (of course, assuming
w#0 ), since im(v(z)d) N R ® EK:{O} ;

(Actually, it can be proven that €(z) in (16.21) can be chosen
entire in 2z , but this is considerably more difficult to do.)

Since (16.21) holds for all =z , we have

(o z),B(z)) <&(z),v(z),l§(z)>

I

<V(z)'*&(z),§(z)>

pointwise for all =z . Therefore (16.19) holds and the proof of

exactness is complete.
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