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2. Numerical Solution of Scalar Equations

Most numerical solution methods are based on some form of iteration. The basic idea
is that repeated application of the algorithm will produce closer and closer approximations
to the desired solution. To analyze such algorithms, our first task is to understand general
iterative processes.

2.1. Iteration of Functions.

Iteration, meaning repeated application of a function, can be viewed as a discrete

dynamical system in which the continuous time variable has been “quantized” to assume
integer values. Even iterating a very simple quadratic scalar function can lead to an amaz-
ing variety of dynamical phenomena, including multiply-periodic solutions and genuine
chaos. Nonlinear iterative systems arise not just in mathematics, but also underlie the
growth and decay of biological populations, predator-prey interactions, spread of commu-
nicable diseases such as Aids, and host of other natural phenomena. Moreover, many
numerical solution methods — for systems of algebraic equations, ordinary differential
equations, partial differential equations, and so on — rely on iteration, and so the the-
ory underlies the analysis of convergence and efficiency of such numerical approximation
schemes.

In general, an iterative system has the form

u(k+1) = g(u(k)), (2.1)

where g: Rn → R
n is a real vector-valued function. (One can similarly treat iteration of

complex-valued functions g: Cn → C
n, but, for simplicity, we only deal with real systems

here.) A solution is a discrete collection of points† u(k) ∈ R
n, in which the index k =

0, 1, 2, 3, . . . takes on non-negative integer values.

Once we specify the initial iterate,

u(0) = c, (2.2)

then the resulting solution to the discrete dynamical system (2.1) is easily computed:

u(1) = g(u(0)) = g(c), u(2) = g(u(1)) = g(g(c)), u(3) = g(u(2)) = g(g(g(c))), . . .

† The superscripts on u
(k) refer to the iteration number, and do not denote derivatives.
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and so on. Thus, unlike continuous dynamical systems, the existence and uniqueness of
solutions is not an issue. As long as each successive iterate u(k) lies in the domain of
definition of g one merely repeats the process to produce the solution,

u(k) =

k times︷ ︸︸ ︷
g ◦ · · · ◦g (c), k = 0, 1, 2, . . . ,

(2.3)

which is obtained by composing the function g with itself a total of k times. In other
words, the solution to a discrete dynamical system corresponds to repeatedly pushing the
g key on your calculator. For example, entering 0 and then repeatedly hitting the cos key
corresponds to solving the iterative system

u(k+1) = cosu(k), u(0) = 0. (2.4)

The first 10 iterates are displayed in the following table:

k 0 1 2 3 4 5 6 7 8 9

u(k) 0 1 .540302 .857553 .65429 .79348 .701369 .76396 .722102 .750418

For simplicity, we shall always assume that the vector-valued function g: Rn → R
n is

defined on all of R
n; otherwise, we must always be careful that the successive iterates u(k)

never leave its domain of definition, thereby causing the iteration to break down. To avoid
technical complications, we will also assume that g is at least continuous; later results rely
on additional smoothness requirements, e.g., continuity of its first and second order partial
derivatives.

While the solution to a discrete dynamical system is essentially trivial, understanding
its behavior is definitely not. Sometimes the solution converges to a particular value —
the key requirement for numerical solution methods. Sometimes it goes off to ∞, or, more
precisely, the norms of the iterates are unbounded: ‖u(k) ‖ → ∞ as k → ∞. Sometimes
the solution repeats itself after a while. And sometimes the iterates behave in a seemingly
random, chaotic manner — all depending on the function g and, at times, the initial
condition c. Although all of these cases may arise in real-world applications, we shall
mostly concentrate upon understanding convergence.

Definition 2.1. A fixed point or equilibrium of a discrete dynamical system (2.1) is
a vector u? ∈ R

n such that

g(u?) = u?. (2.5)

We easily see that every fixed point provides a constant solution to the discrete dy-
namical system, namely u(k) = u? for all k. Moreover, it is not hard to prove that any
convergent solution necessarily converges to a fixed point.

Proposition 2.2. If a solution to a discrete dynamical system converges,

lim
k→∞

u(k) = u?,

then the limit u? is a fixed point.
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Proof : This is a simple consequence of the continuity of g. We have

u? = lim
k→∞

u(k+1) = lim
k→∞

g(u(k)) = g

(
lim

k→∞
u(k)

)
= g(u?),

the last two equalities following from the continuity of g. Q.E.D.

For example, continuing the cosine iteration (2.4), we find that the iterates gradually
converge to the value u? ≈ .739085, which is the unique solution to the fixed point equation

cosu = u.

Later we will see how to rigorously prove this observed behavior.

Of course, not every solution to a discrete dynamical system will necessarily converge,
but Proposition 2.2 says that if it does, then it must converge to a fixed point. Thus, a
key goal is to understand when a solution converges, and, if so, to which fixed point — if
there is more than one. Fixed points are divided into three classes:

• asymptotically stable, with the property that all nearby solutions converge to it,

• stable, with the property that all nearby solutions stay nearby, and

• unstable, almost all of whose nearby solutions diverge away from the fixed point.

Thus, from a practical standpoint, convergence of the iterates of a discrete dynamical
system requires asymptotic stability of the fixed point. Examples will appear in abundance
in the following sections.

Scalar Functions

As always, the first step is to thoroughly understand the scalar case, and so we begin
with a discrete dynamical system

u(k+1) = g(u(k)), u(0) = c, (2.6)

in which g: R→ R is a continuous, scalar-valued function. As noted above, we will assume,
for simplicity, that g is defined everywhere, and so we do not need to worry about whether
the iterates u(0), u(1), u(2), . . . are all well-defined.

As usual, to study systems one begins with an in-depth analysis of the scalar version.
Consider the iterative equation

u(k+1) = a u(k), u(0) = c. (2.7)

The general solution to (2.7) is easily found:

u(1) = a u(0) = a c, u(2) = a u(1) = a2 c, u(3) = a u(2) = a3 c,

and, in general,

u(k) = ak c. (2.8)

If the initial condition is a = 0, then the solution u(k) ≡ 0 is constant. Therefore, 0 is a
fixed point or equilibrium solution for the iterative system.
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Figure 2.1. One Dimensional Real Linear Iterative Systems.

Example 2.3. Banks add interest to a savings account at discrete time intervals.
For example, if the bank offers 5% interest compounded yearly, this means that the account
balance will increase by 5% each year. Thus, assuming no deposits or withdrawals, the
balance u(k) after k years will satisfy the iterative equation (2.7) with a = 1 + r where
r = .05 is the interest rate, and the 1 indicates that all the money remains in the account.
Thus, after k years, your account balance is

u(k) = (1 + r)kc, where c = u(0) (2.9)

is your initial deposit. For example, if c = $1, 000, after 1 year your account has u(1) =
$1, 050, after 10 years u(10) = $1, 628.89, after 50 years u(50) = $11, 467.40, and after 200
years u(200) = $17, 292, 580.82.

When the interest is compounded monthly, the rate is still quoted on a yearly basis,
and so you receive 1

12 of the interest each month. If û(k) denotes the balance after k

months, then, after n years, the account balance is û(12n) =
(
1 + 1

12 r
)

12n c. Thus,

when the interest rate of 5% is compounded monthly, your account balance is û(12) =
$1, 051.16 after 1 year, û(120) = $1, 647.01 after 10 years, û(600) = $12, 119.38 after 50
years, and û(2400) = $21, 573, 572.66 dollars after 200 years. So, if you wait sufficiently
long, compounding will have a dramatic effect. Similarly, daily compounding replaces 12
by 365.25, the number of days in a year. After 200 years, the balance is $22, 011, 396.03.

Let us analyze the solutions of scalar iterative equations, starting with the case when
a ∈ R is a real constant. Aside from the equilibrium solution u(k) ≡ 0, the iterates exhibit
five qualitatively different behaviors, depending on the size of the coefficient a.

(a) If a = 0, the solution immediately becomes zero, and stays there, so u(k) = 0 for all
k ≥ 1.

(b) If 0 < a < 1, then the solution is of one sign, and tends monotonically to zero, so
u(k) → 0 as k →∞.
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(c) If −1 < a < 0, then the solution tends to zero: u(k) → 0 as k → ∞. Successive
iterates have alternating signs.

(d) If a = 1, the solution is constant: u(k) = a, for all k ≥ 0.

(e) If a = −1, the solution switches back and forth between two values; u(k) = (−1)k c.

(f ) If 1 < a < ∞, then the iterates u(k) become unbounded. If c > 0, they go mono-
tonically to +∞; if c < 0, to −∞.

(g) If −∞ < a < −1, then the iterates u(k) also become unbounded, with alternating
signs.

In Figure 2.1 we exhibit representative scatter plots for the nontrivial cases (b – g). The
horizontal axis indicates the index k and the vertical axis the solution value u. Each dot
in the scatter plot represents an iterate u(k).

To describe the different scenarios, we adopt a terminology that already appeared in
the continuous realm. In the first three cases, the fixed point u = 0 is said to be globally

asymptotically stable since all solutions tend to 0 as k → ∞. In cases (d) and (e), the
zero solution is stable, since solutions with nearby initial data, | c | ¿ 1, remain nearby.
In the final two cases, the zero solution is unstable; any nonzero initial data a 6= 0 — no
matter how small — will give rise to a solution that eventually goes arbitrarily far away
from equilibrium.

Let us also analyze complex scalar iterative systems. The coefficient a and the initial
datum c in (2.7) are allowed to be complex numbers. The solution is the same, (2.8), but
now we need to know what happens when we raise a complex number a to a high power.
The secret is to write a = r e i θ in polar form, where r = | a | is its modulus and θ = ph a
its angle or phase. Then ak = rk e i kθ. Since | e i kθ | = 1, we have | ak | = | a |k, and so
the solutions (2.8) have modulus |u(k) | = | ak a | = | a |k | a |. As a result, u(k) will remain
bounded if and only if | a | ≤ 1, and will tend to zero as k →∞ if and only if | a | < 1.

We have thus established the basic stability criteria for scalar, linear systems.

Theorem 2.4. The zero solution to a (real or complex) scalar iterative system

u(k+1) = a u(k) is

(a) asymptotically stable if and only if | a | < 1,

(b) stable if and only if | a | ≤ 1,

(c) unstable if and only if | a | > 1.

Nonlinear Scalar Iteration

The simplest “nonlinear” case is that of an affine function

g(u) = au + b, (2.10)

leading to an affine discrete dynamical system

u(k+1) = au(k) + b. (2.11)

The only fixed point is the solution to

u? = g(u?) = au? + b, namely, u? =
b

1− a
. (2.12)
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Figure 2.2. Fixed Points.

The formula for u? requires that a 6= 1, and, indeed, the case a = 1 has no fixed point, as
the reader can easily confirm.

Since we already know the value of u?, we can readily analyze the differences

e(k) = u(k) − u?, (2.13)

between successive iterates and the fixed point. Observe that, the smaller e(k) is, the closer
u(k) is to the desired fixed point. In many applications, the iterate u(k) is viewed as an
approximation to the fixed point u?, and so e(k) is interpreted as the error in the kth

iterate. Subtracting the fixed point equation (2.12) from the iteration equation (2.11), we
find

u(k+1) − u? = a(u(k) − u?).

Therefore the errors e(k) are related by a linear iteration

e(k+1) = ae(k), and hence e(k) = ake(0). (2.14)

Therefore, the solutions to this scalar linear iteration converge:

e(k) −→ 0 and hence u(k) −→ u?, if and only if | a | < 1.

This is the criterion for asymptotic stability of the fixed point, or, equivalently, convergence
of the affine iterative system (2.11). The magnitude of a determines the rate of convergence,
and the closer it is to 0, the faster the iterates approach the fixed point.

Example 2.5. The affine function

g(u) = 1
4 u + 2

leads to the iterative scheme

u(k+1) = 1
4 u(k) + 2.
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Figure 2.3. Tangent Line Approximation.

Starting with the initial condition u(0) = 0, the ensuing values are

k 1 2 3 4 5 6 7 8

u(k) 2.0 2.5 2.625 2.6562 2.6641 2.6660 2.6665 2.6666

Thus, after 8 iterations, the iterates have produced the fixed point u? = 8
3 to 4 decimal

places. The rate of convergence is 1
4 , and indeed

| e(k) | = |u(k) − u? | =
(

1
4

)k |u(0) − u? | = 8
3

(
1
4

)k −→ 0 as k −→ ∞.

Let us now turn to the fully nonlinear case. First note that the fixed points of g(u)
correspond to the intersections of its graph with the graph of the function i(u) = u. For
instance Figure 2.2 shows the graph of a function that has 3 fixed points, labeled u?

1, u
?
2, u

?
3.

In general, near any point in its domain, a (smooth) nonlinear function can be well
approximated by its tangent line, which repre4sents the graph of an affine function; see
Figure 2.3. Therefore, if we are close to a fixed point u?, then we might expect the iterative
system based on the nonlinear function g(u) to behave very much like that of its affine
tangent line approximation. And, indeed, this intuition turns out to be essentially correct.
This result forms our first concrete example of linearization, in which the analysis of a
nonlinear system is based on its linear (or, more precisely, affine) approximation.

The explicit formula for the tangent line to g(u) near the fixed point u = u? = g(u?)
is

g(u) ≈ g(u?) + g′(u?)(u− u?) ≡ au + b, (2.15)

where
a = g′(u?), b = g(u?)− g′(u?)u? =

(
1− g′(u?)

)
u?.

Note that u? = b /(1 − a) remains a fixed point for the affine approximation: au? + b =
u?. According to the preceding discussion, the convergence of the iterates for the affine
approximation is governed by the size of the coefficient a = g′(u?). This observation
inspires the basic stability criterion for fixed points of scalar iterative systems.

3/15/06 13 c© 2006 Peter J. Olver



Theorem 2.6. Let g(u) be a continuously differentiable scalar function. Suppose

u? = g(u?) is a fixed point. If | g′(u?) | < 1, then u? is an asymptotically stable fixed

point, and hence any sequence of iterates u(k) which starts out sufficiently close to u? will

converge to u?. On the other hand, if | g′(u?) | > 1, then u? is an unstable fixed point, and

the only iterates which converge to it are those that land exactly on it, i.e., u(k) = u? for

some k ≥ 0.

Proof : The goal is to prove that the errors e(k) = u(k) − u? between the iterates and
the fixed point tend to 0 as k → ∞. To this end, we try to estimate e(k+1) in terms of
e(k). According to (2.6) and the Mean Value Theorem from calculus,

e(k+1) = u(k+1) − u? = g(u(k))− g(u?) = g′(v) (u(k) − u?) = g′(v) e(k), (2.16)

for some v lying between u(k) and u?. By continuity, if | g′(u?) | < 1 at the fixed point,
then we can choose δ > 0 and | g′(u?) | < σ < 1 such that the estimate

| g′(v) | ≤ σ < 1 whenever | v − u? | < δ (2.17)

holds in a (perhaps small) interval surrounding the fixed point. Suppose

| e(k) | = |u(k) − u? | < δ.

Then the point v in (2.16), which is closer to u? than u(k), satisfies (2.17). Therefore,

|u(k+1) − u? | ≤ σ |u(k) − u? |, and hence | e(k+1) | ≤ σ | e(k) |. (2.18)

In particular, since σ < 1, we have |u(k+1) − u? | < δ, and hence the subsequent iterate
u(k+1) also lies in the interval where (2.17) holds. Repeating the argument, we conclude
that, provided the initial iterate satisfies

| e(0) | = |u(0) − u? | < δ,

the subsequent errors are bounded by

e(k) ≤ σk e(0), and hence e(k) = |u(k) − u? | −→ 0 as k →∞,

which completes the proof of the theorem in the stable case.

The proof in unstable case is left as an exercise for the reader. Q.E.D.

Remark : The constant σ governs the rate of convergence of the iterates to the fixed
point. The closer the iterates are to the fixed point, the smaller we can choose δ in (2.17),
and hence the closer we can choose σ to | g′(u?) |. Thus, roughly speaking, | g′(u?) | governs
the speed of convergence, once the iterates get close to the fixed point. This observation
will be developed more fully in the following subsection.

Remark : The cases when g′(u?) = ±1 are not covered by the theorem. For a linear
system, such fixed points are stable, but not asymptotically stable. For nonlinear systems,
more detailed knowledge of the nonlinear terms is required in order to resolve the status —
stable or unstable — of the fixed point. Despite their importance in certain applications,
we will not try to analyze such borderline cases any further here.
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Figure 2.4. Planetary Orbit.

Example 2.7. Given constants ε,m, the trigonometric equation

u = m + ε sin u (2.19)

is known as Kepler’s equation. It arises in the study of planetary motion, in which 0 < ε < 1
represents the eccentricity of an elliptical planetary orbit, u is the eccentric anomaly ,
defined as the angle formed at the center of the ellipse by the planet and the major axis,
and m = 2π t /T is its mean anomaly , which is the time, measured in units of T/(2π)
where T is the period of the orbit, i.e., the length of the planet’s year, since perihelion or
point of closest approach to the sun; see Figure 2.4.

The solutions to Kepler’s equation are the fixed points of the discrete dynamical
system based on the function

g(u) = m + ε sin u.

Note that
| g′(u) | = | ε cos u | = | ε | < 1, (2.20)

which automatically implies that the as yet unknown fixed point is stable. Indeed, con-
dition (2.20) is enough to prove the existence of a unique stable fixed point; see the
remark after Theorem 9.7. In the particular case m = ε = 1

2 , the result of iterating

u(k+1) = 1
2 + 1

2 sin u(k) starting with u(0) = 0 is

k 1 2 3 4 5 6 7 8 9

u(k) .5 .7397 .8370 .8713 .8826 .8862 .8873 .8877 .8878

After 13 iterations, we have converged sufficiently close to the solution (fixed point) u? =
.887862 to have computed its value to 6 decimal places.
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Inspection of the proof of Theorem 2.6 reveals that we never really used the differen-
tiability of g, except to verify the inequality

| g(u)− g(u?) | ≤ σ |u− u? | for some fixed σ < 1. (2.21)

A function that satisfies (2.21) for all nearby u is called a contraction at the point u?. Any

function g(u) whose graph lies between the two lines

L±(u) = g(u?)± σ (u− u?) for some σ < 1,

for all u sufficiently close to u?, i.e., such that |u− u? | < δ for some δ > 0, defines a
contraction, and hence fixed point iteration starting with |u(0) − u? | < δ will converge to
u?; see Figure 2.5. In particular, any function that is differentiable at u? with | g′(u?) | < 1
defines a contraction at u?.

Example 2.8. The simplest truly nonlinear example is a quadratic polynomial. The
most important case is the so-called logistic map

g(u) = λu(1− u), (2.22)

where λ 6= 0 is a fixed non-zero parameter. (The case λ = 0 is completely trivial. Why?)
In fact, an elementary change of variables can make any quadratic iterative system into
one involving a logistic map.

The fixed points of the logistic map are the solutions to the quadratic equation

u = λu(1− u), or λu2 − λu + 1 = 0.

Using the quadratic formula, we conclude that g(u) has two fixed points:

u?
1 = 0, u?

2 = 1− 1

λ
.
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Figure 2.6. Logistic Iterates.

Let us apply Theorem 2.6 to determine their stability. The derivative is

g′(u) = λ− 2λu, and so g′(u?
1) = λ, g′(u?

2) = 2− λ.

Therefore, if |λ | < 1, the first fixed point is stable, while if 1 < λ < 3, the second fixed
point is stable. For λ < −1 or λ > 3 neither fixed point is stable, and we expect the
iterates to not converge at all.

Numerical experiments with this example show that it is the source of an amazingly
diverse range of behavior, depending upon the value of the parameter λ. In the accompa-
nying Figure 2.6, we display the results of iteration starting with initial point u(0) = .5 for
several different values of λ; in each plot, the horizontal axis indicates the iterate number
k and the vertical axis the iterate valoue u(k) for k = 0, . . . , 100. As expected from Theo-
rem 2.6, the iterates converge to one of the fixed points in the range −1 < λ < 3, except
when λ = 1. For λ a little bit larger than λ1 = 3, the iterates do not converge to a fixed
point. But it does not take long for them to settle down, switching back and forth between
two particular values. This behavior indicates the exitence of a (stable) period 2 orbit for
the discrete dynamical system, in accordance with the following definition.
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Definition 2.9. A period k orbit of a discrete dynamical system is a solution that
satisfies u(n+k) = u(n) for all n = 0, 1, 2, . . . . The (minimal) period is the smallest positive
value of k for which this condition holds.

Thus, a fixed point
u(0) = u(1) = u(2) = · · ·

is a period 1 orbit. A period 2 orbit satisfies

u(0) = u(2) = u(4) = · · · and u(1) = u(3) = u(5) = · · · ,

but u(0) 6= u(1), as otherwise the minimal period would be 1. Similarly, a period 3 orbit
has

u(0) = u(3) = u(6) = · · · , u(1) = u(4) = u(7) = · · · , u(2) = u(5) = u(8) = · · · ,

with u(0), u(1), u(2) distinct. Stability of a period k orbit implies that nearby iterates
converge to this periodic solution.

For the logistic map, the period 2 orbit persists until λ = λ2 ≈ 3.4495, after which
the iterates alternate between four values — a period 4 orbit. This again changes at
λ = λ3 ≈ 3.5441, after which the iterates end up alternating between eight values. In fact,
there is an increasing sequence of values

3 = λ1 < λ2 < λ3 < λ4 < · · · ,

where, for any λn < λ ≤ λn+1, the iterates eventually follow a period 2n orbit. Thus, as λ
passes through each value λn the period of the orbit goes from 2n to 2 ·2n = 2n+1, and the
discrete dynamical system experiences a bifurcation. The bifurcation values λn are packed
closer and closer together as n increases, piling up on an eventual limiting value

λ? = lim
n→∞

λn ≈ 3.5699,

at which point the orbit’s period has, so to speak, become infinitely large. The entire
phenomena is known as a period doubling cascade.

Interestingly, the ratios of the distances between successive bifurcation points ap-
proaches a well-defined limit,

λn+2 − λn+1

λn+1 − λn

−→ 4.6692 . . . , (2.23)

known as Feigenbaum’s constant . In the 1970’s, the American physicist Mitchell Feigen-
baum, [16], discovered that similar period doubling cascades appear in a broad range of
discrete dynamical systems. Even more remarkably, in almost all cases, the corresponding
ratios of distances between bifurcation points has the same limiting value. Feigenbaum’s
experimental observations were rigorously proved by Oscar Lanford in 1982, [32].

After λ passes the limiting value λ?, all hell breaks loose. The iterates become com-
pletely chaotic†, moving at random over the interval [0, 1]. But this is not the end of the

† The term “chaotic” does have a precise mathematical definition, but the reader can take it
more figuratively for the purposes of this elementary exposition.
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story. Embedded within this chaotic regime are certain small ranges of λ where the system
settles down to a stable orbit, whose period is no longer necessarily a power of 2. In fact,
there exist values of λ for which the iterates settle down to a stable orbit of period k for any

positive integer k. For instance, as λ increases past λ3,? ≈ 3.83, a period 3 orbit appears
over a small range of values, after which, as λ increses slightly further, there is a period
doubling cascade where period 6, 12, 24, . . . orbits successively appear, each persisting on
a shorter and shorter range of parameter values, until λ passes yet another critical value
where chaos breaks out yet again. There is a well-prescribed order in which the periodic
orbits make their successive appearance, and each odd period k orbit is followed by a very
closely spaced sequence of period doubling bifurcations, of periods 2n k for n = 1, 2, 3, . . . ,
after which the iterates revert to completely chaotic behavior until the next periodic case
emerges. The ratios of distances between bifurcation points always have the same Feigen-
baum limit (2.23). Finally, these periodic and chaotic windows all pile up on the ultimate
parameter value λ?

? = 4. And then, when λ > 4, all the iterates go off to ∞, and the
system ceases to be interesting.

The reader is encouraged to write a simple computer program and perform some
numerical experiments. In particular, Figure 2.7 shows the asymptotic behavior of the
iterates for values of the parameter in the interesting range 2 < λ < 4. The horizontal
axis is λ, and the marked points show the ultimate fate of the iteration for the given
value of λ. For instance, each point the single curve lying above the smaller values of
λ represents a stable fixed point; this bifurcates into a pair of curves representing stable
period 2 orbits, which then bifurcates into 4 curves representing period 4 orbits, and so
on. Chaotic behavior is indicated by a somewhat random pattern of points lying above the
value of λ. To plot this figure, we ran the logistic iteration u(n) for 0 ≤ n ≤ 100, discarded
the first 50 points, and then plotted the next 50 iterates u(51), . . . , u(100). Investigation of
the fine detailed structure of the logistic map requires yet more iterations with increased
numerical accuracy. In addition one should discard more of the initial iterates so as to give
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the system enough time to settle down to a stable periodic orbit or, alternatively, continue
in a chaotic manner.

Remark : So far, we have only looked at real scalar iterative systems. Complex discrete
dynamical systems display yet more remarkable and fascinating behavior. The complex
version of the logistic iteration equation leads to the justly famous Julia and Mandelbrot
sets, [33], with their stunning, psychedelic fractal structure, [42].

The rich range of phenomena in evidence, even in such extremely simple nonlinear
iterative systems, is astounding. While intimations first appeared in the late nineteenth
century research of the influential French mathematician Henri Poincaré, serious investiga-
tions were delayed until the advent of the computer era, which precipitated an explosion of
research activity in the area of dynamical systems. Similar period doubling cascades and
chaos are found in a broad range of nonlinear systems, [1], and are often encountered in
physical applications, [35]. A modern explanation of fluid turbulence is that it is a (very
complicated) form of chaos, [1].

Quadratic Convergence

Let us now return to the more mundane case when the iterates converge to a stable
fixed point of the discrete dynamical system. In applications, we use the iterates to compute
a precise† numerical value for the fixed point, and hence the efficiency of the algorithm
depends on the speed of convergence of the iterates.

According to the remark following the proof Theorem 2.6, the convergence rate of an
iterative system is essentially governed by the magnitude of the derivative | g ′(u?) | at the
fixed point. The basic inequality (2.18) for the errors e(k) = u(k) − u?, namely

| e(k+1) | ≤ σ | e(k) |,
is known as a linear convergence estimate. It means that, once the iterates are close to
the fixed point, the error decreases by a factor of (at least) σ ≈ | g′(u?) | at each step. If
the kth iterate u(k) approximates the fixed point u? correctly to m decimal places, so its
error is bounded by

| e(k) | < .5× 10−m,

then the (k + 1)st iterate satisfies the error bound

| e(k+1) | ≤ σ | e(k) | < .5× 10−m σ = .5× 10−m+log
10

σ.

More generally, for any j > 0,

| e(k+j) | ≤ σj | e(k) | < .5× 10−m σj = .5× 10−m+j log
10

σ,

which means that the (k + j)th iterate u(k+j) has at least‡

m− j log10 σ = m + j log10 σ−1

† The degree of precision is to be specified by the user and the application.

‡ Note that since σ < 1, the logarithm log10 σ
−1 = − log10 σ > 0 is positive.

3/15/06 20 c© 2006 Peter J. Olver



correct decimal places. For instance, if σ = .1 then each new iterate produces one new
decimal place of accuracy (at least), while if σ = .9 then it typically takes 22 ≈ −1/ log10 .9
iterates to produce just one additional accurate digit!

This means that there is a huge advantage — particularly in the application of iterative
methods to the numerical solution of equations — to arrange that | g′(u?) | be as small as
possible. The fastest convergence rate of all will occur when g′(u?) = 0. In fact, in such a
happy situation, the rate of convergence is not just slightly, but dramatically faster than
linear.

Theorem 2.10. Suppose that g ∈ C2, and u? = g(u?) is a fixed point such that

g′(u?) = 0. Then, for all iterates u(k) sufficiently close to u?, the errors e(k) = u(k) − u?

satisfy the quadratic convergence estimate

| e(k+1) | ≤ τ | e(k) |2 (2.24)

for some constant τ > 0.

Proof : Just as that of the linear convergence estimate (2.18), the proof relies on
approximating g(u) by a simpler function near the fixed point. For linear convergence, an
affine approximation sufficed, but here we require a higher order approximation. Thus, we
replace the mean value formula (2.16) by the first order Taylor expansion

g(u) = g(u?) + g′(u?) (u− u?) + 1
2 g′′(w) (u− u?)2, (2.25)

where the final error term depends on an (unknown) point w that lies between u and u?.
At a fixed point, the constant term is g(u?) = u?. Furthermore, under our hypothesis
g′(u?) = 0, and so (2.25) reduces to

g(u)− u? = 1
2 g′′(w) (u− u?)2.

Therefore,

| g(u)− u? | ≤ τ |u− u? |2, (2.26)

where τ is chosen so that
1
2 | g

′′(w) | ≤ τ (2.27)

for all w sufficiently close to u?. Therefore, the magnitude of τ is governed by the size
of the second derivative of the iterative function g(u) near the fixed point. We use the
inequality (2.26) to estimate the error

| e(k+1) | = |u(k+1) − u? | = | g(u(k))− g(u?) | ≤ τ |u(k) − u? |2 = τ | e(k) |2,

which establishes the quadratic convergence estimate (2.24). Q.E.D.

Let us see how the quadratic estimate (2.24) speeds up the convergence rate. Following
our earlier argument, suppose u(k) is correct to m decimal places, so

| e(k) | < .5× 10−m.
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Then (2.24) implies that

| e(k+1) | < .5× (10−m)2 τ = .5× 10−2m+log
10

τ ,

and so u(k+1) has 2m − log10 τ accurate decimal places. If τ ≈ | g′′(u?) | is of moderate
size, we have essentially doubled the number of accurate decimal places in just a single
iterate! A second iteration will double the number of accurate digits yet again. Thus,
the convergence of a quadratic iteration scheme is extremely rapid, and, barring round-off
errors, one can produce any desired number of digits of accuracy in a very short time. For
example, if we start with an initial guess that is accurate in the first decimal digit, then a
linear iteration with σ = .1 will require 49 iterations to obtain 50 decimal place accuracy,
whereas a quadratic iteration (with τ = 1) will only require 6 iterations to obtain 26 = 64
decimal places of accuracy!

Example 2.11. Consider the function

g(u) =
2u3 + 3

3u2 + 3
.

There is a unique (real) fixed point u? = g(u?), which is the real solution to the cubic
equation

1
3 u3 + u− 1 = 0.

Note that

g′(u) =
2u4 + 6u2 − 6u

3(u2 + 1)2
=

6u
(

1
3 u3 + u− 1

)

3(u2 + 1)2
,

and hence g′(u?) = 0 vanishes at the fixed point. Theorem 2.10 implies that the iterations
will exhibit quadratic convergence to the root. Indeed, we find, starting with u(0) = 0, the
following values:

k 1 2 3

u(k) 1.00000000000000 .833333333333333 .817850637522769

4 5 6

.817731680821982 .817731673886824 .817731673886824

The convergence rate is dramatic: after only 5 iterations, we have produced the first 15
decimal places of the fixed point. In contrast, the linearly convergent scheme based on
g̃(u) = 1 − 1

3 u3 takes 29 iterations just to produce the first 5 decimal places of the same
solution.

In practice, the appearance of a quadratically convergent fixed point is a matter of
luck. The construction of quadratically convergent iterative methods for solving equations
will be the focus of the following Section.
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Figure 2.8. Graph of u5 + u + 1.

2.2. Numerical Solution of Equations.

Solving nonlinear equations and systems of equations is, of course, a problem of utmost
importance in mathematics and its manifold applications. We begin by studying the scalar
case. Thus, we are given a real-valued function f : R→ R, and seek its roots, i.e., the real
solution(s) to the scalar equation

f(u) = 0. (2.28)

Here are some prototypical examples:

(a) Find the roots of the quintic polynomial equation

u5 + u + 1 = 0. (2.29)

Graphing the left hand side of the equation, as in Figure 2.8, convinces us that there is
just one real root, lying somewhere between −1 and −.5. While there are explicit algebraic
formulas for the roots of quadratic, cubic, and quartic polynomials, a famous theorem† due
to the Norwegian mathematician Nils Henrik Abel in the early 1800’s states that there is
no such formula for generic fifth order polynomial equations.

(b) Any fixed point equation u = g(u) has the form (2.28) where f(u) = u − g(u).
For example, the trigonometric Kepler equation

u− ε sinu = m

arises in the study of planetary motion, cf. Example 2.7. Here ε,m are fixed constants,
and we seek a corresponding solution u.

(c) Suppose we are given chemical compounds A,B,C that react to produce a fourth
compound D according to

2A + B ←→ D, A + 3C ←→ D.

Let a, b, c be the initial concentrations of the reagents A,B,C injected into the reaction
chamber. If u denotes the concentration of D produced by the first reaction, and v that

† A modern proof of this fact relies on Galois theory, [19].
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Figure 2.9. Intermediate Value Theorem.

by the second reaction, then the final equilibrium concentrations

a? = a− 2u− v, b? = b− u, c? = c− 3v, d? = u + v,

of the reagents will be determined by solving the nonlinear system

(a− 2u− v)2(b− u) = α(u + v), (a− 2u− v)(c− 3v)3 = β (u + v), (2.30)

where α, β are the known equilibrium constants of the two reactions.

Our immediate goal is to develop numerical algorithms for solving such nonlinear
scalar equations.

The Bisection Method

The most primitive algorithm, and the only one that is guaranteed to work in all cases,
is the Bisection Method. While it has an iterative flavor, it cannot be properly classed as
a method governed by functional iteration as defined in the preceding section, and so must
be studied directly in its own right.

The starting point is the Intermediate Value Theorem, which we state in simplified
form. See Figure 2.9 for an illustration, and [2] for a proof.

Lemma 2.12. Let f(u) be a continuous scalar function. Suppose we can find two

points a < b where the values of f(a) and f(b) take opposite signs, so either f(a) < 0 and

f(b) > 0, or f(a) > 0 and f(b) < 0. Then there exists at least one point a < u? < b where

f(u?) = 0.

Note that if f(a) = 0 or f(b) = 0, then finding a root is trivial. If f(a) and f(b) have
the same sign, then there may or may not be a root in between. Figure 2.10 plots the
functions u2 + 1, u2 and u2 − 1, on the interval −2 ≤ u ≤ 2. The first has two simple
roots; the second has a single double root, while the third has no root. We also note
that continuity of the function on the entire interval [a, b ] is an essential hypothesis. For
example, the function f(u) = 1/u satisfies f(−1) = −1 and f(1) = 1, but there is no root
to the equation 1/u = 0.
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Figure 2.10. Roots of Quadratic Functions.

Note carefully that the Lemma 2.12 does not say there is a unique root between a
and b. There may be many roots, or even, in pathological examples, infinitely many. All
the theorem guarantees is that, under the stated hypotheses, there is at least one root.

Once we are assured that a root exists, bisection relies on a “divide and conquer”
strategy. The goal is to locate a root a < u? < b between the endpoints. Lacking any
additional evidence, one tactic would be to try the midpoint c = 1

2 (a + b) as a first guess
for the root. If, by some miracle, f(c) = 0, then we are done, since we have found a
solution! Otherwise (and typically) we look at the sign of f(c). There are two possibilities.
If f(a) and f(c) are of opposite signs, then the Intermediate Value Theorem tells us that
there is a root u? lying between a < u? < c. Otherwise, f(c) and f(b) must have opposite
signs, and so there is a root c < u? < b. In either event, we apply the same method to
the interval in which we are assured a root lies, and repeat the procedure. Each iteration
halves the length of the interval, and chooses the half in which a root is sure to lie. (There
may, of course, be a root in the other half interval, but as we cannot be sure, we discard
it from further consideration.) The root we home in on lies trapped in intervals of smaller
and smaller width, and so convergence of the method is guaranteed.

Example 2.13. The roots of the quadratic equation

f(u) = u2 + u− 3 = 0

can be computed exactly by the quadratic formula:

u?
1 =
−1 +

√
13

2
≈ 1.302775 . . . , u?

2 =
−1−

√
13

2
≈ −2.302775 . . . .

Let us see how one might approximate them by applying the Bisection Algorithm. We start
the procedure by choosing the points a = u(0) = 1, b = v(0) = 2, noting that f(1) = −1
and f(2) = 3 have opposite signs and hence we are guaranteed that there is at least one
root between 1 and 2. In the first step we look at the midpoint of the interval [1, 2],
which is 1.5, and evaluate f(1.5) = .75. Since f(1) = −1 and f(1.5) = .75 have opposite
signs, we know that there is a root lying between 1 and 1.5. Thus, we take u(1) = 1 and
v(1) = 1.5 as the endpoints of the next interval, and continue. The next midpoint is at
1.25, where f(1.25) = −.1875 has the opposite sign to f(1.5) = .75, and so a root lies
between u(2) = 1.25 and v(2) = 1.5. The process is then iterated as long as desired — or,
more practically, as long as your computer’s precision does not become an issue.
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k u(k) v(k) w(k) = 1
2 (u(k) + v(k)) f(w(k))

0 1 2 1.5 .75

1 1 1.5 1.25 −.1875

2 1.25 1.5 1.375 .2656

3 1.25 1.375 1.3125 .0352

4 1.25 1.3125 1.2813 −.0771

5 1.2813 1.3125 1.2969 −.0212

6 1.2969 1.3125 1.3047 .0069

7 1.2969 1.3047 1.3008 −.0072

8 1.3008 1.3047 1.3027 −.0002

9 1.3027 1.3047 1.3037 .0034

10 1.3027 1.3037 1.3032 .0016

11 1.3027 1.3032 1.3030 .0007

12 1.3027 1.3030 1.3029 .0003

13 1.3027 1.3029 1.3028 .0001

14 1.3027 1.3028 1.3028 −.0000

The table displays the result of the algorithm, rounded off to four decimal places.
After 14 iterations, the Bisection Method has correctly computed the first four decimal
digits of the positive root u?

1. A similar bisection starting with the interval from u(1) = −3
to v(1) = −2 will produce the negative root.

A formal implementation of the Bisection Algorithm appears in the accompanying
pseudocode program. The endpoints of the kth interval are denoted by u(k) and v(k). The
midpoint is w(k) = 1

2

(
u(k) + v(k)

)
, and the key decision is whether w(k) should be the

right or left hand endpoint of the next interval. The integer n, governing the number of
iterations, is to be prescribed in accordance with how accurately we wish to approximate
the root u?.

The algorithm produces two sequences of approximations u(k) and v(k) that both
converge monotonically to u?, one from below and the other from above:

a = u(0) ≤ u(1) ≤ u(2) ≤ · · · ≤ u(k) −→ u? ←− v(k) ≤ · · · ≤ v(2) ≤ v(1) ≤ v(0) = b.

and u? is trapped between the two. Thus, the root is trapped inside a sequence of intervals
[u(k), v(k) ] of progressively shorter and shorter length. Indeed, the length of each interval
is exactly half that of its predecessor:

v(k) − u(k) = 1
2 (v(k−1) − u(k−1)).

Iterating this formula, we conclude that

v(n) − u(n) =
(

1
2

)n
(v(0) − u(0)) =

(
1
2

)n
(b− a) −→ 0 as n −→ ∞.
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The Bisection Method

start

if f(a) f(b) < 0 set u(0) = a, v(0) = b

else print “Bisection Method not applicable”

for k = 0 to n− 1

set w(k) = 1
2 (u(k) + v(k))

if f(w(k)) = 0, stop; print u? = w(k)

if f(u(k)) f(w(k)) < 0, set u(k+1) = u(k), v(k+1) = w(k)

else set u(k+1) = w(k), v(k+1) = v(k)

next k

print u? = w(n) = 1
2 (u(n) + v(n))

end

The midpoint
w(n) = 1

2 (u(n) + v(n))

lies within a distance

|w(n) − u? | ≤ 1
2 (v(n) − u(n)) =

(
1
2

)n+1
(b− a)

of the root. Consequently, if we desire to approximate the root within a prescribed tolerance
ε, we should choose the number of iterations n so that

(
1
2

)n+1
(b− a) < ε, or n > log2

b− a

ε
− 1 . (2.31)

Summarizing:

Theorem 2.14. If f(u) is a continuous function, with f(a) f(b) < 0, then the

Bisection Method starting with u(0) = a, v(0) = b, will converge to a solution u? to the

equation f(u) = 0 lying between a and b. After n steps, the midpoint w(n) = 1
2 (u(n) + v(n))

will be within a distance of ε = 2−n−1(b− a) from the solution.

For example, in the case of the quadratic equation in Example 2.13, after 14 iterations,
we have approximated the positive root to within

ε =
(

1
2

)15
(2− 1) ≈ 3.052× 10−5,

reconfirming our observation that we have accurately computed its first four decimal places.
If we are in need of 10 decimal places, we set our tolerance to ε = .5 × 10−10, and so,
according to (2.31), must perform n = 34 > 33.22 ≈ log2 2× 1010−1 successive bisections†.

† This assumes we have sufficient precision on the computer to avoid round-off errors.
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Example 2.15. As noted at the beginning of this section, the quintic equation

f(u) = u5 + u + 1 = 0

has one real root, whose value can be readily computed by bisection. We start the algorithm
with the initial points u(0) = −1, v(0) = 0, noting that f(−1) = −1 < 0 while f(0) = 1 > 0
are of opposite signs. In order to compute the root to 6 decimal places, we set ε = .5×10−6

in (2.31), and so need to perform n = 20 > 19.93 ≈ log2 2× 106 − 1 bisections. Indeed,
the algorithm produces the approximation u? ≈ − .754878 to the root, and the displayed
digits are guaranteed to be accurate.

Fixed Point Methods

The Bisection Method has an ironclad guarantee to converge to a root of the function
— provided it can be properly started by locating two points where the function takes
opposite signs. This may be tricky if the function has two very closely spaced roots and
is, say, negative only for a very small interval between them, and may be impossible
for multiple roots, e.g., the root u? = 0 of the quadratic function f(u) = u2. When
applicable, its convergence rate is completely predictable, but not especially fast. Worse,
it has no immediately apparent extension to systems of equations, since there is no obvious
counterpart to the Intermediate Value Theorem for vector-valued functions.

Most other numerical schemes for solving equations rely on some form of fixed point
iteration. Thus, we seek to replace the system of equations f(u) = 0 with a fixed point
system u = g(u), that leads to the iterative solution scheme u(k+1) = g(u(k)). For this to
work, there are two key requirements:

(a) The solution u? to the equation f(u) = 0 is also a fixed point for g(u), and

(b) u? is, in fact a stable fixed point, meaning that the Jacobian g ′(u?) is a convergent
matrix, or, slightly more restrictively, ‖g ′(u?) ‖ < 1 for a prescribed matrix norm.

If both conditions hold, then, provided we choose the initial iterate u(0) = c sufficiently

close to u?, the iterates u(k) → u? will converge to the desired solution. Thus, the key
to the practical use of functional iteration for solving equations is the proper design of an
iterative system — coupled with a reasonably good initial guess for the solution. Before
implementing general procedures, let us discuss a näıve example.

Example 2.16. To solve the cubic equation

f(u) = u3 − u− 1 = 0 (2.32)

we note that f(1) = −1 while f(2) = 5, and so there is a root between 1 and 2. Indeed,
the Bisection Method leads to the approximate value u? ≈ 1.3247 after 17 iterations.

Let us try to find the same root by fixed point iteration. As a first, näıve, guess, we
rewrite the cubic equation in fixed point form

u = u3 − 1 = g̃(u).

Starting with the initial guess u(0) = 1.5, successive approximations to the solution are
found by iterating

u(k+1) = g̃(u(k)) = (u(k))3 − 1, k = 0, 1, 2, . . . .
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However, their values

u(0) = 1.5, u(1) = 2.375, u(2) = 12.396,

u(3) = 1904, u(4) = 6.9024× 109, u(5) = 3.2886× 1029, . . .

rapidly become unbounded, and so fail to converge. This could, in fact, have been predicted
by the convergence criterion in Theorem 2.6. Indeed, g̃ ′(u) = −3u2 and so | g̃ ′(u) | > 3
for all u ≥ 1, including the root u?. This means that u? is an unstable fixed point, and
the iterates cannot converge to it.

On the other hand, we can rewrite the equation (2.32) in the alternative iterative form

u = 3
√

1 + u = g(u).

In this case

0 ≤ g′(u) =
1

3(1 + u)2/3
≤ 1

3
for u > 0.

Thus, the stability condition (2.17) is satisfied, and we anticipate convergence at a rate of
at least 1

3 . (The Bisection Method converges more slowly, at rate 1
2 .) Indeed, the first few

iterates u(k+1) =
3
√

1 + u(k) are

1.5, 1.35721, 1.33086, 1.32588, 1.32494, 1.32476, 1.32473,

and we have converged to the root, correct to four decimal places, in only 6 iterations.

Newton’s Method

Our immediate goal is to design an efficient iterative scheme u(k+1) = g(u(k)) whose
iterates converge rapidly to the solution of the given scalar equation f(u) = 0. As we
learned in Section 2.1, the convergence of the iteration is governed by the magnitude
of its derivative at the fixed point. At the very least, we should impose the stability
criterion | g′(u?) | < 1, and the smaller this quantity can be made, the faster the iterative
scheme converges. if we are able to arrange that g′(u?) = 0, then the iterates will converge
quadratically fast, leading, as noted in the discussion following Theorem 2.10, to a dramatic
improvement in speed and efficiency.

Now, the first condition requires that g(u) = u whenever f(u) = 0. A little thought
will convince you that the iterative function should take the form

g(u) = u− h(u) f(u), (2.33)

where h(u) is a reasonably nice function. If f(u?) = 0, then clearly u? = g(u?), and so u?

is a fixed point. The converse holds provided h(u) 6= 0 is never zero.

For quadratic convergence, the key requirement is that the derivative of g(u) be zero
at the fixed point solutions. We compute

g′(u) = 1− h′(u) f(u)− h(u) f ′(u).

Thus, g′(u?) = 0 at a solution to f(u?) = 0 if and only if

0 = 1− h′(u?) f(u?)− h(u?) f ′(u?) = 1− h(u?) f ′(u?).
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Consequently, we should require that

h(u?) =
1

f ′(u?)
(2.34)

to ensure a quadratically convergent iterative scheme. This assumes that f ′(u?) 6= 0,
which means that u? is a simple root of f . For here on, we leave aside multiple roots,
which require a different approach.

Of course, there are many functions h(u) that satisfy (2.34), since we only need to
specify its value at a single point. The problem is that we do not know u? — after all this
is what we are trying to compute — and so cannot compute the value of the derivative
of f there. However, we can circumvent this apparent difficulty by a simple device: we
impose equation (2.34) at all points, setting

h(u) =
1

f ′(u)
, (2.35)

which certainly guarantees that it holds at the solution u?. The result is the function

g(u) = u − f(u)

f ′(u)
, (2.36)

and the resulting iteration scheme is known as Newton’s Method , which, as the name
suggests, dates back to the founder of the calculus. To this day, Newton’s Method remains
the most important general purpose algorithm for solving equations. It starts with an
initial guess u(0) to be supplied by the user, and then successively computes

u(k+1) = u(k) − f(u(k))

f ′(u(k))
. (2.37)

As long as the initial guess is sufficiently close, the iterates u(k) are guaranteed to converge,
quadratically fast, to the (simple) root u? of the equation f(u) = 0.

Theorem 2.17. Suppose f(u) ∈ C2 is twice continuously differentiable. Let u? be

a solution to the equation f(u?) = 0 such that f ′(u?) 6= 0. Given an initial guess u(0)

sufficiently close to u?, the Newton iteration scheme (2.37) converges at a quadratic rate

to the solution u?.

Proof : By continuity, if f ′(u?) 6= 0, then f ′(u) 6= 0 for all u sufficiently close to u?, and
hence the Newton iterative function (2.36) is well defined and continuously differentiable
near u?. Since g′(u) = f(u) f ′′(u)/f ′(u)2, we have g′(u?) = 0 when f(u?) = 0, as promised
by our construction. The quadratic convergence of the resulting iterative scheme is an
immediate consequence of Theorem 2.10. Q.E.D.

Example 2.18. Consider the cubic equation

f(u) = u3 − u− 1 = 0,

that we already solved in Example 2.16. The function used in the Newton iteration is

g(u) = u− f(u)

f ′(u)
= u− u3 − u− 1

3u2 − 1
,
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Figure 2.11. The function f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 .

which is well-defined as long as u 6= ± 1√
3

. We will try to avoid these singular points. The

iterative procedure

u(k+1) = g(u(k)) = u(k) − (u(k))3 − u(k) − 1

3(u(k))2 − 1

with initial guess u(0) = 1.5 produces the following values:

1.5, 1.34783, 1.32520, 1.32472,

and we have computed the root to 5 decimal places after only three iterations. The
quadratic convergence of Newton’s Method implies that, roughly, each new iterate doubles
the number of correct decimal places. Thus, to compute the root accurately to 40 decimal
places would only require 3 further iterations†. This underscores the tremendous advantage
that the Newton algorithm offers over competing methods.

Example 2.19. Consider the cubic polynomial equation

f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 = 0.

Since

f(0) = − 1
27 , f

(
1
3

)
= 1

54 , f
(

2
3

)
= − 1

27 , f(1) = 1
54 ,

the Intermediate Value Lemma 2.12 guarantees that there are three roots on the interval
[0, 1]: one between 0 and 1

3 , the second between 1
3 and 2

3 , and the third between 2
3 and 1.

The graph in Figure 2.11 reconfirms this observation. Since we are dealing with a cubic
polynomial, there are no other roots. (Why?)

† This assumes we are working in a sufficiently high precision arithmetic so as to avoid round-off
errors.
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It takes sixteen iterations of the Bisection Method starting with the three subintervals[
0 , 1

3

]
,
[

1
3 , 2

3

]
and

[
2
3 , 1

]
, to produce the roots to six decimal places:

u?
1 ≈ .085119, u?

2 ≈ .451805, u?
3 ≈ .963076.

Incidentally, if we start with the interval [0, 1] and apply bisection, we converge (perhaps
surprisingly) to the largest root u?

3 in 17 iterations.

Fixed point iteration based on the formulation

u = g(u) = −u3 + 3
2 u2 + 4

9 u + 1
27

can be used to find the first and third roots, but not the second root. For instance, starting
with u(0) = 0 produces u?

1 to 5 decimal places after 23 iterations, whereas starting with
u(0) = 1 produces u?

3 to 5 decimal places after 14 iterations. The reason we cannot produce
u?

2 is due to the magnitude of the derivative

g′(u) = −3u2 + 3u + 4
9

at the roots, which is

g′(u?
1) ≈ 0.678065, g′(u?

2) ≈ 1.18748, g′(u?
3) ≈ 0.551126.

Thus, u?
1 and u?

3 are stable fixed points, but u?
2 is unstable. However, because g′(u?

1) and
g′(u?

3) are both bigger than .5, this iterative algorithm actually converges slower than
ordinary bisection!

Finally, Newton’s Method is based upon iteration of the rational function

g(u) = u− f(u)

f ′(u)
= u− u3 − 3

2 u2 + 5
9 u− 1

27

3u2 − 3u + 5
9

.

Starting with an initial guess of u(0) = 0, the method computes u?
1 to 6 decimal places

after only 4 iterations; starting with u(0) = .5, it produces u?
2 to similar accuracy after 2

iterations; while starting with u(0) = 1 produces u?
3 after 3 iterations — a dramatic speed

up over the other two methods.

Newton’s Method has a very pretty graphical interpretation, that helps us understand
what is going on and why it converges so fast. Given the equation f(u) = 0, suppose we
know an approximate value u = u(k) for a solution. Nearby u(k), we can approximate the
nonlinear function f(u) by its tangent line

y = f(u(k)) + f ′(u(k))(u− u(k)). (2.38)

As long as the tangent line is not horizontal — which requires f ′(u(k)) 6= 0 — it crosses
the axis at

u(k+1) = u(k) − f(u(k))

f ′(u(k))
,
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Figure 2.12. Newton’s Method.

which represents a new, and, presumably more accurate, approximation to the desired
root. The procedure is illustrated pictorially in Figure 2.12. Note that the passage from
u(k) to u(k+1) is exactly the Newton iteration step (2.37). Thus, Newtonian iteration is
the same as the approximation of function’s root by those of its successive tangent lines.

Given a sufficiently accurate initial guess, Newton’s Method will rapidly produce
highly accurate values for the simple roots to the equation in question. In practice, barring
some kind of special exploitable structure, Newton’s Method is the root-finding algorithm
of choice. The one caveat is that we need to start the process reasonably close to the
root we are seeking. Otherwise, there is no guarantee that a particular set of iterates will
converge, although if they do, the limiting value is necessarily a root of our equation. The
behavior of Newton’s Method as we change parameters and vary the initial guess is very
similar to the simpler logistic map that we studied in Section 2.1, including period dou-
bling bifurcations and chaotic behavior. The reader is invited to experiment with simple
examples; further details can be found in [42].

Example 2.20. For fixed values of the eccentricity ε, Kepler’s equation

u− ε sinu = m (2.39)

can be viewed as a implicit equation defining the eccentric anomaly u as a function of
the mean anomaly m. To solve Kepler’s equation by Newton’s Method, we introduce the
iterative function

g(u) = u − u− ε sin u−m

1− ε cos u
.

Notice that when | ε | < 1, the denominator never vanishes and so the iteration remains
well-defined everywhere. Starting with a sufficiently close initial guess u(0), we are assured
that the method will quickly converge to the solution.

Fixing the eccentricity ε, we can employ tghe method of continuation to determine
how the solution u? = h(m) depends upon the mean anomaly m. Namely, we start at
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Figure 2.13. The Solution to the Kepler Equation for Eccentricity ε = .5.

m = m0 = 0 with the obvious solution u? = h(0) = 0. Then, to compute the solution
at successive closely spaced values 0 < m1 < m2 < m3 < · · · , we use the previously
computed value as an initial guess u(0) = h(mk) for the value of the solution at the next
mesh point mk+1, and run the Newton scheme until it converges to a sufficiently accurate
approximation to the value u? = h(mk+1). As long as mk+1 is reasonably close to mk,
Newton’s Method will converge to the solution quite quickly.

The continuation method will quickly produce the values of u at the sample points.
Intermediate values can either be determined by an interpolation scheme, e.g., a cubic
spline fit of the data, or by running the Newton scheme using the closest known value as
an initial condition. A plot for 0 ≤ m ≤ 1 using the value ε = .5 appears in Figure 2.13.
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