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10. Numerical Solution of

Ordinary Differential Equations

This part is concerned with the numerical solution of initial value problems for systems
of ordinary differential equations. We will introduce the most basic one-step methods,
beginning with the most basic Euler scheme, and working up to the extremely popular
Runge–Kutta fourth order method that can be successfully employed in most situations.
We end with a brief discussion of stiff differential equations, which present a more serious
challenge to numerical analysts.

10.1. First Order Systems of Ordinary Differential Equations.

Let us begin by reviewing the theory of ordinary differential equations. Many physical
applications lead to higher order systems of ordinary differential equations, but there is a
simple reformulation that will convert them into equivalent first order systems. Thus, we
do not lose any generality by restricting our attention to the first order case throughout.
Moreover, numerical solution schemes for higher order initial value problems are entirely
based on their reformulation as first order systems.

First Order Systems

A first order system of ordinary differential equations has the general form

du1

dt
= F1(t, u1, . . . , un), · · · dun

dt
= Fn(t, u1, . . . , un). (10.1)

The unknowns u1(t), . . . , un(t) are scalar functions of the real variable t, which usually
represents time. We shall write the system more compactly in vector form

du

dt
= F(t,u), (10.2)

where u(t) = (u1(t), . . . , un(t) )
T
, and F(t,u) = (F1(t, u1, . . . , un), . . . , Fn(t, u1, . . . , un) )

T

is a vector-valued function of n + 1 variables. By a solution to the differential equation,
we mean a vector-valued function u(t) that is defined and continuously differentiable on
an interval a < t < b, and, moreover, satisfies the differential equation on its interval of
definition. Each solution u(t) serves to parametrize a curve C ⊂ R

n, also known as a
trajectory or orbit of the system.
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In this part, we shall concentrate on initial value problems for such first order systems.
The general initial conditions are

u1(t0) = a1, u2(t0) = a2, · · · un(t0) = an, (10.3)

or, in vectorial form,
u(t0) = a (10.4)

Here t0 is a prescribed initial time, while the vector a = ( a1, a2, . . . , an )
T

fixes the initial
position of the desired solution. In favorable situations, as described below, the initial
conditions serve to uniquely specify a solution to the differential equations — at least for
nearby times. The general issues of existence and uniquenss of solutions will be addressed
in the following section.

A system of differential equations is called autonomous if the right hand side does not
explicitly depend upon the time t, and so takes the form

du

dt
= F(u). (10.5)

One important class of autonomous first order systems are the steady state fluid flows.
Here F(u) = v represents the fluid velocity vector field at the position u. The solution
u(t) to the initial value problem (10.5, 4) describes the motion of a fluid particle that starts
at position a at time t0. The differential equation tells us that the fluid velocity at each
point on the particle’s trajectory matches the prescribed vector field.

An equilibrium solution is constant: u(t) ≡ u⋆ for all t. Thus, its derivative must
vanish, du/dt ≡ 0, and hence, every equilibrium solution arises as a solution to the system
of algebraic equations

F(u⋆) = 0 (10.6)

prescribed by the vanishing of the right hand side of the system (10.5).

Example 10.1. Although a population of people, animals, or bacteria consists of
individuals, the aggregate behavior can often be effectively modeled by a dynamical system
that involves continuously varying variables. As first proposed by the English economist
Thomas Malthus in 1798, the population of a species grows, roughly, in proportion to
its size. Thus, the number of individuals N(t) at time t satisfies a first order differential
equation of the form

dN

dt
= ρN, (10.7)

where the proportionality factor ρ = β − δ measures the rate of growth, namely the
difference between the birth rate β ≥ 0 and the death rate δ ≥ 0. Thus, if births exceed
deaths, ρ > 0, and the population increases, whereas if ρ < 0, more individuals are dying
and the population shrinks.

In the very simplest model, the growth rate ρ is assumed to be independent of the
population size, and (10.7) reduces to the simple linear ordinary differential equation. The
solutions satisfy the Malthusian exponential growth law N(t) = N0 eρt, where N0 = N(0)
is the initial population size. Thus, if ρ > 0, the population grows without limit, while if
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ρ < 0, the population dies out, so N(t) → 0 as t → ∞, at an exponentially fast rate. The
Malthusian population model provides a reasonably accurate description of the behavior
of an isolated population in an environment with unlimited resources.

In a more realistic scenario, the growth rate will depend upon the size of the population
as well as external environmental factors. For example, in the presence of limited resources,
relatively small populations will increase, whereas an excessively large population will have
insufficient resources to survive, and so its growth rate will be negative. In other words,
the growth rate ρ(N) > 0 when N < N⋆, while ρ(N) < 0 when N > N⋆, where the
carrying capacity N⋆ > 0 depends upon the resource availability. The simplest class of
functions that satifies these two inequalities are of the form ρ(N) = λ(N⋆ − N), where
λ > 0 is a positive constant. This leads us to the nonlinear population model

dN

dt
= λN (N⋆ − N). (10.8)

In deriving this model, we assumed that the environment is not changing over time; a
dynamical environment would require a more complicated non-autonomous differential
equation.

Before analyzing the solutions to the nonlinear population model, let us make a pre-
liminary change of variables, and set u(t) = N(t)/N⋆, so that u represents the size of
the population in proportion to the carrying capacity N⋆. A straightforward computation
shows that u(t) satisfies the so-called logistic differential equation

du

dt
= λu(1 − u), u(0) = u0, (10.9)

where we assign the initial time to be t0 = 0 for simplicity. The logistic differential equation
can be viewed as the continuous counterpart of the logistic map (2.22). However, unlike
its discrete namesake, the logistic differential equation is quite sedate, and its solutions
easily understood.

First, there are two equilibrium solutions: u(t) ≡ 0 and u(t) ≡ 1, obtained by setting
the right hand side of the equation equal to zero. The first represents a nonexistent
population with no individuals and hence no reproduction. The second equilibrium solution
corresponds to a static population N(t) ≡ N⋆ that is at the ideal size for the environment,
so deaths exactly balance births. In all other situations, the population size will vary over
time.

To integrate the logistic differential equation, we proceed as above, first writing it in
the separated form

du

u(1 − u)
= λ dt.

Integrating both sides, and using partial fractions,

λt + k =

∫
du

u(1 − u)
=

∫ [
1

u
+

1

1 − u

]
du = log

∣∣∣∣
u

1 − u

∣∣∣∣ ,

where k is a constant of integration. Therefore

u

1 − u
= ceλt, where c = ±ek.
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Figure 10.1. Solutions to u′ = u(1 − u).

Solving for u, we deduce the solution

u(t) =
ceλt

1 + ceλt
. (10.10)

The constant of integration is fixed by the initial condition. Solving the algebraic equation

u0 = u(0) =
c

1 + c
yields c =

u0

1 − u0

.

Substituting the result back into the solution formula (10.10) and simplifying, we find

u(t) =
u0 eλt

1 − u0 + u0 eλt
. (10.11)

The resulting solutions are illustrated in Figure 10.1. Interestingly, while the equilibrium
solutions are not covered by the integration method, they reappear in the final solution
formula, corresponding to initial data u0 = 0 and u0 = 1 respectively. However, this is a
lucky accident, and cannot be anticipated in more complicated situations.

When using the logistic equation to model population dynamics, the initial data is
assumed to be positive, u0 > 0. As time t → ∞, the solution (10.11) tends to the
equilibrium value u(t) → 1 — which corresponds to N(t) → N⋆ approaching the carrying
capacity in the original population model. For small initial values u0 ≪ 1 the solution
initially grows at an exponential rate λ, corresponding to a population with unlimited
resources. However, as the population increases, the gradual lack of resources tends to
slow down the growth rate, and eventually the population saturates at the equilibrium
value. On the other hand, if u0 > 1, the population is too large to be sustained by the
available resources, and so dies off until it reaches the same saturation value. If u0 = 0,
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then the solution remains at equilibrium u(t) ≡ 0. Finally, when u0 < 0, the solution only
exists for a finite amount of time, with

u(t) −→ −∞ as t −→ t⋆ =
1

λ
log

(
1 − 1

u0

)
.

Of course, this final case does appear in the physical world, since we cannot have a negative
population!

Example 10.2. A predator-prey system is a simplified ecological model of two
species: the predators which feed on the prey. For example, the predators might be
lions roaming the Serengeti and the prey zebra. We let u(t) represent the number of prey,
and v(t) the number of predators at time t. Both species obey a population growth model
of the form (10.7), and so the dynamical equations can be written as

du

dt
= ρu,

dv

dt
= σv,

where the growth rates ρ, σ may depend upon the other species. The more prey, i.e., the
larger u is, the faster the predators reproduce, while a lack of prey will cause them to die
off. On the other hand, the more predators, the faster the prey are consumed and the
slower their net rate of growth.

If we assume that the environment has unlimited resources for the prey, which, bar-
ring drought, is probably valid in the case of the zebras, then the simplest model that
incorporates these assumptions is the Lotka–Volterra system

du

dt
= αu − δuv,

dv

dt
= −β v + γ uv, (10.12)

corresponding to growth rates ρ = α − δ v, σ = −β + γ u. The parameters α, β, γ, δ >
0 are all positive, and their precise values will depend upon the species involved and
how they interact, as indicated by field data, combined with, perhaps, educated guesses.
In particular, α represents the unrestrained growth rate of the prey in the absence of
predators, while −β represents the rate that the predators die off in the absence of their
prey. The nonlinear terms model the interaction of the two species: the rate of increase
in the predators is proportional to the number of available prey, while the rate of decrese
in the prey is proportional to the number of predators. The initial conditions u(t0) = u0,
v(t0) = v0 represent the initial populations of the two species.

We will discuss the integration of the Lotka–Volterra system (10.12) below. Here, let
us content ourselves with determining the possible equilibria. Setting the right hand sides
of the system to zero leads to the nonlinear algebraic system

0 = αu − δuv = u(α − δ v), 0 = −β v + γ uv = v(−β + γ u).

Thus, there are two distinct equilibria, namely

u⋆
1 = v⋆

1 = 0, u⋆
2 = β/γ, v⋆

2 = α/δ.

The first is the uninteresting (or, rather catastropic) situation where there are no animals —
no predators and no prey. The second is a nontrivial solution in which both populations
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maintain a steady value, for which the birth rate of the prey is precisely sufficient to
continuously feed the predators. Is this a feasible solution? Or, to state the question more
mathematically, is this a stable equilibrium? We shall develop the tools to answer this
question below.

Higher Order Systems

A wide variety of physical systems are modeled by nonlinear systems of differential
equations depending upon second and, occasionally, even higher order derivatives of the
unknowns. But there is an easy device that will reduce any higher order ordinary differ-
ential equation or system to an equivalent first order system. “Equivalent” means that
each solution to the first order system uniquely corresponds to a solution to the higher
order equation and vice versa. The upshot is that, for all practical purposes, one only
needs to analyze first order systems. Moreover, the vast majority of numerical solution
algorithms are designed for first order systems, and so to numerically integrate a higher
order equation, one must place it into an equivalent first order form.

We have already encountered the main idea in our discussion of the phase plane
approach to second order scalar equations

d2u

dt2
= F

(
t, u,

du

dt

)
. (10.13)

We introduce a new dependent variable v =
du

dt
. Since

dv

dt
=

d2u

dt2
, the functions u, v satisfy

the equivalent first order system

du

dt
= v,

dv

dt
= F (t, u, v). (10.14)

Conversely, it is easy to check that if u(t) = (u(t), v(t) )
T

is any solution to the first
order system, then its first component u(t) defines a solution to the scalar equation, which
establishes their equivalence. The basic initial conditions u(t0) = u0, v(t0) = v0, for the
first order system translate into a pair of initial conditions u(t0) = u0,

�

u(t0) = v0, specifying
the value of the solution and its first order derivative for the second order equation.

Similarly, given a third order equation

d3u

dt3
= F

(
t, u,

du

dt
,
d2u

dt2

)
,

we set

v =
du

dt
, w =

dv

dt
=

d2u

dt2
.

The variables u, v, w satisfy the equivalent first order system

du

dt
= v,

dv

dt
= w,

dw

dt
= F (t, u, v, w).

The general technique should now be clear.
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Example 10.3. The forced van der Pol equation

d2u

dt2
+ (u2 − 1)

du

dt
+ u = f(t) (10.15)

arises in the modeling of an electrical circuit with a triode whose resistance changes with
the current. It also arises in certain chemical reactions and wind-induced motions of
structures. To convert the van der Pol equation into an equivalent first order system, we
set v = du/dt, whence

du

dt
= v,

dv

dt
= f(t) − (u2 − 1)v − u, (10.16)

is the equivalent phase plane system.

Example 10.4. The Newtonian equations for a mass m moving in a potential force
field are a second order system of the form

m
d2u

dt2
= −∇F (u)

in which u(t) = (u(t), v(t), w(t) )
T

represents the position of the mass and F (u) =
F (u, v, w) the potential function. In components,

m
d2u

dt2
= − ∂F

∂u
, m

d2v

dt2
= − ∂F

∂v
, m

d2w

dt2
= − ∂F

∂w
. (10.17)

For example, a planet moving in the sun’s gravitational field satisfies the Newtonian system
for the gravitational potential

F (u) = − α

‖u ‖ = − α√
u2 + v2 + w2

, (10.18)

where α depends on the masses and the universal gravitational constant. (This simplified
model ignores all interplanetary forces.) Thus, the mass’ motion in such a gravitational
force field follows the solution to the second order Newtonian system

m
d2u

dt2
= −∇F (u) = − αu

‖u ‖3
=

α

(u2 + v2 + w2)3/2




u
v
w


.

The same system of ordinary differential equations describes the motion of a charged
particle in a Coulomb electric force field, where the sign of α is positive for attracting
opposite charges, and negative for repelling like charges.

To convert the second order Newton equations into a first order system, we set v =
�

u

to be the mass’ velocity vector, with components

p =
du

dt
, q =

dv

dt
, r =

dw

dt
,
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and so

du

dt
= p,

dv

dt
= q,

dw

dt
= r, (10.19)

dp

dt
= − 1

m

∂F

∂u
(u, v, w),

dq

dt
= − 1

m

∂F

∂v
(u, v, w),

dr

dt
= − 1

m

∂F

∂w
(u, v, w).

One of Newton’s greatest acheivements was to solve this system in the case of the cen-
tral gravitational potential (10.18), and thereby confirm the validity of Kepler’s laws of
planetary motion.

10.2. Existence, Uniqueness, and Continuous Dependence.

It goes without saying that there is no general analytical method that will solve all
differential equations. Indeed, even relatively simple first order, scalar, non-autonomous
ordinary differential equations cannot be solved in closed form. For example, the solution
to the particular Riccati equation

du

dt
= u2 + t (10.20)

cannot be written in terms of elementary functions, although there is a solution formula
that relies on Airy functions. The Abel equation

du

dt
= u3 + t (10.21)

fares even worse, since its general solution cannot be written in terms of even standard
special functions — although power series solutions can be tediously ground out term
by term. Understanding when a given differential equation can be solved in terms of
elementary functions or known special functions is an active area of contemporary research,
[6]. In this vein, we cannot resist mentioning that the most important class of exact
solution techniques for differential equations are those based on symmetry. An introduction
can be found in the author’s graduate level monograph [37]; see also [8, 26].

Existence

Before worrying about how to solve a differential equation, either analytically, qual-
itatively, or numerically, it behooves us to try to resolve the core mathematical issues of
existence and uniqueness. First, does a solution exist? If, not, it makes no sense trying to
find one. Second, is the solution uniquely determined? Otherwise, the differential equation
probably has scant relevance for physical applications since we cannot use it as a predictive
tool. Since differential equations inevitably have lots of solutions, the only way in which
we can deduce uniqueness is by imposing suitable initial (or boundary) conditions.

Unlike partial differential equations, which must be treated on a case-by-case basis,
there are complete general answers to both the existence and uniqueness questions for
initial value problems for systems of ordinary differential equations. (Boundary value
problems are more subtle.) While obviously important, we will not take the time to
present the proofs of these fundamental results, which can be found in most advanced
textbooks on the subject, including [4, 22, 25, 27].

Let us begin by stating the Fundamental Existence Theorem for initial value problems
associated with first order systems of ordinary differential equations.
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Figure 10.2. Solutions to
�

u = u2.

Theorem 10.5. Let F(t,u) be a continuous function. Then the initial value prob-
lem†

du

dt
= F(t,u), u(t0) = a, (10.22)

admits a solution u = f(t) that is, at least, defined for nearby times, i.e., when | t − t0 | < δ
for some δ > 0.

Theorem 10.5 guarantees that the solution to the initial value problem exists — at
least for times sufficiently close to the initial instant t0. This may be the most that can be
said, although in many cases the maximal interval α < t < β of existence of the solution
might be much larger — possibly infinite, −∞ < t < ∞, resulting in a global solution.
The interval of existence of a solution typically depends upon both the equation and the
particular initial data.

Example 10.6. Consider the autonomous initial value problem

du

dt
= u2, u(t0) = u0. (10.23)

To solve the differential equation, we rewrite it in the separated form

du

u2
= dt, and then integrate both sides: − 1

u
=

∫
du

u2
= t + k.

† If F(t,u) is only defined on a subdomain Ω ⊂ R
n+1, then we must assume that the point

(t0, a) ∈ Ω specifying the initial conditions belongs to its domain of definition.
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Solving the resulting algebraic equation for u, we deduce the solution formula

u = − 1

t + k
. (10.24)

To specify the integration constant k, we evaluate u at the initial time t0; this implies

u0 = − 1

t0 + k
, so that k = − 1

u0

− t0.

Therefore, the solution to the initial value problem is

u =
u0

1 − u0(t − t0)
. (10.25)

Figure 10.2 shows the graphs of some typical solutions.

As t approaches the critical value t⋆ = t0 +1/u0 from below, the solution “blows up”,
meaning u(t) → ∞ as t → t⋆. The blow-up time t⋆ depends upon the initial data — the
larger u0 > 0 is, the sooner the solution goes off to infinity. If the initial data is negative,
u0 < 0, the solution is well-defined for all t > t0, but has a singularity in the past, at
t⋆ = t0 + 1/u0 < t0. The only solution that exists for all positive and negative time is the
constant solution u(t) ≡ 0, corresponding to the initial condition u0 = 0.

Thus, even though its right hand side is defined everywhere, the solutions to the scalar
initial value problem (10.23) only exist up until time 1/u0, and so, the larger the initial
data, the shorter the time of existence. In this example, the only global solution is the
equilibrium solution u(t) ≡ 0. It is worth noting that this short-term existence phenomenon
does not appear in the linear regime, where, barring singularities in the equation itself,
solutions to a linear ordinary differential equation are guaranteed to exist for all time.

In practice, one always extends a solutions to its maximal interval of existence. The
Existence Theorem 10.5 implies that there are only two possible ways in whcih a solution
cannot be extended beyond a time t⋆: Either

(i) the solution becomes unbounded: ‖u(t) ‖ → ∞ as t → t⋆, or

(ii) if the right hand side F (t,u) is only defined on a subset Ω ⊂ R
n+1, then the solution

u(t) reaches the boundary ∂Ω as t → t⋆.

If neither occurs in finite time, then the solution is necessarily global. In other words, a
solution to an ordinary differential equation cannot suddenly vanish into thin air.

Remark : The existence theorem can be readily adapted to any higher order system
of ordinary differential equations through the method of converting it into an equivalent
first order system by introducing additional variables. The appropriate initial conditions
guaranteeing existence are induced from those of the corresponding first order system, as
in the second order example (10.13) discussed above.

Uniqueness and Smoothness

As important as existence is the question of uniqueness. Does the initial value problem
have more than one solution? If so, then we cannot use the differential equation to predict
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Figure 10.3. Solutions to the Differential Equation
�

u = 5
3 u2/5.

the future behavior of the system from its current state. While continuity of the right
hand side of the differential equation will guarantee that a solution exists, it is not quite
sufficient to ensure uniqueness of the solution to the initial value problem. The difficulty
can be appreciated by looking at an elementary example.

Example 10.7. Consider the nonlinear initial value problem

du

dt
=

5

3
u2/5, u(0) = 0. (10.26)

Since the right hand side is a continuous function, Theorem 10.5 assures us of the existence
of a solution — at least for t close to 0. This autonomous scalar equation can be easily
solved by the usual method:

∫
3

5

du

u2/5
= u3/5 = t + c, and so u = (t + c)5/3.

Substituting into the initial condition implies that c = 0, and hence u(t) = t5/3 is a solution
to the initial value problem.

On the other hand, since the right hand side of the differential equation vanishes at
u = 0, the constant function u(t) ≡ 0 is an equilibrium solution to the differential equation.
(Here is an example where the integration method fails to recover the equilibrium solution.)
Moreover, the equilibrium solution has the same initial value u(0) = 0. Therefore, we have
constructed two different solutions to the initial value problem (10.26). Uniqueness is not

valid! Worse yet, there are, in fact, an infinite number of solutions to the initial value
problem. For any a > 0, the function

u(t) =

{
0, 0 ≤ t ≤ a,

(t − a)5/3, t ≥ a,
(10.27)

is differentiable everywhere, even at t = a. (Why?) Moreover, it satisfies both the differ-
ential equation and the initial condition, and hence defines a solution to the initial value
problem. Several of these solutions are plotted in Figure 10.3.
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Thus, to ensure uniqueness of solutions, we need to impose a more stringent condition,
beyond mere continuity. The proof of the following basic uniqueness theorem can be found
in the above references.

Theorem 10.8. If F(t,u) ∈ C1 is continuously differentiable, then there exists one
and only one solution† to the initial value problem (10.22).

Thus, the difficulty with the differential equation (10.26) is that the function F (u) =
5
3 u2/5, although continuous everywhere, is not differentiable at u = 0, and hence the
Uniqueness Theorem 10.8 does not apply. On the other hand, F (u) is continuously differ-
entiable away from u = 0, and so any nonzero initial condition u(t0) = u0 6= 0 will produce
a unique solution — for as long as it remains away from the problematic value u = 0.

Blanket Hypothesis: From now on, all differential equations must satisfy the unique-
ness criterion that their right hand side is continuously differentiable.

While continuous differentiability is sufficient to guarantee uniqueness of solutions,
the smoother the right hand side of the system, the smoother the solutions. Specifically:

Theorem 10.9. If F ∈ Cn for n ≥ 1, then any solution to the system
�

u = F(t,u) is
of class u ∈ Cn+1. If F(t,u) is an analytic function, then all solutions u(t) are analytic.

One important consequence of uniqueness is that the solution trajectories of an au-
tonomous system do not vary over time.

Proposition 10.10. Consider an autonomous system
�

u = F(u) whose right hand
side F ∈ C1. If u(t) is the solution to with initial condition u(t0) = u0, then the solution
to the initial value problem ũ(t1) = u0 is ũ(t) = u(t − t1 + t0).

Note that the two solutions u(t) and ũ(t) parametrize the same curve in R
n, differing

only by an overall “phase shift”, t1 − t0, in their parametrizations. Thus, all solutions
passing through the point u0 follow the same trajectory, irrespective of the time they
arrive there. Indeed, not only is the trajectory the same, but the solutions have identical
speeds at each point along the trajectory curve. For instance, if the right hand side of
the system represents the velocity vector field of steady state fluid flow, Proposition 10.10
implies that the stream lines — the paths followed by the individual fluid particles — do
not change in time, even though the fluid itself is in motion. This, indeed, is the meaning
of the term “steady state” in fluid mechanics.

Continuous Dependence

In a real-world applications, initial conditions are almost never known exactly. Rather,
experimental and physical errors will only allow us to say that their values are approxi-
mately equal to those in our mathematical model. Thus, to retain physical relevance, we
need to be sure that small errors in our initial measurements do not induce a large change
in the solution. A similar argument can be made for any physical parameters, e.g., masses,

† As noted earlier, we extend all solutions to their maximal interval of existence.
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charges, spring stiffnesses, frictional coefficients, etc., that appear in the differential equa-
tion itself. A slight change in the parameters should not have a dramatic effect on the
solution.

Mathematically, what we are after is a criterion of continuous dependence of solutions
upon both initial data and parameters. Fortunately, the desired result holds without any
additional assumptions, beyond requiring that the parameters appear continuously in the
differential equation. We state both results in a single theorem.

Theorem 10.11. Consider an initial value problem problem

du

dt
= F(t,u,µ), u(t0) = a(µ), (10.28)

in which the differential equation and/or the initial conditions depend continuously on
one or more parameters µ = (µ1, . . . , µk). Then the unique† solution u(t,µ) depends
continuously upon the parameters.

Example 10.12. Let us look at a perturbed version

du

dt
= α u2, u(0) = u0 + ε,

of the initial value problem that we considered in Example 10.6. We regard ε as a small
perturbation of our original initial data u0, and α as a variable parameter in the equation.
The solution is

u(t, ε) =
u0 + ε

1 − α(u0 + ε) t
. (10.29)

Note that, where defined, this is a continuous function of both parameters α, ε. Thus, a
small change in the initial data, or in the equation, produces a small change in the solution
— at least for times near the initial time.

Continuous dependence does not preclude nearby solutions from eventually becoming
far apart. Indeed, the blow-up time t⋆ = 1/

[
α(u0 + ε)

]
for the solution (10.29) depends

upon both the initial data and the parameter in the equation. Thus, as we approach the
singularity, solutions that started out very close to each other will get arbitrarily far apart;
see Figure 10.2 for an illustration.

An even simpler example is the linear model of exponential growth
�

u = αu when
α > 0. A very tiny change in the initial conditions has a negligible short term effect upon
the solution, but over longer time intervals, the differences between the two solutions will
be dramatic. Thus, the “sensitive dependence” of solutions on initial conditions already
appears in very simple linear equations. For similar reasons, sontinuous dependence does
not prevent solutions from exhibiting chaotic behavior. Further development of these ideas
can be found in [1, 14] and elsewhere.

† We continue to impose our blanket uniqueness hypothesis.
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10.3. Numerical Methods.

Since we have no hope of solving the vast majority of differential equations in explicit,
analytic form, the design of suitable numerical algorithms for accurately approximating
solutions is essential. The ubiquity of differential equations throughout mathematics and
its applications has driven the tremendous research effort devoted to numerical solution
schemes, some dating back to the beginnings of the calculus. Nowadays, one has the
luxury of choosing from a wide range of excellent software packages that provide reliable
and accurate results for a broad range of systems, at least for solutions over moderately
long time periods. However, all of these packages, and the underlying methods, have their
limitations, and it is essential that one be able to to recognize when the software is working
as advertised, and when it produces spurious results! Here is where the theory, particularly
the classification of equilibria and their stability properties, as well as first integrals and
Lyapunov functions, can play an essential role. Explicit solutions, when known, can also
be used as test cases for tracking the reliability and accuracy of a chosen numerical scheme.

In this section, we survey the most basic numerical methods for solving initial value
problems. For brevity, we shall only consider so-called single step schemes, culminating in
the very popular and versatile fourth order Runge–Kutta Method. This should only serve
as a extremely basic introduction to the subject, and many other important and useful
methods can be found in more specialized texts, [21, 28]. It goes without saying that some
equations are more difficult to accurately approximate than others, and a variety of more
specialized techniques are employed when confronted with a recalcitrant system. But all
of the more advanced developments build on the basic schemes and ideas laid out in this
section.

Euler’s Method

The key issues confronting the numerical analyst of ordinary differential equations
already appear in the simplest first order ordinary differential equation. Our goal is to
calculate a decent approxiomation to the (unique) solution to the initial value problem

du

dt
= F (t, u), u(t0) = u0. (10.30)

To keep matters simple, we will focus our attention on the scalar case; however, all formulas
and results written in a manner that can be readily adapted to first order systems — just
replace the scalar functions u(t) and F (t, u) by vector-valued functions u and F(t,u)
throughout. (The time t, of course, remains a scalar.) Higher order ordinary differential
equations are inevitably handled by first converting them into an equivalent first order
system, as discussed in Section 10.1, and then applying the numerical scheme.

The very simplest numerical solution method is named after Leonhard Euler — al-
though Newton and his contemporaries were well aware of such a simple technique. Euler’s
Method is rarely used in practice because much more efficient and accurate techniques can
be implemented with minimal additional work. Nevertheless, the method lies at the core
of the entire subject, and must be thoroughly understood before progressing on to the
more sophisticated algorithms that arise in real-world computations.
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Starting at the initial time t0, we introduce successive mesh points (or sample times)

t0 < t1 < t2 < t3 < · · · ,

continuing on until we reach a desired final time tn = t⋆. The mesh points should be fairly
closely spaced. To keep the analysis as simple as possible, we will always use a uniform
step size, and so

h = tk+1 − tk > 0, (10.31)

does not depend on k and is assumed to be relatively small. This assumption serves to
simplify the analysis, and does not significantly affect the underlying ideas. For a uniform
step size, the kth mesh point is at tk = t0 + k h. More sophisticated adaptive methods, in
which the step size is adjusted in order to maintain accuracy of the numerical solution, can
be found in more specialized texts, e.g., [21, 28]. Our numerical algorithm will recursively
compute approximations uk ≈ u(tk), for k = 0, 1, 2, 3, . . . , to the sampled values of the
solution u(t) at the chosen mesh points. Our goal is to make the error Ek = uk − u(tk)
in the approximation at each time tk as small as possible. If required, the values of
the solution u(t) between mesh points may be computed by a subsequent interpolation
procedure, e.g., the cubic splines of Section 13.3.

As you learned in first year calculus, the simplest approximation to a (continuously
differentiable) function u(t) is provided by its tangent line or first order Taylor polynomial.
Thus, near the mesh point tk

u(t) ≈ u(tk) + (t − tk)
du

dt
(tk) = u(tk) + (t − tk) F (tk, u(tk)),

in which we replace the derivative du/dt of the solution by the right hand side of the
governing differential equation (10.30). In particular, the approximate value of the solution
at the subsequent mesh point is

u(tk+1) ≈ u(tk) + (tk+1 − tk) F (tk, u(tk)). (10.32)

This simple idea forms the basis of Euler’s Method.

Since in practice we only know the approximation uk to the value of u(tk) at the
current mesh point, we are forced to replace u(tk) by its approximation uk in the preceding
formula. We thereby convert (10.32) into the iterative scheme

uk+1 = uk + (tk+1 − tk) F (tk, uk). (10.33)

In particular, when based on a uniform step size (10.31), Euler’s Method takes the simple
form

uk+1 = uk + hF (tk, uk). (10.34)

As sketched in Figure 10.4, the method starts off approximating the solution reasonably
well, but gradually loses accuracy as the errors accumulate.

Euler’s Method is the simplest example of a one-step numerical scheme for integrating
an ordinary differential equation. This refers to the fact that the succeeding approximation,
uk+1 ≈ u(tk+1), depends only upon the current value, uk ≈ u(tk), which is one mesh point
or “step” behind.
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Figure 10.4. Euler’s Method.

To begin to understand how Euler’s Method works in practice, let us test it on a
problem we know how to solve, since this will allow us to precisely monitor the resulting
errors in our numerical approximation to the solution.

Example 10.13. The simplest “nontrivial” initial value problem is

du

dt
= u, u(0) = 1,

whose solution is, of course, the exponential function u(t) = et. Since F (t, u) = u, Euler’s
Method (10.34) with a fixed step size h > 0 takes the form

uk+1 = uk + huk = (1 + h) uk.

This is a linear iterative equation, and hence easy to solve:

uk = (1 + h)ku0 = (1 + h)k

is our proposed approximation to the solution u(tk) = etk at the mesh point tk = kh.
Therefore, the Euler scheme to solve the differential equation, we are effectively approxi-
mating the exponential by a power function:

etk = ekh ≈ (1 + h)k

When we use simply t to indicate the mesh time tk = kh, we recover, in the limit, a
well-known calculus formula:

et = lim
h→ 0

(1 + h)t/h = lim
k →∞

(
1 +

t

k

)k

. (10.35)

A reader familiar with the computation of compound interest will recognize this particular
approximation. As the time interval of compounding, h, gets smaller and smaller, the
amount in the savings account approaches an exponential.

How good is the resulting approximation? The error

E(tk) = Ek = uk − etk
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measures the difference between the true solution and its numerical approximation at time
t = tk = kh. Let us tabulate the error at the particular times t = 1, 2 and 3 for various
values of the step size h. The actual solution values are

e1 = e = 2.718281828 . . . , e2 = 7.389056096 . . . , e3 = 20.085536912 . . . .

In this case, the numerical approximation always underestimates the true solution.

h E(1) E(2) E(3)

.1 − .125 − .662 −2.636

.01 − .0134 − .0730 − .297

.001 − .00135 − .00738 − .0301

.0001 − .000136 − .000739 − .00301

.00001 − .0000136 − .0000739 − .000301

Some key observations:

• For a fixed step size h, the further we go from the initial point t0 = 0, the larger the
magnitude of the error.

• On the other hand, the smaller the step size, the smaller the error at a fixed value of t.
The trade-off is that more steps, and hence more computational effort† is required
to produce the numerical approximation. For instance, we need k = 10 steps of
size h = .1, but k = 1000 steps of size h = .001 to compute an approximation to
u(t) at time t = 1.

• The error is more or less in proportion to the step size. Decreasing the step size by a
factor of 1

10 decreases the error by a similar amount, but simultaneously increases
the amount of computation by a factor of 10.

The final observation indicates that the Euler Method is of first order , which means that
the error depends linearly‡ on the step size h. More specifically, at a fixed time t, the error
is bounded by

|E(t) | = |uk − u(t) | ≤ C(t) h, when t = tk = k h, (10.36)

for some positive C(t) > 0 that depends upon the time, and the initial condition, but not
on the step size.

† In this case, there happens to be an explicit formula for the numerical solution which can be
used to bypass the iterations. However, in almost any other situation, one cannot compute the
approximation uk without having first determined the intermediate values u0, . . . , uk−1.

‡ See the discussion of the order of iterative methods in Section 2.1 for motivation.
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Figure 10.5. Euler’s Method for
�

u =
(
1 − 4

3 t
)
u.

Example 10.14. The solution to the initial value problem

du

dt
=

(
1 − 4

3 t
)
u, u(0) = 1, (10.37)

is found by the method of separation of variables:

u(t) = exp
(
t − 2

3 t2
)
. (10.38)

Euler’s Method leads to the iterative numerical scheme

uk+1 = uk + h
(
1 − 4

3 tk
)
uk, u0 = 1.

In Figure 10.5 we compare the graphs of the actual and numerical solutions for step sizes
h = .1 and .01. In the former plot, we expliticly show the mesh points, but not in the
latter, since they are too dense; moreover, the graphs of the numerical and true solutions
are almost indistinguishable at this resolution.

The following table lists the numerical errors E(tk) = uk−u(tk) between the computed
and actual solution values

u(1) = 1.395612425 . . . , u(2) = .513417119 . . . , u(3) = .049787068 . . . ,

for several different step sizes:

h E(1) E(2) E(3)

.1000 .07461761 .03357536 − .00845267

.0100 .00749258 .00324416 − .00075619

.0010 .00074947 .00032338 − .00007477

.0001 .00007495 .00003233 − .00000747
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As in the previous example, each decrease in step size by a factor of 10 leads to one
additional decimal digit of accuracy in the computed solution.

Taylor Methods

In general, the order of a numerical solution method governs both the accuracy of its
approximations and the speed at which they converge to the true solution as the step size
is decreased. Although the Euler Method is simple and easy to implement, it is only a
first order scheme, and therefore of limited utility in serious computations. So, the goal is
to devise simple numerical methods that enjoy a much higher order of accuracy.

Our derivation of the Euler Method was based on a first order Taylor approximation
to the solution. So, an evident way to design a higher order method is to employ a higher
order Taylor approximation. The Taylor series expansion for the solution u(t) at the
succeeding mesh point tk+1 = tk + h has the form

u(tk+1) = u(tk + h) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) +

h3

6

d3u

dt3
(tk) + · · · . (10.39)

As we just saw, we can evaluate the first derivative term through use of the underlying
differential equation:

du

dt
= F (t, u). (10.40)

The second derivative term can be found by differentiating the equation with respect to t.
Invoking the chain rule†,

d2u

dt2
=

d

dt

du

dt
=

d

dt
F (t, u(t)) =

∂F

∂t
(t, u) +

∂F

∂u
(t, u)

du

dt

=
∂F

∂t
(t, u) +

∂F

∂u
(t, u) F (t, u) ≡ F (2)(t, u).

(10.41)

This operation is known as the total derivative, indicating that that we must treat the
second variable u as a function of t when differentiating. Substituting (10.40–41) into
(10.39) and truncating at order h2 leads to the Second Order Taylor Method

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk)

= uk + hF (tk, uk) +
h2

2

(
∂F

∂t
(tk, uk) +

∂F

∂u
(tk, uk) F (tk, uk)

)
,

(10.42)

in which, as before, we replace the solution value u(tk) by its computed approximation
uk. The resulting method is of second order, meaning that the error function satisfies the
quadratic error estimate

|E(t) | = |uk − u(t) | ≤ C(t) h2 when t = tk = k h. (10.43)

† We assume throughout that F has as many continuous derivatives as needed.
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Example 10.15. Let us explicitly formulate the second order Taylor Method for the
initial value problem (10.37). Here

du

dt
= F (t, u) =

(
1 − 4

3 t
)
u,

d2u

dt2
=

d

dt
F (t, u) = − 4

3 u +
(
1 − 4

3 t
) du

dt
= − 4

3 u +
(
1 − 4

3 t
)2

u,

and so (10.42) becomes

uk+1 = uk + h
(
1 − 4

3 tk
)
uk + 1

2 h2
[
− 4

3 uk +
(
1 − 4

3 tk
)2

uk

]
, u0 = 1.

The following table lists the errors between the values computed by the second order Taylor
scheme and the actual solution values, as given in Example 10.14.

h E(1) E(2) E(3)

.100 .00276995 −.00133328 .00027753

.010 .00002680 −.00001216 .00000252

.001 .00000027 −.00000012 .00000002

In accordance with the quadratic error estimate (10.43), a decrease in the step size
by a factor of 1

10 leads in an increase in accuracy of the solution by a factor 1
100 , i.e., an

increase in 2 significant decimal places in the numerical approximation of the solution.

Higher order Taylor Methods can be readily established by including further terms in
the expansion (10.39). However, they are rarely used in practice, for two reasons:

• Owing to their dependence upon the partial derivatives of F (t, u), the right hand side
of the differential equation needs to be rather smooth.

• Even worse, the explicit formulae become exceedingly complicated, even for relatively
simple functions F (t, u). Efficient evaluation of the multiplicity of terms in the Taylor
approximation and avoidance of round off errors become significant concerns.

As a result, mathematicians soon abandoned the Taylor series approach, and began to look
elsewhere for high order, efficient integration methods.

Error Analysis

Before pressing on, we need to engage in a more serious discussion of the error in a
numerical scheme. A general one-step numerical method can be written in the form

uk+1 = G(h, tk, uk), (10.44)

where G is a prescribed function of the current approximate solution value uk ≈ u(tk), the
time tk, and the step size h = tk+1 − tk, which, for illustrative purposes, we assume to be
fixed. (We leave the discussion of multi-step methods, in which G could also depend upon
the earlier values uk−1, uk−2, . . . , to more advanced texts, e.g., [21, 28].)
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In any numerical integration scheme there are, in general, three sources of error.

• The first is the local error committed in the current step of the algorithm. Even if we
have managed to compute a completely accurate value of the solution uk = u(tk) at
time tk, the numerical approximation scheme (10.44) is almost certainly not exact,
and will therefore introduce an error into the next computed value uk+1 ≈ u(tk+1).
Round-off errors, resulting from the finite precision of the computer arithmetic, will
also contribute to the local error.

• The second is due to the error that is already present in the current approximation uk ≈
u(tk). The local errors tend to accumulate as we continue to run the iteration, and
the net result is the global error , which is what we actually observe when compaing
the numerical apporximation with the exact solution.

• Finally, if the initial condition u0 ≈ u(t0) is not computed accurately, this initial error

will also make a contribution. For example, if u(t0) = π, then we introduce some
initial error by using a decimal approximation, say π ≈ 3.14159.

The third error source will, for simplicity, be ignored in our discussion, i.e., we will assume
u0 = u(t0) is exact. Further, for simplicity we will assume that round-off errors do not
play any significant role — although one must always keep them in mind when analyzing
the computation. Since the global error is entirely due to the accumulation of successive
local errors, we must first understand the local error in detail.

To measure the local error in going from tk to tk+1, we compare the exact solution
value u(tk+1) with its numerical approximation (10.44) under the assumption that the
current computed value is correct: uk = u(tk). Of course, in practice this is never the case,
and so the local error is an artificial quantity. Be that as it may, in most circumstances
the local error is (a) easy to estimate, and, (b) provides a reliable guide to the global
accuracy of the numerical scheme. To estimate the local error, we assume that the step
size h is small and approximate the solution u(t) by its Taylor expansion†

u(tk+1) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) + · · ·

= uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) + · · · .

(10.45)

In the second expression, we have employed (10.41) and its higher order analogs to evaluate
the derivative terms, and then invoked our local accuracy assumption to replace u(tk) by
uk. On the other hand, a direct Taylor expansion, in h, of the numerical scheme produces

uk+1 = G(h, tk, uk) = G(0, tk, uk) + h
∂G

∂h
(0, tk, uk) +

h2

2

∂2G

∂h2
(0, tk, uk) + · · · . (10.46)

The local error is obtained by comparing these two Taylor expansions.

Definition 10.16. A numerical integration method is of order n if the Taylor ex-
pansions (10.45, 46) of the exact and numerical solutions agree up to order hn.

† In our analysis, we assume that the differential equation, and hence the solution, has sufficient
smoothness to justify the relevant Taylor approximation.
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For example, the Euler Method

uk+1 = G(h, tk, uk) = uk + hF (tk, uk),

is already in the form of a Taylor expansion — that has no terms involving h2, h3, . . . .
Comparing with the exact expansion (10.45), we see that the constant and order h terms
are the same, but the order h2 terms differ (unless F (2) ≡ 0). Thus, according to the
definition, the Euler Method is a first order method. Similarly, the Taylor Method (10.42)
is a second order method, because it was explicitly designed to match the constant, h and
h2 terms in the Taylor expansion of the solution. The general Taylor Method of order n
sets G(h, tk, uk) to be exactly the order n Taylor polynomial, differing from the full Taylor
expansion at order hn+1.

Under fairly general hypotheses, it can be proved that, if the numerical scheme has
order n as measured by the local error, then the global error is bounded by a multiple of
hn. In other words, assuming no round-off or initial error, the computed value uk and the
solution at time tk can be bounded by

|uk − u(tk) | ≤ M hn, (10.47)

where the constant M > 0 may depend on the time tk and the particular solution u(t). The
error bound (10.47) serves to justify our numerical observations. For a method of order n,
decreasing the step size by a factor of 1

10 will decrease the overall error by a factor of about
10−n, and so, roughly speaking, we anticipate gaining an additional n digits of accuracy —
at least up until the point that round-off errors begin to play a role. Readers interested in a
more complete error analysis of numerical integration schemes should consult a specialized
text, e.g., [21, 28].

The bottom line is the higher its order, the more accurate the numerical scheme, and
hence the larger the step size that can be used to produce the solution to a desired accuracy.
However, this must be balanced with the fact that higher order methods inevitably require
more computational effort at each step. If the total amount of computation has also
decreased, then the high order method is to be preferred over a simpler, lower order
method. Our goal now is to find another route to the design of higher order methods that
avoids the complications inherent in a direct Taylor expansion.

An Equivalent Integral Equation

The secret to the design of higher order numerical algorithms is to replace the dif-
ferential equation by an equivalent integral equation. By way of motivation, recall that,
in general, differentiation is a badly behaved process; a reasonable function can have an
unreasonable derivative. On the other hand, integration ameliorates; even quite nasty
functions have relatively well-behaved integrals. For the same reason, accurate numerical
integration is relatively painless, whereas numerical differentiation should be avoided un-
less necessary. While we have not dealt directly with integral equations in this text, the
subject has been extensively developed by mathematicians, [10], and has many important
physical applications.

Conversion of an initial value problem (10.30) to an integral equation is straightfor-
ward. We integrate both sides of the differential equation from the initial point t0 to a
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variable time t. The Fundamental Theorem of Calculus is used to explicitly evaluate the
left hand integral:

u(t) − u(t0) =

∫ t

t0

�

u(s) ds =

∫ t

t0

F (s, u(s)) ds.

Rearranging terms, we arrive at the key result.

Lemma 10.17. The solution u(t) to the the integral equation

u(t) = u(t0) +

∫ t

t0

F (s, u(s)) ds (10.48)

coincides with the solution to the initial value problem
du

dt
= F (t, u), u(t0) = u0.

Proof : Our derivation already showed that the solution to the initial value problem
satisfies the integral equation (10.48). Conversely, suppose that u(t) solves the integral
equation. Since u(t0) = u0 is constant, the Fundamental Theorem of Calculus tells us that

the derivative of the right hand side of (10.48) is equal to the integrand, so
du

dt
= F (t, u(t)).

Moreover, at t = t0, the upper and lower limits of the integral coincide, and so it vanishes,
whence u(t) = u(t0) = u0 has the correct initial conditions. Q.E.D.

Observe that, unlike the differential equation, the integral equation (10.48) requires
no additional initial condition — it is automatically built into the equation. The proofs of
the fundamental existence and uniqueness Theorems 10.5 and 10.8 for ordinary differential
equations are, in fact, based on the integral equation reformulation of the initial value
problem; see [22, 25] for details.

The integral equation reformulation is equally valid for systems of first order ordinary
differential equations. As noted above, u(t) and F(t,u(t)) become vector-valued func-
tions. Integrating a vector-valued function is accomplished by integrating its individual
components. Complete details are left to the exercises.

Implicit and Predictor–Corrector Methods

From this point onwards, we shall abandon the original initial value problem, and
turn our attention to numerically solving the equivalent integral equation (10.48). Let us
rewrite the integral equation, starting at the mesh point tk instead of t0, and integrating
until time t = tk+1. The result is the basic integral formula

u(tk+1) = u(tk) +

∫ tk+1

tk

F (s, u(s)) ds (10.49)

that (implicitly) computes the value of the solution at the subsequent mesh point. Com-
paring this formula with the Euler Method

uk+1 = uk + hF (tk, uk), where h = tk+1 − tk,
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Figure 10.6. Numerical Integration Methods.

and assuming for the moment that uk = u(tk) is exact, we discover that we are merely
approximating the integral by

∫ tk+1

tk

F (s, u(s)) ds ≈ hF (tk, u(tk)). (10.50)

This is the Left Endpoint Rule for numerical integration — that approximates the area
under the curve g(t) = F (t, u(t)) between tk ≤ t ≤ tk+1 by the area of a rectangle whose
height g(tk) = F (tk, u(tk)) ≈ F (tk, uk) is prescribed by the left-hand endpoint of the graph.
As indicated in Figure 10.6, this is a reasonable, but not especially accurate method of
numerical integration.

In first year calculus, you no doubt encountered much better methods of approximat-
ing the integral of a function. One of these is the Trapezoid Rule, which approximates
the integral of the function g(t) by the area of a trapezoid obtained by connecting the two
points (tk, g(tk)) and (tk+1, g(tk+1)) on the graph of g by a straight line, as in the sec-
ond Figure 10.6. Let us therefore try replacing (10.50) by the more accurate trapezoidal
approximation

∫ tk+1

tk

F (s, u(s)) ds ≈ 1
2 h

[
F (tk, u(tk)) + F (tk+1, u(tk+1))

]
. (10.51)

Substituting this approximation into the integral formula (10.49), and replacing the solu-
tion values u(tk), u(tk+1) by their numerical approximations, leads to the (hopefully) more
accurate numerical scheme

uk+1 = uk + 1
2 h

[
F (tk, uk) + F (tk+1, uk+1)

]
, (10.52)

known as the Trapezoid Method . It is an implicit scheme, since the updated value uk+1

appears on both sides of the equation, and hence is only defined implicitly.

Example 10.18. Consider the differential equation
�

u =
(
1 − 4

3 t
)
u studied in Ex-

amples 10.14 and 10.15. The Trapezoid Method with a fixed step size h takes the form

uk+1 = uk + 1
2 h

[ (
1 − 4

3 tk
)
uk +

(
1 − 4

3 tk+1

)
uk+1

]
.
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In this case, we can explicit solve for the updated solution value, leading to the recursive
formula

uk+1 =
1 + 1

2 h
(
1 − 4

3 tk
)

1 − 1
2 h

(
1 − 4

3 tk+1

) uk =
1 + 1

2 h − 2
3 htk

1 − 1
2 h + 2

3 h (tk + h)
uk. (10.53)

Implementing this scheme for three different step sizes gives the following errors between
the computed and true solutions at times t = 1, 2, 3.

h E(1) E(2) E(3)

.100 −.00133315 .00060372 −.00012486

.010 −.00001335 .00000602 −.00000124

.001 −.00000013 .00000006 −.00000001

The numerical data indicates that the Trapezoid Method is of second order. For each
reduction in step size by 1

10 , the accuracy in the solution increases by, roughly, a factor of
1

100 = 1
102 ; that is, the numerical solution acquires two additional accurate decimal digits.

The main difficulty with the Trapezoid Method (and any other implicit scheme) is
immediately apparent. The updated approximate value for the solution uk+1 appears on
both sides of the equation (10.52). Only for very simple functions F (t, u) can one expect to
solve (10.52) explicitly for uk+1 in terms of the known quantities tk, uk and tk+1 = tk + h.
The alternative is to employ a numerical equation solver, such as the bisection algorithm
or Newton’s Method, to compute uk+1. In the case of Newton’s Method, one would use
the current approximation uk as a first guess for the new approximation uk+1 — as in the
continuation method discussed in Example 2.20. The resulting scheme requires some work
to program, but can be effective in certain situations.

An alternative, less involved strategy is based on the following far-reaching idea. We
already know a half-way decent approximation to the solution value uk+1 — namely that
provided by the more primitive Euler scheme

ũk+1 = uk + hF (tk, uk). (10.54)

Let’s use this estimated value in place of uk+1 on the right hand side of the implicit
equation (10.52). The result

uk+1 = uk + 1
2 h

[
F (tk, uk) + F (tk + h, ũk+1)

]

= uk + 1
2 h

[
F (tk, uk) + F

(
tk + h, uk + hF (tk, uk)

) ]
.

(10.55)

is known as the Improved Euler Method . It is a completely explicit scheme since there is
no need to solve any equation to find the updated value uk+1.

Example 10.19. For our favorite equation
�

u =
(
1 − 4

3 t
)
u, the Improved Euler

Method begins with the Euler approximation

ũk+1 = uk + h
(
1 − 4

3 tk
)
uk,
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and then replaces it by the improved value

uk+1 = uk + 1
2 h

[ (
1 − 4

3 tk
)
uk +

(
1 − 4

3 tk+1

)
ũk+1

]

= uk + 1
2 h

[ (
1 − 4

3 tk
)
uk +

(
1 − 4

3 (tk + h)
)(

uk + h
(
1 − 4

3 tk
)
uk

) ]

=
[ (

1 − 2
3 h2

) [
1 + h

(
1 − 4

3 tk
) ]

+ 1
2 h2

(
1 − 4

3 tk
)2

]
uk.

Implementing this scheme leads to the following errors in the numerical solution at the
indicated times. The Improved Euler Method performs comparably to the fully implicit
scheme (10.53), and significantly better than the original Euler Method.

h E(1) E(2) E(3)

.100 −.00070230 .00097842 .00147748

.010 −.00000459 .00001068 .00001264

.001 −.00000004 .00000011 .00000012

The Improved Euler Method is the simplest of a large family of so-called predictor–

corrector algorithms. In general, one begins a relatively crude method — in this case the
Euler Method — to predict a first approximation ũk+1 to the desired solution value uk+1.
One then employs a more sophisticated, typically implicit, method to correct the original
prediction, by replacing the required update uk+1 on the right hand side of the implicit
scheme by the less accurate prediction ũk+1. The resulting explicit, corrected value uk+1

will, provided the method has been designed with due care, be an improved approximation
to the true solution.

The numerical data in Example 10.19 indicates that the Improved Euler Method is
of second order since each reduction in step size by 1

10 improves the solution accuracy by,
roughly, a factor of 1

100 . To verify this prediction, we expand the right hand side of (10.55)
in a Taylor series in h, and then compare, term by term, with the solution expansion
(10.45). First,

F
(
tk + h, uk + hF (tk, uk)

)
= F + h

(
Ft + F Fu

)
+ 1

2 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · ,

where all the terms involving F and its partial derivatives on the right hand side are
evaluated at tk, uk. Substituting into (10.55), we find

uk+1 = uk + hF + 1
2 h2

(
Ft + F Fu

)
+ 1

4 h3
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · . (10.56)

The two Taylor expansions (10.45) and (10.56) agree in their order 1, h and h2 terms, but
differ at order h3. This confirms our experimental observation that the Improved Euler
Method is of second order.

We can design a range of numerical solution schemes by implementing alternative nu-
merical approximations to the basic integral equation (10.49). For example, the Midpoint

2/25/07 177 c© 2006 Peter J. Olver



Rule approximates the integral of the function g(t) by the area of the rectangle whose
height is the value of the function at the midpoint:

∫ tk+1

tk

g(s) ds ≈ h g
(
tk + 1

2 h
)
, where h = tk+1 − tk. (10.57)

See Figure 10.6 for an illustration. The Midpoint Rule is known to have the same order of
accuracy as the Trapezoid Rule, [2, 7]. Substituting into (10.49) leads to the approximation

uk+1 = uk +

∫ tk+1

tk

F (s, u(s)) ds ≈ uk + hF
(
tk + 1

2 h, u
(
tk + 1

2 h
) )

.

Of course, we don’t know the value of the solution u
(
tk + 1

2 h
)

at the midpoint, but can
predict it through a straightforward adaptation of the basic Euler approximation:

u
(
tk + 1

2 h
)
≈ uk + 1

2 hF (tk, uk).

The result is the Midpoint Method

uk+1 = uk + hF
(
tk + 1

2 h, uk + 1
2 hF (tk, uk)

)
. (10.58)

A comparison of the terms in the Taylor expansions of (10.45), (10.58) reveals that the
Midpoint Method is also of second order.

Runge–Kutta Methods

The Improved Euler and Midpoint Methods are the most elementary incarnations of
a general class of numerical schemes for ordinary differential equations that were first sys-
tematically studied by the German mathematicians Carle Runge and Martin Kutta in the
late nineteenth century. Runge–Kutta Methods are by far the most popular and powerful
general-purpose numerical methods for integrating ordinary differential equations. While
not appropriate in all possible situations, Runge–Kutta schemes are surprisingly robust,
performing efficiently and accurately in a wide variety of problems. Barring significant
complications, they are the method of choice in most basic applications. They comprise
the engine that powers most computer software for solving general initial value problems
for systems of ordinary differential equations.

The most general Runge–Kutta Method takes the form

uk+1 = uk + h

m∑

i=1

ci F (ti,k, ui,k), (10.59)

where m counts the number of terms in the method. Each ti,k denotes a point in the kth

mesh interval, so tk ≤ ti,k ≤ tk+1. The second argument ui,k ≈ u(ti,k) should be viewed
as an approximation to the solution at the point ti,k, and so is computed by a simpler
Runge–Kutta scheme of the same general format. There is a lot of flexibility in the design
of the method, through choosing the coefficients ci, the times ti,k, as well as the scheme
(and all parameters therein) used to compute each of the intermediate approximations
ui,k. As always, the order of the method is fixed by the power of h to which the Taylor
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expansions of the numerical method (10.59) and the actual solution (10.45) agree. Clearly,
the more terms we include in the Runge–Kutta formula (10.59), the more free parameters
available to match terms in the solution’s Taylor series, and so the higher the potential
order of the method. Thus, the goal is to arrange the parameters so that the method has
a high order of accuracy, while, simultaneously, avoiding unduly complicated, and hence
computationally costly, formulae.

Both the Improved Euler and Midpoint Methods are instances of a family of two term
Runge–Kutta Methods

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk,2, uk,2

) ]

= uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]
,

(10.60)

based on the current mesh point, so tk,1 = tk, and one intermediate point tk,2 = tk + λh
with 0 ≤ λ ≤ 1. The basic Euler Method is used to approximate the solution value

uk,2 = uk + λhF (tk, uk)

at tk,2. The Improved Euler Method sets a = b = 1
2 and λ = 1, while the Midpoint Method

corresponds to a = 0, b = 1, λ = 1
2 . The range of possible values for a, b and λ is found

by matching the Taylor expansion

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]

= uk + h (a + b) F (tk, uk) + h2 b λ

[
∂F

∂t
(tk, uk) + F (tk, uk)

∂F

∂u
(tk, uk)

]
+ · · · .

(in powers of h) of the right hand side of (10.60) with the Taylor expansion (10.45) of the
solution, namely

u(tk+1) = uk + hF (tk, uk) +
h2

2
[ Ft(tk, uk) + F (tk, uk) Fu(tk, uk) ] + · · · ,

to as high an order as possible. First, the constant terms, uk, are the same. For the order
h and order h2 terms to agree, we must have, respectively,

a + b = 1, b λ = 1
2 .

Therefore, setting

a = 1 − µ, b = µ, and λ =
1

2µ
, where µ is arbitrary†,

leads to the following family of two term, second order Runge–Kutta Methods:

uk+1 = uk + h

[
(1 − µ) F (tk, uk) + µF

(
tk +

h

2µ
, uk +

h

2µ
F (tk, uk)

)]
. (10.61)

† Although we should restrict µ ≥
1
2 in order that 0 ≤ λ ≤ 1.
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The case µ = 1
2 corresponds to the Improved Euler Method (10.55), while µ = 1 yields

the Midpoint Method (10.58). Unfortunately, none of these methods are able to match
all of the third order terms in the Taylor expansion for the solution, and so we are left
with a one-parameter family of two step Runge–Kutta Methods, all of second order, that
include the Improved Euler and Midpoint schemes as particular instances. The methods
with 1

2 ≤ µ ≤ 1 all perform more or less comparably, and there is no special reason to
prefer one over the other.

To construct a third order Runge–Kutta Method, we need to take at least m ≥ 3
terms in (10.59). A rather intricate computation (best done with the aid of computer
algebra) will produce a range of valid schemes; the results can be found in [21, 28]. The
algebraic manipulations are rather tedious, and we leave a complete discussion of the
available options to a more advanced treatment. In practical applications, a particularly
simple fourth order, four term formula has become the most used. The method, often
abbreviated as RK4, takes the form

uk+1 = uk +
h

6

[
F (tk, uk) + 2F (t2,k, u2,k) + 2F (t3,k, u3,k) + F (t4,k, u4,k)

]
, (10.62)

where the times and function values are successively computed according to the following
procedure:

t2,k = tk + 1
2 h, u2,k = uk + 1

2 hF (tk, uk),

t3,k = tk + 1
2 h, u3,k = uk + 1

2 hF (t2,k, u2,k),

t4,k = tk + h, u4,k = uk + hF (t3,k, u3,k).

(10.63)

The four term RK4 scheme (10.62–63) is, in fact, a fourth order method. This is confirmed
by demonstrating that the Taylor expansion of the right hand side of (10.62) in powers of
h matches all of the terms in the Taylor series for the solution (10.45) up to and including
those of order h4, and hence the local error is of order h5. This is not a computation for the
faint-hearted — bring lots of paper and erasers, or, better yet, a good computer algebra
package! The RK4 scheme is but one instance of a large family of fourth order, four term
Runge–Kutta Methods, and by far the most popular owing to its relative simplicity.

Example 10.20. Application of the RK4 Method (10.62–63) to our favorite initial
value problem (10.37) leads to the following errors at the indicated times:

h E(1) E(2) E(3)

.100 −1.944 × 10−7 1.086 × 10−6 4.592 × 10−6

.010 −1.508 × 10−11 1.093 × 10−10 3.851 × 10−10

.001 −1.332 × 10−15 −4.741 × 10−14 1.932 × 10−14

The accuracy is phenomenally good — much better than any of our earlier numerical
schemes. Each decrease in the step size by a factor of 1

10 results in about 4 additional
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decimal digits of accuracy in the computed solution, in complete accordance with its status
as a fourth order method.

Actually, it is not entirely fair to compare the accuracy of the methods using the
same step size. Each iteration of the RK4 Method requires four evaluations of the func-
tion F (t, u), and hence takes the same computational effort as four Euler iterations, or,
equivalently, two Improved Euler iterations. Thus, the more revealing comparison would
be between RK4 at step size h, Euler at step size 1

4 h, and Improved Euler at step size 1
2 h,

as these involve roughly the same amount of computational effort. The resulting errors
E(1) at time t = 1 are listed in the following table.

Thus, even taking computational effort into account, the Runge–Kutta Method con-
tinues to outperform its rivals. At a step size of .1, it is almost as accurate as the Im-
proved Euler Method with step size .0005, and hence 200 times as much computation,
while the Euler Method would require a step size of approximately .24× 10−6, and would
be 4, 000, 000 times as slow as Runge–Kutta! With a step size of .001, RK4 computes a
solution value that is near the limits imposed by machine accuracy (in single precision
arithmetic). The superb performance level and accuracy of the RK4 Method immediately
explains its popularity for a broad range of applications.

h Euler Improved Euler Runge–Kutta 4

.1 1.872 × 10−2 −1.424 × 10−4 −1.944 × 10−7

.01 1.874 × 10−3 −1.112 × 10−6 −1.508 × 10−11

.001 1.870 × 10−4 −1.080 × 10−8 −1.332 × 10−15

Example 10.21. As noted earlier, by writing the function values as vectors uk ≈
u(tk), one can immediately use all of the preceding methods to integrate initial value
problems for first order systems of ordinary differential equations

�

u = F(u). Consider, by
way of example, the Lotka–Volterra system

du

dt
= 2u − uv,

dv

dt
= −9v + 3uv. (10.64)

To find a numerical solution, we write u = (u, v )
T

for the solution vector, while F(u) =

( 2u − uv,−9v + 3uv )
T

is the right hand side of the system. The Euler Method with step
size h is given by

u(k+1) = u(k) + hF(u(k)),

or, explicitly, as a first order nonlinear iterative system

u(k+1) = u(k) + h (2u(k) − u(k) v(k)), v(k+1) = v(k) + h (−9v(k) + 3u(k) v(k)).

The Improved Euler and Runge–Kutta schemes are implemented in a similar fashion.
Phase portraits of the three numerical algorithms starting with initial conditions u(0) =
v(0) = 1.5, and up to time t = 25 in the case of the Euler Method, and t = 50 for the other
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RK4 Method, h = .01

Figure 10.7. Numerical Solutions of Predator–Prey Model.

two, appear in Figure 10.7. In fact, the solution is supposed to travel periodically around
a closed curve, which is the level set

I(u, v) = 9 log u − 3u + 2 log v − v = I(1.5, 1.5) = −1.53988

of the first integral. The Euler Method spirals away from the exact periodic solution,
whereas the Improved Euler and RK4 Methods perform rather well. Since we do not have
an analytic formula for the solution, we cannot measure the exact error in the methods.
However, the known first integral is supposed to remain constant on the solution trajec-
tories, and so one means of monitoring the accuracy of the solution is by the variation
in the numerical values of I(u(k), v(k)). These are graphed in Figure 10.8; the Improved
Euler keeps the vlue within .0005, while for the RK4 solution, only the fifth decimal place
in the value of the first integral experiences any change over the indicated time period. Of
course, the ononger one continues to integrate, the more error will gradually creep into the
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Figure 10.8. Numerical Evaluation of Lotka–Volterra First Integral.

numerical solution. Still, for most practical purposes, the RK4 solution is indistinguishable
from the exact solution.

In practical implementations, it is important to monitor the accuracy of the numer-
ical solution, so to gauge when to abandon an insufficiently precise computation. Since
accuracy is dependent upon the step size h, one may try adjusting h so as stay within a
preassigned error. Adaptive methods, allow one to change the step size during the course
of the computation, in response to some estimation of the overall error. Insufficiently ac-
curate numerical solutions would necessitate a suitable reduction in step size (or increase
in the order of the scheme). On the other hand, if the solution is more accurate than the
application requires, one could increase the step size so as to reduce the total amount of
computational effort.

How might one decide when a method is giving inaccurate results, since one presum-
ably does not know the true solution and so has nothing to directly test the numerical
approximation against? One useful idea is to integrate the differential equation using two
different numerical schemes, usually of different orders of accuracy, and then compare the
results. If the two solution values are reasonably close, then one is usually safe in as-
suming that the methods are both giving accurate results, while in the event that they
differ beyond some preassigned tolerance, then one needs to re-evaluate the step size. The
required adjustment to the step size relies on a more detailed analysis of the error terms.
Several well-studied methods are employed in practical situations; the most popular is the
Runge–Kutta–Fehlberg Method, which combines a fourth and a fifth order Runge–Kutta
scheme for error control. Details can be found in more advanced treatments of the subject,
e.g., [21, 28].

Stiff Differential Equations

While the fourth order Runge–Kutta Method with a sufficiently small step size will
successfully integrate a broad range of differential equations — at least over not unduly long
time intervals — it does occasionally experience unexpected difficulties. While we have
not developed sufficiently sophisticated analytical tools to conduct a thorough analysis, it
will be instructive to look at why a breakdown might occur in a simpler context.

Example 10.22. The elementary linear initial value problem

du

dt
= −250u, u(0) = 1, (10.65)
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is an instructive and sobering example. The explicit solution is easily found; it is a very
rapidly decreasing exponential: u(t) = e−250 t.

u(t) = e−250 t with u(1) ≈ 2.69 × 10−109.

The following table gives the result of approximating the solution value u(1) ≈ 2.69×10−109

at time t = 1 using three of our numerical integration schemes for various step sizes:

h Euler Improved Euler RK4

.1 6.34 × 1013 3.99 × 1024 2.81 × 1041

.01 4.07 × 1017 1.22 × 1021 1.53 × 10−19

.001 1.15 × 10−125 6.17 × 10−108 2.69 × 10−109

The results are not misprints! When the step size is .1, the computed solution values
are perplexingly large, and appear to represent an exponentially growing solution — the
complete opposite of the rapidly decaying true solution. Reducing the step size beyond a
critical threshold suddenly transforms the numerical solution to an exponentially decaying
function. Only the fourth order RK4 Method with step size h = .001 — and hence a total
of 1, 000 steps — does a reasonable job at approximating the correct value of the solution
at t = 1.

You may well ask, what on earth is going on? The solution couldn’t be simpler — why
is it so difficult to compute it? To understand the basic issue, let us analyze how the Euler
Method handles such simple differential equations. Consider the initial value problem

du

dt
= λu, u(0) = 1, (10.66)

which has an exponential solution
u(t) = eλt. (10.67)

As in Example 10.13, the Euler Method with step size h relies on the iterative scheme

uk+1 = (1 + λh) uk, u0 = 1,

with solution
uk = (1 + λh)k. (10.68)

If λ > 0, the exact solution (10.67) is exponentially growing. Since 1 + λh > 1, the
numerical iterates are also growing, albeit at a somewhat slower rate. In this case, there
is no inherent surprise with the numerical approximation procedure — in the short run
it gives fairly accurate results, but eventually trails behind the exponentially growing
solution.

On the other hand, if λ < 0, then the exact solution is exponentially decaying and
positive. But now, if λh < −2, then 1 + λh < −1, and the iterates (10.68) grow expo-
nentially fast in magnitude, with alternating signs. In this case, the numerical solution
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is nowhere close to the true solution; this explains the previously observed pathological
behavior. If −1 < 1 + λh < 0, the numerical solutions decay in magnitude, but continue
to alternate between positive and negative values. Thus, to correctly model the qualitative
features of the solution and obtain a numerically respectable approximation, we need to
choose the step size h so as to ensure that 0 < 1 + λh, and hence h < −1/λ when λ < 0.
For the value λ = −250 in the example, then, we must choose h < 1

250 = .004 in order that
the Euler Method give a reasonable numerical answer. A similar, but more complicated
analysis applies to any of the Runge–Kutta schemes.

Thus, the numerical methods for ordinary differential equations exhibit a form of
conditional stability. Paradoxically, the larger negative λ is — and hence the faster the
solution tends to a trivial zero equilibrium — the more difficult and expensive the numer-
ical integration. The system (10.65) is the simplest example of what is known as a stiff

differential equation. In general, an equation or system is stiff if it has one or more very
rapidly decaying solutions. In the case of autonomous (constant coefficient) linear systems
�

u = Au, stiffness occurs whenever the coefficient matrix A has an eigenvalue with a large
negative real part: Re λ ≪ 0, resulting in a very rapidly decaying eigensolution. It only
takes one such eigensolution to render the equation stiff, and ruin the numerical compu-
tation of even the well behaved solutions! Curiously, the component of the actual solution
corresponding to such large negative eigenvalues is almost irrelevant, as it becomes almost
instanteously tiny. However, the presence of such an eigenvalue continues to render the
numerical solution to the system very difficult, even to the point of exhausting any avail-
able computing resources. Stiff equations require more sophisticated numerical procedures
to integrate, and we refer the reader to [21, 28] for details.
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