Applied Linear Algebra, First Edition
 by Peter J. Olver and Chehrzad Shakiban

Corrections to Second Printing (2008)

Last updated: July 1, 2018
$\star \star \star$ Page xxii $\star \star \star$
Replace the last paragraph by:
We would also like to thank Nihat Bayhan, Joe Benson, Juan Cockburn, Richard Cook, Stephen DeSalvo, Anne Dougherty, Kathleen Fuller, Mary Halloran, Stuart Hastings, Jeffrey Humpherys, Roberta Jaskolski, Tian-Jun Li, James Meiss, Willard Miller, Jr., Sean Rostami, Timo Schürg, David Tieri, and Timothy Welle for sending us their comments, suggestions, and corrections to earlier printings of this book. A particular thanks to David Hiebeler for his careful reading and corrections.
$\star \star \star$ Page xxii $\star \star \star$
Change Cheri Shakiban's email address to cshakiban@stthomas.edu
$\star \star \star$ Page 43 *** Theorem 1.29:
To avoid confusion, change "having the nonzero pivots on the diagonal" to "with nonzero diagonal entries".
$\star \star \star$ Page 43 $\star \star \star$ Theorem 1.31:
Insert "with nonzero diagonal entries" after "diagonal".
$\star \star \star$ Page $51 \quad \star \star \star$ second displayed equation:
Replace the summand j by $j-1$:

$$
\sum_{j=1}^{n}(j-1)=\frac{n^{2}-n}{2}
$$

$\star \star \star$ Page $57 \star \star \star$ last displayed equation:
Replace 3210 by 32100 :

$$
10 x+1600 y=32100, \quad x+.6 y=22
$$

$\star \star \star$ Page $58 \quad \star \star \star$ first displayed equation:
Replace 3210 by 32100:

$$
\left(\begin{array}{cc|c}
1600 & 10 & 32100 \\
.6 & 1 & 22
\end{array}\right)
$$

$\star \star \star$ Page $90 \quad \star \star \star$ Last displayed equation:
Correct last entry in third and fourth column vectors:

$$
\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)=c_{1}\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
c_{1}+2 c_{2} \\
-2 c_{1}-3 c_{2} \\
c_{1}+c_{2}
\end{array}\right) .
$$

$\star \star \star$ Page $91 \quad \star \star \star$ First displayed equation:
Correct third equation:

$$
c_{1}+2 c_{2}=0, \quad-2 c_{1}-3 c_{2}=1, \quad c_{1}+c_{2}=-1
$$

$\star \star \star$ Page 100 $\star \star \star$ Exercise 2.3.39 (b):
Add closing bracket to $W[f(x), g(x)]$.
$\star \star \star$ Page 106 $\star \star \star$ Exercise 2.4.24 (b):
Change "Under the hypotheses of part (b)" to "Under the hypothesis of part (a)".
*** Page 118 *** lines 12-13:
Change "Solving the homogeneous system $\widehat{U} \mathbf{y}=\mathbf{0}$, we conclude that" to
The two nonzero rows of \widehat{U} form a basis for corng A^{T}, and therefore
$\star \star \star$ Page $130 \quad \star \star \star$ line 6 and line 8:
Delete first "both"'s:
Inner products and norms lie at the heart of linear (and nonlinear) analysis, in both finitedimensional vector spaces and infinite-dimensional function spaces. It is impossible to overemphasize their importance for theoretical developments, practical applications, and the design of numerical solution algorithms.
$\star \star \star$ Page 143 $\star \star \star$ Exercise 3.2.31 (a):
Add ${ }^{T}$ superscripts to $(1,2,3)^{T}$ and $(1,-1,2)^{T}$.
$\star \star \star$ Page $161 \star \star \star$ Formula before Proposition 3.34:
Change $d t$ to $d x$.
$\star \star \star$ Page $161 \star \star \star$ Two lines before Proposition 3.34:
Change Theorem 3.31 to Theorem 3.28.
$\star \star \star$ Page 162 *** Exercise 3.4.22 (c):
Change "null vectors" to "null directions".
$\star \star \star$ Page 162 *** Exercise 3.4.32:
Change "null vector" to "null direction" and $K=A^{T} A$ to $K=A^{T} C A$:
Show that $\mathbf{0} \neq \mathbf{z}$ is a null direction for the quadratic form $q(\mathbf{x})=\mathbf{x}^{T} K \mathbf{x}$ based on the Gram matrix $K=A^{T} C A$ if and only if $\mathbf{z} \in \operatorname{ker} K$.
$\star \star \star$ Page $163 \star \star \star$ Exercise 3.4.35 (c):
Rephrase for clarity:
Show that K is also a Gram matrix, by finding a matrix A such that $K=A^{T} C A$.
$\star \star \star$ Page $168 \quad \star \star \star$ Sentence after that containing (3.70):
Rephrase for clarity:
Note that M is a lower triangular matrix with all positive diagonal entries, namely the square roots of the pivots: $m_{i i}=\sqrt{d_{i}}$.
$\star \star \star$ Page 177 *** Exercise 3.6.29:
Delete part (e). ("Orthogonal" and "orthonormal" are not yet defined.)
$\star \star \star$ Page $179 \quad \star \star \star$ Exercise 3.6.51:
For each of the following ...
$\star \star \star$ Page $188 \quad \star \star \star$ Formula in middle of page:
y^{*} and z^{*} should not be bold face.
$\star \star \star$ Page $188 \quad \star \star \star$ Theorem 4.4:
Delete the words "null vector".
$\star \star \star$ Page $191 \star \star \star$ Equation (4.26):
The last equality, $c=\|\mathbf{b}\|^{2}$, is correct provided one uses the weighted norm. However, to avoid confusion with the Euclidean norm used in (4.25), it would be better to write this as $c=\mathbf{b}^{T} C \mathbf{b}$.
$\star \star \star$ Page $194 \star \star \star$ Equation (4.30):

$$
\left\|A \mathbf{x}^{\star}-\mathbf{b}\right\|=\sqrt{\|\mathbf{b}\|^{2}-\mathbf{f}^{T} \mathbf{x}^{\star}}=\sqrt{\|\mathbf{b}\|^{2}-\mathbf{b}^{T} A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}}
$$

$\star \star \star$ Page $201 \quad \star \star \star$ Line after Equation (4.43) :
Delete first "coefficient":
The $m \times(n+1)$ coefficient matrix \ldots
*** Page 204 *** Displayed equation in Proof of Theorem 4.16:
Middle term should be $y_{k} L_{k}\left(t_{k}\right)$:

$$
p\left(t_{k}\right)=y_{1} L_{1}\left(t_{k}\right)+\cdots+y_{k} L_{k}\left(t_{k}\right)+\cdots+y_{n+1} L_{n+1}\left(t_{k}\right)=y_{k}
$$

$\star \star \star$ Page $221 \star \star \star$ Exercise 5.1.11:
$\mathbf{u}_{2}= \pm\binom{-\sin \theta}{\cos \theta}$
$\star \star \star$ Page 231 *** Second line:
Replace "For exercises \#1-8 use " by "For Exercises \#1-7 use ".
$\star \star \star$ Page $245 \star \star \star$ First line under Figure:
Change " \mathbf{x} and \mathbf{y} " to " \mathbf{v} and \mathbf{w} ".
$\star \star \star$ Page $274 \quad \star \star \star$ Remark:
... solving the homogeneous adjoint system, ...
$\star \star \star$ Page 276 *** Exercise 5.6.20 (c):
Change the sign in front of $4 x_{3}$ in last equation:

$$
x_{1}+2 x_{2}+3 x_{3}=b_{1}, \quad x_{2}+2 x_{3}=b_{2}, \quad 3 x_{1}+5 x_{2}+7 x_{3}=b_{3}, \quad-2 x_{1}+x_{2}+4 x_{3}=b_{4}
$$

$\star \star \star$ Page $279 \star \star \star$ Equation (5.90):
Change $e^{\mathrm{i} k x_{n}}$ to $e^{\mathrm{i} k x_{n-1}}$ in first line.
$\star \star \star$ Page $283 \star \star \star$ Figure 5.13:
Change $x^{2}-2 \pi x$ to $2 \pi x-x^{2}$.
$\star \star \star$ Page $284 \star \star \star$ Figure 5.14:
Change $x^{2}-2 \pi x$ to $2 \pi x-x^{2}$.
$\star \star \star$ Page 285 $\star \star \star$ Line -5 :
Change $n=2^{8}=256$ to $n=2^{9}=512$.
$\star \star \star$ Page $296 \quad \star \star \star$ Equation (6.9):
Insert space between 1 and -1 in last row of matrix.
$\star \star \star$ Page $298 \star \star \star$ Two lines before (6.15):
Change $K \mathbf{x}=\mathbf{f}$ to $K \mathbf{u}=\mathbf{f}$.
$\star \star \star$ Page $298 \star \star \star$ Four lines after (6.15):
Change $\mathbf{y}=A^{-1} \mathbf{f}$ to $\mathbf{y}=A^{-T} \mathbf{f}$.
$\star \star \star$ Page 311 *** Exercise 6.2.1 (b):
Change last row of matrix:

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 1 & 0 \\
1 & 0 & -1 & 0
\end{array}\right)
$$

$\star \star \star$ Page $311 \quad \star \star \star$ Exercise 6.2.2:

Add labels to the wires:

*** Page 312 $\star \star \star$ Exercise 6.2.12 (a):
Start the exercise with:
Assuming all wires have unit resistance, find the voltage ...
$\star \star \star$ Page 313 *** Line 19:
Delete "the" before "Section 6.1".
$\star \star \star$ Page 317 $\star \star \star$ Displayed equation above (6.51):
Change 0 to $\mathbf{0}$.
$\star \star \star$ Page 319 $\star \star \star$ Equation (6.58):
Change the last formula to

$$
\mathbf{z}_{3} \cdot \mathbf{f}=-\frac{\sqrt{3}}{2} f_{1}+\frac{1}{2} g_{1}+g_{2}=0
$$

$\star \star \star$ Page $319 \quad \star \star \star$ Last line:
Change "first node" to "third node".
$\star \star \star$ Page $320 \star \star \star$ Two lines before displayed equation for $A^{\star \star}$:
This serves to also eliminate ...
$\star \star \star$ Page $321 \quad \star \star \star$ Figure 6.13:
Label the bars in the figure:

$\star \star \star$ Page 323 $\star \star \star$ Figure 6.16:
Label the bars in the figure:

$\star \star \star$ Page $324 \star \star \star$ Figure 6.17:
Label the bars in the figure:

$\star \star \star$ Page $325 \star \star \star$ Line -5 :
Change "three bars" to "five bars".
$\star \star \star$ Page 339 $\star \star \star$ Equation (7.12):
Add period at end of equation.
$\star \star \star$ Page $377 \star \star \star$ Definition 7.46 is incomplete. Here is a corrected version::
Definition 7.46. A complex vector space V is called conjugated if it admits an operation of complex conjugation taking $\mathbf{u} \in V$ to $\overline{\mathbf{u}} \in V$ with the following properties: (a) conjugating twice returns one to the original vector: $\overline{\overline{\mathbf{u}}}=\mathbf{u}$; (b) compatibility with vector addition: $\overline{\mathbf{u}+\mathbf{v}}=\overline{\mathbf{u}}+\overline{\mathbf{v}}$; (c) compatibility with scalar multiplication: $\overline{\lambda \mathbf{u}}=\bar{\lambda} \overline{\mathbf{u}}$, for all $\lambda \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$.
$\star \star \star$ Page 384 $\star \star \star$ Exercise 7.5.1 (b):
$\langle\mathbf{v}, \mathbf{w}\rangle=2 v_{1} w_{1}+3 v_{2} w_{2}$
$\star \star \star$ Page $399 \quad \star \star \star$ Final displayed equation:
The bar on the second term should extend over both A and \mathbf{v} :

$$
\bar{A} \overline{\mathbf{v}}=\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}
$$

$\star \star \star$ Page $400 \star \star \star$ Two lines before Remark:
Change "combinations of the real eigenvalues" to "combinations of the real eigenvectors".
$\star \star \star$ Page 410 $\star \star \star$ line 16:
Delete ${ }^{T}$ on formula for $S=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$.
$\star \star \star$ Page 411 $\star \star \star$ Last line:
Delete "the" before "Section 8.6".
$\star \star \star$ Page $432 \star \star \star$ Fourth displayed formula. Switch ${ }^{T}$ superscript:

$$
A^{+}=Q \Sigma^{-1} P^{T}=\left(\begin{array}{cccc}
.2444 & .1333 & .0556 & .1889 \\
.1556 & -.0667 & .1111 & .0444 \\
-.1111 & 0 & -.0556 & -.0556
\end{array}\right)
$$

$\star \star \star$ Page $438 \star \star \star$ Definition 8.46, first line:
Change $\mathbf{w}_{1}, \ldots, \mathbf{w}_{j} \in \mathbb{C}^{m}$ to $\mathbf{w}_{1}, \ldots, \mathbf{w}_{j} \in \mathbb{C}^{n}$.
$\star \star \star$ Page $438 \quad \star \star \star$ line -2 :
Change "Thus, \mathbf{w}_{2} a generalized \ldots " to "Thus, \mathbf{w}_{2} is a generalized ..."
$\star \star \star$ Page 448 $\star \star \star$ Equation (9.8) and line 19:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page 455 *** Exercise 9.1.22:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page 458 *** Theorem 9.13:
Change $\dot{u}=A \mathbf{u}$ to $\dot{\mathbf{u}}=A \mathbf{u}$.
$\star \star \star$ Page $465 \quad \star \star \star$ Exercise 9.2.18:
Change $\dot{u}=-\nabla H$ to $\dot{\mathbf{u}}=-\nabla H$.
$\star \star \star$ Page $477 \quad \star \star \star$ Exercise 9.4.15:
Change $\mathbf{v}=A^{T} \mathbf{v}$ to $\dot{\mathbf{v}}=A^{T} \mathbf{v}$.
$\star \star \star$ Page $481 \quad \star \star \star$ Exercise 9.4.34:
Change $\dot{u}=A \mathbf{u}+e^{\lambda t} \mathbf{v}$ to $\dot{\mathbf{u}}=A \mathbf{u}+e^{\lambda t} \mathbf{v}$.
$\star \star \star$ Page $483 \quad \star \star \star$ Equation (9.55):
Correct final formula:

$$
e^{t A_{z}}=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\star \star \star$ Page $488 \quad \star \star \star$ line after (9.70):
Change $r_{i}>0$ to $r_{i} \geq 0$.
$\star \star \star$ Page 501 * $\star \star$ Lines $2-4$ after (9.96):
Switch "first" and "second":
\ldots - the second, vibrating with frequency ω, represents the internal or natural vibrations of the system, while the first, with frequency η, represents the response ...
*** Page 523 \quad *** Exercise 10.1.41:
Change x_{0}, x_{1}, \ldots to $u^{(0)}, u^{(1)}, \ldots$
ᄎ Page 526 $\star \star \star$ Line 4:
Change $\lambda_{1}=-\frac{2}{3}$ to $\lambda_{1}=\frac{2}{3}$:
$\star \star \star$ Page 526 *** Line 5:
Change $-\frac{2}{3}$ to $\frac{2}{3}: \quad \lambda_{1}=\frac{2}{3}$
$\star \star \star$ Page 526 $\star \star \star$ Line 8 :
Change "... the first ten iterates are" to "... iterates $\mathbf{u}^{(11)}, \ldots, \mathbf{u}^{(20)}$ are"
$\star \star \star$ Page $564 \quad \star \star \star$ Lines 15-17:
Change
the parameter t_{1} so that the corresponding residual vector

$$
\begin{equation*}
\mathbf{r}_{1}=\mathbf{f}-K \mathbf{u}_{1}=\mathbf{r}_{0}-t_{1} K \mathbf{v}_{1} \tag{10.91}
\end{equation*}
$$

is as close to $\mathbf{0}$ (in the Euclidean norm) as possible. This occurs when \mathbf{r}_{1} is orthogonal to \mathbf{r}_{0} (why?), and so we require

$$
\begin{equation*}
0=\mathbf{r}_{0}^{T} \mathbf{r}_{1}=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1} \mathbf{r}_{0}^{T} K \mathbf{v}_{1}=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1}\left\langle\left\langle\mathbf{r}_{0}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\|\mathbf{r}_{0}\right\|^{2}-t_{1}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle . \tag{10.92}
\end{equation*}
$$

to
the parameter t_{1} that minimizes

$$
\begin{equation*}
p\left(\mathbf{u}_{1}\right)=p\left(t_{1} \mathbf{v}_{1}\right)=\frac{1}{2} t_{1}^{2} \mathbf{v}_{1}^{T} K \mathbf{v}_{1}-t_{1} \mathbf{v}_{1}^{T} \mathbf{f}=\frac{1}{2} t_{1}^{2}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle-t_{1}\left\|\mathbf{r}_{1}\right\|^{2} . \tag{10.91}
\end{equation*}
$$

$\star \star \star$ Page 564 $\star \star \star$ Line 7 from bottom:
Correct second and third terms in displayed formula:

$$
0=\left\langle\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{r}_{1}+s_{1} \mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle=\left\langle\left\langle\mathbf{r}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle+s_{1}\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle\right\rangle,
$$

*** Page 565 *** Line 7:
Delete "as small as possible, which is accomplished by requiring it to"
$\star \star \star$ Page $572 \star \star \star$ Displayed formula before (10.102):
The subscripts on R and Q are wrong: $A_{2}=R_{1} Q_{1}$.
$\star \star \star$ Page 572 $\star \star \star$ change final sentence::
For each eigenvalue, the computation of the corresponding eigenvector can be most efficiently accomplished by applying the shifted inverse power method of Exercise 10.6.7 with parameter μ chosen near the computed eigenvalue.
$\star \star \star$ Page $575 \quad \star \star \star$ Change equations (10.106) and (10.107) to:

$$
\begin{gather*}
A^{k}=\left(Q_{0} Q_{1} \cdots Q_{k-1}\right)\left(R_{k-1} \cdots R_{1} R_{0}\right) \tag{10.106}\\
S_{k}=Q_{0} Q_{1} \cdots Q_{k-1}=S_{k-1} Q_{k-1} \\
P_{k}=R_{k-1} \cdots R_{1} R_{0}=R_{k-1} P_{k-1} \tag{10.107}
\end{gather*}
$$

$\star \star \star$ Page $577 \star \star \star$ Replace the paragraph after Theorem 10.57 by the following::
The last remaining item is a proof of Lemma 10.56. We write

$$
S=\left(\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{n}\right), \quad S_{k}=\left(\mathbf{u}_{1}^{(k)}, \ldots, \mathbf{u}_{n}^{(k)}\right)
$$

in columnar form. Let $t_{i j}^{(k)}$ denote the entries of the positive upper triangular matrix T_{k}. The first column of the limiting equation $S_{k} T_{k} \rightarrow S$ reads

$$
t_{11}^{(k)} \mathbf{u}_{1}^{(k)} \longrightarrow \mathbf{u}_{1}
$$

Since both $\mathbf{u}_{1}^{(k)}$ and \mathbf{u}_{1} are unit vectors, and $t_{11}^{(k)}>0$,

$$
\left\|t_{11}^{(k)} \mathbf{u}_{1}^{(k)}\right\|=t_{11}^{(k)} \longrightarrow\left\|\mathbf{u}_{1}\right\|=1, \quad \text { and hence } \quad \mathbf{u}_{1}^{(k)} \longrightarrow \mathbf{u}_{1}
$$

The second column reads

$$
t_{12}^{(k)} \mathbf{u}_{1}^{(k)}+t_{22}^{(k)} \mathbf{u}_{2}^{(k)} \longrightarrow \mathbf{u}_{2}
$$

Taking the inner product with $\mathbf{u}_{1}^{(k)} \rightarrow \mathbf{u}_{1}$ and using orthonormality, we deduce $t_{12}^{(k)} \rightarrow 0$, and so $t_{22}^{(k)} \mathbf{u}_{2}^{(k)} \rightarrow \mathbf{u}_{2}$, which, by the previous reasoning, implies $t_{22}^{(k)} \rightarrow 1$ and $\mathbf{u}_{2}^{(k)} \rightarrow \mathbf{u}_{2}$. The proof is completed by working in order through the remaining columns, employing a similar argument at each step. Details are left to the interested reader.
$\star \star \star$ Page $591 \quad \star \star \star$ Equation (11.21):
Insert minus sign before integral:

$$
\begin{equation*}
u^{\prime}(\ell)=-\int_{0}^{\ell} f(x) d x=0 \tag{11.21}
\end{equation*}
$$

$\star \star \star$ Page 594 *** Line before (11.28):
Change "to satisfy" to "satisfy".
$\star \star \star$ Page $598 \star \star \star 3$ lines after (11.40):
Change $L[u]=u(y)$ to $L_{y}[u]=u(y)$.
$\star \star \star$ Page $607 \star \star \star$ Equation (11.60):
Missing factor of c in differential equation:

$$
-c u^{\prime \prime}=f(x), \quad u(0)=0=u(1)
$$

$\star \star \star$ Page $607 \quad \star \star \star$ Equation (11.59):
The middle expression is missing a c in the denominator:

$$
G(x, y)=\frac{(1-y) x-\rho(x-y)}{c}= \begin{cases}x(1-y) / c, & x \leq y \tag{11.59}\\ y(1-x) / c, & x \geq y\end{cases}
$$

*** Page 608 *** Lines 10 and 7 from bottom:
Two missing factors of c :

$$
\begin{aligned}
c \frac{d u}{d x} & =(1-x) x f(x)+\int_{0}^{x}[-y f(y)] d y-x(1-x) f(x)+\int_{x}^{1}(1-y) f(y) d y \\
& =-\int_{0}^{1} y f(y) d y+\int_{x}^{1} f(y) d y
\end{aligned}
$$

Differentiating again, we conclude that $c \frac{d^{2} u}{d x^{2}}=-f(x)$, as claimed.
*** Page 619 *** Exercise 11.3.16 (b):
Delete "is" after $K=L^{*} \circ L$.
$\star \star \star$ Page 640 *** Section 11.6, middle of second paragraph:
Change "Chapter 4.1" to "Section 4.1".
$\star \star \star$ Page 653 $\star \star \star$ Solution 1.2.4 (d):

$$
A=\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & -1 & 3 \\
3 & 0 & -2
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

$\star \star \star$ Page $653 \quad \star \star \star$ Solution 1.2.4 (f):
$\mathbf{b}=\left(\begin{array}{c}-3 \\ -5 \\ 2 \\ 1\end{array}\right)$.
$\star \star \star$ Page 655 *** Solution 1.4.15 (a):
$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
$\star \star \star$ Page $658 \quad \star \star \star$ Solution 1.8.4:
(i) $a \neq b$ and $b \neq 0 ; ~(i i) a=b \neq 0$, or $a=-2, b=0 ; \quad$ (iii) $a \neq-2, b=0$.
$\star \star \star$ Page 659 $\star \star \star$ Solution 1.8.23 (e):
$(0,0,0)^{T}$;
$\star \star \star$ Page $660 \quad \star \star \star$ Solution 2.5.5 (b):
$\mathbf{x}^{\star}=(1,-1,0)^{T}, \quad \mathbf{z}=z\left(-\frac{2}{7},-\frac{1}{7}, 1\right)^{T} ;$
$\star \star \star$ Page 665 $\star \star \star$ Solution 3.4.22 (v):
Change "null vectors" to "null directions".
$\star \star \star$ Page 665 *** Solution 3.4.32:
Change all x's to \mathbf{z} :
$0=\mathbf{z}^{T} K \mathbf{z}=\mathbf{z}^{T} A^{T} C A \mathbf{z}=\mathbf{y}^{T} C \mathbf{y}$, where $\mathbf{y}=A \mathbf{z}$. Since $C>0$, this implies $\mathbf{y}=\mathbf{0}$, and hence $\mathbf{z} \in \operatorname{ker} A=\operatorname{ker} K$.
$\star \star \star$ Page 667 *** Solution 4.4.27 (a):
Change "the interpolating polynomial" to "an interpolating polynomial".
*** Page 667 *** Solution 4.4.52 (b):
Delete the sentence:
(The solution given is for the square $S=\{0 \leq x \leq 1,0 \leq y \leq 1\}$.)
$\star \star \star$ Page 668 夫夫* Solution 5.1.14 (a):

$$
\mathbf{v}_{2}= \pm\left(-\sin \theta, \frac{1}{\sqrt{2}} \cos \theta\right)^{T}
$$

$\star \star \star$ Page 670 $\star \star \star$ Solution 5.4.15:

$$
p_{0}(x)=1, \quad p_{1}(x)=x, \quad p_{2}(x)=x^{2}-\frac{1}{3}, \quad p_{3}(x)=x^{3}-\frac{9}{10} x .
$$

(The solution given in the text is for the interval $[0,1]$, not $[-1,1]$.)
$\star \star \star$ Page $670 \star \star \star$ Solution 5.5.6 (ii) (c):
$\left(\frac{23}{43}, \frac{19}{43},-\frac{1}{43}\right)^{T}$.
$\star \star \star$ Page $674 \star \star \star$
The page layout is a bit strange. The top of the second column (before Solution 6.2.1) is the solution to Exercise 6.1.16(c). Also, the solution to Exercise 6.2 .10 spans across both columns.
$\star \star \star$ Page $674 \star \star \star$ Solution 6.2.1 (b) The solution corresponds to the revised exercise - see correction on page 311 .

For the given matrix, the solution is

$\star \star \star$ Page $674 \quad \star \star \star$ Solution 6.2.12 \& 6.2.13:
Change all e's to y's.
$\star \star \star$ Page 674 ** Solution 6.3.5 (b):
$\frac{3}{2} u_{1}-\frac{1}{2} v_{1}-u_{2}=f_{1}$,
$-\frac{1}{2} u_{1}+\frac{3}{2} v_{1}=g_{1}$,
$-u_{1}+\frac{3}{2} u_{2}+\frac{1}{2} v_{2}=f_{2}$,
$\frac{1}{2} u_{2}+\frac{3}{2} v_{2}=g_{2}$.
$\star \star \star$ Page $683 \star \star \star$ Solution 8.5.1 (a):
$\sqrt{3 \pm \sqrt{5}}$
$\star \star \star$ Page $684 \star \star \star$ Solution 8.5.26:
Change (b) to (c).
*** Page 685 *** Solution 9.1.28 (g):
Change $\dot{u}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \mathbf{u}$ to $\dot{\mathbf{u}}=\left(\begin{array}{rrr}0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \mathbf{u}$.
$\star \star \star$ Page 691 *** Solution 10.3.24 (e):
Change $-2.69805 \pm .806289$ to $-2.69805 \pm .806289$ i.
*** Page 694 * $\star \star$ Solution 11.2.8 (d):

$$
\begin{aligned}
f^{\prime}(x) & =4 \delta(x+2)+4 \delta(x-2)+ \begin{cases}1, & |x|>2 \\
-1, & |x|<2\end{cases} \\
& =4 \delta(x+2)+4 \delta(x-2)+1-2 \sigma(x+2)+2 \sigma(x-2) \\
f^{\prime \prime}(x) & =4 \delta^{\prime}(x+2)+4 \delta^{\prime}(x-2)-2 \delta(x+2)+2 \delta(x-2)
\end{aligned}
$$

$\star \star \star$ Page $694 \quad \star \star \star$ Solution 11.2.31 (a):

$$
u_{n}(x)= \begin{cases}x(1-y), & 0 \leq x \leq y-\frac{1}{n} \\ -\frac{1}{4} n x^{2}+\left(\frac{1}{2} n-1\right) x y-\frac{1}{4} n y^{2}+\frac{1}{2} y+\frac{1}{2} x-\frac{1}{4 n}, & |x-y| \leq \frac{1}{n} \\ y(1-x), & y+\frac{1}{n} \leq x \leq 1\end{cases}
$$

$\star \star \star$ Page 694 $\star \star \star$ Solution 11.3.3 (c):
(i) $u_{\star}(x)=\frac{1}{2} x^{2}-\frac{5}{2}+x^{-1}$,
(ii) $\mathcal{P}[u]=\int_{1}^{2}\left[\frac{1}{2} x^{2}\left(u^{\prime}\right)^{2}+3 x^{2} u\right] d x, \quad u^{\prime}(1)=u(2)=0$,
(iii) $\mathcal{P}\left[u_{\star}\right]=-\frac{37}{20}=-1.85$,
(iv) $\mathcal{P}\left[x^{2}-2 x\right]=-\frac{11}{6}=-1.83333, \quad \mathcal{P}\left[-\sin \frac{1}{2} \pi x\right]=-1.84534$.
$\star \star \star$ Page $696 \quad \star \star \star$ Solution 11.5.7 (b):

$$
\begin{aligned}
& \lambda=-\omega^{2}<0, \quad G(x, y)= \begin{cases}\frac{\sinh \omega(y-1) \sinh \omega x}{\omega \sinh \omega}, & x<y \\
\frac{\sinh \omega(x-1) \sinh \omega y}{\omega \sinh \omega}, & x>y\end{cases} \\
& \lambda=0, \quad G(x, y)= \begin{cases}x(y-1), & x<y, \\
y(x-1), & x>y\end{cases} \\
& \lambda=\omega^{2} \neq n^{2} \pi^{2}>0, \quad G(x, y)= \begin{cases}\frac{\sin \omega(y-1) \sin \omega x}{\omega \sin \omega}, & x<y \\
\frac{\sin \omega(x-1) \sin \omega y}{\omega \sin \omega}, & x>y\end{cases}
\end{aligned}
$$

