
CORRECTIONS TO FIRST PRINTING OF

Olver, P.J., Equivalence, Invariants, and Symmetry ,
Cambridge University Press, Cambridge, 1995.

Last modified: January 4, 2021

⋆ ⋆ ⋆ On back cover, line 17–18, change

prospective geometry

to

projective geometry

⋆ ⋆ ⋆ page xv, add to acknowledgements

Elvis Bejko, Joe Benson, Jeongoo Cheh, Faruk Güngor, Joseph Malkoun, Oleg Moro-
zov, Juha Pohjanpelto, Jessica Senou, Francis Valiquette

⋆ ⋆ ⋆ page 22, Theorem 1.28, line 3, change

. . . all t, s ∈ R where the equation is defined.

to

. . . all t, s ∈ V where V ⊂ R2 is a connected open subset of the (t, s) plane containing
(0, 0) consisting of points where the equation is defined.

⋆ ⋆ ⋆ page 32, line 12-13, change

an (necessarily unique)

to

a (necessarily unique)

⋆ ⋆ ⋆ page 32, line before Definition 2.1, change

stucture

to

structure

⋆ ⋆ ⋆ page 36, line before Example 2.9, change

GL(2)

to

GL(2,C).

⋆ ⋆ ⋆ page 39, Example 2.13, change the first two occurrences of

PSL(n,R)

to

PGL(n,R).
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⋆ ⋆ ⋆ Also append to the last sentence

PSL(n,R) = SL(n,R)/{± 11} is equal to the connected component of PGL(n,R) con-
taining the identity.

⋆ ⋆ ⋆ page 51, equation (2.14), change

Ck
ij = −Ck

ij

to

Ck
ji = −Ck

ij

⋆ ⋆ ⋆ page 55, lines 4–5, change

GH = {g|gHg−1 ⊂ H} has Lie algebra

to

GH = {g|gHg−1 ⊂ H} is a normal subgroup with Lie algebra

⋆ ⋆ ⋆ page 61, line 31, change

there is a scalar function h
v
(t) such that

to

there is a function h
v
:Rk → Rk such that

⋆ ⋆ ⋆ page 65, Example 2.80, line 8, change

v(HF ) = 0

to

v(H) = 0.

⋆ ⋆ ⋆ page 73, line 9, change
(
a−1 da a−1(a db− b da)

0 1

)

to (
a−1 da a−1 db

0 0

)

⋆ ⋆ ⋆ page 85, equation (3.18), change

1 + th
v
(x) + 1

2 t
2
v(h

v
) + · · ·

to

1 + th
v
(x) + 1

2 t
2[v(h

v
) + h2

v
] + · · ·

⋆ ⋆ ⋆ page 87, equation (3.21), change

σ([v,w]) = ŵ(σ(v))− v̂(σ(w))

to

σ([v,w]) = v̂(σ(w))− ŵ(σ(v))
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⋆ ⋆ ⋆ page 93, change the first full paragraph

In order to formulate a general theorem governing . . . constructed in this manner.

to

In order to formulate a general theorem governing the existence of relative invariants
for sufficiently regular group actions, we consider the extended group action (3.15) on
the bundle E = M × U and its dual version (x, v) 7→ (g · x, µ(g, x)−T ) on the dual bundle
E∗ = X×U∗. The key remark is that there is a one-to-one correspondence between relative
invariants of weight µ and linear absolute invariants of the dual action. Specifically, a linear
function J(x, v) =

∑n
α=1 Rα(x)v

α is an invariant of the dual action on E∗ if and only if
the vector-valued function R(x) = (R1(x), . . . , Rq(x))

T is a relative invariant of weight µ.
Therefore, we need only produce a sufficient number of linear invariants of the extended
action. Moreover, if J(x, v) is any invariant of the extended group action, then it is not
hard to prove that its linear Taylor polynomial is also an invariant, and hence provides a
relative invariant for the multiplier representation. Thus, the only question is how many
independent relative invariants can be constructed in this manner.

⋆ ⋆ ⋆ page 94, lines 26–28, change

I do not know a general theorem that counts the number of relative invariants of
multiplier representations that do not satisfy the hypotheses of Theorem 3.36

to

A general theorem that counts the number of relative invariants of multiplier repre-
sentations in all cases can be found in the recent paper by M. Fels and the author, “On
relative invariants”, Math. Ann. 308 (1997), 701–732.

⋆ ⋆ ⋆ page 96, equation (3.30), change

v− = a1
∂

∂a0
+ 2a2

∂

∂a1
+ · · ·+ (n− 1)an−1

∂

∂an−2

+ nan
∂

∂an−1

,

v0 = −na0
∂

∂a0
− (n− 2)a1

∂

∂a1
+ · · ·+ (n− 2)an−1

∂

∂an−1

+ nan
∂

∂an
,

v+ = na0
∂

∂a1
+ (n− 1)a1

∂

∂a2
+ · · ·+ 2an−2

∂

∂an−1

+ an−1

∂

∂an
.

to

v− = na1
∂

∂a0
+ (n− 1)a2

∂

∂a1
+ · · ·+ 2an−1

∂

∂an−2

+ an
∂

∂an−1

,

v0 = na0
∂

∂a0
+ (n− 2)a1

∂

∂a1
+ · · ·+ (2− n)an−1

∂

∂an−1

− nan
∂

∂an
,

v+ = a0
∂

∂a1
+ 2a1

∂

∂a2
+ · · ·+ (n− 1)an−2

∂

∂an−1

+ nan−1

∂

∂an
.
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⋆ ⋆ ⋆ page 108, line 24, change

cot θ 6= a

to

cot t 6= a

⋆ ⋆ ⋆ page 110, Theorem 4.6, line 2, change

r-dimensional orbits

to

s-dimensional orbits

⋆ ⋆ ⋆ page 113, line 7, change

z̄0 = (x̄0, ū
(n)
0 ) = (x0, f̄(x0))

to

z̄0 = (x̄0, ū
(n)
0 ) = (x0, f̄

(n)(x0))

⋆ ⋆ ⋆ page 119, equation (4.31), change
∑

#J≥0

to
n∑

#J=0

⋆ ⋆ ⋆ page 119, equation (4.32), change

Di.

to

D
(n)
i ,

and add the following sentence:

where D
(n)
i denotes the order n truncation of the ith total derivative, i.e., the summation

in (4.18) is just over 0 ≤ #J ≤ n.

⋆ ⋆ ⋆ page 120, second line after equation (4.35), change

The Lie algebra (4.14)

to

The Lie algebra (4.35)

⋆ ⋆ ⋆ page 124, first displayed equation, add subscript i to Q in first summation

ω =

p∑

i=1

Qi(x, u
(n)) dxi +

q∑

α=1

∑

#J≤n

P J
α (x, u

(n)) duα
J
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⋆ ⋆ ⋆ page 126, line 12, change

(Ψ(n))∗θ

to

Ψ∗θ

⋆ ⋆ ⋆ page 142, line 28, change

s0 = 1, s1 = 2, . . . , sr−3 = sr−2 = r − 1

to

s0 = 2, s1 = 3, . . . , sr−3 = sr−2 = r − 1

⋆ ⋆ ⋆ page 144, line 10, change

aνµ ξ
i
ν

to

Aν
µ ξ

i
ν

⋆ ⋆ ⋆ page 148, equation (5.15), change

v0 = x
∂

∂x
−

n

2
u

∂

∂u
, v+ = x2 ∂

∂x
− nxu

∂

∂u
.

to

v0 = x
∂

∂x
+

n

2
u

∂

∂u
, v+ = x2 ∂

∂x
+ nxu

∂

∂u
.

⋆ ⋆ ⋆ page 159, lines 5, 15 & 18, change

dn+1K1 ∧ · · · ∧ dn+1Kr

to

dn+1[DK1] ∧ · · · ∧ dn+1[DKr]

⋆ ⋆ ⋆ page 171, lines 20 & -8, change

n+ 2

to

n+ 1

⋆ ⋆ ⋆ page 171, line -7 to -3, delete sentence

Moreover, if the stable . . . have order at most n+ 1.

⋆ ⋆ ⋆ page 173, Example 5.52, line 2, after “. . . via the standard representation”, add

(x, y, u) 7→ (αx+ βy, γx+ δy, u), where αδ − βγ = 1

⋆ ⋆ ⋆ page 174, add remark that the referenced formula for the curvature that appears in

[106, p. 26] is not quite correct. The denominator should be raised to the power 3/2.
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⋆ ⋆ ⋆ page 188, line -2, change

log x = h(u/x)

to

log x = h(u/xm)

⋆ ⋆ ⋆ page 190, lines 8–9, change

H-reduced equationsymmetry reduced equation ∆/H = 0 admits the corresponding
normalizer subgroup GH = {g|g ·H · g−1 ⊂ H} as a symmetry group.

to

H-reduced equation ∆/H = 0 admits the quotient group GH/H, where GH = {g|g ·
H · g−1 ⊂ H} is the normalizer subgroup, as a symmetry group.

⋆ ⋆ ⋆ page 190, line 18, change

η∂y + ζ∂u + ζy∂vy

to

η∂y + ζ∂v + ζy∂vy

⋆ ⋆ ⋆ page 190, line 22, change

v = ∂y
to

v = ∂v

⋆ ⋆ ⋆ page 192, formula (6.32), change

(1 + ux)
3/2

to

(1 + u2
x)

3/2

⋆ ⋆ ⋆ page 192, displayed formula after (6.32), change

(1 + θ2r)

to

(1 + r2θ2r)
3/2

⋆ ⋆ ⋆ page 195, line -4, change

Alternatively, x = wuu/wu, where w is an arbitrary solution . . .

to

Alternatively, w = xuu/xu is an arbitrary solution . . .

⋆ ⋆ ⋆ page 198, line 9, change

y = f(x)

to

w = f(x)
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⋆ ⋆ ⋆ page 198, equation (6.56), change

y

to

w

⋆ ⋆ ⋆ page 201, equation (6.61), change

det

∣∣∣∣∣∣∣∣∣∣

ξ1 ϕ1 ϕ1
1 . . . ϕr−1

1

ξ2 ϕ2 ϕ1
2 . . . ϕr−1

2

...
...

...
. . .

...
ξr ϕr ϕ1

r . . . ϕr−1
r

∣∣∣∣∣∣∣∣∣∣

= 0.

to

det

∣∣∣∣∣∣∣∣∣∣

ξ1 ϕ1 ϕ1
1 . . . ϕr−2

1

ξ2 ϕ2 ϕ1
2 . . . ϕr−2

2

...
...

...
. . .

...
ξr ϕr ϕ1

r . . . ϕr−2
r

∣∣∣∣∣∣∣∣∣∣

= 0.

⋆ ⋆ ⋆ page 213, equation (6.84), change all p’s to f ’s :

η(x) =
∣∣fn(x)

∣∣(1−n)/(2n)
exp

{∫ x fn−1(y)

nfn(y)
dy

}
. (6.84)

⋆ ⋆ ⋆ page 218, line -2, change

fk(x) = W k(x)

to

fk(x) = (−1)k W k(x)

⋆ ⋆ ⋆ page 226, line 6, change

P (t, x, u(2n))

to

R(t, x, u(2n))

⋆ ⋆ ⋆ page 231, lines -4 & -1, change

E(L)

to

E(L)
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⋆ ⋆ ⋆ page 238, Exercise 7.26, delete the sentence

Determine the conservation laws associated with the point symmetries found in Ex-
ercise 6.16.

since the precise connection between symmetries and conservation laws has not been dis-

cussed in this book. (See, however, [186].)

⋆ ⋆ ⋆ page 240, in Remark, replace two sentences:

However, I do not know . . . I. Anderson, [7].

by

See the paper by I.A. Kogan and the author, “Invariant Euler–Lagrange equations
and the invariant variational bicomplex”, Acta Appl. Math. 76 (2003), 137–193, for a
general formula for calculating the invariant formulation of the Euler–Lagrange equations
directly from the invariant formula for the Lagrangian.

⋆ ⋆ ⋆ page 243, lines 18 & 20, change

(x, vy, vyy, . . .)

to

(y, vy, vyy, . . .)

⋆ ⋆ ⋆ page 293, line 7, change

a4 = 0

to

a4 = a5 = 0

⋆ ⋆ ⋆ page 293, equations (9.30) & (9.32), change

ā6ω
3 = a6ω

3

to

ā6ω
3 = a6ω

3

⋆ ⋆ ⋆ page 307, line 13, change

α̃κ =
∑

k z
κ
j (x) θ

j

to

α̃κ =
∑

j z
κ
j (x) θ

j

⋆ ⋆ ⋆ page 307, equation (10.7), change

r∑

k=1

zκj θj

to
m∑

j=1

zκj θj
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⋆ ⋆ ⋆ page 309, equation (10.12), change

p∑

i=1

zκi θi

to
m∑

i=1

zκi θi

⋆ ⋆ ⋆ page 339, line 6, delete first

arc length

⋆ ⋆ ⋆ page 341, line -3, change

I4
to

I5

⋆ ⋆ ⋆ page 349, line -12, change

α1 − T 1
12θ

1 ∧ θ2 − T 1
13θ

1 ∧ θ3

to

α1 − T 1
12θ

2 − T 1
13θ

3

⋆ ⋆ ⋆ page 367, line 10, change

manifolds M

to

manifolds M and M

⋆ ⋆ ⋆ page 368, equation (11.30), change

= T ω1 ∧ ω2 ∧ ω3 = TΩ.

to

= T ω1 ∧ ω2 ∧ ω3.

⋆ ⋆ ⋆ page 372, lines 13–16, change

However, I do not know any naturally occurring examples exhibiting this phenomenon,
and, moreover, the prolongation procedure to be discussed below will handle this (remote)
possibility as well.)

to

However, the prolongation procedure to be discussed below will handle this possibility
as well; an example is the equivalence problem for a parabolic evolution equation analyzed
in [69].)
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⋆ ⋆ ⋆ page 375, line 5, change

(12.3)

to

(12.1)

⋆ ⋆ ⋆ page 394, lines 16 & 21, change

(11.6)

to

(11.7)

⋆ ⋆ ⋆ page 394, line 22, change

vector S

to

matrix S

⋆ ⋆ ⋆ page 395, equation (12.52), change

̟ = α + S θ, or explicitly, ̟i = αi +
m∑

j=1

Si
jθ

j

to

̟ = α − S θ, or explicitly, ̟i = αi −
m∑

j=1

Si
jθ

j

⋆ ⋆ ⋆ page 406, equation (12.73), change

QpD̂xQpp6Quu

to

QpD̂xQpp + 6Quu

⋆ ⋆ ⋆ page 411, lines 12–13, change

c(x, y, ϕ(x, y))
∂ϕ

∂x
= a(x, y, ϕ(x, y)),

c(x, y, ϕ(x, y))
∂ϕ

∂y
= b(x, y, ϕ(x, y)).

to

c(x, y, ϕ(x, y))
∂ϕ

∂x
= −a(x, y, ϕ(x, y)),

c(x, y, ϕ(x, y))
∂ϕ

∂y
= −b(x, y, ϕ(x, y)).
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⋆ ⋆ ⋆ page 423, equation (14.4), change

Φ(t, w)

to

Φ(t, s)

⋆ ⋆ ⋆ page 425, lines 3–6, change

There is, however, a four-parameter group action obtained by including the additional
generator z∂y, whose associated one-parameter group (x, y, z) 7→ (x, y + µz, z) can be
recovered from the previous group transformations by taking commutators.

to

Moreover, one cannot include these vector fields in a finite-dimensional Lie algebra,
since [v2,v3] = v4 = z∂y, [v4,v3] = v5 = z2∂y, and so on, hence the successive commuta-
tors span an infinite-dimensional Lie algebra of vector fields.

⋆ ⋆ ⋆ pages 425, lines 33–34, change

Relative invariants correspond to linear invariants J(x, u) = R(x)·u =
∑q

α=1 Rα(x)u
α

of the extended action, . . .

to

Relative invariants of the dual action on E∗ = X×U∗ correspond to linear invariants
J(x, u) =

∑q
α=1 Rα(x)u

α of the extended action, . . .

⋆ ⋆ ⋆ page 437, line -9, change

. . . the rank zero case in Theorem 4.24.

to

. . . the rank zero case in Theorem 4.18.

⋆ ⋆ ⋆ page 442, Figure 5, change

L

to

M

⋆ ⋆ ⋆ page 446, line 5, change

. . . restrictions of θ to U and V , so that

to

. . . restrictions of θ to U and Ũ , so that

⋆ ⋆ ⋆ page 472, Table 1, Case 1.8, column 3, change

a(1)⋉C
k

to

C⋉ (C⋉C
k)
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⋆ ⋆ ⋆ page 475, Table 6, Case 6.1:

It would be better to replace α by β in this entry. A good exercise is to determine the
relation between α and β in the complex equivalence between Case 6.1 and Case 1.7 (for
k = 1).

⋆ ⋆ ⋆ page 475, Table 6, Cases 6.2 and 6.3, column 5, change both from

1.1

to

1.2

⋆ ⋆ ⋆ pages 477, 478, 480, 484, 486 & 487, update the following references:

[8] Anderson, I.M., and Kamran, N., The variational bicomplex for second order scalar
partial differential equations in the plane, Duke Math. J. 87 (1997), 265–319

[29] Bryant, R.L., and Griffiths, P.A., Characteristic cohomology of differential sys-
tems I, II, J. Amer. Math. Soc. 8 (1995), 507–596, Duke Math. J. 78 (1995), 531–676.

[30] Bryant, R.L., Griffiths, P.A., and Hsu, L.; Hyperbolic exterior differential systems
and their conservation laws, Part I, Selecta Math. 1 (1995), 21–112.

[70] Fels, M., The equivalence problem for systems of second-order ordinary differential
equations, Proc. London Math. Soc. 71 (1995), 221–240

[139] Komrakov, B., Primitive actions and the Sophus Lie problem, in: The Sophus

Lie Memorial Conference, Oslo, 1992, O.A. Laudal and B. Jahren, eds., Scandinavian
Univ. Press, Oslo, 1994, pp. 187–269

[188] Olver, P.J., Non-associative local Lie groups, J. Lie Theory 6 (1996), 23–51.

[190] Olver, P.J., Sapiro, G., and Tannenbaum, A., Invariant geometric evolutions of
surfaces and volumetric smoothing, SIAM J. Appl. Math. 57 (1997), 176–194.

⋆ ⋆ ⋆ page 479, refs [37–38], change

Complétes

to

Complètes

⋆ ⋆ ⋆ page 479, refs [37–42], change

Gauthiers

to

Gauthier

⋆ ⋆ ⋆ page 483, reference [128], change

dx/dy

to

dy/dx
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⋆ ⋆ ⋆ page 500, change

Galois, E., 3

to

Galois, E., 4

⋆ ⋆ ⋆ page 501, change

Morikawa, H., 217, [170–172]

to

Morikawa, H., 217, [170]

Morrey, C.B., Jr., 346, [171]

Mostow, G.D., 41, 61, [172]

⋆ ⋆ ⋆ page 503, add the following to the end of the Author Index.

Zhitomirskii, M.Y., 31, [232], [233]

⋆ ⋆ ⋆ page 504, change two entries

affine-invariant arc length, 339

to

affine-invariant arc length, 241, 339
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