Classical Invariant Theory
Peter J. Olver
Cambridge University Press, 1999
Table of Contents
- Introduction x
- Notes to the Reader xi
- A Brief History xviii
- Acknowledgments xxi
- Chapter 1 Prelude --- Quadratic Polynomials and Quadratic Forms 1
- Quadratic Polynomials 2
- Quadratic Forms and Projective Transformations 5
- Chapter 2 Basic Invariant Theory for Binary Forms 11
- Binary Forms 11
- Transformation Rules 13
- The Geometry of Projective Space 15
- Homogeneous Functions and Forms 19
- Roots 21
- Invariants and Covariants 24
- The Simplest Examples 25
- Degree, Order, and Weight 30
- Construction of Covariants 32
- Joint Covariants and Polarization 33
- Resultants and Discriminants 35
- The Hilbert Basis Theorem 39
- Syzygies 41
- Chapter 3 Groups and Transformations 44
- Basic Group Theory 44
- Group Homomorphisms 47
- Transformation Groups 50
- Symmetry Groups, Invariant Sets, and Orbits 54
- Equivalence and Canonical Forms 58
- Chapter 4 Representations and Invariants 62
- Representations 62
- Irreducibility 66
- Function Spaces 69
- Invariant Functions 73
- Joint Invariants 76
- Multiplier Representations 79
- Relative Invariants 83
- Chapter 5 Transvectants 86
- The Omega Process 87
- Projective Coordinates 90
- Partial Transvectants 92
- The Scaling and Polarization Processes 96
- The Poisson and Moyal Brackets 97
- Chapter 6 Symbolic Methods 99
- The Fourier Transform 100
- The General Transform 102
- Brackets 107
- Syzygies 110
- The Classical Symbolic Method 112
- Proofs of the Fundamental Theorems 117
- Reciprocity 122
- Fundamental Systems of Covariants 124
- Chapter 7 Graphical Methods 128
- Digraphs, Molecules, and Covariants 129
- Syzygies and the Algebra of Digraphs 133
- Graphical Representation of Transvectants 137
- Transvectants of Homogeneous Functions 140
- Gordan's Method 143
- Chapter 8 Lie Groups and Moving Frames 150
- Lie Groups 151
- Lie Transformation Groups 155
- Orbits and Invariance 157
- Normalization 161
- Joint Invariants 166
- Prolongation of Group Actions 169
- Differential Invariants 171
- Differential Invariants for Binary Forms 177
- Equivalence and Signature Curves 181
- Symmetries of Curves 185
- Equivalence and Symmetry of Binary Forms 188
- Chapter 9 Infinitesimal Methods 198
- One-Parameter Subgroups 199
- Matrix Lie Algebras 201
- Vector Fields and Orbits 205
- Infinitesimal Invariance 210
- Infinitesimal Multipliers and Relative Invariants 215
- Isobaric and Semi-invariants 216
- The Hilbert Operator 220
- Proof of the Hilbert Basis Theorem 223
- Nullforms 226
- Chapter 10 Multivariate Polynomials 228
- Polynomials and Algebraic Curves 229
- Transformations and Covariants 231
- Transvectants 234
- Tensorial Invariants 236
- Symbolic Methods 238
- Biforms 242
- References 247
- Author Index 260
- Subject Index 264