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**********

On page 20, Exercise 2.8, there is a missing minus sign in the exponential:

Q(x, y) =

{
x2 exp(−x2/y2), y 6= 0,

0, y = 0,

**********

On page 25, formula (2.20), there should be no bar over J :

J(a,x) = (αδ − βγ)k J(ā, x̄).

**********

On page 34, line 4 after (2.36), change:

. . . process R∂/∂Q to J to . . . process R∂/∂Q to K

**********

On pages 36-37, the determinantal formula (2.42) for the resultant should be modified
by reversing the order of the rows with the b̃i’s in them. This reordering only affects the
sign of the resultant, but the construction of the subresultants in Exercise 2.38 requires
that it be done.

R[P,Q] = (−1)k det
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where k is the integer quotient of n/2.

**********

On page 38, in equation (2.45), there is a missing factor and the product should be
over α < β:

∆[Q] =
(−1)n(n−1)/2

nn

∏

α<β

(xαyβ − yαxβ)
2. (2.45)

Also, in the following displayed equation, there is a missing factor in the formula for ∂Q/∂x:

Q(x, y) =

n∏

α=1

(xyα − yxα), so
∂Q

∂x
=

n∑

β=1

yβ
∏

α 6=β

(xyα − yxα).

Thanks to Alexander Isaev for pointing this out.

**********

As noted by Andries Brouwer, in the table on page 40, the number of independent
invariants for a binary form of degree 10 computed by Sylvester is 99, not 104. Moreover, it
is now known that Sylvester’s counts of the number of invariants and covariants for forms
of degrees 7,9,10 and 12 are all understated.

The corrected table, including all known results (as of June 2015) is the following:

degree 2 3 4 5 6 7 8 9 10 12

# invariants 1 1 2 4 5 30 9 92 106 ≥ 113
# covariants 2 4 5 23 26 147 69 ≥ 476 ≥ 510 ≥ 989

Details, as well as complete references to the literature, can be found on Brouwer’s web page
http://www.win.tue.nl/∼aeb/math/invar.html that also includes bracket formulas for
all the generating invariants of binary forms up to degree 9.

**********

On page 49, in Example 3.24, the last sentence should read:

For n even, PSL(n,R) has two components. The group SL(n,R) is a two-fold covering
of its connected component containing the identity, denoted PSL+(n,R) = SL(n,R)/{±11}.

Thanks to Juha Pohjanpelto for pointing this out.

**********
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Footnote on p. 79. Delete “(written under Hilbert)”. Junker was, in fact, a student
of Brill in Tübingen.

Thanks to Emmanuel Briand for this remark.

**********

On page 90, the third formula (5.11) should be

(Q,R)(3) = m(m− 1)(m− 2)Q′′′R − 3(m− 1)(m− 2)(n− 2)Q′′R′ +

+ 3(m− 2)(n− 1)(n− 2)Q′R′′ − n(n− 1)(n− 2)QR′′′.

**********

On page 92, formula (5.16) the last term should have −3 as a coefficient:

V = Q3Q′′′′−4
(n− 3)

n
Q2Q′Q′′′+6

(n− 2)(n− 3)

n2
QQ′ 2Q′′−3

(n− 1)(n− 2)(n− 3)

n3
(Q′)4

**********

In a paper by D. Zagier, Modular forms and differential operators, Proc. Indian

Acad. Sci. (Math. Sci.) 104 (1994) 57–75, the connection between transvectants and
Rankin-Cohen brackets is presented as an open problem. Thus, the remark on p. 92
answers Zagier’s question. The key is to note that the degree of a binary form or covari-
ant is minus its weight when considered as a modular form. Therefore, the transvectants
of negative weight covariants agree with the Rankin-Cohen brackets of positive weight
modular forms. Note that the change in sign is in accordance with how the power of the
multiplier appears in the transformation rule (2.8).

Further details and interesting new developments can be found in P.J. Olver and
J. Sanders, Transvectants, modular forms, and the Heisenberg algebra, Adv. Appl. Math.

25 (2000) 252–283. See also Y.–J. Choie, B. Mourrain, and P. Solé, Rankin–Cohen brackets
and invariant theory, J. Alg. Combin. 13 (2001) 5–13, for another perspective on this
connection between classical invariant theory and modular forms.

Thanks to Patrick Solé and Jan Sanders for correspondence on this point.

**********

The formula on the next to last line of page 98 should be [[P,Q]]t = {P,Q}+O(t2)

**********
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On p. 118, (6.40) should include the conditions α 6= β, γ 6= δ. Similarly, the Capelli
identity (6.42) should include the condition α 6= β.

**********

On page 178, formula (8.32): change (m− j)! to (n−m)!

**********

On page 179, in (8.37), the formulas for γ and δ are each missing a term:

γ =
1

n
Q(1−n)/n Q′, δ = Q1/n −

1

n
pQ(1−n)/n Q′.

**********

On pages 192-193, the formulae for the polynomials A and B are not quite correct.
One needs to cancel common factors in the rational covariants J and K before multiplying
out. Details and further results on discrete symmetries of polynomials can be found in
the paper: I. Berchenko and P.J. Olver, Symmetries of polynomials, J. Symb. Comp. 29

(2000) 485–514.

**********

On page 193, part (a) of Corollary 8.68 should read only k ≤ 6n− 12. Equality is not
achieved if either the equation A(p, q) = 0 has multiple roots, or the covariants T and H
have common factors. See the preceding paper for details.

**********

On page 195, replace J by J2 in equation (8.70), which should read

9j2
(
K + 8

3

)3
= 2i3

(
K − 1

2
J2 + 16

9

)2
. (8.70)

**********

p. 210: In Theorem 9.28 change X ⊂ R
n to X ⊂ R

m.

**********

p. 210: Equation (9.21) is missing a centered dot: I(e−tJ · x) = I(x).

**********
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The discussion of semi-invariants on pp. 218–221 is flawed. The basic (and classical)
definition should state a semi-invariant is a relative invariant for the upper triangular
subgroup U , meaning that

v−(F ) = 0, and v0(F ) = kF,

where k = 2 wt F − ord F · deg Q is the called the index of the semi-invariant.

An invariant is a semi-invariant of index 0. Proposition 9.45 should state that the
leading coefficient K(a), not the leading term, of a covariant (9.46) is a semi-invariant of
index n. The proof should be modified accordingly. (The leading term L(a, x) = K(a)xn

of (9.46) is invariant under v0, but not invariant at all under v−.)

Furthermore, in the proof of Theorem 9.49, one needs to modify the proof that
v
n+1
+ K = 0, basing it on (9.49) as described in Hilbert’s paper.

p. 219, last line: change Q̂ = a0 to Q̂ = a3.

p. 220, formulas (9.47–49): Several + and − signs need to be fixed:

v0v− = v−(v0 + 2), v0v+ = v+(v0 − 2), v+v− = v−v+ + v0. (9.47)

v0(v−)
k = (v−)

k(v0 + 2k), v0(v+)
k = (v+)

k(v0 − 2k). (9.48)

v+(v−)
k = (v−)

k
v+ + (v−)

k−1[−kv0 − k(k − 1)],

v−(v+)
k = (v+)

k
v− + (v+)

k−1[kv0 − k(k − 1)].
(9.49)

p. 221, line -5: change v0(K) = −nK to v0(K) = nK.

Following equation:

v0

[
{(v+)

kK} xn−kyk
]
=

= {(v+)
k(v0 − 2k)K} xn−kyk + (2k − n){(v+)

kK} xn−kyk = 0,

p. 221, top displayed equation: Change sign in front of kv0 term:

v−

[
{(v+)

kK} xn−kyk
]
=

= {(v+)
k
v−K + (v+)

k−1[kv0 − k(k − 1)]K} xn−kyk

− (n− k){(v+)
kK} xn−k−1yk+1

= k(n− k + 1){(v+)
k−1K} xn−kyk − (n− k){(v+)

kK} xn−k−1yk+1.

Bottom displayed equation: Change sign of middle terms:

v−(v+)
k(v−)

k =

= (v+)
k(v−)

k+1 + k(v+)
k−1

v0(v−)
k − k(k − 1)(v+)

k−1(v−)
k

= (v+)
k(v−)

k+1 + k(v+)
k−1(v−)

k
v0 + k(k + 1)(v+)

k−1(v−)
k.

I would like to thank James Murdock and Frank Leitenberger for sharing their
corrections to the material on semi-invariants.
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**********

pp. 252 & 261: change Hermite, M. to Hermite, Ch.

**********

p. 263: change Reynolds, 74 to Reynolds, O., 74

**********

I would like to thank also Ken Driessel for helpful comments and assistance preparing
this TEX document.
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