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⋆ ⋆ ⋆ On page 5, lines 24–27, change

Thus T 2 can be covered by two coordinate charts

U1 = {(θ, ρ) : 0 < θ < 2π, 0 < ρ < 2π},

U2 = {(θ, ρ) : π < θ < 3π, π < ρ < 3π},

with overlap function . . .

to

Thus T 2 can be covered by three coordinate charts, e.g.

U1 = {(θ, ρ) : 0 < θ < 2π, 0 < ρ < 2π},

U2 = {(θ, ρ) : π < θ < 3π, π < ρ < 3π},

U3 =
{
(θ, ρ) : 1

2 π < θ < 5
2 π,

1
2 π < ρ < 5

2 π
}
.

The first overlap function is . . .

⋆ ⋆ ⋆ On page 10, line 6, change

φ ◦ φ̃−1 : R → R

to

φ−1
◦ φ̃ : R → R

⋆ ⋆ ⋆ On page 19, line 17, change

x ∈ V0 =
{
x : | x | < 1

2

}

to

x ∈ V0 =
{
−1 < x < 1

3

}

⋆ ⋆ ⋆ On page 36, line 9, change

for all ε, θ ∈ R, x ∈ M , such that both sides are defined, if and only if

to

for all x ∈ M , and (ε, θ) ∈ V , where V ⊂ R
2 is a connected open subset containing

(0, 0) such that both sides of (1.34) are defined at all points therein, if and only if
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⋆ ⋆ ⋆ On page 37, lines 7–9, change

. . .plane:

V = {(θ, ε) : both sides of (1.34) are defined at (θ, ε)}

and
U = {(θ, ε) : both sides of (1.34) are defined and equal at (θ, ε)}

to

. . .plane: first V is the connected component of

V̂ = {(θ, ε) : both sides of (1.34) are defined at(θ, ε)}

containing the origin; second U = Û ∩ V , where

Û = {(θ, ε) : both sides of (1.34) are defined and equal at(θ, ε)}

⋆ ⋆ ⋆ On page 37, line 10, delete the sentence

Note that U ⊂ V , and that V is a connected subset of the (θ, ε) plane.

⋆ ⋆ ⋆ On page 37, line 14, add the following sentence after the final U = V .

Warning: It is not, in general, true that Û = V̂ !

Remark: The preceding corrections are because Theorem 1.34 had a subtle flaw in it,
first pointed out to me by James Devlin. The following exercise gives a counterexample to
the original version. More details can be found in my paper: Olver, P.J., Non-associative
local Lie groups, J. Lie Theory 6 (1996) 23–51. Thanks also to Hans Lundmark for
comments.

Exercise: Let M = { (r, θ) | r > 0 }. Prove that the two vector fields

v = cos θ
∂

∂r
−

sin θ

r

∂

∂θ
, w = sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

commute, [v,w] = 0 on M , but their flows do not globally commute. Hint: Consider r, θ
as polar coordinates.

⋆ ⋆ ⋆ On page 43, line 23, change

smoth vector fields

to

smooth vector fields

⋆ ⋆ ⋆ On page 52, Example 1.58, change

Lie proved that

to

Lie proved, [4], that

2



⋆ ⋆ ⋆ On page 64, line 10, delete the middle terms between the two = signs. Thus, the
equation should read

exp(εv0)
∗[ω|exp(εv0)x

]
=

∑

I

αI(e
εx)ekεdxI ,

⋆ ⋆ ⋆ On page 64, line 18, change
∫ 1

log ε

to ∫ 1

exp ε

⋆ ⋆ ⋆ On page 64, line 19, change

λ = log ε̃

to

λ = eε̃

⋆ ⋆ ⋆ On page 67, line 15, change

sort

to

short

⋆ ⋆ ⋆ On page 70, Exercise 1.8, change

in polar coordinates,

to

in polar coordinates with r > 0,

⋆ ⋆ ⋆ On page 72, Exercise 1.24(b), change

h ⊂ g has the property

to

h ⊂ g is a normal subalgebra (or ideal), meaning that it has the property

⋆ ⋆ ⋆ On pages 79–81, the ends of the proofs of Proposition 2.6 and Theorem 2.8 that
refer back to (1.40) are subtly flawed, in that, under our definition of a local group action,
even when g = g1 · g2 with g, g1, g2 ∈ Gx, there is no guarantee that g1 ∈ Gg2·x

, i.e., that
g1 · (g2 · x) is defined even though g · x = (g1 · g2) · x is defined.

However, a more direct argument, that avoids this difficulty, is to replace the end of
the proof of Proposition 2.6 by the following :

. . . Conversely, if (2.1) holds everywhere, then

d

dε
ζ(exp(εv)x) = 0
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where defined, and hence ζ(exp(εv)x) = ζ(x) = c is constant for ε in the connected
interval containing 0 in { ε ∈ R | exp(εv) ∈ Gx }. Using the fact that the exponential map
is a local diffeomorphism from a neighborhood of 0 ∈ g to a neighborhood of e ∈ Gx, we
conclude that ζ(g · x) = c for all g in an open neighborhood of the identity in Gx. Now,

set G̃x = { g ∈ Gx | ζ(g · x) = c }. Applying the preceding argument at the point g · x for

any g ∈ G̃x proves that G̃x is open, while continuity proves that it is closed in Gx. Thus,

by connectivity, G̃x = Gx, and the result follows.

Similarly, replace the end of the proof of Theorem 2.8 by :

. . . We have thus shown that if x0 is a solution to F (x) = 0, and v is an infinitesimal
generator of G, and ε is sufficiently small, then exp(εv)x0 is also a solution. As in the

proof of Proposition 2.6, one then shows that G̃x = { g ∈ Gx |F (g · x0) = 0 } is both open

and closed in Gx, and hence, by connectivity, G̃x = Gx.

• Thanks to Colin James Stockdale Klaus for correspondence on this point.

⋆ ⋆ ⋆ On page 83, line 14, change

folowing

to

following

⋆ ⋆ ⋆ On page 93, line 8, change

functon

to

function

⋆ ⋆ ⋆ On page 106, line -5, the term inside the parentheses should be Ξε(x). Thus, the
equation should read

∑

l

∂2Ξk
−ε

∂x̃j ∂x̃l
(
Ξε(x)

) dΞl
ε

dε
(x) = 0,

⋆ ⋆ ⋆ On page 111, line 3, change

Jf̃ε(x)

to

Jf̃ε(x̃)

⋆ ⋆ ⋆ On page 113, line 4, change

ξ = u

to

ξ = −u
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⋆ ⋆ ⋆ On page 123, line 5, change

τ
∂

∂τ
to

τ
∂

∂t

⋆ ⋆ ⋆ On page 151, line after (2.110), change

normal subalgebra of g

to

normal subalgebra (ideal) of g

⋆ ⋆ ⋆ On page 163, line -3, change

differential equatons

to

differential equations

⋆ ⋆ ⋆ On page 167, line 2, change
(
p+k−1

k

)
· l

to (
p+k
k

)
· l

⋆ ⋆ ⋆ On page 167, Definition 2.83, change

differential equatons

to

differential equations

⋆ ⋆ ⋆ On page 169, line -9, change

Exercise 2.32

to

Exercise 2.33

• Thanks to Mariano Hermida de La Rica for the preceding four corrections.

⋆ ⋆ ⋆ On page 187, line 8, change

with respect y

to

with respect to y
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⋆ ⋆ ⋆ On page 187, line 14, change

∂δ

∂x̂
+

∂δ

∂y

∂η

∂x
+

∂δ

∂v

∂v

∂y

∂η

∂x
to

∂δ

∂x̂

∂x̂

∂x
+

∂δ

∂y

∂η

∂x
+

∂δ

∂v

∂v

∂y

∂η

∂x

• Thanks to Wen-xiu Ma and his class for catching this and several other errors.

⋆ ⋆ ⋆ On page 197, line -10, change

SO(3)–invariant solutions exist.

to

SO(3)–invariant solutions can be constructed by this technique.

⋆ ⋆ ⋆ On page 202, lines 13–14, change

linear system of ordinary differential equations,

to

linear, constant coefficient system of ordinary differential equations,

⋆ ⋆ ⋆ On page 207, line -2, change

Example 2.64

to

Example 2.44

⋆ ⋆ ⋆ On page 212, on both line 12 and line 13, change

M/G

to

M/G2

⋆ ⋆ ⋆ On page 214, line 13, change

F̃ (x) = F [π(x)]

to

F (x) = F̃ [π(x)]

⋆ ⋆ ⋆ On page 215, line -1, change

F̃ = F̃ (π1, . . . , πm−s)

to

F̃ = F̂ (π1, . . . , πm−s)
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⋆ ⋆ ⋆ On page 217, line 6, change

F (R,K) = 0

to

F̂ (R,K) = 0

⋆ ⋆ ⋆ On page 238, Exercise 3.7, change the formula to

R =

(
t2E

p0

)1/5

h

[
p0

(
t6

ρ30 E
2

)1/5
]

• Thanks to Kameron Decker Harris for spotting this.

⋆ ⋆ ⋆ On page 273, line -7, change

tecnique

to

technique

⋆ ⋆ ⋆ On page 280, in the table, change

Ix = xD − yA+ 1
2
xuut + tMx

to

Ix = xD + yA+ 1
2
xuut + tMx

• Thanks to Gehrt Hartjen for checking through this table and the table on page 340 in
his Mathematics Diplomarbeit in Aachen, 2001.

⋆ ⋆ ⋆ On page 285, line 5, change

4.13. (a)

to

** 4.13. (a)

⋆ ⋆ ⋆ On page 285, line 7, change

Prove that the reduced system ∆/G for the G-invariant solutions of ∆ is also the
Euler-Lagrange equations for some variational problem on the quotient manifold M/G.
Does this generalize to nonvariational symmetry groups?

to

Is the reduced system ∆/G for the G-invariant solutions of ∆ necessarily the Euler-
Lagrange equations for some variational problem on the quotient manifold M/G? See
I.M. Anderson and M. Fels, Symmetry reduction of variational bicomplexes and the prin-
ciple of symmetric criticality, Amer. J. Math. 119 (1997) 609–670, for details.
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⋆ ⋆ ⋆ On page 290, line -4, change

Exercise 2.33

to

Exercise 2.35

⋆ ⋆ ⋆ On page 323, line -8 change

a third order evolution equation is integrable

to

a third order evolution equation in which uxxx occurs linearly is integrable

⋆ ⋆ ⋆ On page 328, line 10, change

Bluman and Kumei, [3],

to

Bluman and Kumei, [2],

⋆ ⋆ ⋆ On page 331, insert minus sign after equals sign in second displayed equation:

D∗
∆Q = − qt − qxx + u qx

⋆ ⋆ ⋆ On page 340, in line 4 of the table, change

−yuxxx + xuxyy + uxy

to

−yuxxx + xuxxy + uxy

⋆ ⋆ ⋆ On page 340, in line 5 of the table, change

uxx(yuyt +
1
2 ut)− uyy(xuxt +

1
2 ut)

to

−uxx(yuyt +
1
2 ut) + uyy(xuxt +

1
2 ut)

⋆ ⋆ ⋆ On page 350, lines -8 to -7, change

the their Fréchet

to

their Fréchet

⋆ ⋆ ⋆ On page 364, Theorem 5.92, first line, change

P [u] ∈ Ap

to

P [u] ∈ Aq

• Thanks to Thomas von Schroeter for spotting this.
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⋆ ⋆ ⋆ On page 366, line -7, change

J \ I

to

I \ J

• Thanks to Rob Thompson for catching this and several other errors.

⋆ ⋆ ⋆ On page 381, Exercise 3.16a:

The system does not, in fact have a recursion operator, although there is a recursive
formula for generating the higher order symmetries. On the other hand, the related system

ut = uxx + v2, vt = vxx,

does admit a recursion operator. Details can be found in: Beukers, F., Sanders, J.A., and
Wang, J.P., On integrability of systems of evolution equations, J. Diff. Eq. 172 (2001),
396-408.

⋆ ⋆ ⋆ On page 381, Exercise 3.16b:

A proof that the Bakirov system has only one generalized symmetry can now be found
in: Beukers, F., Sanders, J.A., and Wang, J.P., One symmetry does not imply integrability,
J. Diff. Eq. 146 (1998), 251–260.

⋆ ⋆ ⋆ On page 387, Exercise 5.51, change

homogeneous system of differential equations

to

homogeneous, totally nondegenerate system of differential equations

Also, delete the first sentence in the Hint, which is not valid when the conservation law is
not polynomial.

• Thanks to Kostya Druzhkov for correspondence on this exercise.

⋆ ⋆ ⋆ On page 397, equation (6.17), change closing } to 〉 :

{F,H}(x) = 〈 x ; [∇F (x),∇H(x) ] 〉, x ∈ g∗, (6.17)

⋆ ⋆ ⋆ On page 420, line -8, change

rocedure.

to

procedure.
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⋆ ⋆ ⋆ On page 427, lines 23–24, change

Recently, Weinstein, [3], proposed the less historically motivated term “Casimir func-
tion” for these objects, . . .

to

Later, R. Littlejohn, AIP Conference Proc. 88 (1982), 47–66, and A. Weinstein, AIP
Conference Proc. 88 (1982), 1–11, and [3], proposed the less historically motivated term
“Casimir function” for these objects, . . .

• Thanks to Phil Morrison for alerting me to these earlier references.

⋆ ⋆ ⋆ On page 430, Exercise 6.16:

One needs to assume that ∂2L/∂u2
n 6= 0 in order to (locally) solve the final equation

for un in terms of p, q.

• Thanks to Thomas von Schroeter for alerting me to this omission.

⋆ ⋆ ⋆ On page 469, change title of second reference by H. Bateman to

On dissipative systems and related variational principles

⋆ ⋆ ⋆ On page 480, line 2 change

Leipz. Berich. 1 (1895)

to

Leipz. Berichte 47 (1895)

⋆ ⋆ ⋆ On page 480, line 5 change

Leipz. Berich. 3 (1897)

to

Leipz. Berichte 49 (1897)

⋆ ⋆ ⋆ On page 501, change

adjoint 314, 465

to

adjoint 314, 329, 343, 465
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