Homework Assignment \# 1

Exercises: Strauss p. 9, \#1, 3, 7 (assuming a, b, c are constant.)

1. (a) Find the characteristic curves for the differential equation $u_{t}+\left(x^{2}-1\right) u_{x}=0$.
(b) Write down the solution to the initial value problem $u(0, x)=e^{-x^{2}}$.
(c) Graph the solution at $t=1, t=10$ and $t=100$. Explain what you observe.
2. Explain how the sign of the wave velocity influences the direction of wave motion.
3. (a) Prove that the characteristic curves of the transport equation $u_{t}+c(x) u_{x}=0$ equation cannot cross each other. (b) Prove that if $x=g(t)$ is a characteristic curve, then so are the translated curves $x=g(t+\delta)$ for any δ. (c) Prove that each non-vertical characteristic curve is the graph of a monotone function. (d) Explain why a wave cannot reverse its direction.
4. Let us solve the transport equation $u_{t}+c(t, x) u_{x}=0$ with time-varying wave speed. The corresponding characteristic equation is $\frac{d x}{d t}=c(t, x)$ and its solutions $x(t)$ define the characteristic curves of the partial differential equation. (a) Prove that any solution $u(t, x)$ is constant on the characteristic curves. (b) Let $\xi(t, x)=k$, where k is an arbitrary constant, be the general solution to the characteristic equation. Prove that $u(t, x)=p(\xi(t, x))$, where $p(s)$ is any differentiable function, defines a solution to the transport equation. (c) Solve the initial value problem $u_{t}+(2 t-1) u_{x}=0$, $u(0, x)=\frac{1}{1+x^{2}}$. Explain what happens to the solution as t increases.

Due: Tuesday, September 21

Text: Walter A. Strauss, Partial Differential Equations: an Introduction, John Wiley \& Sons, New York, 1992.

