Homework Assignment \# 2

1. (a) Find two linearly independent power series solutions to the differential equation

$$
u^{\prime \prime}+x u+2 u=0 \quad \text { at the point } \quad x_{0}=0
$$

(b) Write down the power series solution to the initial value problem $u(0)=1, u^{\prime}(0)=-1$. (c) What is the radius of convergence of your power series solution in part (b)? Can you justify this? (d) Let $p_{n}(x)$ be the polynomial of degree n obtained by summing the first n terms in the power series solution from part (b). Graph $p_{2}(x), p_{4}(x)$ and $p_{6}(x)$. Compare their graphs with the actual solution. How large does n need to be so that $p_{n}(x)$ is a reasonable approximation to $u(x)$ on the interval $-2 \leq x \leq 2$?
2. Find the general real solution to the differential equations
(a) $x^{2} u^{\prime \prime}+3 x u^{\prime}+5 u=0$,
(b) $(x-1)^{2} u^{\prime \prime}+8(x-1) u^{\prime}+12 u=0$.
3. Consider the differential equation

$$
2 x u^{\prime \prime}+u^{\prime}+x u=0 .
$$

(a) Prove that $x=0$ is a regular singular point; (b) Find two independent series solutions in powers of x.
4. The Chebyshev differential equation is

$$
\left(1-x^{2}\right) u^{\prime \prime}-x u^{\prime}+m^{2} u=0 .
$$

(a) Classify all $x_{0} \in \mathbb{R}$ as to (i) regular point; (ii) regular singular point; (iii) irregular singular point. (b) Show that, if m is an integer, the equation has a polynomial solution of degree m, known as a Chebyshev polynomial. Write down the Chebyshev polynomials of degrees 1,2 and 3 . (c) For $m=1$, find two linearly independent solutions around the point $x_{0}=1$.

Due: Tuesday, February 22
Text: Walter A. Strauss, Partial Differential Equations: an Introduction, John Wiley \& Sons, New York, 1992.

