Math 8385
September 22, 2021

Homework Assignment \# 1

Exercises:

1. Suppose the Lagrangian $L(x, u, p)=L(p)$ depends only on the derivative variable, and so we are minimizing an integral of the form $J[u]=\int_{a}^{b} L\left(u^{\prime}\right) d x$ subject to fixed boundary conditions $u(a)=\alpha, u(b)=\beta$. Prove that either (a) the critical functions are straight lines, or (b) every function is a critical function. What can you say about the minimization problem in the latter case?
2. Find the minimizer for the variational problem $J[u]=\int_{1}^{2} x \sqrt{1+u^{\prime 2}} d x$ subject to boundary conditions $u(1)=0, u(2)=1$. Hint: You will need to solve the boundary conditions numerically.
3. Find the function $u(x)$ that minimizes the integral

$$
\mathcal{I}[u]=\int_{0}^{\pi}\left[\left(\frac{d u}{d x}\right)^{2}-2 x u \frac{d u}{d x}+x^{2} u\right] d x
$$

subject to the boundary conditions $u(0)=1, u^{\prime}(\pi)=0$.
4. Consider the variational problem of minimizing $J[u]=\int_{0}^{5}\left(u^{\prime 2}-u^{2}\right) d x$ subject to the boundary conditions $u(0)=0, u(5)=0$. (a) Find the critical function for this problem. (b) Find $J[u]$ when $u(x)=c x(5-x)$, where c is a constant. (c) Explain why the critical function you found in part (a) is not a minimizer of this variational problem. Is it a maximizer? (d) Discuss the corresponding variational problem obtained by replacing the second boundary condition by $u(1)=0$.

Due: Friday, October 1.

