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Preface.

This article reviews some recent work on the conservation laws of
the equations of continuum mechanics, with especial emphasis on planar
elasticity. The basic material on conservation laws and symmetry groups of
systems of partial differential equations is given an extensive treatment in the
author's book, [6], so this paper will only give a brief overview of the basic theory.
Some of the applications appear in the published papers cited in the references,
while others are more recent.
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1. Conservation Laws of Partial Differential Equations.

The equations of non-dissipative equilibrium continuum mechanics

come from minimizing the energy functional

wiul = [Wxu™) dx (1)
Q

Here the independent variables x=(x1,...,xP) € Q represent the material
coordinates in the body, and the dependent variables u=(ul,...,up) the
deformation, where p=2 for planar theories, while p=3 for fully three-dimensional

bodies. In the absence of body forces, the stored energy W will usually depend
just on x and the deformation gradient Vu, but may, in a theory of higher grade
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material, depend on derivatives of u up to order n, denoted u(®. Smooth
minimizers will satisfy the Euler-Lagrange equations

E,MW)=0, v=1,...p, ©)

which, in the case of continuum mechanics, form a strongly elliptic system of partial
differential equations of order 2n. Strong ellipticity implies that this system is
totally nondegenerate (in the sense of [6; Definition 2.83]).

Given the system of partial differential equations (2), a conservation
law is a divergence expression

DivP:iDiPi=o (3)
i=1

which vanishes on all solutions to (1), where the p-tuple P(x,u(m) can depend on
X, U and the derivatives of u. For static problems, conservation laws provide path-
independent integrals, which are of use in determining the behavior at
singularities such as cracks or dislocations. For dynamic problems, conservation
laws provide constants of the motion, such as conservation of mass or energy.

Two conservation laws are equivalent if they differ by a sum of trivial
conservation laws, of which there are two types. In the first type of triviality, the p-
tuple P itself vanishes on all solutions to (2), while the second type are the null
divergences, where the identity (3) holds for all functions u=f(x) (not just solutions
to the system). As trivial laws provide no new information about the solutions, we
are only interested in equivalence classes of nontrivial conservation laws.

An elementary integration by parts shows that any conservation law
for the nondegenerate system (2) is always equivalent to a conservation law in
characteristic form

Div P = QE(W) = f Q E (W) (4)
v=1
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where the p-tuple Q=(Q,...,Qp) is the characteristic of the conservation law. A
characteristic is called trivial if it vanishes on solutions to (2), and two characteristics
are equivalent if they differ by a trivial characteristic. For nondegenerate systems
of partial differential equations, each conservation law is uniquely determined by
its characteristic, up to equivalence.

Theorem. If the system (2) is nondegenerate, then there is a one-
to-one correspondence between (equivalence classes of) nontrivial conservation
laws and (equivalence classes of) nontrivial characteristics.

2. Symmetries and Noether's Theorem.

A generalized vector fieldis a first order differential operator
i 0 0

v= g™ " ) o (u™) .

i=1 oX o=1 ou”

If the coefficients &l and ¢, depend only on x and u, then v generates a one-
parameter group of geometrical transformations, which solve the system of
ordinary differential equations

dxi i
— =& (x,u), —=¢ (X,u).
o) AL

For general v, the group transformations are nonlocal, and determined as
solutions of a corresponding system of evolution equations.

The vector field v is a symmetry of the system (2) if and only if the
infinitesimal invariance condition
prv[E,(W)]=0, v=1,...,p
holds on all solutions to (2). Here pr v denotes the prolongation of v, which

determines how v acts on the derivatives of u. An elementary lemma says that we
can always replace v by the simpler evolutionary vector field
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0
Va =§1 Qa(x’u(m)) —

ou®

where the characteristic Q = (Qq, . . . ,Q;) of v is defined by

(See [6; Chapter 5] for the explicit formulas.) The infinitesimal invariance condition

prvq [E,(W)] =0, wheneverEW)=0, v=1,...,p, (5)

constitutes a large system of elementary partial differential equations for the
components of the characteristic Q. Fixing the order of Q, the defining equations
(5) can be systematically solved so as to determine the most general symmetry of
the given order of the system.

An evolutionary vector field vq is a trivial symmetry of (2) if the
characteristic Q(x,u(m) vanishes on all solutions to (2). Two symmetries are
equivalent if they differ by a trivial symmetry. Clearly we are only interested in
determining classes of inequivalent symmetries of a given systém of partial
differential equations.

More restrictively, the evolutionary vector field vq is called a

variational symmetry of the variational problem (1) if the infinitesimal invariance
condition

prvg (W) =DivB (6)

holds for some p-tuple B(x,uk)). Every variational symmetry of a variational integral
(1) is a symmetry of the associated Euler-Lagrange equations (2), but the

converse is not always true. (The most common counter examples are scaling
symmetry groups.) It is easy to check which of the symmetries of the Euler-
Lagrange equations satisfy the additional variational criterion (6); see also [6;
Proposition 5.39].
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Noether's Theorem provides the connection between variational
symmetries of a variational integral and conservation laws of the associated Euler-
Lagrange equations E(W) = 0.

Theorem. Suppose we have a variational integral (1) with non -
degenerate Euler-Lagrange equations (2). Then a p-tuple Q(x,u(m) is the
characteristic of a conservation law for the Euler-Lagrange equations (2) if and only
if it is the characteristic of a variational symmetry of (1). Moreover, equivalent
conservation laws correspond to equivalent variational symmetries and vice versa.

Thus there is a one-to-one correspondence between equivalence
classes of nontrivial variational symmetries and equivalence classes of nontrivial
conservation laws. The proof rests on the elementary integration by parts formula

prvq(W)=Q.E(W) + Div A, (7)

for some p-tuple A = (A, . . . ,A;) depending on Q and W. (There is an explicit

formula for A, but it is a bit complicated; see [6; Proposition 5.74].) Comparing (7)
and the symmetry condition (6), we see that

Div(B - A) = Q . E(W),

and hence P = B - A constitutes a conservation law of (2) with characteristic Q. The
nontriviality follows from the theorem of section 1.

3. Finite Elasticity.

As an application of the general theory, we consider the case of an
elastic material, so the stored energy function W(x,Vu) depends only on the

deformation gradient. We show how simple symmetries lead to well-known
conservation laws. Material frame indifference implies that W is invariant under the
Euclidean group

u—Ru+a

of rotations R and translations a. The translational invariance is already implied by
the fact that W does not depend explicitly on u, while rotational invariance requires
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that W(x,R.Vu) = W(x,Vu) for all rotations R. The conservation laws coming from

translational invariance are just the Euler-Lagrange equations themselves

>o{ -0,

i=1 au!o"

written in divergence form. The rotational invariance provides p(p-1)/2 further
conservation laws

oW oW
> D u” B-uB = }=o.
i=1 ou, au

If the material is homogeneous, then W does not depend on x, and
we have the additional symmetry group of translations

X—=X+b

in the material coordinates. There are thus p additional conservation laws

ioi{guj“a—vz- -§W}=o,

' au

whose entries form the components of Eshelby's celebrated energy-momentum

tensor. If the material is isotropic, then W is invariant under the group of rotations
in the material coordinates, so W(Vu.R) = W(Vu) for all rotations R. There are an

additional p(p-1)/2 conservation laws

g Di{ ;,1 [xjuﬁ‘ - xkuj s—v—(\i- - [S;xk - Bij]W } =0.
- i

Scaling symmetries can produce conservation laws under the
assumption that W is a homogeneous function of the deformation gradient

W\ .Vu) = AWW(VU), A >0.
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The scaling group (x,u) — (Ax, An-PYny) is a variational symmetry group, leading to

the conservation law

iD{i[np“ ix’u"‘] a+xiW}=0.

oy,
Of course, stored energy functions which are invariant under the
scaling symmetry group are rather special. If one writes out the above divergence
in the more general case, then we obtain the divergence identity

io{i[u >E ] +xw} oW,

This was used by Knops and Stuart, [3], to prove the uniqueness of the solutions
corresponding to homogeneous deformations. This latter identity is closely
related to the general dentities determinedby Pucci and Serrin, [10]. Indeed the
general formula used by Pucciand Serrin to determine their identities is a special
case of the integration by parts formula (7) in the case that the characteristic Q
comes from a geometrical vector field. Particular choices of the coefficient
functions &l and ¢, lead to the particular identities that are used to study eigen-
value problems and unigueness of solutions, generalizing earlier ideas of Rellich
and Pohozaev.

4. Linear Planar Elasticity.

Although the general structure of symmetries and conservation laws
for many of the variational problems of continuum mechanics remains an open

problem, the case of linear planar elasticity, both isotropic and anisotropic, is now
well understood. In this case, the stored energy function W(Vu) is a quadratic

function of the deformation gradient, which is usually written in terms of the strain
tensor e=(Vu+VuT)/2. We have

W(VU) = X ci &jj & (8)
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where the constants ¢y are the elastic moduli which describe the physical

properties of the elastic material of which the body is composed. The elastic
moduli must satisfy certain inequalities stemming from the Legendre-Hadamard

strong ellipticity condtion. This states that the quadratic stored energy function
W(Vu) must be positive definite whenever the deformation gradient is a rank one

tensor, i.e. Vu = a®b for vectors a, b. Following [7], we define the symbol of the

quadratic variational problem with stored energy (8) to be the biquadratic
polynomial Q(x,u) = W(x®u) obtained by replacing Vu by the rank one tensor

x®u. In this case, the Legendre-Hadamard strong ellipticity condtion requires that

Q(x,u)>0 whenever x=#0, and u=0. 9)

The symmetry of the stress tensor and the variational structure of the equations
impose the symmetry conditions

Gk = Cjk =Cijls ~ Cijit = G-

on the elastic moduli, which are equivalent to the symmetry condition
Q(x,u) = Q(u,x)

on the symbol.

For each fixed u, Q(x,u) is a homogeneous quadratic polynomial in x,
and so we can form its discriminant A,(u) (i.e. b2—4ac), which will be a
homogeneous quartic polynomial in u. The nature of the roots of A,(u) provides
the key to the structure of the problem. First, the Legendre-Hadamard condition
(9) requires that A,(u) has all complex roots. There are then only two distinct

cases.

Theorem. Let W(Vu) be a strongly elliptic quadratic planar varia-
tional problem, and let A, (u) be the discriminant of its symbol. Then exactly one of

the following possibilities holds.

1. The Isotropic Case. If A,(u) has a complex conjugate pair of double

roots, then there exists a linear change of variables
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X— AX, u - Bu, A, B invertible 2x2 matrices

which changes W into an isotropic stored energy function.

2. The Orthotropic Case. If A,(u) has two complex conjugate pairs of

simple roots, then there exists a linear change of variables

X = AX, u— Buy, A, B invertible 2x2 matrices

which changes W into an orthotropic (but not isotropic) stored energy function.

(Recall, [2], that an orthotropic elastic material is one which has three
orthogonal planes of symmetry. Thus, this theorem states that any planar elastic
material is equivalent to an orthotropic (possibly isotropic) material, and so has
three (not necessarily orthogonal) planes of symmetry. The analogous result is
not true in three dimensions, cf. [1].)

This theorem is a special case of a general classification of quadratic
variational problems in the plane, [7], and results in the construction of "canonical
elastic moduli" for two-dimensional elastic media, [8]. One consequence is that in
planar linear elasticity, there are, in reality, only two independent elastic moduli,
since one can rescale any orthotropic stored energy to one whose elastic moduli
have the "canonical form"

Ci111=Coopp =1, Ci122=Cpo11 =0, Cyp12=P, C1112=C222=0.

Thus the constants o and B play the role of canonical elastic moduli, with the
special case 20 + = 1 corresponding to an isotropic material. This confirms a
conjecture made in [5]. Extensions to three-dimensional materials are currently
under investigation.

Although isotropic and more general orthotropic materials have
similar looking Lagrangians, the structure of their associated conservation laws is
quite dissimilar. (For simplicity of notation, we write (x,y) for the independent
variables and (u,v) for the dependent variables from now on.)
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Theorem. Let WJu] be a strongly elliptic quadratic planar variational

problem, with corresponding Euler-Lagrange equations E(W) = 0.

1. The Isotropic Case. If W is equivalent to an isotropic material, then

there exists a complex linear combination z of the variables (x, y), a complex linear
combination w of the variables (u, v), and two complex linear combinations &, n of
the components of the deformation gradient (u,,uy,vy,vy) with the properties:

a) The two Euler-Lagrange equations can be written as a single
complex differential equation in form
D,n=0.
(Recall that if z = x + iy, then the complex derivative D, is defined as (Dy —iDy).)
b) Any conservation law is a real linear combination of the Betti
reciprocity relations, the complex conservation laws
Re[D,F]=0,

and
Re[DZ{(§+z)Gn +G}]=0,

where F(z,m) and G(z,m) are arbitrary complex analytic functions of their two

arguments, and the extra conservation law
Re{ D,{wn —izn2} | = 0.

2. The Orthotropic Case. If W is equivalent to an orthotropic, non-
isotropic material, then there exist two complex linear combinations z, { of the

variables (x, y), and two corresponding complex linear combinations &, n of the
components of the deformation gradient (uy,uy,vy,vy) with the properties:

a) The two Euler-Lagrange equations can be written as a single
complex differential equation in either of the two forms

D, &=0,
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or

b) Any conservation law is a real linear combination of the Betti
reciprocity relations, and the complex conservation laws

Re[D,F1=0, and Re[D,G]=0,

where F(z,§) and G({,m) are arbitrary complex analytic functions of their two

arguments.

Thus one has the striking result that in both isotropic and anisotropic
planar elasticity, there are three infinite families of conservation laws. One family is
the well-known Betti reciprocity relations. The other two are determined by two
arbitrary analytic functions of two complex variables. However, the detailed
structure of these latter two families is markedly different depending upon
whether one is in the isotropic or truly anisotropic (orthotropic) case. The two
orthotropic families degenerate to a single isotropic family, but a second family
makes its appearance in the isotropic case. In addition, the isotropic case is
distinguished by the existence of one extra anomalous conservation law, the
significance of which is not fully understood. The details of the proof of this
theorem in the isotropic case have appeared in [4; Theorem 4.2] (although there
is a misprint, corrected in an Errata to [4] appearing recently in the same journal);
the anisotropic extension will appear in [9].

| suspect that a similar result even holds in the case of nonlinear
planar elasticity, but have not managed to handle the associated "vector conformal
equations", cf. [5]. Extensions to three-dimensional elasticity have only been
done in the isotropic case; see [4] for a complete classification of the conservation
laws there. In this case, beyond Betti reciprocity, there are just a finite number of
conservation laws, some of which were new.
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