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1. Introduction

Although Noether's celebrated theorem relating symmetry groups
and conservation laws for systems arising from variational principles
has been available for over sixty years, and degpite the well-acknowledged
importance of group theory in the sgtudy of elasticity, for historiecal
reasons I do not fully understand there has never been a systematic
classification of general symmetry groups and their associated conservation
laws for even the simplest elastic materials. In fact, not until the
work of Glnther, [7], and Knowles and Sternberg, [10], was even a limited
variant of Noether's general theorem applied in this subject. This
is egpecially surprising in that the relevant techniques are completely
constructive, amenable to straight-forward computational methods. In
this note, the basic theory underlying Noether's theorem will be
outlined, and illustrated by some recent applications to elasticity,
work which is very much still in progress. It is a pleasure to thank
John Ball for sparking my interest in applying these general techniques
to elasticity, and to all the organizers of the NATQ/LMS institute for

a most enjoyable and productive conference.

2. Hyperelasticity, [9]

Although most techniques apply much more generally, we specilalize
to the case of homogeneous elastostatics in the absence of body forces.

The variatiocnal problem is

I=[w(vu)ax , (2.1)
o)

b

where W is the stored energy function, x € R° , u € Iﬁl (usually



p=g=2 or 3 ) and Vu = Wé)E(Mﬁ/bfﬁ1meddbmmﬁpngmﬁkmt

The Buler-Lagrange equationsg are

i ij 3 _ i _ i,d
B =TV u o,waﬁ_bzw/buacus. (2.2)

Occagionally, the Legendre- Hadamard condition that the qxq matrix
Q(E) with entries
- wid g@ B P

be positive definite for § % 0 , will be imposed.

3. Conservation Laws, [1], [10], [13], [15].

A divergence expression

Div A = ZDaAaz 0 (3.1)

is a congervation law if it vanishes for all solutions of (2.2).
Equivalently, I A .dS is path- (or surface) independent. Such
integrals, of whzch Eshelby's energy momentum tensor, [5], was the
first important example, are of importance in the analysis of strain
concentrations at crack tips, [2], [18].

Trivial examples arise when a) A=0 for all solutions and b)
(3.1) holds identically; equivalently A% - ZDB BOB for some skew-
tensor B . Many of the results described here rely on & new character-
ization, [14], of the second variety of trivial laws. For simplicity,
we only consider laws in which A = A(x,u,Vu) , i.e. no higher derivatives

of u enter.



L. gymmetry Groups, [1], [13], [17].

A symmetry group of a system of differential equationsg,e.g.
(2.2), is characterized by its property of transforming solutions
of the gsystem to other solutions. Geometrical or Lie symmetries
are (local) diffeomorphisms g:(x,u) = (x,i4) and act on solutioﬁs by
point-wise transforming their graphs (think of a rotation in the
x,u;-plane). Leaving aside discrete symmetries (e.g. reflections),
each one-parameter subgroup.is characterized by its infinitesimal

generator- the vector field

v =2 0%xm Lo Do, () 2, (4.1)
0X du

from which the group transformationg are recovered as solutions of

the system of 6.d.e.'s

dxa/de = 'ﬂa > dui/de =94

¢ Dbeing the group parameter. The group transformations, and heﬁce

infinitesimal generator, "prolong" to the derivatives of u , 80
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where
a _ i B
Py = Dfi e T (4.2)
bi=@ - % ué L (4.3)

Theorem For the system E=0 nondegenerate (cf. [1%]) (4.1) generates

a symmetry group if and only if



pr ;(E) = O whenever E = O . (4.4)

Condition (4.4) forms a large system of elementary differential
equations for the coefficients ﬂa > Py of v , whose solution
(a straight-forward, albeit tedious, task) gives the most general

symmetry of the system.

A generalized symmetry has the same form for its infinitesimal

generator, but now ﬂa > 95 can depend on derivatives of u . The
symmetry criterion (4.4) is unchanged, and again can be solved.

The standard form of such a symmetry is

v, =Ty /ot (2.5)

cf. (4.3), and it easily follows that Y is a symmetry if and only if
;W is. The corresponding group transformations are realized by solving
the evolutionary system.

bul/be = \!Ji(X,U-,VU-,---), U»! . T8

e =0 ©

so that if uo(x) is a solution, so is u(x,e) for any fixed e .

5. Noether's theorem, [1], [3], [11], [13]

For systems arising from variational principals a (geometrical)
symmetry is a variational symmetry if the integral (2.1) is unchanged
by the relevant transformation for arbitrary subdomains Q CI]Rp. The

corregponding infinitesimal criterion ig
pr v(W) + WDiv M = O . (5.1)

Bessel-Hagen, [3], replaced the right hand side of (5.1) by Div B

for some unspecified B , calling the corresponding symmetries



divergence transformations (here the precise geometrical significance

is less clear). Equivalently,

(5.2)

ot

pr Qw(W) = Div

for some B , cf. (4.5). Any generalized vector field satisfying (5.2)
will be termed a variational symmetry. A nontrivial computation, [13],
proves every variational symmetry is a symmetry of the corresponding
EBuler-Lagrange equations, but not conversely, scale symmetries being
the most common counterexamples. Often, the easiest way to compute
variational symmetries is to first find all gymmetries of the Euler-
Lagrange equation and then check which of these satisfy (5.2).

Noether's theorem comes from the trivial identity
i .
% y.E = Div A, (5.3)

holding for any variational symmetry, where A , which yields a
conservation law, can be explicitly given in terms of §,W and B .
Thus each variational symmetry gives a conservation law and, under
mild nondegeneracy hypotheses, each congervation law is equivalént
(up to addition of a trivial law) to one satisfying (5.3) and hence

yields a corresponding symmetry.

6. The Symmetry Equations, [15]

A gimplifying feature in the search for conservation laws of
(2.2) is that if A(x,u,Vu) satisfies (3.1), so does A(xo,uo,Vu)
for fixed X sUg - Thus, the x,u - independent laws, say

A(l)(Vu),...,A(m)(Vu) are calculated first, from which the most



general law takes the form

A=7% Y(k)(x,u)A(k) + T 6(k)(x,u)T(k)

for suitable Y<k),8(k) , and where T(l),...,T(n)

form a complete set
of trivial x,u- independent laws, [14].

For (2.2), the conditions (5.2) reduce to the system.

o B . . . - <
DA DA p td 1J 1J Ji
] . = . = * 'l
. + . ZuJGO@, > quB+W (6.1)
B o

For gq=1, these are the equations for an infinitesimal conformal

symmetry for the metric this immediately leads to bounds o

._.G_ll .
gOZB (ﬁ 2
on the number of x,u - independent conservation laws (S-%(p+—l)(p+-2)
if p > 3). DPresumably, the "vector conformal equations" (6.1) lead

to similar results, but have not be treated before.

Proposition The system (2.2) admits nonvariational symmetries
(réspectively generalized symmetries) if and only if there is a qxq
matrix N(E) # O (resp. # n(E)I) of linear functions of E such that
Q(E)N(E) is skew symmetric (respectively symmetric) for all £ .

For p=qg=3 , with the Legendre-Hadamard condition, QN skew
symmetric implies that Q(E) = CTQO(E)C (C independent of § )
with Q_ either diagonal or of the form Q_ = p(§)I+42(E)®L(E)

For linear elasticity this implies the material is isotropic; the meaning
for nonlinear materials is less apparent. The condition QNN symmetric
imposes restrictions on the form of Q , but I have been unable to

discern their meaning.



7. Linear, Isotropic Elasticity, [8], [16]

To illustrate the theory, we classify all conservation laws wilth

A = A(x,u,vu) for-the case of linear, isotropic elasticity. Here
W= pllvus VuTH2 + —é— A(v. u)2 R (7.1)
where W,A are the Lamé moduli, so (2.2) reads
E = pAu+ (u+A)v(v.u) = 0 . (7.2)

Strong ellipticity is implied by w>0 , 2u+A>0 , but we only require
w(p+A)(2u+A) # 0 . Conserved densities are given in tensorial form,

so A= (A?) yields the laws X DaAc.f = 0 for each i .

Theorem Assume p=qg=3 . For 7+ 3\ # O, the following
densities arise from the indicated symmetry groups:
A. Geometrical symmetries (E(3)X IR - Euclidean group and scaling).
S =2uwvu+ (u+A)(vou)l ,
T T, 1 2 2
P = pvu vu+ (p+ A)vu (v.u) —~2-[u||VuH + (p+A)(vow) 11,
Y = XTPH- ~]21 uTS 5
B. Generalized symmetries (E(3))
Q = w(2p+A)vu(v.u) + p,gvu(Vu - VuT) +%(p+ A) (2p+ A) (Vo) 2 ,
1
T = (p+A)x AQHU(3p+ N AS+ a7 (u A) [(wAve)” - tr(u Ava)1]
C. Addition of solutions e(x) of (7.2)
T T
K =¢85 -u (pve + (u+ 1) (v.e)l)
If 7p+ 3N = 0, the following additional densities, corresponding to the

full conformal group 0(3,1) of geometrical symmetries and a conformal

group 0(3,1) of generalized symmetries, hold:
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2(x®x)P - !x|2P+ (x®u-200x)S+ 2(x.u)8 - 24 u®u—%p,]u| 1,

T =
7 = XTQ,+ " uTS+p,2[(v.u)u—uTvu} R
J=2(x®x)Q - [X|2Q+ p(2x@u-u®x)s+ p,(x.u)S+p,2[2X®(uV.u- (vu)u) +

uT(vu) x1 - (VuTu) ®x+x /\(VuT Au) - tr(u Avu)x AL]

Knowles and Sternberg, [10], derived the densities in A ; they
restricted attention just to geometrical symmetries satisfying (5.1),
a point raised by Edelen, [4], in his critique of their claims of com-
pletenegs of congervation laws. In particular, P is Eshelby's energy-
momentum tensor, [5], [18]. The Kg correspond to Bettl reciprocity,
the remaining laws are new.

The conformal case 7Tp+ 3N = 0 is curious; I am unaware of any
physical interpretation. Even if 7@4-3X540 ,iinteresting divergence

identities of the form
2 2 a 2 o 2
Div A = |lvu]| or (v.u) or x|vu| or x(v.u) (7.3)

can be congtructed by taking suitable combinations of I,%Z,J , so the
conformal group still plays an important role. For two dimensional

elagticity, the results are even more striking.

Theorem Agsume p=q=2 . Using complex notation z=xl+ i X2 ,

w=uteiu®, 6= 2w/0%, 0= plud -uD) +d(ur A(upHud) L If

3wt A 0 , the following complex densities are congervedi
& s

2u(2p+A)E OB/ + (u+ \)iB , B(z,M) analytic
¢(z,m) C analytic
W+ izn°

o~

1(wn - wn) W an arbitrary solution with corresponding 1| .
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1 2

2 2 .
(If A=A"+iA" , then DlAl4-D2A = O 1s the conservation law.)
. 2 2
If 3up+A=0, (7.2) reduces to o) w/bz =0 , and there are
many more conservation laws. This theorem reflects the fact that
any complex-analytic function gives rise to a conformal transformation
in the plane.

8. Further Directions of Investigation

1) Classify all conservation laws and symmetries for elastic materials
with relatively simple constitutive relations, e.g. elastic fluid, Mooney-
Rivlin materials, anisotropic linear elasticity, etc, [9].

2) Extend the results to elastodynamics. Fletcher, [6], has shown
how each of Knowles and Sternberg's laws hag a dynamic counterpart. Pre-
sumably, Hamiltonian techniques in [12], will be of use here.

3) Discuss applications of the laws found to crack problems, cf. [2].

4) The appearance of conformal symmetries seems especially significant.
For nonlinear wave equations, Morawetz and Strauss, cf. [19], have shown
the importance of conservation laws arising from conformal invariance in
scattering problems. The identities (7.3) could be equally useful for
scattering in elastic bodies with nonlinear body forces. The two dimensional
case Looks esgpecially promising.

5) For linear problems each symmetry gives rise to an infinite family
of generalized symmetries, and, often, congervation laws depending on higher
order derivatives of u , [L3]. Are these of use? (This guestion has not
even been investigated for the wave equation!) For nonlinear equations, the
existence of infinite families of gymmetries is closely tied with complete
integrabllity of the system, the prototyplcal example being the Korteweg-

de Vries equation, [1]. Do any elastic materials have such a property?
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