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In this note, I will review recent results on the canonical forms for compatible
biHamiltonian systems of complex-analytic ordinary differential equations based on Turiel’s
classification, [8], of compatible non-degenerate Hamiltonian pairs. The resulting explicit
forms for general biHamiltonian systems in canonical coordinates lead to a complete analysis of
their integrability. More details of these results can be found in the author’s paper [6].

A system of differential equations is called biHamiltonian, [3], [5], if it can be written in

Hamiltonian form in two distinct ways:

Here J;(x), J,(x) are Hamiltonian operators (matrices), not constant multiples of each other,
determining Poisson brackets: ({F, G},, = VET J,(x) VG. The Hamiltonian pair Jy, J, is
compatible if J; +J, also determines a Poisson bracket, i.e. the Jacobi identity holds. The
pair is nondegenerate if one of the Poisson structures is symplectic. According to the
fundamental theorem of Magri, [3], any biHamiltonian system associated with a nondegenerate
Hamiltonian pair induces a hierarchy of commuting Hamiltonians and flows, and, provided
enough of these Hamiltonians are functionally independent, is therefore completely integrable.

Theorem 1. Suppose J;,J, form a compatible Hamiltonian pair, with J;
symplectic. Given a biHamiltonian system (1), there exists a hierarchy of Hamiltonian
functions Hy, Hy, Hy, Hs, ..., all in involution with respect to either Poisson bracket,

{Hj, Hy}, =0, and generating mutually commuting biHamiltonian flows
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We classify Hamiltonian pairs pointwise according to the algebraic invariants of the
skew-symmetric matrix pencil A J;(x) + p J,(x) at each x. According to the Weierstrass
theory, cf. [1], the complete algebraic invariants of a non-degenerate matrix pencil are provided
by the eigenvalues, elementary divisors and Segre characteristic. (Degenerate pairs of skew-
symmetric matrices are handled by the more detailed Kronecker theory.) A pencil is called
elementary if it has just one complex eigenvalué, and irreducible if it has Segre characteristic
- [(nn)], analogous to a single Jordan block. Every non-degenerate complex matrix pencil is
algebraically the direct sum of irreducible matrix pencils. (For simplicity, we restrict our
attention to complex-analytic systems in this paper, although the real case offers little additiona}
difficulty.)

The algebraic invariants, i.e. eigenvalues, elementary divisors and Segre characteristic,
of a Hamiltonian pair are invariant under the flow of any associated biHamiltonian system. A
Hamiltonian pair is generic on a domain M if it has constant Segre characteristic, and the
number of functionally independent eigenvalues does not change on M. The main

classification theorem for nondegenerate biHamiltonian systems is the following:

Theorem. Every generic non-degenerate, compatible Hamiltonian pair can be locally
expressed as a Cartesian product of elementary Hamiltonian pairs. Every associated
biHamiltonian system decomposes into independent subsystems corresponding to the
elementary sub-pairs, each of which consists of an autonomous Hamiltonian system whose
dimension is twice the number of irreducible sub-pairs for the given eigenvalue, coupled with a

sequence of linear, non-autonomous Hamiltonian systems.

When an eigenvalue is constant, the elementary sub-pair decomposes into a Cartesian
product of irreducible sub-pairs; however, this decomposition does not hold in the case of non-
constant eigenvalues. We will now present the details of the Turiel classification and the

structure of associated biHamiltonian systems.

Without loss of generality, we may assume that neither 0 nor e is an eigenvalue, so
that the Hamiltonian pair is determined by two compatible symplectic Hamiltonian operators.
(Otherwise, replace J, J, by two other linearly independent members of the corresponding
pencil.) Darboux’ theorem, [5; Theorem 6.22], implies that we can write the first Hamiltonian

operator in canonical form

Jl = ’ (3)



relative to canonically conjugate coordinates (p, q) . Therefore, only the canonical form of the

second Hamiltonian operator needs to be explicitly indicated.

Given a Hamiltonian pair J;, J,, any associated biHamiltonian systems is a solution to

the linear system of partial differential equations
1
VH1=MVH0, M=JI ’Jz, (4)
where M is the transpose of the recursion operator, [5]. We remark here that the simple
system of differential equations (4), which arises in a surprising number of different contexts,
is not well understood, except when the matrix M is constant, in which case the general
solution can be found in [2]. In the present case, the solutions all have a similar pattern. On

any convex open subdomain, the two Hamiltonians Hy, H; are given as a sum of “basic”
Hamiltonians HY, H{), which are individually solutions to (4):

Hyx) = HOx) + HP®) + ... + HPx), Ho0 = HO@) +BP) + ... + HPx).

Moreover, each basic pair Hg)k), H(lk), can be most simply expressed in terms of the derivatives
with respect to a parameter s evaluated at s = 0 of a single arbitrary analytic function
F((x,s), ..., §,(x,5)) depending on certain parameterized variables ﬁj(x, s). We can

therefore summarize the general classification results in this convenient form.

" I) Irreducible, Constant Eigenvalue Pairs,
Canonical coordinates. @, 9 = (Pg» Py» -+ > Py g > -+ » dp) s n=0.

Second Hamiltonian operator:

0 AL+U
J2 = )
~AI1-UT o

where A I+ U denotes the irreducible (n + 1) X (n + 1) Jordan block
(1 A

Al+U =




Parametrized variables:

2
n(s) = p0+sp1+s2p2+...+snpn, W) = g, +5q,_ 1 +8 qn_2+...+s“q0.

Basic Hamiltonians:
k k—1
HP® = p L Fyn(s), 5(s)) + k LR (), B(s) ,
aS s = 0 as S = O
ak
HPx) = L F(n(s), ©(s)) , 0<k<n.
aS s=0

Note that these Hamiltonians are polynomials in the “minor variables” py,...,ppy: dgs+ - -»dp_1>
whose coefficients are certain derivatives of the arbitrary smooth functions Fy(py, q,,) of the
remaining two “major variables” py, q,. This implies, cf. [6], that any biHamiltonian system

corresponding to an irreducible, constant eigenvalue Hamiltonian pair is completely integrable,
since it can be reduced to a single two-dimensional (planar) autonomous Hamiltonian system
for the major variables, with Hamiltonian n! F (pg, q,,). (Curiously, the major variables are
not canonically conjugate for the standard symplectic structure given by J;, nor are they
conjugate for J,.) The time evolution of the minor variables is then determined by successively

solving a sequence of orced linear planar Hamiltonian systems in the variables py, q;, .

II. Elementary, Constant Eigenvalue Pairs.
Canonical coordinates: m qQ=0, ... p™ql ..., g™,
2 (pl iy ql=(q i h S>> >n.>0
p pO,...,pni , q qO,...,qni), where ny2ny2..2n20.

Second Hamiltonian operator:

[ o 0 AI+U, 0 )
5 0 0 0 AI+U
2 = b
~AI-UT 0 0 0
\_ 0 A1-uT o o/



where A I+ U, denotes an irreducible (n; + 1) X (n; + 1) Jordan block as above.

Parametrized variables:

: : . . e , : . 5 i no
ni(s) = pb+sp11+s2p‘2+...+s ‘phi, w'(s) = q;i+sq;i_1+s q;i_2+...+s 1qp -

Basic Hamiltonians:
ak
HP®) = p LR @ s), 8ls), ..., nK(s), @™k(s)) +
os s=0
ak~1
+ k T F®l(s), ©1(s), .., mK(s), B™K(s)) :
ds s=0

k

HP(x) = gs—k F(x!(s), ®1(s), ..., n™k(s), ®™k(s)) 0<k<n,.

s=0

Here my denotes the number of n; with n; >k, i.e. the number of irreducible sub-pairs of

dimension greater than 2k + 1; in particular my=m.

. As in the irreducible case, the Hamiltonians are polynomials in the minor variables pji,
q:xi—j’ j2 1,.whpse coefficients are certain derivatives of arbitrary functions of the major
variables pb, q}li. Thus, such a biHamiltonian system reduces to an autonomous 2 m —
dimensional Hamiltonian system in the major variables, followed by linear non-autonomous

Hamiltonian systems in the appropriate minor variables pf(, q;._k, n2k21.
1

III. Irreducible, Non-constant Eigenvalue Pairs.
Canonical coordinates: (P, 9 = (Pg» P1> +++ > Pp» g 91> +++ 5 ) » n=0.

Second Hamiltonian operator:

0 P(p)

-p)T 0

where P(p) denotes the (n + 1) x (n + 1) banded upper triangular matrix



-(P() Pt Py P3 .. Pq \

Po P1 P2 -+ Ppa
Po P1 o o

P.(p) = P(p) = : (5)
Pp o

\ Po )
(Interestingly, both P(p)  and its inverse determine isomorphic Hamiltonian operators!)
Parametrized variables:

7(s) = p6+sp1 +82p2+ ot stpy, () = qn+sqn_1+s2qn_2+ o+stqy.

Basic Hamiltonians:

H{Dx) = Ripy) , H{Px) = hpy),  where K€ = En(E),

b

s=0

k
1P = 2% { 56 176 F(r9), 005 }

k
Hﬁk)(x) = agsi { T'(s) Fk(n(S),m(S))}

0<k<n-1.

2

s=0

Here m’(s) is the derivative of m with respect to s.

In this case, the eigenvalue is a constant, hence p; is a first integral. Once its value is
fixed, the other minor variable g, is determined by solving a single autonomous ordinary
differential equation. The remaining minor variables py,.. +Pp» Qs+ - A1 Satisfy a sequence
of forced, linear planar Hamiltonian systems.

IV. Elementary, Non-constant Eigenvalue Pairs.

Canonical coordinates:  (p, q) = (py, pL, ..., p™, do» q, ..., qM, m=2,

P'=0p P ) 4 =0 ), where  n;2n,

v
v
=3
e
v
[y



Second Hamiltonian operator:

0 P*(p)
I, = ,
P’ 0
where
(" po p! p? P )
Py, 1Y 0 0
P*(p) = Py, 1(6%)
am
K an~1(p ) )

Here f)i = (Py pil, cees p}li_ 1), and the Pni— 1’8 are as given in (5). Note that this particular
pair is algebraically reducible, but cannot be decoupled using canonical transformations.

Parametrized variables:

mi(s)

Il

i 2 i n; i i . i ni—1 i :
po+spy+s p2+...+slpni, (JL)(S)—qni+sqni_1+...+s1 q, iz21,

Ej‘f_), ol(s) = ®((), where zi(s) solves mi(z) =nl(s), jz2.

w(s)
Using the Lagrange inversion formula, [4], the latter two parametrized variables have the
alternative expansions

L IR B
P S EEY (SO il
K1) r; m+ D! @)

?

t=0

ni-1 n gyl \\n ;
i) = o s (C()) da 1 dal(t)
o’(s) qnj+ IZ{) o o Doy @

t=0

where Ci(s) = (ﬂ:i(s) ~Pg) /'s. These expansions can be expressed in terms of the remarkable
- nonlinear series differential operator

hnd n
D=p':eP:p=1+ ) SD"w'D, D=5, u=ue,

n=1



where the colons denote normal ordering of the non-commuting operators D and u, which is
analogous to the so-called “Wick ordering” in quantum mechanics. This operator has the
surprising property that it commutes with any analytic function ®(u), i.e. D D) = D(D u)!
See [7] for details and applications of this operator in combinatorics, orthogonal polynomials

and new higher order derivative identities.

Basic Hamiltonians:
HyP®) = Bpp),  H{D@ = hpy),  where  F®) = E0®),
k 1
P = ¢ { 340 %’E—Fk(n%s),uz(s),...,umk<s>,co1<s>,oz<s>,...,cmk<s>>} ,
‘ s=0
kK [ drl
H{P®) = ;9?{ T F@ ), 1209), ..., LPKGS), 01(), oz<s>,...,omk<s»} .

for 0<k<n;-1, where m =#{n,2k}.

In general, such biHamiltonian systems reduce to the integration of a 2m —2
dimensional autonomous Hamiltonian system for the coordinates pil, qili, i=1,..., m,
followed by a sequence of forced linear Hamiltonian systems. The final coordinate qp 1is
determined by quadrature. Actually, the initial Hamiltonian system can be reduced in order to
2m -3 since it only involves the homogeneous ratios of momenta r = pil / p%, 122, ascan

be seen from the second formula for uj .

Further work: The key outstanding problem in this area is to determine similar
canonical forms in degenerate compatible biHamiltonian systems. Unfortunately, Turiel’s
approach, which is fundamentally tied to the covariant differential form framework for
symplectic structures, does not appear to readily generalize, since degenerate Poisson structures
can only be readily expressed in the contravariant language of bi-vector fields, [5].
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