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1 Introduction.

This paper deals with the classification of a certain subclass of coupled integrable evolution
equations. The equations we consider generalize several classical scalar integrable equa-
tions, including the Burgers, KdV, modified KdV (mKdV), potential KAV (pKdV), Kaup-
Kupershmidt and Sawada-Kotera equations.

Our approach to the classification is based on the existence of higher generalized sym-
metries. This approach was successfully used by many authors and it led to the discovery
of many new equations, both C-integrable and S-integrable in Calogero’s terminology, [1].
Since the case of homogeneous, autonomous polynomial scalar evolution equations with lin-
ear leading terms was completely resolved by Sanders & Wang [10], we have investigated the
next more general class: the two-component equations.

Integrability of coupled evolution equations was often dealt with in the literature. How-
ever, the only classes that were completely investigated from a symmetry point of view
are the nonlinear Schrodinger-type and derivative Schrodinger-type equations [7, 8]. This
is mostly due to the extremely large size of the systems of equations one has to solve to
implement such a classification even in the simplest case. Yet it may be possible to do a
complete classification for a certain subclass of coupled systems. We suggested considering
the symmetrically-coupled systems of type

{ up = Flu,v]

1.1
vy = Flv,u] -
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(where the square brackets denote the dependence on the z-derivatives) and we were able to
implement the complete classification in several cases. In our work we use a MATHEMATICA
package written by the second author. This package performs automatically a large part of
the required computations.

2 Statement of the problem.

Let us consider an equation taking values in a commutative algebra A possessing an involution
u — 4. The general form of such an equation is uy = F[u,u]. If this equation has real
coefficients, we obtain a symmetrically-coupled system of evolution equations of type (1.1)
by taking v = % and appending the equation for v. Thus the classification of integrable
equations of type (1.1) is equivalent to the classification of integrable equations involving an
involution.

Definition 2.1 A second system of evolution equations

Ut = Ql[uav]
{ (2.1)
vy = Q2[u, v]
is said to be a generalized symmetry of (1.1) if their flows formally commute
0
22 4 Dk(Q) ~ Do(K) = 0. (2.2)

Here Dk denotes the Fréchet derivative of K[u] = (F[u,v], F[v,u]), where u = (u,v).

It was noticed that the right-hand sides of many important integrable equations, as well as of
their symmetries, are homogeneous if we assign certain weights to both the dependent and the
independent variables. Hereafter we restrict our attention to such homogeneous equations.

We introduce the following weighting scheme on the space of differential polynomials.
We assign the weight n = degu = degv to the dependent variables and 1 = degz to the
independent variable. Thus, the k-th derivative of u (or of v) with respect to z has weight
n + k. The weight of a monomial is defined as the sum of weights of its factors, while the
weight of a PDE u; = K is weight K — n. A detailed description can be found in [3, 7].

The Burgers, mKdV and pKdV equations are homogeneous for n = 1 (we will call it
the Burgers weighting), while the KdV, Kaup-Kupershmidt and Sawada-Kotera equations
are homogeneous for n = 2 (we will call it the KdV weighting). The coupled equations
considered in this article are homogeneous in either one of these two weightings. The work
for the other types of integrable scalar evolution equations is still in progress.

Definition 2.2 A two-component system of evolution equations is called decoupled if either
one of the two equations depends only on one dependent variable.

Definition 2.3 A decoupled two-component system of evolution equations of type (1.1) is
called integrable if it possesses two generalized symmetries of higher order.
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Remark: Fokas’ conjecture [2] says that for a system in n dependent variables it is enough to
produce exactly n higher symmetries to ensure the existence of an infinite number thereof. In
a recent preprint, van der Kamp and Sanders [12] propose an example of a very complicated
two-component system that possesses exactly two generalized symmetries. However, this
equation is decoupled. It is thus not a “true” two-component system. Since all the known
symmetry “pathologies” occur only for decoupled systems, it is reasonable to continue to rely
on Fokas’ conjecture for integrability of nondecoupled systems.

3 The classification.

In this section we present the classification of integrable nondecouplable equations of type
(1.1) that are either of weight 2 or 3 in the Burgers weighting, or else of weight 3 or 5 in
the KdV weighting. All the classes we obtain are one- or two-parameter families (up to a
scaling). However, the number of parameters can be further reduced by 1 using a linear
change of dependent variables that preserves the form (1.1) of the system. In this paper we
will only show the reduced classes. The complete lists can be found in [3].

Remark: We will write down here only the first components of the new integrable systems
we obtained. The other components can be easily reconstructed using (1.1).

Theorem 3.1 An integrable nondecouplable equation of type (1.1) and weight 3 in the KdV
weighting is equivalent to one of the following up to a linear change of variables:

1 1
up = SUoss + 5 Vaae + 2uty + VU, (3.1)
1 3
up = —Eumz + ivxm + uvg + VU, (3.2)

Remark: The system corresponding to (3.1) is the symmetrized version of the Ito equation,
while (3.2) is the symmetrized version of the Hirota-Satsuma equation.

Theorem 3.2 An interable nondecouplable equation of type (1.1) and weight 5 in the KdV
weighting that is reduced by the substitution v = wu to either the Kaup-Kupershmidt or the
Sawada-Kotera equation is equivalent to one of the following up to a linear change of variables:

U = —Wgrerr + azzer + 200Uz — 400Uz + SUgUpy + 15V ULs + ULV,
— 7505055 + 50u?ug — 60uvug + 10v%uy — 20uvy + 40uvvy + 60v%vy, (3.3)
U = Uggees + DUlgee + DVUgee + 15UgUsy + 100,050 + 5(u + v)%ug. (3.4)

Remark: The equation (3.3) is the symmetrized version of the system considered by Zhou,
Jiang & Jiang [13]. The other equation seems to be previously unknown. We remark that both
systems reduce to the Kaup-Kupershmidt equation. Remarkably, there are no nondecouplable
generalizations of the Sawada-Kotera equation.
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Theorem 3.3 An integrable nondecouplable equation of type (1.1) and weight 2 in the Burg-
ers weighting is equivalent to one of the following up to a linear change of variables:

1 1

u = s + 5 Vsz + duuy + vug + 2vvy,, (3.5)
1 1

U = Sl + o Vaz + 8uuy — 2uvg + 100, — 9ud + 11u?v — 11uw? + 903, (3.6)

w = (1-— )um + avgg + (7 — 8a)uug + dvug + (1 + 4a)uvy + (3 + 4a)vu, —
—(3+ 2a)u® + (1 — 10a)u?v + (=1 + 10a)uv? + (3 + 2a)v>. (3.7)

Remark: The class (3.7) includes the symmetrized versions of the systems found by Svi-
nolupov (equation (2.2.31) in [5]) and by Olver & Sokolov (equation (4.13) in [7]). The
values of « are 0 and 1, correspondingly.

Remark: For the systems (3.5) and (3.6) we were able to find a recursion operator, thereby
proving the exitence of an infinite number of generalized symmetries. The recursion operator
for (3.6) depends on three arbitrary parameters.

Theorem 3.4 An integrable nondecouplable equation of type (1.1) and weight 8 in the Burg-
ers weighting is equivalent to one of the following up to a linear change of variables:

Up = Ugpg + SUlUgy — VUL + 3u§ + 3ulugy — buvug + v ug (3.8)
Ut = Uggpy + SUUZy — IVULy + 3u2 + 3ugvg + 3u2uw — buvug + 302%
L ;uwww + ;'Uzzz + 2u + 2 (3.10)
up = ;umm + ;vmz + (U — V) Ugg + 3uZ + 2ugvy + 2+ 2(u — v)?ug + Blu — v) 43.11)
up = —%umz + ivmz + 6uthpy — 6VUL, + 3u§ — buLv, — 31)32c —

—12(u — v)%v, — 3(u —v)? (3.12)
Uy = guzm — gvmz + 6utgpy — 6vUL, + (iugc + 12uyv, — 61)3 —

—12(u — v)?(ug — vz) — 3(u — v)* (3.13)
Uy = Ugg + ;UZ’U (3.14)
U = Uggy + SUVUE + ulvy (3.15)
U = Ugge + 3((U — V)Ugp + U2 — ugvy + (u? — duv + v?)uy — 2uv, + 2uvvy)  (3.16)
U = Uggy + 3((u — v)Ugy + u% — Uz + (u? — 8uv + v?H)uy — 4ty + 2uvw,)  (3.17)
Uy = %umz + %vmm + Ulgy — VUggy — UWVgg + VVggp — 2UgVp + 2’1);% +

+4uluy — 20uvug — dulvg — duvg (3.18)
up = luzm + —Vppr + UlUgy — VUgy + ui — ugpvy — duvuy — 2ulvy (3.19)

2 2
1
2umm + QUmm + UlUgy — VUgy — UWVgg + VU — 2UgVy + 2'03c — 12uvu, —
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—4v?%u, — 12uvv, + 4020, + 4ut — 12030 + 12020? — 4uw® (3.20)
up = %umz + o Veza + 2utzy — 20Uz + (U — vz)? — 2uuy — 36uvuy — 100%uy —

—14u?v, — 28uvv, — 6v2v, — 6u* — 32udv + 20u?v? + 16uv® + 2v* (3.21)
up = —%uzm + 5 Vs0s + 3utlyy — 30Uz + Uz — 3ugvy — 6020, (3.22)

Remark: The systems (3.8) - (3.13) are the generalizations of the pKdV equation, while
the systems (3.14) - (3.22) generalize the mKdV equation. (3.8), (3.14), (3.16) are symme-
tries of integrable Schrédinger-type equations from [7]. (3.10) is the potential form of the
symmetrized Ito equation (3.1). The other 11 equations seem to be new.

Remark: We were able to find several Hamiltonian formulations for the newly-found equa-
tions, as well as a biHamiltonian formulation for the system (3.19). For details see [3].

4 Coupled equations in noncommutative variables.

The general theory of integrable noncommutative equations goes back to [4, 11] and was
further developed in [7, 3, 9]. We use this theory to consider the symmetrically-coupled
equations in an associative noncommutative algebra A.

The main difference from the commutative case lies in the fact that there are two kinds of
involutions in a noncommutative algebra: order-preserving (say u) and order-reversing (say
u!). Thus we can consider two classes of symmetrically-coupled systems with real coefficients:

up = Flu,v]

4.1

{ vy = Flu,u] @)
and Fluv]
up = Flu,v

4.2

{vt = Ft[v,u] 4.2

The former class (4.1) is equivalent to a complex equation involving the complex conjugate
uy = F[u,u|, while the latter class (4.2) is equivalent to a matrix equation involving the
transpose u; = F[u,u'].

Due to a huge amount of computations, we were only able so far to complete the classifi-
cation of integrable KdV- and Burgers-type equations. The equations we obtain are general-
izations of integrable commutative equations of type (1.1). They are rather lengthy and we
refer the reader to [3] for the complete list of them.

As to the case of commutative symmetrically-coupled equation of type (1.1) that gen-
eralize Kaup-Kupershmidt, Sawada-Kotera, pKdV and mKdV equations, we showed that
neither of these equations has a noncommutative analog of type (4.1) or (4.2). These results
suggest that the Sokolov’s conjecture [7] about the noncommutative generalizations of the
Kaup-Kupershmidt and the Sawada-Kotera equation may be false, at least for equations with
real-valued coefficients.
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