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Classification of Symmetry-Integrable Evolution Equations
Peter J. Olver, Jan A. Sanders, and Jing Ping Wang

ABSTRACT. This paper describes some recent developments which have made
it possible to effectively classify homogeneous systems having infinitely many
generalized symmetries, both in the commutative and the noncommutative
case. It discusses the program that has to be carried out next to come to an
automatic classification mechanism.

1. Introduction

The theory of integrable systems has developed in many directions, and al-
though the interconnections between the different subjects are clearly suggested by
the similarity of the results, they are not always so easy to prove or even formulate.
The history of the subject experienced two developmental periods. In the first,
following the discovery of the Korteweg—de Vries equation, a surprisingly large
number of other integrable hierarchies, including mKdV, Sawada-Kotera, Kaup-
Kupershmidt, was soon found. However, the second period was more disappoint-
ing, as the integrable well quickly dried up, at least in the most basic case of scalar,
polynomial evolution equations linear in the highest order derivative. This led to
the conjecture that all integrable systems of this particular form had been found.
In this paper we do not discuss the well-known classification results as reviewed
in [SS84, Fok87, MSS91]. We remark however that there one classifies equa-
tions of fixed order, but allows for much bigger equivalence classes. We only work
with homogeneous equations and transformations that do not change the weight
of the equation. More explicitly, we describe rigorous classification results for both
commutative and noncommutative systems, [SW98b, SW00, OW99], including
a proof of this particular conjecture, and a discussion of the general methods by
which such complete classification results are established.

Of the various methods used to characterize integrable differential equations,
including existence of infinitely many symmetries and/or conservation laws, soliton
solutions, linearization by inverse scattering or differential substitution, Backlund
transformation, Painlevé property, biHamiltonian structure, recursion operator, for-
mal symmetry of infinite rank, etc., [Zak91], the most fruitful for systematic clas-
sification and discovery of new systems has been the characterization of integrable
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systems by the existence of a sufficient number of higher order symmetries. The
higher order symmetry conditions can be effectively and, in certain cases, com-
pletely analyzed by an adaptation of the symbolic method of classical invariant
theory, [01v99], after which powerful number-theoretic results on factorizability of
polynomials based on Diophantine approximation theory, [Beu97], are applied to
complete the classification.

In [SW98b, W98], it was shown that the integrability of an evolution equation

(1) Uy Zun+f(u7"' 7un71)7 where Unp ZDZu)

with f a polynomial starting with terms that are at least quadratic, is determined
by the existence of one nontrivial higher order symmetry. This led to the proof of a
long-standing conjecture that “in all known cases the existence of one generalized
symmetry implies the existence of infinitely many”, [Fok80], under fairly relaxed
conditions. In particular, for homogeneous scalar evolution equations, to prove
the integrability of an equation of order 2 we need a symmetry of order 3, for an
equation of order 3 we need a symmetry of order 5, for an equation of order 5 we
need a symmetry of order 7, and for an equation of order 7 we need a symmetry
of order 13, which enable us to give the complete list of integrable homogeneous
equations.

The results were quickly generalized to noncommutative polynomial evolution
equations of the form (1) in which the field variable u takes its values in an as-
sociative, non-commutative algebra, [OW99]. In this manner, it was rigorously
proved that the list of integrable evolution equation in [0S98a] is complete. These
equations can be regarded as quantizing classical integrable systems; see [FC95],
where the authors treated the Korteweg—de Vries equation.

The classification method consists of several parts: first one has to determine
whether a system has an symmetry, or for which parameter values a family of
systems has a nontrivial generalized symmetry. Our theorem can then be invoked
to show that such system is integrable. The check on the conditions of the theorem
involves theoretical results and cannot be done (so far) using only computations.
The application of the theorem leads to more calculations, but these involve only
lower order terms and can therefore be done effectively for all orders using the
symbolic method.

In this paper we will sketch the recent developments of the classification. We
will not give the details nor the proofs of the theorems. The classification papers
[SW00, OW99] may serve as a model for the classification of other types of equa-
tions. we will give the lists of (equivalence classes of) integrable equations obtained
so far, referring to the relevant papers for the details of how to effectively use these
tables.

The method allows not only the classification of integrability with respect to
symmetries, but also with respect to other objects like conservation laws. This how-
ever turns out to be more complicated than the symmetry analysis. The existence
of a nontrivial symmetry is still required, even if one is looking for conservation
laws; indeed, one often encounters the equations with only a finite number of con-
servation laws and no generalized symmetries.

2. Complete Classification Results

In all interesting integrable evolution equations, the right-hand side of equation
is a homogeneous differential polynomial under a suitable weighting scheme. The
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differential equation (1) is said to be A—homogeneous of weight u if it admits the
one-parameter group of scaling symmetries
(z,t,u) — (o 'z,a"t,a ), a € R,

For example, the Korteweg—de Vries equation u; = Uzzs + U, is homogeneous of
weight 3 for A = 2.

Two evolution equations u; = K and u; = ) are symmetries of each other if
and only if, [O1v93],

(2) [K,Q] = 0.
An equation is called integrable if it has at infinitely many higher order symmetries.
2.1. Commutative Case.
In this section, we list all integrable hierarchies which are A-homogeneous, with
A > 0. The classification theorem states that every A-homogeneous evolution equa-
tion with linear leading term is equivalent, modulo homogeneous transformations
in u, to an equation lying in one of the following hierarchies. For A > 0 the equiva-
lence transformations are just scalings u — au, while for A = 0 we allow arbitrary
change of variables u — h(u).

2.1.1. A=2.
Korteweg—de Vries

U = U3z + uuy
Kaup-Kupershmidt
us = us + 10uuz + 25uius + 20uu,
Sawada-Kotera
u; = us + 10uus + 10uqus + 20uuq

2.1.2. A=1.

Burgers’
Us = U + UU
Potential Korteweg—de Vries
U = u3 + uf
Modified Korteweg—de Vries
U = uz + u2u1

Potential Kaup-Kupershmidt
5 5, 20 4

1
ut = us + 10uiug + 7112 + ?ul

Potential Sawada-Kotera

uy = us + 10uus + ?ul

Kupershmidt Equation ([4.2.6] in [MSS91])

Uy = us + dujuz + 5u§ — 5ulus — 20 uuqus — 5uf + 5utuy

2.1.3. A=1.
Ibragimov-Shabat [Cal87]

Uy = ug + 3u2uz + 9uu% + 3u4u1
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2.14. A=0.
Potential Burgers’/Heat Equation

Ut = Uy~ utqu—Fu%
Potential modified Korteweg—de Vries
Uy = U3 + u?
Potential Kupershmidt equation
Ut = Uz + dugusg — 5ufu3 — 5u1u§ + u?

2.2. Non—Commutative Case.

Recently, the analysis of integrable evolution equations in which the field vari-
able u takes its values in an associative, non-commutative algebra, such as matrix,
operator, Clifford, and group algebras, has attracted attention. A complete classi-
fication for A > 0 homogeneous equations with linear leading term was established
in [OW99]. (The case A = 0 poses considerable technical difficulties.) There are
only five non-commutative hierarchies, each generalizing one of the preceding com-
mutative hierarchies. Interestingly, whereas the mKdV has two inequivalent non-
commutative versions, there is no noncommutative generalization of the Sawada—
Kotera, Kaup—Kupershmidt, Kupershmidt, or Ibragimov—Shabat hierarchies.

2.21. A=2.

Korteweg—de Vries

Ut = U3 + UU + ULU
2.22. A=1.
Burgers’
Ut = U +UUT U = U2 + UIU
Potential Korteweg—de Vries
Uy = us + uf

Modified Korteweg—de Vries I

Uy = uz + u2u1 + u1u2

Modified Korteweg—de Vries II

2
Ut = U3 + UU2 — UU — guulu

3. The Symbolic Method

The symbolic method was first introduced by Gel’fand and Dikii, [GD75]. It
was generalized by Shakiban, [Sha81, Sha82], who used it to apply the invariant
theory of finite groups to the study of conservation laws of evolution equations,
and Ball, Currie, and Olver, [BCO81, O1v83], to classify null Lagrangians arising
in nonlinear elasticity. In [Olv83] the connections with the symbolic method of
classical invariant theory were first recognized; see [O1v99] for the full details.

The basic idea of the symbolic method is simply to replace u;, where 7 is an
index — in our case counting the number of derivatives — by &%, where £ is now
a symbol. We see that the basic operation of differentiation, i.e. replacing u; by
Ui+1, 18 now replaced by multiplication with £, as is the case in Fourier transform
theory. For higher degree terms with multiple u’s, one uses different symbols to
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denote differentiation; for example, the noncommutative binomial u;u; has symbolic
form 5{‘5%. In the commutative case, one needs to average over permutations of
the differentiation symbols so that u;u; and uju; have the same symbolic form.
However, in the noncommutative case, this is no longer necessary. In other words,
the noncommutative symbolic method works with general polynomials, while in the
commutative case one restricts to (multi)-symmetric polynomials.

A differential monomial takes the form ur = w;, ws, - - - w5, . We call k the degree
of the monomial, #I = i + - - - + iy, the index, and max(ij, j = 1,--- , k) the order.
We let U denote the set of differential polynomials of degree k+ 1 and index n. Let
U =@, Uy, and U = @,, ;>0 Us, the algebra of all differential polynomials. The
order of a differential polynomial is the maximum of the orders of its constituent
monomials.

The transform or symbolic form defines a linear isomorphism between the space
U* of (non)-commutative differential polynomials of degree k 4+ 1 and the space
AF = R[¢1,. .. , €] of algebraic polynomials in k + 1 variables. It is uniquely
defined by its action on monomials.

DEFINITION 1. The symbolic form of a differential monomial is defined as

11 ~i2 ik 1 -
gz gl (noncommutative);
Wiy Ugy * * - Ug — i gle | ek i
1 Uiy . E v k) (commutative).
TESk

In general, in analogy with Fourier transforms, we denote the symbolic form
of P € U*, whether it is commutative or not, by P € A*. The transform has two
basic properties:

ﬁ(&,--- k1) = (614 -+ Expr) P(Er, -, &),

P 1 & 9P
6_1“(517"' 56/‘2):5 ]:Zl (6T])Z(€15 a&j—laoagja"' 7§k)'

The following key result is a consequence of these formulae.

PROPOSITION 2. Let K € U™ and Q € U™. Then Dk (Q) € U™, where D
is the Fréchet derivative of K, and when K and () are noncommutative,
m+1

DK[Q] = Z K (Ela s 5£T—1;Z€T+NJ§T+TL+15 e a€M+n> Q(E‘F: s a£T+7L);
T=1 k=0
when K and @) are commutative, the right-hand side is needed to be symmetrized.
The following polynomials play a critical role in the analysis.
DEFINITION 3. The G-functions are the (commutative) polynomials

G =g+ b~ (G i)

The key fact is the following formula for the bracket of a differential polynomial
with a linear differential polynomial:

(3) [M] = Gim) Q, whenever Qeum.

This follows directly from Proposition 2 and the fact that u; has symbolic form
ur = £F. An immediate application is the known result that the space of the
symmetries of linear evolution equations u; = u,, with n > 1 is U°.
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The crucial step is the following result, [Beu97, SW98b], on the divisibility
properties of the G-functions. The proof relies on sophisticated techniques from
Diophantine analysis.

PROPOSITION 4. We have G\™ = T/"H\™, where (H™, H™) = 1 for all
2 <k <, and T} is one of the following polynomials:

o m=1:
— k=0 (mod 2) 6152
— k=3 (mod 6): 6168 + &)
— k=5 (mod 6): §16a(& + &)(E + &6 + &)
~ k=1 (mod 6): §&(6 +&)(E + & +£)?
e m=2:
— k=0 (mod 2): 1
— k=1 (mod 2): (& + &) +&)(& + &)
e m>2: 1

4. Symmetries of \-Homogeneous Equations

In section 5 we illustrate the general method given in this section by an ele-
mentary example.

Any A-homogeneous n'" order evolution equation can be broken up into its
homogeneous components, and so takes the form

(4)  w=K=Ku]+K'u]+K*u]+---, where Kiel'.
We assume that K°[u] = u, and 0 < A € Q. Note that the index of K'[u] is
n —iX > 0. When i\ ¢ N, K¢[u] = 0. This reduces the number of relevant X to a
finite set.

Let S € U be an m*™® order symmetry of the evolution equation (4). We break

up the bracket condition [S, K] = 0 into its homogeneous summands, leading to
the series of successive symmetry equations

(5) Z[Sj,Ki]zo, for r=0,1,... .
itj=r

t

We know that S must have nontrivial linear term, S® # 0, and we can set S° = u,,
without loss of generality. Clearly we have [S°, K°] = 0. The next equation to be
solved is

(6) [tm, K1+ [S,un] =0, die. GOEKI =GMST

This is trivially satisfied if K has no quadratic terms: K' = 0. Concentrating on
K # 0, we have the following theorem:

THEOREM 5. Suppose the evolution equation (4) has a nonzero symmetry S of
order m > 2 . Suppose Q' € U' is non-zero with the same weight as uy, where
k # m,n, and k odd if n is odd, that satisfies [u,, Q'] + [K',ux] = 0. Then there
exists a unique symmetry of the form Q = up + Q' + Q2 + ---. Moreover, the
symmetries Q@ and S commute.

We make a very interesting observation. Suppose @ is a nontrivial k*" odd
order symmetry of (4) with odd n, whose quadratic terms have symbolic form:
S (1 = U —
& _ K'Y RV @+ab+) HY

GS) HS)
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Proposition 4 implies that A < 3+2min(s, s'), where s' = 22 (mod 3) and s = &3
(mod 3). Then Theorem 5 implies that there is a symmetry Q = uzsy3 + Q* + - -+
of the original equation. The evolution equations defined by @ and K have the
same symmetries, so instead of considering K we may consider the equation given
by @, which is of order ¢ = 2s + 3 for s = 0,1,2. It follows that we only need
to find the symmetries of A\-homogeneous equations (with A < 7) of order < 7 in
order to obtain the complete classification of symmetries of A-homogeneous scalar
polynomial equations starting with linear terms.

A similar observation can be made for even n > 2. Suppose we have found a
nontrivial symmetry with quadratic term

AL KlGEcl) K1 Gg)

¢V a6 HY

This immediately implies A < 2. Then there is a symmetry Q = uy + Q* + - -- of
the original equation. Therefore, we only need to find the symmetries of 2°¢ order
equations to get the complete classification of symmetries of A-homogeneous scalar
polynomial equations (with A < 2) starting with an even linear term.

Finally, we must analyze the case when K has no quadratic terms. Assume
that K =0fori=1,...,5— 1, and K/ # 0 for some j > 1. In place of (6), we
now need to solve the leading order equation

[, K] + [S7,u,]) = 0.
Using (3), the symbolic form of this condition is

o I?jG(J')
J m

™ =0

Proposition 4 implies that this polynomial identity has no solutions when j > 3, or
when j = 2 and n is even, since G%) and G,(f) have no common factors, and the
degree of K7 is n — j\ < n, which is the degree of G%j ). This implies that there are
no symmetries for such equations. When j = 2 and n is odd, the equation can only
have odd order symmetries, and we have the similar theorem as Theorem 5 in this
case. Moreover, if the equation (7) can be solved for any m, it can also be solved
for m = 3. By now, we have proved the following;:

THEOREM 6. A nontrivial symmetry of a A-homogeneous equation is part of a
hierarchy starting at order 2, 3, 5 or 7.

Only an equation with nonzero quadratic or cubic terms can have a nontrivial
symmetry. For such A, we must find a third order symmetry for a second order
equation, a fifth order symmetry for a third order equation, a seventh order sym-
metry for a fifth order equation with quadratic terms, and the thirteenth order
symmetry for a seventh order equation with quadratic terms. It remains to analyze
each of these particular cases in detail. The last case can be easily reduced to the
case of fifth order equations by determining the quadratic terms of the equation.
A straightforward computation, done with the help of MAPLE, completes the proof
of our lists. The details of the computation are completed as in the commutative
case described in [SW98a].
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5. Computational example

To illustrate how the symbolic method works, we give the symbolic calcula-
tion for the fifth order symmetry of the Korteweg—de Vries equation. When one
computes a symmetry, the natural approach is to do this degree by degree. So for
instance, if we have as the equation

u =K = Ko + K1 = us + uuy (KdV)
then we compute as a symmetry
S=S8+S51+ - =us + ayuuz + asuiug + - - -

We have to solve [Kp, S1] + [K1,S0] =0, i.e.,

DiSl +uDzSo + u1 Sy =

= D3K; +auD3Ky + ajuzKg + asuy D2 Ko + asus D, K.

If we translate this to the symbolic method we obtain

&+ &S+ (8 + &K1 = (6 + &K+ (6 + )51
Thus we can formally solve

g o @r&)-g-g
@ +&° - -8

and this is a real solution if $; turns out to be a polynomial. Thus we have
translated our problem into the following question. If we let

GP &)= (G +&)" - -¢,

then which factors do G& and GV have in common? Using the results in Propo-
sition 4, we can determine whether the symmetry we are looking for exists or not.
In this case, the answer is simple, that is,

S = g(ff +a6 +E)K = g(f? + 2606 + 2665 + E)u’.

Let us compute Sy by solving [S1, K1] + [S2, Ko] = 0. By Proposition 2, this leads
to

Kla

= 5(6 +&)(&+86)E +6)(6 +6+E6)
6 (G +&a+8&)2P -6 -8 -8
Note that [Sa, K1] = 0 next degree. Therefore, the fifth order symmetry is

u® = %(51 + & + &)ud.

5 10 5
S=8+85 +852=us+ gUUg + ?uluz + 6u2u1

This illustrates both the simplification induced by the symbolic method as well as
the role of the G-functions in the whole analysis.

6. Future developments

The reason that the basic technique works in both commutative and non-
commutative situations is simple: in the linear term one does not see any difference
between the two, cf. formula (6), and so the same polynomials arise in the symbolic
versions. the differences between the two cases only arise during the final, detailed
analysis that leads to the complete classification.

There are a number of obvious extensions to the results obtained thus far.
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Systems. There has been a lot of work done on classifying second or-
der two—dimensional systems of evolution equations, both in the commuta-
tive, [MSY87, MSS91, Fou00], and non-commutative, [0S98a, OS98b],
cases. Note that the G-functions will depend on the eigenvalues of the lin-
ear part of the system, and one has to generalize the results of F. Beukers,
[Beu97]. Nevertheless, there is some progress in this direction too. In
[BSW98], it was rigorously proved that an example due Bakirov of a fourth
order system of two coupled evolution equations only possesses one nontriv-
ial symmetry, of order six. This shows that, for systems, one higher order
symmetry does not necessarily imply infinitely many, and hence integrabil-
ity (see [BSW99] for further classification results for systems of this type).
Bakirov’s example does not violate the more refined version of the conjec-
ture, [Fok87], that a system of m evolution equations requires m higher
order symmetries in order to be integrable. However, in [vdKS99] an ex-
plicit, two-dimensional counterexample to this conjecture is given.

Scalar case with A < 0. Some results are known for A = —1, which were
obtained from the case A = 0. Although there seem to be many more
integrable systems for A < 0, this is compensated for by the fact that there
are also many more homogeneous transformations. The results for A = 0
indicate that one might expect a finite list of symmetry-integrable equations.
Other algebraic structures. One can think of cyclic commutativity [Rot99],
where

‘Du2u1 [h] = huuy + uhu; + uzhl = uurh + uyuh + u2h1.

This seems to be the right kind of differentiation for the nonpolynomial case,
which otherwise seems next to impossible.

Another direction is to allow coefficients in the equations which do not com-
mute with the field variables.
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