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I think I can safely say that nobody understands quantum mechanics.

— Richard P. Feynman, [22].

1. Introduction.

These are the lecture notes that I prepared for a graduate level course on the basics
of mathematical quantum mechanics that I gave in the academic year 1989–90 at the
University of Minnesota. The original notes were typed in Microsoft Word and hence
never distributed widely. After 15 years elapsed, I was finally inspired to convert them
to TEX. Aside from minor editing, corrections, reordering of some of the material, and
updating the references, they are the same as were distributed to the students in the class.

The goal was to provide a broad overview of mathematical techniques used in quan-
tum mechanics. While applications appear throughout, the emphasis is on the fundamental
mathematical tools used in the physical theory. Techniques include Hamiltonian mechan-
ics, quantization, operator theory, stationary phase, inverse scattering and solitons, group
representation theory, Clifford algebras, and much more.

I hope that you, as reader, will find them of use and as enjoyable as when I first
prepared them and gave the course.

2. Hamiltonian Mechanics.

References : [2], [5], [17], [25], [27], [42], [58].

The fundamental insight of Schrödinger’s approach to quantum mechanics was that
the quantum mechanical counterparts to the equations of classical mechanics are most
easily found by writing the latter in Hamiltonian form. Indeed, Hamilton himself could,
in direct analogy with the correspondence between geometric optics and wave optics —
the prototype of wave/particle duality — have straightforwardly written down the equa-
tions of “wave mechanics”, and thus anticipated quantum mechanics by almost a century.
However, the lack of any physical motivation for taking this conceptual leap prevented
such a mathematical advance occurring before its time. We thus begin our study with an
overview of basic Hamiltonian mechanics.

Hamiltonian Systems

We consider a system of first order ordinary differential equations on the phase space

M = R2n, with canonical local coordinates (p, q) = (p1, . . . , pn, q1, . . . , qn). The system is
called Hamiltonian if there is a smooth function H(p, q) such that it can be written in the
form

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H

∂pi
, i = 1, . . . , n. (2.1)

Typically the q’s represent the coordinates of the particles in the system, the p’s the
corresponding momenta, and H is the physical energy. Essentially, Hamilton’s equations
provide a convenient canonical form for writing the equations of conservative classical
mechanics.

A good example is the motion of masses in a potential force field. Here the q’s represent
the positions of the masses. Let U(t, q) be the potential function, so the corresponding force
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field is its negative spatial gradient: F = −∇U = (− ∂U/∂q1, . . . ,− ∂U/∂qn). Newton’s
equations are

mi

d2qi
dt2

= −∂U
∂qi

, i = 1, . . . , n,

where mi is the i
th mass. (For three-dimensional motion, n = 3m, and the positions and

masses are labelled accordingly.) To put these equations in Hamiltonian form, we let

pi = mi
�

qi,

be the ith momentum, and the Newtonian dot notation is used for time derivatives:
�

q =
dq/dt. We define the Hamiltonian function

H =
1

2

n∑

i=1

mi
�

q2i + U(t, q) =
n∑

i=1

p2i
2mi

+ U(t, q)

to be the total energy (kinetic + potential). Then Hamilton’s equations (2.1) are

dpi
dt

= −∂U
∂qi

,
dqi
dt

=
pi
mi

, i = 1, . . . , n,

and are clearly equivalent to Newton’s equations of motion.

The system of differential equations governing the solutions to any (first order) vari-
ational problem in one independent variable can always be put into Hamiltonian form.
Indeed, consider the problem of minimizing

I[q ] =
∫ b

a

L(t, q,
�

q), dt q(a) = a, q(b) = b, (2.2)

where the Lagrangian L is a smooth function of t, qi, and
�

qi = dqi/dt. Sufficiently smooth
minima must satisfy the associated Euler-Lagrange equations

Ei(L) = − d

dt

∂L

∂
�

qi
+
∂L

∂qi
= 0, i = 1, . . . , n. (2.3)

To see this, suppose q(t) is a smooth minimizer of (2.2). Then for smooth perturbations
h(t) satisfying h(a) = h(b) = 0 so as to preserve the boundary conditions, we must have

0 =
d

dε

∣∣∣∣
ε=0

I[q + εh ] =

∫ b

a

n∑

i=1

[
∂L

∂qi
hi(t) +

∂L

∂
�

qi

dhi
dt

]
dt

=

∫ b

a

n∑

i=1

[
∂L

∂qi
− d

dt

∂L

∂
�

qi

]
hi(t) dt,

where we integrated the second set of summands by parts and used the boundary condi-
tions on h to eliminate the boundary terms. Since the function h(t) is arbitrary, an easy
argument (the so-called duBois–Reymond Lemma) shows that the quantities in brackets
must vanish, implying (2.3).
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In general, we define the momenta via the Legendre transformation

pi =
∂L

∂
�

qi
, (2.4)

and impose the nondegeneracy assumption

det

(
∂2L

∂
�

qi∂
�

qj

)
6= 0, (2.5)

which, by the Implicit Function Theorem, allows us to locally solve (2.4) for
�

q as a function
of t, p, q:

�

qi = ϕi(t, p, q). (2.6)

Define the Hamiltonian function to be

H(t, p, q) =
n∑

i=1

pi
�

qi − L(t, q,
�

q), (2.7)

where we use (2.6) to replace
�

q. Then the Euler-Lagrange equations (2.3) are equivalent
to Hamilton’s equations (2.1). The easiest way to see this is to use differentials:

dH =
∂H

∂t
dt+

∂H

∂qi
dqi +

∂H

∂pi
dpi.

But, using (2.7), (2.4),

dH = pid
�

qi +
�

qidpi −
∂L

∂t
dt− ∂L

∂qi
dqi −

∂L

∂
�

qi
d
�

qi =
�

qidpi −
∂L

∂t
dt− ∂L

∂qi
dqi.

Equating the latter two expressions, we deduce that

∂H

∂t
= −∂L

∂t
,

∂H

∂pi
=

�

qi,
∂H

∂qi
= − ∂L

∂qi
= − d

dt

∂L

∂
�

qi
= − �

pi.

from which Hamilton’s equations (2.1) follow immediately.

Example 2.1. In particle dynamics, the Lagrangian is the difference of kinetic and
potential energy:

L =
1

2

n∑

i=1

mi
�

q2i − U(t, q).

The Euler-Lagrange equations are just Newton’s laws F = ma:

mi
��

qi +
∂U

∂qi
= 0, i = 1, . . . , n. (2.8)

To place this system of second order ordinary differential equations in Hamiltonian form,
in view of (2.4), set

pi =
∂L

∂
�

qi
= mi

�

qi,
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which is exactly the ith physical momentum. Thus, the Hamiltonian function (2.7) takes
the form

H(p, q) =
1

2

n∑

i=1

mi
�

q2i + U(t, q) =
n∑

i=1

p2i
2mi

+ U(t, q),

and is the total energy. As we have seen, Hamilton’s equations (2.1) are equivalent to
Newton’s equations (2.8).

Example 2.2. Geometric Optics : According to Fermat’s Principle, the light rays
traveling between two points follows the path requiring the least time. If the light is
traveling in a medium with index of refraction n(q), which is the ratio of the speed of light
in the medium to the speed of light in vacuo, c, then its velocity is ds/dt = c/n. Therefore,
taking units in which c = 1, the time to transit between two points A and B is

t =

∫ B

A

dt =

∫ B

A

n(q) ds,

where ds denotes the element of arc length on the path travelled by the light. Fermat says
that we need to minimize (or at least find stationary values for) this functional. Now ds
is not a very convenient parametrization, as the endpoints of the functional are no longer
fixed. However, the integral does not depend on the particular parametrization of the
path followed by the light ray, so that we can restrict attention to parametrized curves
q(t) where the parameter t varies over a fixed interval [a, b]. Then ds = | �

q | dt, and the
functional to be minimized is

I[q ] =
∫ b

a

n(q) | �

q | dt, q(a) = A, q(b) = B, (2.9)

with Lagrangian L = n(q) | �

q |. The Euler-Lagrange equations (2.3) are thus

− d

dt

n(q)
�

q

| �

q | + | �

q | ∂n
∂q

= 0.

It can be seen that the solutions to this equation encode all the usual laws of geometric
optics.

We cannot apply the usual Hamiltonian theory to this variational problem since the
Lagrangian is degenerate: det(∂2L/∂

�

qi∂
�

qj) ≡ 0. This is in essence because the solutions
are just the curves followed by the light rays, and hence can be reparametrized without
affecting whether or not they are solutions to the Euler-Lagrange equations. Indeed, this
is a special case of Noether’s Second Theorem, [42], which states that a Lagrangian is
everywhere degenerate if and only if it admits an infinite-dimensional symmetry group. In
this case the symmetry group is that of reparametrizations t 7−→ ϕ(t).

To proceed, we must remove this degeneracy. The easiest way is to assume that
the curve is given by the graph of a function, and use one of the coordinates qi as the
parameter. For instance, if we specialize to a planar medium, so q = (x, y), and suppose
that the path is given as the graph of a curve y = f(x), the variational problem (2.9) takes
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the form

I[y ] =
∫ b

a

n(x, y)ds =

∫ b

a

n(x, y)
√
1 +

�

y2 dx, y(a) = α, y(b) = β.

Now the horizontal coordinate x plays the role of time, and the endpoints are A = (a, α),
B = (b, β). The Euler-Lagrange equation of this variational problem is

− d

dx

(
n(x, y)

�

y√
1 +

�

y2

)
+

∂n

∂y

√
1 +

�

y2 = 0,

where
�

means d/dx. To compute the Hamiltonian form of these equations, the Lagrangian
is

L(x, y,
�

y) = n(x, y)
√
1 +

�

y2,

hence

p =
∂L

∂
�

y
=

n
�

y√
1 +

�

y2
,

which can be explicitly inverted:
�

y =
p√

n2 − p2

Therefore, the Hamiltonian is

H(p, y) = p
�

y − L = −
√
n2 − p2

with canonical equations

�

p = − ∂H

∂y
=

n ∂n/∂y√
n2 − p2

,
�

y =
∂H

∂p
=

p√
n2 − p2

.

These are the basic equations describing the paths traced by light rays in geometrical
optics.

Poisson Brackets

In classical mechanics, an observable is just a function F (p, q) of the coordinates in
phase space. If p(t), q(t) are a solution to Hamilton’s equations (2.1), then an observable
F will, in general depend on t. Its rate of change is given by differentiation:

d

dt
F (p, q) =

n∑

i=1

(
∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi
dt

)
=

n∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
.

The summed quantity above plays an extremely important role in the theory, and is called
the Poisson bracket between the functions F and H, denoted

{F,H } =
n∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (2.10)
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Thus we have shown that the dynamical rate of change of any observable along solu-
tions to Hamilton’s equations is given by

dF

dt
= {F,H }. (2.11)

In particular, Hamilton’s equations themselves, which express the dynamical rate of change
of the coordinates (p, q), can be written in Poisson bracket form:

�

p = {p,H }, �

q = {q,H },

which is sometimes abbreviated

�

u = {u,H }, u = (p, q).

More generally, the dynamical rate of change of a time-dependent function F (t, p, q) is
given by

dF

dt
=
∂F

∂t
+ {F,H }. (2.12)

The Poisson bracket (2.10) satisfies the following fundamental properties:

(i) Bilinearity : {aF + bG,H } = a{F,H }+ b{G,H }, a, b ∈ R.

(ii) Skew-symmetry : {F,H } = −{H,F }.
(iii) Jacobi identity : {{F,G}, H }+ {{H,F }, G}+ {{G,H }, F } = 0.

(iv) Leibniz’s rule: {F G,H } = {F,H }G+ F {G,H }.

Of particular interest are the fundamental Poisson brackets between the coordinate
functions (p, q); these are readily seen to be

{pi, pj } = 0, {qi, qj } = 0, {qi, pj } = δij , (2.13)

where δij denotes the Kronecker delta, which is 1 if i = j and 0 otherwise. The Poisson
bracket is also non-degenerate, meaning that the 2n×2n skew-symmetric matrix J whose
entries are the coordinate brackets Jij = {ui, uj }, u = (p, q), is everywhere nonsingular.
Indeed, in canonical coordinates,

J =

(
0 − I
I 0

)
, (2.14)

where I is the n×n identity matrix, is the canonical symplectic matrix . Darboux’ Theorem,
[42], shows that, locally, for any nondegenerate Poisson bracket satisfying identities (i)–
(iv), the underlying manifold must be even-dimensional, and there exist local coordinates
u = (p, q) in which it takes the canonical form (2.10).

An observable F (t, p, q) is called a first integral or conservation law of the Hamiltonian
system if it is constant along solutions. According to (2.12), this requires that

∂F

∂t
+ {F,H } = 0. (2.15)
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In particular, a time-independent function F (p, q) is a first integral if and only if

{F,H } = 0. (2.16)

Note that by skew symmetry, {H,H } = 0 for any function H, so if the Hamiltonian
function H(p, q) is time-independent, then it is automatically a first integral. This is the
law of Conservation of Energy .

Also, if H and F are both time-independent, and F is an integral for the Hamiltonian
flow determined by H, then H is an integral for the Hamiltonian flow determined by F . By
the Jacobi identity, if F and G are first integrals, then so is their Poisson bracket {F,G}.
For instance, if two components of angular momentum, e.g.,

p1q2 − p2q1, p3q1 − p1q3,

are conserved, then so is the third since

{p1q2 − p2q1, p3q1 − p1q3 } = p2q3 − p3q2.

An important (but trivial) observation is the following: if H does not depend on the
coordinate q1, then the corresponding momentum p1 is a first integral. In this case, we
can reduce the order of the system by 2, only looking at pi, qi for i ≥ 2, and integrating
the first equation for q1 by quadrature. This holds in general: any first integral allows us
to reduce the order of the Hamiltonian system by 2; see [42] for details. Moreover, any
other commuting first integral remains a first integral for the reduced system. If a system
posses n functionally independent commuting first integrals:

{Fi, Fj } = 0, i, j = 1, . . . , n,

then it is called completely integrable, and can (at least in principle) be solved explicitly.

Symmetries and First Integrals

We identify an autonomous system of ordinary differential equations

�

ui = ϕi(u), i = 1, . . . , n, (2.17)

with a vector field

v =
n∑

i=1

ϕi(u)
∂

∂ui
,

whose flow is prescribed by the solutions to the system (2.17). If the flow is global (local),
at each time t, it defines a (local) diffeomorphism of Rn.

In general, we say a (local) diffeomorphism is a symmetry of the system of ordinary
differential equations (2.17) if it maps solutions to solutions (where defined). A vector field
w is an infinitesimal symmetry if its flow determines a one-parameter group of symmetries.
It is not hard to see that, for autonomous systems, w determines an infinitesimal symmetry
of the system of ordinary differential equations for the flow of v if and only if the two vector
fields commute: [v,w ] = 0.
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For an autonomous Hamiltonian system (2.1), we define the Hamiltonian vector field

associated with the Hamiltonian function H(p, q) to be

vH =

n∑

i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (2.18)

Note that
vH(F ) = {F,H } = −{H,F }.

We can therefore interpret the Poisson bracket as indicating the infinitesimal change in
the function or observable F under the flow induced by the Hamiltonian function H.

The following lemma is crucial, relating Poisson brackets and Lie brackets of Hamil-
tonian vector fields:

Lemma 2.3. If F and H are smooth functions with Poisson bracket G = {F,H },
then the corresponding Hamiltonian vector fields are related according to

vG = [vH ,vF ] = − [vF ,vH ]

Proof : Let K be any other function. Then, by the Jacobi identity

vG(K) = {K,G} = {K, {F,H }} = −{H, {K,F }} − {F, {H,K }}
= {H, {F,K }} − {F, {H,K }} = vH(vF (K))− vF (vH(K)). = [vH ,vF ](K)

Since this holds for all K it is true in general. Q.E.D.

Noether’s Theorem 2.4. (Hamiltonian version) There is a one-to-one correspon-
dence between Hamiltonian symmetries of a Hamiltonian system, and (time dependent)
conservation laws (first integrals).

Proof : Let F (p, q) be a time-independent first integral. Then, by (2.16), {F,H } = 0
and hence Lemma 2.3 implies that vF and vH commute, [vH ,vF ] = 0, and so vF is
a symmetry of the Hamiltonian system. Conversely, assuming vF is a symmetry of the
Hamiltonian system, we have vG = 0, where G = {F,H }. This doesn’t quite mean that
G = 0 (unfortunately), but rather that G = g(t) is a function of t alone. However, one
can then replace F by F −

∫
g dt to get a time-dependent first integral. The general case

is left to the reader. Q.E.D.

For example:

Translational symmetry 7−→ conservation of linear momentum

This is just the observation that when the Hamiltonian doesn’t depend on one of the
coordinates qi, then the associated momentum pi is conserved.

Time translational symmetry 7−→ conservation of energy

This is the observation that if the Hamiltonian does not depend on t, then it is itself
conserved.

Rotational symmetry 7−→ conservation of angular momentum
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The last one is left to the reader to precisely formulate.

Hamilton–Jacobi Theory

There is an intimate connection between systems of first order ordinary differential
equations and first order partial differential equations. The two subjects are, in essence,
equivalent, and a complete solution to one gives the complete solution to the other. This
relationship, going back to Hamilton, Jacobi, and others in the first half of the nineteenth
century, lies at the heart of wave/particle duality and the interconnections between classical
and quantum mechanics.

We begin with a first order variational problem

∫ t1

t0

L(t, q,
�

q) dt. Define the action

function to be

S(q, t) =

∫

γ

L(t, q,
�

q) dt, (2.19)

where γ is an extremal connecting some fixed initial point (q0, t0) to the variable point
(q, t). (We suppress this dependence of S on the initial point.) To prove that S is a smooth
function defined in a neighborhood of the initial point, we need to know that there is a
“central field of extremals” starting at (q0, t0) and not intersecting in the neighborhood.
This can be proved under our prevailing regularity assumptions using standard existence
and uniqueness theorems for ordinary differential equations.

We begin with a key lemma which computes the derivatives of the action function.

Lemma 2.5. The differential of the action function is given by

dS = p dq −H dt. (2.20)

Remark : The differential one-form on the right hand side of (2.20) is known as the
Cartan form and serves to define Hilbert’s invariant integral .

Proof : This is essentially the formula for the general variation of a functional. Suppose
we are varying both the function q(t) and the endpoints for the functional

I[q, a, b ] =
∫ b

a

L(t, q,
�

q) dt, q(a) = a, q(b) = b.

Let h(t) be a perturbation, but now we also allow the endpoints to vary, as well as the
imposed boundary conditions. We compute the associated infinitesimal variation in the
integral:

δI =
d

dε

∣∣∣∣
ε=0

∫ b+εδb

a+εδa

L(t, q + εh,
�

q + ε,
�

h) dt = L(t, q,
�

q)
∣∣∣
b

t=a
+

∫ b

a

[
∂L

∂q
h(t) +

∂L

∂
�

q

�

h

]
dt

=

(
L+

∂L

∂
�

q
h

)∣∣∣∣
b

t=a

+

∫ b

a

[
∂L

∂q
− d

dt

∂L

∂
�

q

]
h(t) dt. (2.21)

Now, we have to be a little careful. It we vary the point (t, q) to (t + ε δt, q + ε δq), the
corresponding variation h will be given by

q + εδq = q(t+ εδt) + εh(t+ εδt) = q(t) + ε
[

�

q(t)δt+ h(t)
]
.
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Therefore, at the original (unvaried point) t, we have

h(t) = δq − �

q(t) δt.

Substituting this into the variational formula (2.21), we find that

δI =

[(
L− �

q
∂L

∂
�

q

)
δt+

∂L

∂
�

q
δq

]∣∣∣∣
b

t=a

+

∫ b

a

[
∂L

∂q
− d

dt

∂L

∂
�

q

]
h(t) dt

=
[
(L− �

q p)δt+ pδq
] ∣∣∣
b

t=a
+

∫ b

a

[
∂L

∂q
− d

dt

∂L

∂
�

q

]
h(t) dt.

since p = ∂L/∂
�

q. In particular, if q is a solution to the Euler-Lagrange equations (2.3),
then

δI =
[
(L− �

q p)δt+ pδq
] ∣∣∣
b

t=a
=
(
pδq −H δt

) ∣∣∣
b

t=a
.

If we only vary one endpoint, formula (2.20) follows. Q.E.D.

The most important consequence of this result is the following.

Theorem 2.6. The action function is a solution to the Hamilton–Jacobi equation:

∂S

∂t
+H

(
∂S

∂q
, q, t

)
= 0, (2.22)

where H(p, q, t) is the Hamiltonian associated with the variational problem.

Proof : This follows at once from Lemma 2.5, which implies ∂S/∂t = −H(p, q, t) and
∂S/∂q = p. Q.E.D.

Example 2.7. Consider the special case of Newton’s equations for the motion of a
mass in a central gravitational force field. The Lagrangian is

L(q,
�

q) =
m | �

q |2
2

− V
(
| q |
)
=

| p |2
2m

− V
(
| q |
)
,

where p = m
�

q. The Hamiltonian is

H(p, q) = p
�

q − L(q,
�

q) =
| p |2
2m

+ V
(
| q |
)
.

Thus, the Hamilton–Jacobi equation (2.22) takes the form

∂S

∂t
+

1

2m

∣∣∣∣
∂S

∂q

∣∣∣∣
2

+ V
(
| q |
)
= 0. (2.23)

In spherical coordinates (r, ϕ, θ), this becomes

∂S

∂t
+

1

2m

[(
∂S

∂r

)
2

+
1

r2

(
∂S

∂ϕ

)
2

+
1

r2 sin2 ϕ

(
∂S

∂θ

)
2
]
+ V (r) = 0. (2.24)
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Remark : We will use the mathematical convention for spherical coordinates, cf. [43],
where −π < θ ≤ π is the azimuthal angle or longitude, while 0 ≤ ϕ ≤ π is the zenith angle

or co-latitude, whereby

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ. (2.25)

In many books, particularly those in physics , the roles of ϕ and θ are reversed , leading to
much confusion when one is perusing the literature.

Example 2.8. In geometric optics, as we have seen, the Hamiltonian is

H(p, q) = −
√
n2 − p2

with x playing the role of t. The Hamilton–Jacobi equation becomes

∂S

∂x
−
√
n2 −

(
∂S

∂y

)
2

= 0.

which is equivalent to the eikonal equation describing optical wave front sets:

(
∂S

∂x

)
2

+

(
∂S

∂y

)
2

= n(x, y)2.

More generally, in n-dimensional optics, the Hamilton–Jacobi equation again coincides
with the eikonal equation

| ∇S |2 = n2.

The solutions to the Hamilton–Jacobi equation are directly related to the solutions
to Hamilton’s equations. In fact, they are in a sense equivalent differential equations, and
knowing the complete solution to one allows one to determine the complete solution to the
other. There are several approaches to this; here we invoke the method of characteristics.
We will show that the solutions to Hamilton’s equations are just the characteristic curves
for the Hamilton–Jacobi equation. The physical motivation for this comes from geometrical
optics. In this case, the action function S determines the phase of an oscillatory light wave.
Its level sets {S = c} are the wave front sets where the light waves have constant phase.
The characteristics are just the paths followed by the light rays or the photons. This
principle is at the heart of Hamilton’s “optical-mechanical” analogy, and, ultimately, the
basis of the wave/particle duality in quantum mechanics.

Consider a first order partial differential equation

F (x, u,∇u) = 0, x = (x1, . . . , xn) (2.26)

where F (x, u, p) is a smooth function on the (2n+1)-dimensional space whose coordinates
are the independent variables x = (x1, . . . , xn), the dependent variable u, and the gradient
coordinates p = (p1, . . . , pn), with pi representing the derivative ∂u/∂xi.

The most basic problem associated with such an equation is the Cauchy problem,
meaning the initial value problem in which one specifies the value f of the function u on
an (n − 1)-dimensional submanifold (hypersurface) S of the base space Rn. To solve the
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Cauchy problem (classically) one is required to find a solution u with the given initial
values: u |S = f . For instance, suppose we adopt the particular coordinates (t, y) =
(t, y1, . . . , yn−1) in which the initial hypersurface is the flat hyperplane S = { (t, y) | t = 0 }.
In this case the equation takes the form†

F (t, y, u, ut, uy) = 0. (2.27)

The Cauchy data is specified on the hyperplane S by

u(0, y) = f(y). (2.28)

Suppose we can solve this equation for the normal derivative ut, placing the equation in
Cauchy–Kovalevskaya form

ut = G(y, t, u, uy). (2.29)

According to the Implicit Function Theorem, this is possible (locally) provided the partial
derivative ∂F/∂ut 6= 0 does not vanish at a point (t, y, u, ut, uy). In this case, the initial
hyperplane S is called non-characteristic. The Cauchy-Kovalevskaya Existence Theorem,
[17], shows that, for analyticG, the above Cauchy problem (2.28–29) has a unique solution.

More generally, a hypersurface S ⊂ Rn is called non-characteristic if the corresponding
Cauchy problem

u |S = f

is similarly well-posed. Let us represent

S = { x | h(x) = 0 }

as the zero locus of a smooth scalar-valued function h with ∇h 6= 0 on S. Assuming
without loss of generality that ∂h/∂xn 6= 0 we can locally introduce new coordinates

t = h(x), y1 = x1, . . . yn−1 = xn−1,

to flatten out S to be the hyperplane { t = 0}. Then

∂u

∂xj
= ξj

∂u

∂t
+
∂u

∂yj
, 1 ≤ j ≤ n− 1,

∂u

∂xn
= ξn

∂u

∂t
, where ξj =

∂h

∂xj
.

The Implicit Function Theorem requires that, to be able to solve smoothly for the “normal”
derivative ut, we must have

0 6= ∂F

∂ut
=

n∑

j=1

ξj
∂F

∂pj
.

All of this discussion serves as motivation for the following crucial definition.

† We now make use of subscript notation to denote partial derivatives, so that ut represents
∂u/∂t, while uy represents the y gradient ∇yu with entries uyi = ∂u/∂yi.
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Definition 2.9. An n-tuple of numbers ξ = (ξ1, . . . , ξn) determines a characteristic

direction for the partial differential equation F (x, u, p) = 0 at the point (x, u, p) if

ξ · Fp(x, u, p) = 0.

Then, very loosely speaking, a hypersurface S = {h(x) = 0} is characteristic if its
normal ξ = ∇h determines a characteristic direction at each point. In point of fact, the
components of ξ transform like a differential one-form dh =

∑
ξjdxj, i.e., a covariant

1-tensor, and should be treated as such.

Away from singular points where the derivative Fp vanishes, the characteristic direc-
tions span an (n − 1)-dimensional subspace of (the cotangent space to) Rn. Throughout
this section, we will always assume that Fp 6= 0 so as to avoid singularities of the equation.
The orthogonal complement to this characteristic subspace will be a one-dimensional sub-
space of (the tangent space to) Rn. Thus we will call a tangent vector v = (v1, . . . , vn) at a
point x ∈ Rn a characteristic vector for the point (x, u, p) sitting over x if it is orthogonal
to all the characteristic directions ξ at this point, i.e., v ·ξ = 0 for all ξ such that ξ ·Fp = 0.
Clearly this is true if and only if v is parallel to Fp, i.e., v = λFp for some scalar λ.
In particular, except in the special case of a linear equation, we need to know the values
of u and p in order to specify the characteristic vectors at a point x. A hypersurface S
is characteristic if and only if the corresponding characteristic vector v is contained its
tangent space at each point.

An alternative, but equivalent definition of a characteristic direction is a direction in
which the derivative of some solution admits a possible discontinuity. Note that, if u is a
continuous solution to the equation that is C1 except on the hypersurface S = { t = 0},
where the normal derivative ut has a discontinuity, then S must be characteristic, since if
we can solve for ut as above, then it is necessarily continuous, as all the functions on the
right hand side are continuous. Both definitions of characteristics extend to higher order
equations, although they can typically no longer be used to derive the general solution.

The astute reader will have realized that the above discussion is not very precise.
Namely, to determine whether or not a hypersurface is characteristic we need to check
whether or not its normal, which depends on x, is a characteristic direction, but, except in
the special case of linear equations, the condition specifying the characteristic directions
depends on the values of x, u, p, and we have yet to specify u and p. These will come from
the solution u = f(x) of the equation, but the reasoning is starting to get a little circular.
It helps at this point to step back, and describe what we mean by the Cauchy problem
a little more precisely. First we introduce the base (physical) space X = Rn, which has
coordinates x = (x1, . . . , xn). Sitting over X is the (2n + 1)-dimensional space J , which
has coordinates (x, u, p) = (x1, . . . , xn, u, p1, . . . , pn) representing the dependent variable u
and its first order derivatives p. The space J is often referred to as the first jet space, and
denoted J1. The standard projection π: J −→ X maps π(x, u, p) = x.

Consider a smooth function u = f(x) defined on a domain D ⊂ X , so f is a function
from D to R. By the prolongation of f , we mean the function f (1):D −→ J , given by
taking the derivatives, so u = f(x), p = ∇f(x) for x ∈ D. The graph of f determines
an n-dimensional submanifold of Rn+1 = X × R. Similarly, the graph of the prolongation
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f (1) determines an n-dimensional submanifold Γf ⊂ J , given by

Γf = { (x, f(x),∇f(x) ) | x ∈ D } .

However, not every n-dimensional submanifold N ⊂ J is the graph of a function; the
derivative coordinates p must match up properly. The easiest way to express this condition
is to use the contact one-form

θ = du− p dx = du−
n∑

i=1

pi dxi. (2.30)

Note that if we substitute u = f(x), p = ∇f(x), into θ, then the resulting one-form
vanishes identically. In other words, the contact one-form θ vanishes when restricted
to the prolonged graph of a function. Subject to a certain transversality condition, the
converse to this also holds. We formalize this condition into a general definition.

Definition 2.10. A submanifold N ⊂ J is called Lagrangian if the contact one form
(2.30) vanishes on it: θ |N = 0.

As for the transversality condition, consider the volume form

Ω = dx1 ∧ dx2 ∧ . . . ∧ dxn, (2.31)

which is also defined on the jet space J . Note that Ω does not vanish on the (prolonged)
graph of any function u = f(x). Conversely, if we have a parametrized n-dimensional
submanifold N =

{
(x(s1, . . . , sn), u(s1, . . . , sn), p(s1, . . . , sn))

}
⊂ J , then, by the Inverse

Function Theorem, we can locally express u as a function of the x’s provided the Jacobian
determinant det(∂xi/∂sj) 6= 0. This is the same as saying that the volume form Ω does
not vanish on N .

Proposition 2.11. Suppose N is an n-dimensional Lagrangian submanifold of J
such that Ω 6= 0 on N . Then, locally near each point x corresponding to some (x, u, p) ∈ N ,
we can express N = Γf as the prolonged graph of a function u = f(x).

Next, consider the standard Cauchy problem u(0, y) = f(y) on an initial hyperplane
S = { (t, y) | t = 0 } in the (t, y) coordinates. If the problem is non-characteristic, then
this Cauchy data will determine initial conditions not only for u on the hyperplane S
but also the derivatives p = (ut, uy) on S as follows. The tangential y-derivatives come
directly from f(y) itself: uyi = ∂f/∂yi. As for the t-derivative ut, we assume that we
have solved the equation for ut = G(t, y, u, uy). Then, on the initial hypersurface S, the
normal derivative is given by ut = G(0, y, f(y), fy(y)). Therefore, the standard Cauchy
data parametrizes an (n− 1)-dimensional submanifold of the jet space J , namely

N0 =

{(
0, y, f(y), G

(
y, 0, f(y),

∂f

∂y
(y)

)
,
∂f

∂y
(y)

)}
.

The solution to this Cauchy problem will then be a function u = f(t, y) such that f(0, y) =
f(y). It is easy to see that this is the same as requiring that the prolonged graph Γf of

1/3/23 16 c© 2023 Peter J. Olver



f(t, y) contain the “Cauchy submanifold” N0, i.e., Γf ⊃ N0. Similar properties hold in the
general coordinates x.

Thus, we are tempted to define the Cauchy data of the partial differential equation
as an (n− 1)-dimensional submanifold of the jet space J . However, as with the prolonged
graph of a function, not every such submanifold can serve as valid Cauchy data. First,
it must itself satisfy the equation, i.e., consist of points (x, u, p) such that F (x, u, p) = 0.
Secondly, in order that the derivatives match up, the Cauchy submanifold must itself
be Lagrangian; otherwise the tangential derivatives will not be correct. Thirdly, it must
project back down to an (n− 1)-dimensional submanifold S = π(N0) of the base space X .

This inspires the following important definition.

Definition 2.12. Consider a first order partial differential equation F (x, u, p) = 0
defined by the vanishing of a smooth real-valued function on the jet space J = R2n+1.
A Cauchy submanifold is an (n − 1)-dimensional Lagrangian submanifold N0 ⊂ J which
satisfies the equation

N0 ⊂ { (x, u, p) | F (x, u, p) = 0 } ,

and whose projection S = π(N0) is an (n−1)-dimensional submanifold of the base space X .
A solution to the Cauchy problem defined by N0 will be a smooth solution u = f(x) of the
partial differential equation whose prolonged graph contains the Cauchy submanifold: Γf ⊃
N0. The Cauchy submanifoldN0 is called non-characteristic if for each point (x, u, p) ∈ N0,
the characteristic vector v = Fp is not tangent to its projection S at the corresponding
point x = π(x, u, p).

It is often convenient to replace the projection condition by a local transversality
condition. In the non-characteristic case, this can be written as

v Ω 6= 0 on S = π(N0).

Here v = Fp is the characteristic vector, Ω is the volume n-form on Rn, and denotes
interior product , so that v Ω is the unique (n− 1)-form that satisfies

〈v Ω ,v1, . . . ,vn−1 〉 = 〈Ω ,v,v1, . . . ,vn−1 〉 (2.32)

for all tangent vectors v1, . . . ,vn−1.

If N0 is parametrized explicitly by (x(s1, . . . , sn−1), u(s1, . . . , sn−1), p(s1, . . . , sn−1)),
then the conditions that N0 be a non-characteristic Cauchy submanifold have the following
equivalent coordinate versions:

(i) satisfies the equation: F (x(s1, . . . , sn−1), u(s1, . . . , sn−1), p(s1, . . . , sn−1)) = 0.

(ii) Lagrangian:
∂u

∂sj
−

n∑

i=1

pi
∂ξ

∂sj
= 0, j = 1, . . . , n− 1.

(iii) non-characteristic: det

(
∂F

∂pi
,
∂ξ

∂sj

)
6= 0.

The Cauchy–Kovalevskaya Theorem now guarantees the unique solution to the Cauchy
problem associated with a non-characteristic Cauchy submanifold, provided the equation
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and initial data are analytic. Actually, we will see how to solve this problem under much
weaker hypotheses.

Let u = f(x) be any C2 solution to the equation F = 0 defined on a domain D ⊂ X .
At each point x ∈ D, the solution will determine (up to multiple) a characteristic vector
v = λFp(x, f(x), fx(x)). A parametrized curve x(s) whose non-zero tangent vector is
everywhere a characteristic vector for the given solution u will be called a characteristic

curve for the solution. This requires that
�

x(s) be proportional to Fp at the point:

dx

ds
= λ

∂F

∂p
.

Now, except in the case of linear equations, the characteristic vectors depend not only
on the base point x, but also on the value of u and its derivatives p at x. This suggests
that, in order to determine a characteristic curve, we not only look at the base curve x(s),
but also its “prolongation” to the jet space J . There will be a unique curve contained in
the prolonged graph Γf of the solution sitting over the base curve x(s), namely the curve
(x(s), u(s), p(s)), where

u(s) = f(x(s)), p(s) =
∂f

∂x
(x(s)).

We can use the chain rule to compute how the u and p components of the prolonged curve
depend on s. Thus,

du

ds
=

n∑

i=1

∂u

∂xi

dxi
ds

= λ

n∑

i=1

pi
∂F

∂pi
= λ p

∂F

∂p
.

and also,

dpi
ds

=
∑

k

∂pi
∂xk

dxk
ds

= λ
∑

k

∂2u

∂xi∂xk

∂F

∂pk
.

At this stage it appears that we also need to know how the second derivatives of the
solution behave. However, u is assumed to be a solution, so it also satisfies

0 =
∂

∂xi
F (x, u, ux) =

∂F

∂xi
+
∂F

∂u

∂u

∂xi
+
∑

k

∂2u

∂xi∂xk

∂F

∂pk
.

Comparing these two equations, we see that

dpi
ds

= −λ
(
∂F

∂xi
+ pi

∂F

∂u

)
.

Finally, note that we can absorb the proportionality factor λ into the parameter s by
reparametrizing the curve, so λ = 1 without loss of generality. We are thus left with a
system of first order ordinary differential equations for the components (x(s), u(s), p(s))
which do not refer any longer to the particular solution u = f(x).
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Definition 2.13. A characteristic curve is a solution to the characteristic system of
ordinary differential equations:

dx

ds
=
∂F

∂p
,

du

ds
= p

∂F

∂p
,

dp

ds
= −

(
∂F

∂x
+ p

∂F

∂u

)
. (2.33)

In general, given a point (x0, u0, p0) ∈ J , we will denote by (x(s), u(s), p(s)) the
characteristic curve passing through it, whereby (x0, u0, p0) are the initial conditions for
(2.33) at s = 0. Note that, by standard existence and uniqueness results for ordinary
differential equations, this curve is uniquely defined for s sufficiently small.

Thus, we have demonstrated that any characteristic curve associated with a solution
u of the partial differential equation is a solution to the characteristic system of ordinary
differential equations (2.33). Since the characteristic curves are uniquely determined by
their initial conditions, we deduce that every solution to our partial differential equation
is swept out by an (n− 1)–parameter family of characteristic curves, parametrized by the
initial values of u and p on the (n− 1)-dimensional non-characteristic Cauchy surface.

If F doesn’t depend on u, then the characteristic equations (2.33) are essentially the
same as Hamilton’s equations for a time independent Hamiltonian F = H(p, q) (with
x = q) since u can be determined from x, p by a single quadrature. For the time-dependent

Hamilton–Jacobi equation

F (t, q, S, St, Sq) ≡
∂S

∂t
+H

(
t,
∂S

∂q
, q

)
= 0, (2.34)

we replace S by u to find the corresponding equations for characteristic curves

dt

ds
= 1,

dq

ds
=
∂H

∂p
,

dπ

ds
= − ∂H

∂t
,

dp

ds
= − ∂H

∂q
,

du

ds
= π + p

∂H

∂p
, (2.35)

where π represents St. Thus t = s+ c, and, after we solve the Hamiltonian system for p, q,
we can recover the complete expression for the characteristic curves by quadrature.

Now we prove the converse — that every solution u = f(x) to the partial differential
equation can be constructed from the characteristic curves.

Proposition 2.14. Let u = f(x) be a solution to the first order partial differential
equation (2.26). Let x0, u0 = f(x0), p0 = fx(x0) be a point belonging to the (prolonged)
graph of f . Let (x(s), u(s), p(s)) be the solution to the characteristic system (2.33) with
initial conditions (x0, u0, p0). Then this curve is a characteristic curve for the solution, i.e.,
it is contained in the prolonged graph of f for all s.

Thus if we are given non-characteristic Cauchy data, we will solve the characteristic
system (2.33) for each associated initial point, and then reconstruct the solution by piecing
together characteristic curves. Now, given the initial manifold N0 corresponding to the
Cauchy data, let

Ns = { (x(s), u(s), p(s)) | (x0, u0, p0) ∈ N0 } .

be the image under the characteristic flow at “time” s, provided this is defined. For N0

bounded, and s sufficiently small, Ns is defined and smooth. Let N∗ be the union of
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all the (n − 1)-dimensional submanifolds Ns for | s | ≤ s∗, so N∗ is an n-dimensional
submanifold of the jet space. Then, as long as N0 is a valid Cauchy submanifold and s∗
is sufficiently small, the family of solutions N∗ will (locally) be the prolonged graph of a
solution u = f(x) to the partial differential equation.

Theorem 2.15. Consider the Cauchy problem for the first order partial differential
equation F (x, u, p) = 0 determined by an (n− 1)-dimensional Cauchy submanifold N0 of
the jet space J . Let N∗ =

⋃
Ns be the n-dimensional submanifold with initial data N0

swept out by the characteristic flow. Then, locally near N0, the submanifold N∗ is the
prolonged graph of a solution u = f(x), that is, N∗ = Γf near N0.

Proof : There are two basic steps. First, we prove that N∗ is a solution to the partial
differential equation, i.e., N∗ ⊂ {F = 0}. Second, we show, using the previous proposition,
thatN∗ is locally the prolonged graph of some function. For the first step, it suffices to note
that F (x, u, p) itself is a first integral of the characteristic system of ordinary differential
equations. Indeed

d

ds
F =

∂F

∂x

dx

ds
+
∂F

∂u

du

ds
+
∂F

∂p

dp

ds
= FxFp + Fu(pFp) + Fp(−Fx − pFu) = 0.

We conclude that F is constant along solutions. In particular, if F = 0 initially, it remains
zero for all s. Therefore, if the initial data N0 satisfies the equation, so does each Ns, and
hence all of N∗.

As for the second step, we need to prove that N∗ is Lagrangian, and, at least near
N0, satisfies the transversality condition. The Lagrangian condition is equivalent to the
fact that the coordinates p are indeed the derivatives of u. We compute the Lie derivative
of the contact one-form:

dθ

ds
= d

(
du

ds

)
− dp

ds
dx− p d

(
dx

ds

)
= d(pFp)− p dFp + (Fx + pFu) dx

= Fp dp+ Fx dx+ pFu dx = dF − Fu(du− p dx) = dF − Fu θ.

Now, we already know that F = 0, since we assumed that it was zero initially. Thus,
dF = 0, and hence dθ/ds = −Fu θ. Therefore, if θ vanishes on N0 it also vanishes on each
Ns, and hence on their union N∗. Thus N∗ is Lagrangian.

Finally, to prove transversality, the fact that N0 is not characteristic means that the
characteristic vector v is not tangent to its projection S = π(N0), and so at each point of
S we can choose a basis w1, . . . ,wn−1 for its tangent space and know that the full set of
n tangent vectors v,w1, . . . ,wn−1 forms a basis for the tangent space to X = Rn at the
point. To check that the n-form Ω does not vanish on N∗, at least in a neighborhood of
N0, by continuity we need only prove that it does not vanish on N0 itself. But, by (2.32)

〈Ω ,v,w1, . . . ,wn−1 〉 = 〈v Ω ,w1, . . . ,wn−1 〉 6= 0 on N0. Q .E .D .

Note that we cannot, in general, expect the transversality condition Ω 6= 0 to hold
everywhere. For instance, in optics, the characteristic curves (x(s), p(s)) project to the
light rays x(s). But the crossing of light rays is precisely the phenomena associated with
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focussing and the formation of caustics. The points where Ω = 0 correspond to points
where the submanifold N∗ in jet space no longer projects to a single-valued function
on physical space, and will thus be associated with such breakdowns of simple physical
phenomena. This could lead us into the study of shock waves and caustics, leading into
catastrophe theory.

Therefore, the integration of a first order partial differential equation is reduced to
the integration of a system of first order ordinary differential equations. Remarkably,
the converse also holds: if we know the general solution to a first order partial differential
equation, we can recover the solution to the corresponding characteristic system of ordinary
differential equations.

First consider one solution u(x) to the first order partial differential equation

F (x, u, p) = 0. (2.36)

Then the characteristic curves embedded in the graph of u can be found by integrating a
first order system of ordinary differential equations, viz.

dx

ds
=
∂F

∂p
(x, u(x), ux(x)).

Indeed, if x(s) is the solution to this system, and we define

u(s) = u(x(s)), p(s) = ux(x(s)),

then it is easy to see that (x(s), u(s), p(s)) solves the full characteristic system. This is the
same computation as above:

du

ds
=
∂u

∂x

dx

ds
= p

∂F

∂p
,

dp

ds
=
∂p

∂x

dx

ds
=
∂2u

∂x2
∂F

∂p
= −

(
∂F

∂x
+ p

∂F

∂u

)
.

For example, consider the Hamilton–Jacobi equation (2.22). If S(t, q) is a solution,
then the associated characteristic curves (solutions to Hamilton’s equations) are found by
integrating the first order system

dq

dt
=
∂H

∂p
(t, q, Sq(q, t)) (2.37)

for the positions, and then substituting

p(t) =
∂S

∂q
(t, q(t)).

to get the corresponding momenta. The solution q(t) to (2.37) will describe the particle
trajectories in physical space.

As another example, if we know a solution S(q) to the eikonal equation

| ∇S |2 = n(q) (2.38)

of geometrical optics, then the associated light rays are found by integrating

dq

dt
= 2∇S(q),
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since F = p2 − n(q), so Fp = 2p. We deduce the important fact that the light rays
are orthogonal to the wave front sets {S = c}. In fact, (2.37) can be interpreted as the
corresponding “orthogonality” relation for mechanics.

Next, suppose we know lots of solutions to our first order partial differential equation
(2.26). Then we should be able to say a lot more about solutions to the corresponding
characteristic system. For instance, if we have a one-parameter family of solutions u(x, λ),
then they all contain characteristic curves in their graphs, so that envelopes of these
solutions will be composed of characteristic curves. Recall that the envelope is constructed
by solving the equation ∂u/∂λ = 0 for λ as a function of x and substituting back into
u(x, λ). This suggests that we look at the quantity uλ = ∂u/∂λ in detail. Its evolution
along characteristics is given by

duλ
ds

= uλx
dx

ds
= pλFp, (2.39)

where p(x, λ) = ux(x, λ). On the other hand, differentiating

F (x, u(x, λ), p(x, λ)) = 0

with respect to λ, we deduce that

0 = Fuuλ + Fppλ, hence
duλ
ds

= −Fuuλ.

Note that uλ = 0 is a solution to this equation, confirming our earlier deduction about en-
velopes. In particular, if F does not depend explicitly on u (as is the case in the Hamilton–
Jacobi equation or the eikonal equation) then uλ is a first integral of the characteristic
system.

In the more general case, we need a two-parameter family of solutions u(x, λ1, λ2).
Then the ratio uλ1

/uλ2
will be a first integral of the characteristic system, since, by (2.39),

d

ds

uλ1

uλ2

=
uλ1s

uλ2
− uλ1

uλ2s

u2λ2

=
−Fuuλ1

uλ2
− uλ1

(−Fuuλ2
)

u2λ2

= 0.

Note that this includes the case when F doesn’t depend on u, since in that situation, if u(x)
is any solution, so is u(x)+µ for any constant µ. Therefore, we can replace our (nontrivial)
one-parameter family of solutions u(x, λ) by a two-parameter family u(x, λ1)+λ2, whereby
the ratios reduce to the earlier first integrals. However, the parameters λ1, λ2 must enter
into u(x, λ1, λ2) in an essentially independent way for this to be of any benefit. For instance,
if we use just a one-parameter family of solutions, and try u(x, ϕ(λ1, λ2)), then the above
first integral is just a function of λ1, λ2, and hence of no use.

Now, if we have enough first integrals, then we can solve the characteristic system.
This means that we have a family of solutions with enough independent parameters in it.
We make the following classical definition.

Definition 2.16. A function u(x, λ) depending on n parameters λ = (λ1, . . . , λn) is
called a complete integral to the first order partial differential equation

F (x, u, p) = 0
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if for each fixed value of λ it provides a solution, and moreover, that the n× (n+1) matrix
(
∂u

∂λj
,

∂2u

∂xi∂λj

)
(2.40)

has rank n.

The second condition is to ensure that the parameters λ enter truly independently
into the solution. This condition can be seen to be equivalent to the statement that the
union of the prolonged graphs of the functions u(x, λ) fills out an open subset of the locus

{ (x, u, p | F (x, u, p) = 0 }
defining the equation.

It can be proved that any solution to a first order partial differential equation can be
obtained from the complete integral. Essentially, one calculates the envelope to a general
n− 1 parameter family of solutions by assigning arbitrary functions λj = γj(s1, . . . , sn−1)
to the parameters and eliminating the s’s from the envelope conditions

n∑

j=1

∂u

∂λj

∂λj
∂sk

= 0, k = 1, . . . , n− 1.

Moreover, the complete integral also gives the solution to the corresponding character-
istic system of ordinary differential equations. Note first that to find the general solution
to the characteristic system, which is of order 2n+1, we need to find solutions depending
on 2n + 1 arbitrary constants. However, two of the constants are trivial. First, the sys-
tem is autonomous, so we can always specify the initial time t0 at will; equivalently, we
can use one of the variables qj as the parameter, and rewrite everything in terms of this
new variable, whereby we just deduce the unparameterized characteristic curves. Second,
the function F (x, u, p) is, as we have seen, always a first integral, so we can fix its value.
Indeed, if we are solving the equation F = 0, then the value of F is fixed at 0, but the
more general equation F = c leads to the same characteristic system, and elucidates the
second constant c more directly. We thus need 2n− 1 additional constants, and these are
provided by the parameters (λ1, . . . , λn) in the complete integral and the associated first
integrals ci = uλi

/uλn
, i = 1, . . . , n − 1, deduced above. Note that there are just enough

to do this, provided they are “independent”.

Theorem 2.17. Suppose u(x, λ) is a complete integral to the partial differential
equation F (x, u, p) = 0. Assume we are at a point where uλn

6= 0. Then for each value of
the 2n− 1 parameters (λ1, . . . , λn, c1, . . . , cn−1), the equations

uλi
(x, λ)

uλn
(x, λ)

= ci, i = 1, . . . , n− 1, (2.41)

implicitly determine a curve Γλ,c ⊂ X . The complete characteristic curve sitting over Γλ,c
is then given implicitly by

Cλ,c =
{
(x, u(x, λ), p(x, λ))

∣∣ x ∈ Γλ,c
}
.
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The only thing to prove is that (2.41) really do implicitly determine a curve, which
will, by the Implicit Function Theorem, be the case provided the n × (n − 1) Jacobian
matrix (∂ci/∂xk) has rank n− 1. The entries of this matrix are

∂

∂xk

uλi

uλn

=
uλixk

uλn
− uλi

uλixk

u2λn

.

It is not hard to see that this is the n × (n− 1) submatrix sitting in the matrix obtained
from (2.40) by applying the elementary row operation of subtracting uλi

/uλn
times the

nth row from the ith row, and then deleting the first column and last row. Since the full
matrix (2.40) has rank n, this submatrix must have rank n− 1. Q.E.D.

In the case of a Hamilton–Jacobi equation

St +H(t, Sq, q) = 0,

a complete integral has the form

S(x, λ) + µ, λ = (λ1, . . . , λn),

such that the n× n matrix (
∂2u

∂qi∂λj

)

is nonsingular. The corresponding solution to Hamilton’s equations is given by

c =
∂S

∂λ
, p =

∂S

∂q
.

Note that the first equation says that the derivatives of u with respect to the parameters
λ are first integrals of Hamilton’s equations.

As an application, we can solve the central force field problem from Example 2.7 in
this manner. The Hamilton–Jacobi equation (2.24) can be solved by additive separation
of variables:

S(t, r, ϕ, θ) = R(r) + Φ(ϕ) + α θ + β t.

The functions R(r),Φ(ϕ) satisfy the pair of ordinary differential equations

1

2m

(
dR

dr

)
2

+ V (r) + β = γ r−2,

(
dΦ

dϕ

)
2

+
α2

sin2 ϕ
+ γ = 0,

where γ is the separation constant. These can be straightforwardly integrated by quadra-
ture, resulting in the required three-parameter solution. One can use this to derive all of
Kepler’s laws of planetary motion.
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3. Geometric Optics and Wave Mechanics.

References : [10], [32], [35], [47].

The derivation of the equations for geometric optics from those of wave optics provides
the key to Schrödinger’s establishment of the basic equation of quantum mechanics, and
also the classical limit of quantum mechanical phenomena. Here we outline the derivation
of the geometric optics approximation to the equations of wave theory, and then extend
these results to obtain the Schrödinger equation.

The Wave Equation

For simplicity, we first consider the scalar wave equation

ϕtt −
c2

n2
∆ϕ = 0 (3.1)

in an inhomogeneous medium, where n(x) is the index of refraction. In the homogeneous
case where n is constant, the solutions to this problem are superpositions of plane waves

ϕ = Ae i ( k ·x−ωct),

where the wave number (spatial frequency) k and the temporal frequency ω are connected
by the dispersion relation

| k | = nω.

In the geometrical optics approximation, we consider the case when the wave number is
large in comparison to the variation in the refractive index. We begin by restricting our
attention to a simple harmonic wave

ϕ(t,x) = u(x) e iωct.

This allows us to factor out the t dependence in the wave equation, implying that u satisfies
the Helmholtz equation

∆u+ n2ω2u = 0. (3.2)

We seek complex solutions of the form

u(x) = A(x, ω) e iωS(x,ω), (3.3)

where the amplitude A(x, ω) and the phase S(x, ω) are real. Substituting (3.3) into the
Helmholtz equation (3.2) yields

∆u+ n2ω2u =
[
ω2
(
−|∇S |2 + n2

)
A+∆A+ iω

(
2∇S · ∇A+ (∆S)A

) ]
e iωS.

Since both A and S are real, we have the system

∆A+ ω2 (−|∇S |2 + n2)A = 0, 2∇S · ∇A+ (∆S)A = 0. (3.4)

which is, so far, completely equivalent to the Helmholtz equation.
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Now in the high frequency approximation, we introduce asymptotic expansions of the
amplitude and phase,

A(x, ω) ∼ A(x) + ω−1A1(x) + ω−2A2(x) + · · · ,
S(x, ω) ∼ S(x) + ω−1S1(x) + ω−2S2(x) + · · · ,

in decreasing powers of the frequency ω. Substituting into the system (3.4), we collect
terms involving the same powers of ω. The leading term, in ω2, occurs in the first equation.
Since A 6= 0, we deduce that the leading phase S(x) must satisfy

| ∇S |2 = n2, (3.5)

which is the eikonal equation we already encountered in (2.38). It says that the hyper-
surfaces of constant phase {S = c} are the same as the characteristic hypersurfaces for
the wave equation. If we interpret S as the action function, then the eikonal equation is
the same as the Hamilton–Jacobi equation (2.22) for the geometric optics Hamiltonian.
Thus, the phase surfaces propagate along the characteristics, which are just the solutions
to Hamilton’s equations.

The next term, of order ω, says that the leading amplitude A(x) will satisfy the
transport equation

2∇S · ∇A+ A∆S = 0. (3.6)

To solve this equation, suppose the curve (p(s), q(s)) in phase space determines a charac-
teristic for the associated characteristic system, where

F (q, u, p) = p2 − n(q)2.

Then, if Φ(q) is any function of position, we have

dΦ

ds
= {Φ, F } = FpΦq = 2pΦq = 2∇S · ∇Φ.

Therefore, along the characteristics, the transport equation (3.6) reduces to an ordinary
differential equation

dA

ds
= −1

2A∆S

which can solved explicitly

A
(
q(s)

)
= exp

[
− 1

2

∫ s

s0

∆S
(
q(s′)

)
A(q0) ds

′

]
.

Note that if A(q) = 0, so there is zero amplitude to leading order, then A = 0 along the
entire characteristic emanating from q. Therefore, in the first approximation, the solutions
to the wave equation are concentrated on the characteristics; this reflects the fact that
waves and signals propagate along characteristics.

If the index of refraction n(t,x) depends on time, then we can no longer replace the
wave equation by its stationary counterpart — the Helmholtz equation. Nevertheless,

1/3/23 26 c© 2023 Peter J. Olver



we can still investigate the high frequency approximation, assuming that the index of
refraction is a slowly varying function of both position and time. We make the ansatz

u(x) = A(t,x, ω) e iS(t,x,ω), (3.7)

where the amplitude A and phase S are real. Substituting into the wave equation,

∆u− n2

c2
utt =

[
ω2

(
− |∇S |2 + n2

c2
S2
t

)
+ · · ·

]
Ae iωS,

where the omitted terms are lower order in ω. Thus, we derive, as a first approximation,
the time-dependent form of the eikonal equation

| ∇S |2 =
n2

c2
S2
t . (3.8)

In particular, if n is independent of t, then we can reduce to the time-independent form
(3.5) by setting S(t,x) = S(x)− c t.

Maxwell’s Equations

A similar derivation holds for Maxwell’s equations for electromagnetic waves. The
electromagnetic field is prescribed by the electric vector E and the magnetic vector H. In
flat space, these satisfy the system of first order partial differential equations

∂

∂t
(εE)− c curlH = 4π j,

∂

∂t
(µH) + c curlE = 0,

div(εE) = 4π ρ,

div(µH) = 0,
(3.9)

where c is the speed of light , ε is the electric permittivity or dielectric constant , µ the mag-

netic permittivity or permeability , j is the electric current density , and ρ the electric charge

density . Assuming that there are no charges and currents, and that the permittivities are
constant in time, we derive the time-independent form of Maxwell’s equations

curlH+ iωE = 0, curlE− iωH = 0, div(εE) = 0, div(µH) = 0, (3.10)

for a simple harmonic field

E(t,x) = E(x) e− i c ω t, H(t,x) = H(x) e− i c ω t.

In the case of a homogeneous medium, so that the permittivities ε, µ, are constant, the
solutions are superpositions of plane waves

E(t,x) = e0 e
iω(k·x−c ω t), H(t,x) = h0 e

iω(k·x−c ω t),

where e0,h0 are constant vectors, satisfying

ε ω e0 + h0 ∧ k = 0, µ ω h0 − e0 ∧ k = 0, e0 · k = h0 · k = 0,
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where ∧ denotes the vector cross product . The vectors e0,h0 which determine the direction
of the electric and magnetic field are orthogonal to the direction of propagation k, and to
each other. Substituting the second equation into the first, we must have

ε µω2e0 + (e0 ∧ k) ∧ k = 0.

Now e0 is orthogonal to k, so

(e0 ∧ k) ∧ k = − |k |2 e0.

Therefore, for the four equations to be compatible, the wave number k and the frequency
ω must be related by the dispersion relation

|k | = nω, where n =
√
ε e µ (3.11)

is the refractive index of the medium. Note that the speed of the electromagnetic wave is
v = c ω/|k |, hence n = c/v as it should be.

As in the case of the scalar wave equation, we consider the case when the frequency
is large in comparison to the variation in the refractive index n, and so look for solutions
of the form

E(x) = e(x, ω) e iωS(x,ω), H(x) = h(x, ω) e iωS(x,ω), (3.12)

where the amplitudes e,h may be complex, but the phase S is real. Note that

curlE = (curl e+ iω∇S ∧ e) e iωS , divE = (div e+ iω∇S · e) e iωS .

Substituting (3.12) into Maxwell’s equations, we find the equivalent system

ε e+∇S ∧ h = − 1

iω
curlh, µh−∇S ∧ e =

1

iω
curl e,

e · ∇S = − 1

iω
(e · ∇ log ε+ div e), h · ∇S = − 1

iω
(h · ∇ logµ+ divh).

In the high frequency approximation, we make an asymptotic expansion of the amplitude

e(x, ω) = e(x) + ω−1e1(x) + ω−2e2(x) + · · ·

and the phase
S(x, ω) = S(x) + ω−1S1(x) + ω−2S2(x) + · · ·

in decreasing powers of the frequency ω. The highest order terms in the system are

ε e+∇S ∧ h = 0, µh−∇S ∧ e = 0, e · ∇S = 0, h · ∇S = 0.

If we substitute the second equation into the first, and use the third equation, we find that

ε µ e = −∇S ∧ (∇S ∧ e) = | ∇S |2 e.

Therefore we deduce that S must satisfy the same eikonal equation

| ∇S |2 = n2.
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An alternative approach is to use the second order forms of Maxwell’s equations

Ett −
c2

n2
∆E =

c2

n2

[
∇(E · ∇ log ε) +∇ logµ ∧ curlE

]
,

Htt −
c2

n2
∆H =

c2

n2

[
∇(H · ∇ logµ) +∇ log ε ∧ curlH

]
.

(3.13)

Working as above also leads to the eikonal equation. The corresponding transport equa-
tions can be derived slightly more directly here; they are

de

ds
=

1

2

(
d logm

ds
−∆S

)
e− (∇ logn · e)∇S,

dh

ds
=

1

2

(
d log ε

ds
−∆S

)
h− (∇ logn · h)∇S,

(3.14)

where d/ds denotes derivatives along the characteristics to the eikonal equation, i.e.,

dΦ

ds
= ∇S · ∇Φ.

As before, the waves and signals propagate along characteristics.

High Frequency Limit and Quantization

In general, suppose we have a linear partial differential equation

F [ψ ] = 0, (3.15)

depending on a large parameter ω. The differential operator F can be written as

F = F (x, i ∂, ω)

where F (x, p, ω) is a smooth function, which is a polynomial in the derivative coordinate
p = i ∂. We use ∂ = (∂1, . . . , ∂n) to denote the derivative operators ∂j = ∂/∂xj, j =
1, . . . , n. There is a problematic ambiguity in this representation, since we have to specify
the order of the derivatives and the function. For instance, if F (x, p) = xp, then there is
a question as to whether this should represent the differential operator ix∂ or i ∂ · x =
ix∂ + i . For convenience, we adopt the convention that the derivatives always appear
last, so xp corresponds to the differential operator ix∂. (However, this will come back to
haunt us later.)

More generally, if F is no longer a polynomial in the derivative variable p, then we
can regard†

F [ψ ] =
1√
2π

∫ ∞

−∞

F (x, p, ω) ψ̂(p) e i px dp. (3.16)

† Here, for simplicity, we specialize to the one-dimensional case, with the evident multi-
dimensional generalization.

1/3/23 29 c© 2023 Peter J. Olver



as a Fourier integral operator . Here

ψ̂(p) =
1√
2π

∫ ∞

−∞

ψ(p) e− i px dx (3.17)

denotes the Fourier transform of ψ(x), assuming ψ ∈ L2. The convergence of the integral
(3.16) requires that the integrand F satisfy certain global growth conditions.

In the high frequency limit, we make the ansatz

ψ(x, ω) = A(x, ω) e iωS(x,ω),

where A and S are real, A having the usual asymptotic expansion in decreasing powers of
ω. In order to determine the analogue of the eikonal equation, it is helpful to rewrite the
operator in the form

F = F

(
x,

1

iω
∂, ω

)
,

(where F has changed meanings). We assume that for large ω we can expand F in an
asymptotic series

F (x, p, ω) ∼ Fn(x, p)ω
n + Fn−1(x, p)ω

n−1 + · · · ,
where we call Fn the leading component of the operator. Now, note that if ψ is given as
above, then

1

iω

∂ψ

∂xj
=

1

iω

∂

∂xj

(
Ae iωS

)
=

∂S

∂xj
ψ +

1

iω

∂ logA

∂xj
ψ.

But the second term has order less that the first. It is not difficult to see that, in general,

F [ψ] = F

(
x,

1

iω
∂, ω

)
ψ = ωnFn(x,∇S)ψ+O(ωn−1).

Therefore, in the high frequency limit, the term ωnFn(x,∇S)ψ will dominate the asymp-
totic expansion. In order that the equation F [ψ] = 0 hold, then, we find the analogue of
the eikonal equation to be

Fn(x,∇S) = 0. (3.18)

For instance, the Helmholtz equation is already homogeneous of degree 0, corresponding
to F (x, p, ω) = −| p |2 + n2. Thus (3.18) is coincides with the eikonal equation (3.5).

Now, what about the Hamilton–Jacobi equation? It will be the high frequency limit
of some linear wave equation. In fact, if we set

F (t, x, π, p) = π +H(t, x, p),

where H is the Hamiltonian function, then

F (t, x, St,∇S) = St +H(t, x,∇S) = 0

is the Hamilton–Jacobi equation. This indicates that the corresponding wave equation is

1

iω
ψt +H[ψ ] = 0, where H = H

(
t, x,

1

iω
∂

)
.
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We denote ω−1 = ~, which is known as Planck’s constant and has the units of inverse
frequency. (This is motivated by Einstein’s formula E = ~ω, where we fix the energy E.)
The resulting equation

i ~ψt = H[ψ ].

is known as the Schrödinger equation, and is the fundamental equation of quantum me-
chanics. We have found it by requiring that its high frequency (low ~) limit reduce to the
Hamilton–Jacobi equation of classical mechanics. This means that we are endowing classi-
cal particles with a wave-like interpretation. The differential operator H = H(t, x,− i~ ∂)
is known as the Hamiltonian operator for the quantum mechanical Schrödinger equation.

Example 3.1. Consider the case of a particle in a central force field. Here the
Hamiltonian is given by

H(p, q) =
| p |2
2m

+ V (r), (3.19)

where r = | q |. (Recall that this also describes the motion of two interacting masses, pro-
vided we go to center of mass coordinates.) The corresponding Hamilton–Jacobi equation
is

∂S

∂t
+

1

2m

∣∣∣∣
∂S

∂q

∣∣∣∣
2

+ V (r) = 0. (3.20)

Replacing pj by − i ∂j produces the associated Hamiltonian operator

H = − ~2

2m
∆+ V (r), (3.21)

where ∆ is the ordinary Laplacian. The Schrödinger equation is

i ~ψt = − ~2

2m
∆ψ + V (r)ψ. (3.22)

In the case V (r) = −e2/r, where e is the charge on an electron, we are in the situation of
the quantum mechanical hydrogen atom, meaning a single electron circling a single (heavy)
proton.

A Word of Warning : The Schrödinger equation looks a lot like the heat equation, but
the complex factor i makes it of an entirely different character. It is, in fact, a dispersive
hyperbolic partial differential equation, not a dissipative parabolic equation. One way to
see the difference right away is to look at the norm of the solution† |ψ |2 = ψ ψ. For the
one-dimensional Schrödinger equation‡

i ~ψt = − ~2

2m
ψxx + V (x)ψ, (3.23)

† We use an overbar to denote complex conjugate throughout.

‡ The proof can be easily generalized to the n-dimensional case; see below.
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we have

∂

∂t
|ψ |2 = ψ ψt + ψt ψ = ψ

(
~

2 im
ψxx − V (x)ψ

)
+

(
− ~

2 im
ψxx + V (x)ψ

)
ψ

=
~

2 im

∂

∂x

(
ψ ψx − ψ ψx

)
.

Therefore, the L2 norm of ψ(x), such that it and its first derivative tend to 0 as x → ∞,
is constant:

d

dt
‖ψ ‖2 =

d

dt

∫ ∞

−∞

|ψ |2 dx =
~

2 im

(
ψ ψx − ψx ψ

) ∣∣∣∣
∞

−∞

= 0.

This is in contrast with the heat equation, where the L2 norm of solutions decreases as
t−1/2 and they are immediately smoothed out.

At the moment, things seem rather simple. However, there are genuine problems with
the passage from a classical mechanical system to its corresponding quantum mechanical
counterpart. As an example, consider the central force field problem in R2, but written in
polar coordinates. The classical Hamiltonian becomes

H =
1

2m

(
p2r +

1

r2
p2θ

)
+ V (r),

where pr, pθ are the momenta conjugate to the r, θ coordinates. The Hamilton–Jacobi
equation is

∂S

∂t
+

1

2m

[(
∂S

∂r

)
2

+
1

r2

(
∂S

∂θ

)
2
]
+ V (r) = 0.

If we write the corresponding Schrödinger equation, we have

i ~ψt = − ~2

2m

(
ψrr +

1

r2
ψθθ

)
+ V (r)ψ. (3.24)

On the other hand, the rectangular coordinate Schrödinger equation involves the Laplacian,
which, in polar coordinates, assumes a slightly different form:

∆ψ = ψxx + ψyy = ψrr +
1

r
ψr +

1

r2
ψθθ, (3.25)

containing a first order term not present in (3.24). Thus, although the two classical systems
are completely equivalent under the change of variables, the same is not true for the two
corresponding Schrödinger equations.

What is going on? In our derivation of the geometric optics approximation to wave
optics, we only looked at the leading order terms in the partial differential equation, and ig-
nored lower order terms in ω = ~−1. Therefore, many different equations will reduce down
to the same classical system in the high frequency limit, and we have no way of knowing
from classical mechanics alone what the correct lower order terms are. (These are, as I
understand it, even difficult to determine experimentally in quantum mechanical systems.)
Thus, there is an inherent ambiguity in our derivation of the Schrödinger equation. The
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point is that changes of coordinates will preserve the leading order terms, but will not
preserve the lower order components (even if there are none in one particular coordinate
system). Thus, the rectangular Schrödinger equation, re-expressed in polar coordinates
has the form

0 =

[
− i ~

∂

∂t
+

1

2m

(
− i ~

∂

∂r

)
2

+
1

2mr2

(
− i ~

∂

∂θ

)
2

+ V (r)

]
ψ

+
~

2mr

(
− i ~

∂

∂r

)
ψ.

The leading order terms agree with the polar coordinate Schrödinger equation (3.24), but
the final order ~ term, which does not appear in the classical limit, is absent.

For the early quantum mechanists, this was not viewed as a problem. Basically,
they required one to quantize only in rectangular coordinates only. However, this is far
from a relativistic viewpoint, which asserts that physical laws must be independent of any
particular coordinates system on the space-time manifold. And, to this day, this inherent
ambiguity in quantization is still causing problems with the mathematical foundations of
quantum mechanics.

This is also related to our earlier ambiguity about the ordering of functions and
derivatives when we replaced the Hamiltonian function by the corresponding Hamiltonian
operator. In fact, note that the commutator

[q,− i~ ∂q ] = q (− i ~ ∂q)− (− i ~ ∂q)q = i ~

of the operators corresponding to q and p is of higher order in ~ than the operators
themselves. More generally, we have can show the following.

Proposition 3.2. Let F (q, p), H(q, p) be smooth functions of q and polynomial in
p. Let F ,H be the corresponding differential operators. Then

[F ,H ] = i ~G +O(~2),

where G is the differential operator obtained from their Poisson bracket G = {F,H }.
Proof : Here we present the proof in one dimension; the multi-dimensional version is

analogous. By linearity, it suffices to check the case when

F (q, p) = f(q)pm, H(q, p) = h(q)pn,

are monomials. Then

G = {F,H } = FqHp − FpHq =
[
nf ′(q)h(q)−mf(q)h′(q)

]
pn+m−1.

On the other hand, the corresponding operators are

F = f(q)(− i~ ∂q)
m, H = h(q)(− i ~ ∂q)

n,

G =
[
nf ′(q)h(q)−mf(q)h′(q)

]
(− i ~ ∂q)

n+m−1.

On the other hand, the commutator operator is

[F ,H ] =
[
mf(q)h′(q)− nf ′(q)h(q)

]
(− i ~)n+m∂n+m−1

q + · · · ,
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where the omitted terms have the form gj(q)(− i ~)n+m ∂n+m−j
q for j ≥ 2. Comparison of

the two expressions establishes the result. Q.E.D.

A similar result holds for the Fourier integral operators defined by non-polynomial
Hamiltonians. Therefore, if we quantize the function F (q, p) by using a different ordering
of the positions and momenta, we obtain a different Hamiltonian operator, but these will
all differ by commutators. For instance, if H(q, p) = h(q)pn, then we can rewrite this as
f(q)pjg(q)pn−j , say, where f g = h, leading to the alternative Hamiltonian operator

H̃ = f(q)(− i ~ ∂q)
jg(q)(− i~ ∂q)

n−j .

But
H− H̃ = f(q) [ (− i~ ∂q)

j , g(q)] (− i~ ∂q)
n−j = O(~)

by Proposition 3.2. A similar result holds for the Hamiltonian operators obtained by re-
expressing the Hamiltonian function in different coordinate systems. This is because if we
change q = ϕ(q), then p = ϕ′(q)−1 p, and ∂q = ϕ′(q)−1 ∂q. However, if H(q, p) = h(q)pn,
then

H = h(ϕ−1(q))ϕ′(ϕ−1(q))−n pn,

leading to
H = h(ϕ−1(q))ϕ′(ϕ−1(q))−n (− i ~ ∂q)

n.

whereas transforming the original Hamiltonian operator gives

h(ϕ−1(q))
(
− i ~ϕ′(ϕ−1(q))−1 ∂q

)n
.

But these two operators again differ by commutators, and so agree to leading order.

Corollary 3.3. The quantum operators obtained by reordering the q and − i ~ ∂q
factors in the formula for H(q, p), or by changing variables, differ by terms involving
commutators that are of order ~ and higher.

A significant problem, which is still not fully resolved, is whether there is a consistent
choice of quantum Hamiltonian operator. Dirac decided that the consistency might be a
consequence of requiring that the commutators and Poisson brackets match up exactly:
If F (q, p), H(q, p), are smooth functions of q, polynomial in p with the Poisson bracket
{F,H } = G, then we require that the corresponding quantum Hamiltonian operators
satisfy the commutator relationship

[F ,H ] = i ~G.

There are some mathematically reasonable ways to do this, most notably the method of
geometric quantization, [59]. However, some elementary systems, e.g., the helium atom,
are still not covered by this approach, and it has not been significantly developed in recent
years. Moreover, if we impose a few additional reasonable assumptions, then we run into
a roadblock: there are no consistent methods of quantization satisfying this hypothesis.
Another approach is to allow terms of order O(~2) in the commutator. Again, there are
some partial results, but the full theory still seems rather far off.
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Now, return to the Schrödinger equation

i ~ψt = H[ψ ]. (3.26)

Assume that the Hamiltonian operator H is independent of t. Then we can separate
variables by setting

ψ(t, x) = ψ̂(x)e iωt,

leading to the time independent form of the Schrödinger equation

H[ ψ̂ ] = ~ω ψ̂.

If we use Einstein’s relation between frequency and energy

E = ~ω, (3.27)

we see that the energy of a system must be an eigenvalue of the corresponding Hamiltonian
operator. There is thus an intimate connection between the possible energies of a physical
system, and the spectrum of the corresponding Hamiltonian operator. We assume (for
the time being) that the solutions of the time-independent Schrödinger equation must be
smooth and bounded over all space. In the particular case of the hydrogen atom, or a
more general particle in a central force field V (r), with V → 0 as r → ∞, the spectrum of

H = −∆+ V (r)

consists of two parts:

(i) The discrete spectrum, E < 0, which consists of a finite number of negative eigen-
values corresponding to bound states . The associated eigenfunctions ψ are in L2,
and, in particular, ψ → 0 as r → ∞.

(ii) The continuous spectrum, E > 0, where the associated eigenfunction ψ no longer
goes to zero as r → ∞, but rather its asymptotic behavior is like that of a plane
wave e ik·x. These correspond to scattering states .

The key difference between classical mechanics and quantum mechanics is that in clas-
sical mechanics, the energy can take on any positive value, but in quantum mechanics, the
bound state energies are quantized, i.e. they can only take on discrete values. The investi-
gation of the spectrum of Hamiltonian operators is the fundamental problem of quantum
mechanics. To do this properly, we need to discuss the basics of quantum mechanics and
the theory of operators on Hilbert space.
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4. Basics of Quantum Mechanics.

References : [20], [26], [30], [36], [50].

Classical mechanics Quantum mechanics

Underlying space Phase space M Complex Hilbert space E
State of system Point (p, q) ∈M Wave function 0 6= ψ ∈ E
Observable Function F on M Self-adjoint operator F on E

Result of Measurement
Deterministic;

always F (p, q)
Probabilistic;

on average 〈ψ ,Fψ 〉
Possible values of

physical quantity Any real number Spectrum of F
Time evolution

(dynamics) Hamilton’s equations Schrödinger equation

Change in observable Poisson bracket {F,H } Commutator [F ,H ]

Change of coordinates Canonical transformation Unitary transformation

Phase space

Classical mechanics takes place in phase space M = Rn × Rn, with coordinates
(p, q) = (p1, . . . , pn, q1, . . . , qn). In Schrödinger’s wave mechanics, the corresponding quan-
tum mechanical phase space will be the complex Hilbert space E = L2(Rn), whose elements
are complex-valued square-integrable functions ψ:Rn → C depending on the position vari-
ables q and satisfying

‖ψ ‖2 = 〈ψ , ψ 〉 =
∫

Rn

ψ ψ dq =

∫

Rn

|ψ |2 dq <∞. (4.1)

A nonzero element ψ 6= 0 is called a wave function of the quantum mechanical system,
and completely determines the dynamical state of the system at a given time. In quantum
mechanics, ψ is interpreted probabilistically; roughly speaking, it measures the (relative)
probability of finding the system in the particular physical state q. For instance, if we have
just one particle, then this will give the probability that the particle is in the position q of
configuration space. More specifically, if we normalize ψ to have unit norm ‖ψ ‖ = 1, then
the probability density |ψ(q) |2 dq represents the probability that the system will belong to
the element dq of configuration space. Note that a normalized wave function is determined
to within an arbitrary phase factor e i θ for θ ∈ R.

More generally, the phase space of a quantum mechanical system is some (abstract)
complex Hilbert space E , which, by definition, is a complete inner product space, the
simplest example being E = L2(Rn).
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Observables

The Hamiltonian operator for a system is an example of an observable physical quan-
tity for the system, representing its energy . In general, an observable physical quantity is
given by a linear operator

L : E −→ E .
defined on the Hilbert space. Actually, almost all operators of interest are not defined
everywhere on E , but only on some dense subspace of E .

For instance, let us focus on the one-dimensional case, where E = L2(R). The position
operator Q corresponding to the classical observable q is given by multiplication by q:

Q[ψ(q) ] = q ψ(q). (4.2)

However, if ψ(q) is an L2 function, it is not necessarily true that q ψ(q) is in L2. Thus the
domain D(Q) of the position operator consists of all functions ψ ∈ L2 such that q ψ(q) ∈ L2

also. Clearly this is a dense subspace of L2. (Indeed, it includes all smooth functions of
compact support, which already form a dense subspace of L2.) Similarly, the momentum

operator P corresponding to the classical observable p is given by differentiation:

P [ψ(q) ] = − i ~
∂ψ

∂q
. (4.3)

It is only defined on the domain

D(P ) =

{
ψ ∈ L2

∣∣∣∣ ψ ∈ C1,
∂ψ

∂q
∈ L2

}
,

which is also a dense subspace. One can also extend P to the Sobolev space H1 ⊂ L2

consisting of functions ψ ∈ L2 whose (weak) derivative ∂ψ/∂q ∈ L2 also, cf. [3].

If the system is in a state ψ contained in the domain of the observable L, the expected
value of the observable is, by definition, its average:

〈L 〉 = 〈ψ , Lψ 〉
‖ψ ‖2 . (4.4)

This formula is motivated by considering specific examples, e.g., the position and momen-
tum operators in the Schrödinger representation. If we assume that an observable physical
quantity can only assume real values, then its mean value must also be real. Therefore,

〈ψ , Lψ 〉 = 〈L 〉 = 〈L 〉 = 〈ψ , Lψ 〉 = 〈Lψ , ψ 〉 = 〈ψ , L∗ψ 〉.
Here L∗ denotes the Hermitian adjoint of L, which, for simplicity, we assume to be defined
on the same domain as L. Since this holds for a dense set of states ψ ∈ E , we conclude
that L must be a self-adjoint operator , meaning that L∗ = L, and hence

〈ψ , Lχ 〉 = 〈Lψ , χ 〉 = 〈χ , Lψ 〉.
To prove this, we let α ∈ C, and so

〈ψ + αχ , L(ψ + αχ) 〉 = 〈ψ , Lψ 〉+ α 〈χ , Lψ 〉+ α 〈ψ , Lχ 〉+ |α |2 〈χ , Lχ 〉
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must be real. The first and last summands are real by assumption, so the only way that
the entire expression can be real for all α is if the self-adjoint property holds.

Thus, observable physical quantities are given by self-adjoint linear operators on the
underlying Hilbert space. For example, in the case of wave mechanics, E = L2(Rn). It is
easy to check that, for all j, k, the position operators

Qj
[
ψ(q)

]
= qj ψ(q), (4.5)

the momentum operators

Pj
[
ψ(q)

]
= − i ~

∂ψ

∂qj
, (4.6)

and the angular momentum operators

Jjk
[
ψ(q)

]
= − i ~

(
qj
∂ψ

∂qk
− qk

∂ψ

∂qj

)
, (4.7)

are “formally self adjoint” operators, i.e., (3.15) holds for ψ in a suitable dense subdomain
of E . The fully rigorous definition of self-adjointness will be delayed.

Schrödinger’s Equation

By the superposition principle, the time evolution of a quantum mechanical system
must be governed by a linear wave equation. If we also assume that knowledge of the
initial wave function ψ at t = 0 is sufficient to determine the time evolution of the system,
then the equation must be first order in the time variable:

ψt = M[ψ ],

where M is some operator. Moreover, assume that the equation preserves the norm; then

0 =
d

dt
‖ψ ‖2 = 〈ψt , ψ 〉+ 〈ψ , ψt 〉 = 〈Mψ , ψ 〉+ 〈ψ ,Mψ 〉 = 〈ψ , (M+M∗)ψ 〉.

Arguing as above, we conclude that

M∗ = −M
must be skew-adjoint. It is traditional to write

M =
1

i ~
H,

where ~ is Planck’s constant, and H is called the Hamiltonian of the system, which, owing
to the factor i is self-adjoint:

H∗ = H.
Thus, the time evolution is governed by the Schrödinger equation

i ~ψt = H[ψ ]. (4.8)

For the moment, we set ~ = 1 without loss of generality, since this can be effected by
suitably rescaling the time t.
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Theorem 4.1. If H is a self-adjoint operator on a Hilbert space E , then it generates
a strongly continuous one-parameter group of unitary transformations

U(t) = exp(− i tH). (4.9)

Conversely, if U(t) is any strongly continuous one-parameter unitary group on E , then
there is a self-adjoint operator H on E , such that (4.9) holds.

Unitarity means the operator preserves the inner product and hence the norm, so
that, for each real t,

〈U(t)ψ , U(t)χ 〉 = 〈ψ , χ 〉, or, equivalently, U(t)∗ = U(t)−1. (4.10)

One-parameter group means that for each real t and s

U(t+ s) = U(t)U(s). (4.11)

Strongly continuous means that

U(t)ψ −→ U(t0)ψ whenever t −→ t0 and ψ ∈ E . (4.12)

We can recover H from U(t) according to the limiting formula

U(t)ψ − ψ

t
−→ H[ψ ] as t −→ 0 (4.13)

for ψ in the domain of H. In fact, since H is self-adjoint, the left hand side approaches a
limit if and only if ψ is in the domain of H. We call − iH the infinitesimal generator of
the one-parameter unitary group U(t).

In the Schrödinger picture, the observables are fixed, and the states of the system
evolve in time according to

ψ(t) = U(t)ψ(0), (4.14)

so that the expected value of the observable L is given by

〈L 〉(t) = 〈ψ(t) , Lψ(t) 〉 = 〈U(t)ψ , LU(t)ψ 〉 = 〈ψ , U(t)∗LU(t)ψ 〉. (4.15)

Alternatively, in the Heisenberg picture, the states are fixed, while the observables evolve
in time according to

L(t) = U(t)∗LU(t) = U(t)−1LU(t), (4.16)

satisfying the dynamical equation

i ~Lt = [H, L ]. (4.17)

Spectrum

Let L: E → E be an observable. The statistical fluctuations of the measurement of
L when the system is in a state ψ is determined by the root-mean-square deviation ∆L,
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defined by†

(∆L)2 ≡ 〈 (L− 〈L 〉)2 〉 = 〈L2 〉+ 〈L 〉2. (4.18)

When the deviation vanishes, ∆L = 0, there are no fluctuations, and the quantity L takes
on a well-defined value, namely 〈L 〉, with certainty. For this to hold, according to (4.18),

〈ψ , L2ψ 〉
‖ψ ‖2 =

〈ψ , Lψ 〉2
‖ψ ‖4

or, since 〈ψ , L2ψ 〉 = 〈Lψ , Lψ 〉 = ‖Lψ ‖2, we find

〈ψ , Lψ 〉 = ‖ψ ‖ ‖Lψ ‖.

This means that we have equality in the Cauchy–Schwarz inequality, and the only way for
this to happen is if ψ and Lψ are parallel, which implies that ψ is an eigenfunction of L:

Lψ = λψ for some scalar λ ∈ C.

Theorem 4.2. An observable physical quantity assumes, with certainty, a well-
defined value if and only if the state of the system is represented by an eigenfunction of
its associated quantum mechanical operator L. In this case, the value of the quantity is
the eigenvalue:

〈L 〉 = λ.

Recall that the eigenvalues of a self-adjoint operator are always real. Moreover, the
eigenfunctions corresponding to different eigenvalues are orthogonal. We can further as-
sume, without loss of generality, that the eigenfunctions have been normalized: ‖ψ ‖ = 1.

In general, given a state ψ, an observable L will take on values λ ∈ R with various
probabilities. In other words, the observable will determine a certain probability measure
dµ(λ) = dµL,ψ(λ) on the space R of possible values for L. This measure must satisfy

∫ ∞

−∞

dµ(λ) = 1. (4.19)

The expected value of L then is the same as the first moment of the corresponding measure:

〈L 〉 =
∫ ∞

−∞

λ dµ(λ) = 〈λ 〉. (4.20)

The deviation of L is related to the variance of µ:

(∆L)2 = σ2 =

∫ ∞

−∞

(
λ− 〈λ 〉

)2
dµ(λ), (4.21)

† Note: 〈L 〉 is a scalar, so we should write L−〈L 〉 I for the operator appearing in the middle,
but the identity operator is commonly omitted from such formulae since it is clear from the
context.
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which, as in (4.18), is calculated from the second moment

〈L2 〉 =
∫ ∞

−∞

λ2 dµ(λ) = 〈λ2 〉.

In general, the moments of the probability measure dµ are given by the analogous formula

〈Ln 〉 =
∫ ∞

−∞

λn dµ(λ) = 〈λn 〉, n = 0, 1, 2, 3, . . . .

To reconstruct the probability distribution, the easiest way is to use the characteristic
function, which is essentially the Fourier transform of the measure:

χ(ξ) =

∫ ∞

−∞

e− i ξ λ dµ(λ) = 〈 e− i ξ λ 〉,

from which we can reconstruct µ by Fourier inversion. For instance, if we have a discrete
probability measure

µ(λν) = cν > 0, ν = 1, . . . , n, with
n∑

ν=1

cν = 1,

then

χ(ξ) =

n∑

ν=1

cνe
− i ξ λν .

Thus, to determine the probability distribution associated with an observable L in a
dynamical state ψ, we need to calculate the expected value 〈 e i ξ L 〉 of the solution to the
Schrödinger equation for L. For instance, suppose

ψ =
∑

cν ψν

is a superposition of states ψν associated with eigenvalues λν . Since L is self-adjoint, the
ψν are orthonormal. Assume that ψ is normalized, so that

‖ψ ‖2 =
∑

c2ν = 1.

Then
e− i ξLψ =

∑
cνe

− i ξ λν ψν ,

hence the characteristic function associated with the corresponding probability distribution
will be

〈 e i ξL 〉 = 〈ψ , e− i ξLψ 〉 =
∑

c2ν e
− i ξλν .

We conclude that the associated probability measure is purely discrete, concentrated on
the eigenvalues λν , each of which has probability c2ν . Therefore, we have the following
fundamental principle: for a state built up entirely of discrete eigenfunctions, the only
values that an observable may take on are the associated eigenvalues. In particular, we
have deduced the basic superposition principle of quantum mechanics: If measurement of
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a system in state ψ1 leads to result 1, while measurement in state ψ2 leads to result 2,
then every linear combination c1ψ1 + c2ψ2 gives a state in which the same measurement
leads either to result 1 or result 2.

Only very special operators will have a purely discrete spectrum. (An example is the
harmonic oscillator, considered below.) Thus, in general, we must widen our scope beyond
just the eigenvalues of an operator. For instance, consider the one-dimensional momentum
operator P = − i ~ ∂q. If ψ(q) is to be an eigenfunction for P it must satisfy

− i ~ψq = λψ,

which implies that ψ is a multiple of the complex exponential exp(− i ~−1λq). But this
function, while bounded, is not an L2 function, and thus does not lie in our Hilbert space.
Things are even stranger for the position operator Q = q. If ψ(q) is to be an eigenfunction
for Q, it must satisfy

q ψ(q) = λψ(q),

for some constant λ. But this implies that ψ(q) = 0 except possibly at q = 0. This
would imply that ψ = 0 as an L2 function, which is not normalizable. Therefore, we would
conclude that the position operator cannot have physical values, which is clearly untenable.

There are two ways out of this dilemma. A physicist would, at this point, introduce
the Dirac delta function, which is a “function” δ(q) which satisfies

δ(q) = 0, q 6= 0, whereas

∫ ∞

−∞

δ(q) dq = 1. (4.22)

In point of fact, there is no classical functions that simultaneously satisfies both of these
properties. More rigorously, δ(q) defines a distribution or generalized function, namely a
continuous linear functional on the space C∞

0 of smooth functions with compact support,
satisfying

〈 δ , f 〉 =
∫ ∞

−∞

f(q) δ(q)dq = f(0), for all f ∈ C∞
0 . (4.23)

An alternative approach is to note that while the position operator Q does not have any
eigenfunctions per se, it does have “approximate eigenfunctions”. Indeed, given λ ∈ R, if
we set

ψ̂σ(q) =
1

π1/4 σ1/2
e−(q−λ)2/(2σ2), σ > 0,

so that ‖ ψ̂σ ‖ = 1 for all σ, then

‖Q ψ̂σ − λ ψ̂σ ‖2 =

∫ ∞

−∞

(q − λ)2√
π σ

e−(q−λ)2/σ2

dq = 1
2
σ2,

using the fact that ∫ ∞

−∞

x2 e−x
2

dx =

√
π

2
.

Therefore, for every ε > 0, we can find a normalized function ψε satisfying

‖Qψε − λψε ‖ < ε, ‖ψε ‖ = 1.
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We just set ψε = ψ̂σ for any σ <
√
2 ε.

A similar statement holds for the momentum operator P = − i ~ ∂q: we just use the
approximate normalized eigenfunctions

ψ̃σ(q) =
1

π1/4 σ1/2
e−q

2/(2σ2) e iλ q/~,

for any 0 < σ < ~/(
√
2 ε). The existence of such approximate eigenfunctions is one way of

characterizing the continuous spectrum of such an operator; see below.

Now consider two different observables, represented by operators L and M . In order
that they simultaneously have a definite value on a given state ψ is that ψ be a common
eigenfunction of L and M :

Lψ = λψ, M ψ = µψ.

In particular, this implies that

[L,M ]ψ = 0,

i.e., the commutator between L and M vanishes on ψ. Conversely, if the operators com-
mute, [L,M ] = 0, then, assuming a purely discrete spectrum, they possess a complete
set of common eigenfunctions, upon which they simultaneously can be measured with
precision. In this sense, we say that commuting operators correspond to simultaneously
measurable quantities.

For example, in the canonical quantization, the position and momentum operators
(4.5), (4.6) satisfy the canonical commutation relations

[Qj, Qk ] = 0 = [Pj, Pk ], [Qj, Pk ] = i ~ δjk =

{
i ~, j = k,

0, j 6= k.
(4.24)

Therefore, one can simultaneously measure all position operators or all momentum oper-
ators, or some positions and momenta as long as a position and its conjugate momentum
are not both measured. In the latter case, we have the famous Heisenberg Uncertainty
Relations, to be discussed next. For similar reasons, one cannot measure more than one
angular momentum with certainty; see below for details.

The Uncertainty Principle

The justly famous Heisenberg Uncertainty Principle lies at the heart of quantum
mechanics, and serve as the crux of many of its strange experimental manifestations and
possible philosophical interpretations.

Theorem 4.3. Let Q,P be operators satisfying

[Q,P ] = i ~ (4.25)

Then the variations in the measurements of the two corresponding observables is restricted
by the Uncertainty Relation

∆Q ·∆P ≥ 1
2 ~. (4.26)
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Proof : By definition

∆Q =
√

〈 (Q− 〈Q 〉)2 〉 =
√

〈 Q̂ 〉2 , ∆P =
√

〈 (P − 〈P 〉)2 〉 =
√

〈 P̂ 〉2 ,

where

Q̂ = Q− 〈Q 〉, P̂ = P − 〈P 〉.
Since 〈Q 〉, 〈P 〉 are scalars (or, rather, represent scalar multiples of the identity operator),

[Q̂, P̂ ] = i ~, ∆Q̂ = ∆Q, ∆P̂ = ∆P.

By the Cauchy–Schwarz inequality,

(∆Q)2 (∆P )2 = 〈ψ , Q̂2ψ 〉 〈ψ , P̂ 2ψ 〉 ≥ | 〈ψ , Q̂ P̂ ψ 〉 |2.

Moreover,
Q̂ P̂ = 1

2

(
Q̂ P̂ + P̂ Q̂

)
+ 1

2 [Q̂, P̂ ] = R̂ + 1
2 i ~,

where R̂ = 1
2

(
Q̂ P̂ + P̂ Q̂

)
is the self-adjoint component of Q̂ P̂ . Therefore,

〈ψ , Q̂ P̂ ψ 〉 = 〈 R̂ 〉+ 1
2 i ~

prescribes the real and imaginary parts of the left hand side, and hence

(∆Q)2 (∆P )2 ≥ 〈 R̂ 〉2 + 1
4 ~

2,

which implies the uncertainty relation. Moreover, the uncertainty relation (4.26) will be
an equality if and only if

(a) Q̂ ψ = λ P̂ ψ, so that Cauchy–Schwarz is an equality, and

(b) 0 = 〈 R̂ 〉 = (λ+ λ) 〈 P̂ 2 〉, so λ is purely imaginary. Q.E.D.

Remark : By a slight modification of the above proof, one can generalize the Uncer-
tainty Relation (4.26) to produce

[Q,P ] = S implies that ∆Q ·∆P ≥ 1
2
〈S 〉. (4.27)

5. Linear Operators and Their Spectrum.

References : [26], [45], [46], [50].

Hilbert Space and Linear Operators

We work with a complex Hilbert space E , i.e., a complete inner product space. For us,
convergence means convergence in norm, i.e., ψn −→ ψ means that for every ε > 0, there
exists an Nε such that ‖ψn − ψ ‖ < ε whenever n > Nε. We will usually also assume that
E is separable, meaning there exists a countable dense subset, which is equivalent to the
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existence of a countable orthonormal basis ϕ1, ϕ2, ϕ3, . . .. If the basis is finite, then E is
isomorphic to Cn; if the basis is infinite, then E is isomorphic to the space

ℓ2 =



 (z1, z2, z3, . . . )

∣∣∣∣∣∣

∞∑

j=1

| zj | <∞



 (5.1)

consisting of all square summable sequences of complex numbers. For instance, L2[0, 2π ] is

separable, since the complex exponentials e inx/
√
2π form a basis, by Fourier’s Theorem,

which implies that the Fourier series for an L2 function converges in norm to that function.

A linear operator L: E −→ E is bounded if there is a c ≥ 0 such that

‖Lψ ‖ ≤ c ‖ψ ‖ for all ψ ∈ E . (5.2)

The smallest such c is called the norm of L, denoted ‖L ‖. It is not hard to see that ‖L ‖
defines a norm on the linear space of bounded operators on E , and moreover

‖L ·M ‖ ≤ ‖L ‖ ‖M ‖ (5.3)

for any operators L,M . Bounded operators are the same as continuous linear operators.
In finite dimensions, every linear transformation is continuous, and hence bounded; indeed,

‖L ‖ = sup { ‖Lψ ‖ | ‖ψ ‖ = 1 } <∞,

where we use the fact that the unit ball in a finite-dimensional metric space is compact.
This is no longer true in infinite dimensions. If L is only defined on a dense subspace, but
satisfies (5.2) there, then it can easily be extended to a bounded operator on all of E .

Unfortunately, most of the operators in quantum mechanics are unbounded. In fact,
we have the following result:

Theorem 5.1. Let Q,P be linear operators defined on a common dense subspace
of a Hilbert space E , which satisfy the canonical commutation relation [Q,P ] = α where
α 6= 0. Then Q and P cannot both be bounded.

Proof : By induction, starting with the canonical commutation relation, we find

QPn − PnQ = nαPn−1. (5.4)

First note that P (and Q) cannot be nilpotent, i.e., Pn 6= 0 for all n. Indeed, if Pn = 0
for some n, then (5.4) would show that Pn−1 = 0 also, which is absurd. If both Q and P
are bounded, then, using (5.3),

n |α | ‖Pn−1 ‖ = ‖nαPn−1 ‖ ≤ 2 ‖Q ‖ ‖Pn ‖ ≤ 2 ‖Q ‖ ‖P ‖ ‖Pn−1 ‖.

Now, by the first remark, Pn−1 6= 0, so ‖Pn−1 ‖ 6= 0. Therefore,

2 ‖Q ‖ ‖P ‖ ≥ n |α |, for all n = 0, 1, 2, 3, . . . ,

which is not possible if both are bounded. Q.E.D.
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Corollary 5.2. There is no realization of the canonical commutation relations (4.24)
on any finite-dimensional Hilbert space.

Corollary 5.2 can also be easily proved by taking traces.

Even though we must in the end deal with unbounded operators, it is nevertheless
extremely useful to have the easier theory of bounded operators under control. If L: E −→ E
is a bounded linear operator, then its kernel K = kerL and range R = rngL are subspaces
of E . In general, we can determine a unique inverse to L if and only if K = {0} is trivial,
since then there will be a unique solution to the equation Lϕ = ψ whenever ψ ∈ R. In
this case, the inverse of L will be the (possibly unbounded) linear operator M :R −→ E
defined on the range R ⊂ E , such that ϕ =Mψ is the unique solution to Lϕ = ψ. In finite
dimensions, L has an inverse if and only if R = E . In infinite dimensions, things are much
more subtle, since R could be a subspace of E even when L has an inverse. For example,
consider the shift operator

L(z1, z2, z3, . . . ) = (0, z1, z2, z3, . . .) (5.5)

on the space ℓ2 of square summable sequences (5.1), which clearly has an inverse on its
range

R = { (w1, w2, w3, . . . ) | w1 = 0 }( ℓ2.

On the other hand, the inverse M can, in general, be extended to a bounded operator on
all of E if and only if R = E .

The Spectral Theorem

In finite dimensions, the Spectral Theorem asserts that every symmetric (Hermitian)
matrix possesses a basis of eigenvectors, and hence can be diagonalized, [44]. In terms
of the eigenvector basis, the associated linear transformation just looks like multiplication
by the eigenvalues, i.e., acts as a diagonal matrix. The Spectral Theorem for bounded
operators on Hilbert space asserts essentially the same result.

Theorem 5.3. Let L be a bounded operator on Hilbert space E . Then there is a
finite-dimensional measure space (X, µ) and a unitary map U : L2(X, µ) −→̃ E such that
U∗T U is multiplication by a complex valued function f ∈ L∞(X, µ).

If L is self-adjoint, then f is real. Thus, in its spectral representation, L is given by
multiplication by the function f . It is not hard to see that the spectrum of a multiplication
operator is the same as the essential range of f , defined by

ess rng f =
{
λ
∣∣∣ µ { x | λ− ε < f(x) < λ+ ε } > 0 for all ε > 0

}
(5.6)

since the inverse of f − λ is just 1/(f − λ), which is bounded provided λ is not in the
essential range of f . Just as any measure µ can be decomposed into a pure point part and
a continuous part, so the spectrum of an operator decomposes into a discrete part (the
eigenvalues) and a continuous part. We will have more to say on this later.

The Spectral Theorem 5.3 can also be formulated in terms of spectral projections.
Given the set { x | f(x) ≤ λ }, let χλ(x) denote its characteristic function, so that χλ(x) = 1
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if f(x) ≤ λ and is zero otherwise. Thus, χλ ∈ L∞(X, µ), and we can consider the cor-

responding bounded operator Eλ = UχλU
∗ which is a projection on E . (For a finite-

dimensional Hilbert space, Eλ would be projection onto the subspace spanned by all
eigenvectors corresponding to eigenvalues ≤ λ.) Then,

L =

∫
λ dEλ (5.7)

where the integral is a Riemann-Stieltjes integral. Using this representation, we can develop
a functional calculus of bounded, self-adjoint operators, so that if F is any bounded, Borel
measurable function on R, then

F (L) =

∫
F (λ) dEλ (5.8)

is the operator whose spectral representation is multiplication by the function F ◦f . For
example,

Eλ = χλ(L), Ln =

∫
λn dEλ, L−1 =

∫
dEλ
λ
,

the latter as long as 0 is not in the spectrum of L. (In fact, the functional calculus
makes sense provided F is only defined and bounded on the spectrum of L.) Note that
the functional calculus of operators immediately provides a proof of the existence of the
unitary group e i tH , when H is a bounded self-adjoint Hamiltonian. We just set

e i tH =

∫
e i tλ dEλ. (5.9)

The most interesting operators in quantum mechanics are unbounded operators. For
example, the momentum operator − i ~ ∂q does not act on all of L2, only on the dense

subspace of C1 functions whose derivatives are also in L2 (or, more generally, the Sobolev
space H1). Nevertheless, for certain operators, a version of the Spectral Theorem 5.3 still
holds. For instance, the momentum operator can be transformed into a multiplication
operator by using the Fourier transform

F : L2(R, dq) −→ L2(R, dk) F [f(q) ] = f̂(k) =
1√
2π

∫ ∞

−∞

e− i kqf(q) dq

so that

F
(
− i ~

df

dq

)
= ~ k f̂(k).

Thus the spectrum of the momentum operator is entirely continuous, consisting of the
entire real line, with spectral measure dk. This means that any value of the momentum
of a quantum particle is observable, with equal probability. Moreover, since the function
k is not bounded, the momentum operator cannot be bounded. For a direct proof of this,
let ϕ(x) be any L2 function which is also C1 and whose derivative ϕ′ is also L2. Consider
the functions

ψσ(x) =
√
σ ϕ(σx) for σ > 0.
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These all have the same norm since

‖ψσ ‖2 =

∫
σ |ϕ(σx) |2 dx =

∫
|ϕ(y) |2 dy = ‖ϕ ‖2.

However, their derivatives are

ψ ′
σ = σ3/2ϕ(σx),

and have unbounded norm since

‖ψ ′
σ ‖2 =

∫
σ3 |ϕ′(σx) |2 dx = σ2

∫
|ϕ′(y) |2 dy = σ2 ‖ϕ′ ‖2.

Spectrum of Operators

In finite dimensions, the spectrum of an operator (matrix) L coincides with its set of
eigenvalues. These are the complex numbers λ such that L−λ I is not invertible. In infinite
dimensions, things are more delicate. Given a bounded operator and a complex number
λ ∈ C, the operator L−λ I could be invertible, with either bounded or unbounded inverse,
or not invertible at all. We distinguish these possibilities with the following definitions.

Definition 5.4. Let L be a bounded linear operator on a Hilbert space E . The
resolvent set of L is defined as

ρ(L) =
{
λ
∣∣ (L− λ I )−1 exists as a bounded operator

}
. (5.10)

The operator Rλ = (λ I − L)−1 is called the resolvent of L. The complement of the
resolvent set

σ(L) = C \ ρ(L) (5.11)

is called the spectrum of L.

Lemma 5.5. If L is an operator with range E and L−1 is bounded, then for ε ∈ C

sufficiently small, L+ ε I also has a bounded inverse.

Proof :

(L+ ε I )−1 = L−1 ( I + εL−1)−1 = L−1
∞∑

n=0

(−εL−1)n.

Since ‖ εL−1 ‖ = | ε | ‖L−1 ‖ < 1 for ε sufficiently small, the operator series converges, and
defines (L+ ε I )−1 as a bounded operator. Q.E.D.

Corollary 5.6. The resolvent set of L is an open subset of the complex plane, and
so the spectrum is a closed subset.

If L is self-adjoint, its spectrum σ(L) ⊂ R is a closed subset of the real line. We
further divide the spectrum into three disjoint pieces.
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Definition 5.7. Let L be a bounded operator on the Hilbert space E . The point

spectrum of L is

σp(L) = { λ | L− λ I has no inverse } = { λ | Lψ = λψ for some 0 6= ψ ∈ E } .
The (näıve) continuous spectrum of L is

σc(L) = { λ | L− λ I has an unbounded inverse whose domain is dense in E } .
The residual spectrum of L is

σρ(L) = { λ | L− λ I has an inverse whose domain is not dense in E } .
Thus, the spectrum is the disjoint union

σ(L) = σp(L) ∨ σc(L) ∨ σρ(L) (5.12)

of the point, continuous, and residual spectra.

Remark : Later, we will introduce a more sophisticated definition of the continuous
spectrum, which will allow a number to be in both the point and continuous spectrum.
As it stands, if we take the direct sum of two operators L ⊕M such that λ is in the point
spectrum of L and in the continuous spectrum of M , then, by the current definition, it
ends up just in the point spectrum of the sum, which is not really correct.

Proposition 5.8. If L is a self-adjoint operator, then L has no residual spectrum.

Proof : Choose 0 6= ϕ ∈ E which is orthogonal to the domain of the inverse of L−λ I ,
which is the same as the range of L− λ I . Thus,

0 = 〈ϕ , (L− λ I )ψ 〉 = 〈 (L− λ I )ϕ , ψ 〉 for all ψ ∈ E .
This implies that (L− λ I )ϕ = 0, and hence ϕ is an eigenfunction of L which means that
λ is in the point spectrum of L. But the three subsets are disjoint, so λ couldn’t have been
in the residual spectrum. Q.E.D.

As above, we define an approximate eigenfunction for the operator L to be a sequence
of elements ψ1, ψ2, ψ3, . . . ∈ E satisfying

‖ψn ‖ = 1, ‖Lψn − λψn ‖ −→ 0 as n −→ ∞, (5.13)

for some λ ∈ C.

Proposition 5.9. Let L be a bounded linear operator on a Hilbert space E with
no residual spectrum. Then L has an approximate eigenfunction corresponding to the
complex number λ if and only if λ is in the spectrum of L.

Proof : Let
A = L− λ I , χn = Aψn = Lψn − λψn.

If λ 6∈ σ(L), then B = A−1 is bounded, hence

1 = ‖ψn ‖ = ‖Bχn ‖ ≤ ‖B ‖ ‖χn ‖.
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Thus, we cannot have ‖χn ‖ −→ 0, and so there are no approximate eigenfunctions asso-
ciated with λ.

Conversely, if λ is in the point spectrum, we just choose ψn = ψ to be the associated
eigenfunction for all n, so that ‖χn ‖ = 0 for all n. If λ is in the continuous spectrum, let
χn be elements of the domain of B = A−1 such that ‖χn ‖ = 1 and ‖Bχn ‖ −→ ∞. Now,
setting ψn = ‖χn ‖−1Bχn, we find

Aψn = ‖χn ‖−1 χn −→ 0,

so the sequence ψn defines an approximate eigenfunction. Q.E.D.

Remark : A point in the residual spectrum may or may not have an approximate
eigenfunction. For instance, consider the shift operator (5.5). One finds that 0 belongs to
its residual spectrum, but ‖Lψ ‖ = ‖ψ ‖ for all ψ ∈ ℓ2.

Finally, we define the genuine continuous spectrum. Given a bounded operator L on
the Hilbert space E , let Ep ⊂ E be the subspace spanned by the eigenfunctions of L. Note

that Ep is invariant under L . If L is self-adjoint, its orthogonal complement Ec = E⊥
p is also

invariant. These two subspace correspond to the point and genuine continuous spectrum
respectively. We define the continuous spectrum σ̂c(L) to be the set of all λ for which there
exist approximate eigenfunctions orthogonal to Ep, i.e., ψn ∈ Ec for all n.

The most interesting operators in quantum mechanics are unbounded operators. For
example, the momentum operator − i ~ ∂q does not act on all of L2, only on the dense

subspace of C1 functions whose derivatives are also in L2 (or, more generally, on the
Sobolev space H1). Let E be a Hilbert space, and let L be a linear operator from a subspace
D(L) ⊂ E into E . In general, the domain D(L) is not closed, but we do assume that it is

dense in E . An operator L̂ is called an extension of L, written L ⊆ L̂, if D(L) ⊂ D(L̂)

and L̂ = L on D(L). The operator L is called closed if its graph { (ϕ, Lϕ) |ϕ ∈ D(L) }
is a closed subset of E × E . We call L closable if the closure of its graph is the graph of
an operator, denoted L, which is of course an extension of L. This is equivalent to the
condition that if ϕn ∈ D(L) with ϕn −→ 0 and Lϕn −→ ψ, then ψ = 0.

The adjoint L∗ of a densely defined linear operator is the linear operator defined as
follows. Its domain is given by

D(L∗) = { ϕ | there exists χ ∈ E such that 〈Lψ , ϕ 〉 = 〈ψ , χ 〉 for all ψ ∈ D(L) } .

For ϕ ∈ D(L∗), we set L∗(ϕ) = χ as defined above, verifying that it is uniquely specified
and linear.

The linear operator L is symmetric if L ⊆ L∗. It is self-adjoint if L = L∗. It is
essentially self-adjoint if L = L∗, or, equivalently, L∗∗ = L∗. The Spectral Theorem 5.3
only holds for self-adjoint operators, and only self-adjoint operators may be exponentiated
to give one-parameter unitary groups.

The condition of self-adjointness is rather subtle. It depends not only on the operator
being symmetric (formally self-adjoint), but also very much on the domain of definition,
which in turn includes the boundary conditions we impose.
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Example 5.10. Consider the momentum operator P = − i ∂x. (We set ~ = 1
for simplicity.) First consider a system on a finite interval [a, b ], so the Hilbert space is
E = L2 = L2[a, b ]. Let A = A[a, b ] denote the set of absolutely continuous functions on
[a, b ], i.e., functions ψ of the form

ψ(x) = ψ(a) +

∫ x

a

ϕ(y) dy with ϕ ∈ L1, (5.14)

where ϕ = ψ′ almost everywhere. These are the functions one can integrate by parts.
Consider the domain

D(P ) =
{
ψ
∣∣ ψ ∈ A, ψ′ ∈ L2, ψ(a) = ψ(b) = 0

}
.

The boundary conditions are to ensure that the operator P is symmetric. Indeed, if
ϕ, ψ ∈ D(P ), then integration by parts implies

〈ϕ , P ψ 〉 =
∫ b

a

ϕ(x) (− i )ψ′(x) dx = iϕ(x)ψ(x)
∣∣∣
b

x=a
+

∫ b

a

(− i )ϕ′(x)ψ(x) dx = 〈P ϕ , ψ 〉.

However, the boundary conditions are too strong for self-adjointness. Clearly the above
computation does not depend on ϕ vanishing at the endpoints, although we do need ϕ to
still be absolutely continuous with L2 derivative. Therefore the adjoint P∗ has domain

D(P∗) =
{
ϕ
∣∣ ϕ ∈ A, ϕ′ ∈ L2

}
.

and P ( P∗, so P is not self-adjoint on the above domain. Moreover, if we compute the
adjoint P∗∗ of P∗ we find that we must reimpose the boundary conditions, so P∗∗ = P ,
and hence P is closed. Thus P is a closed, symmetric, but not self-adjoint operator. Its
adjoint P∗ is a proper extension of P , but is not symmetric since P∗∗ ( P∗.

However, it is possible to extend P to be self-adjoint. For instance, extending P to
P̂ , defined on the domain of periodic functions

D(P̂ ) =
{
ψ
∣∣ ψ ∈ A, ψ′ ∈ L2, ψ(a) = ψ(b)

}

will do. Indeed, the same integration by parts argument will be valid if and only if ϕ is

also periodic, so in this case P̂ = P̂∗. However, this is not the only way to extend P . We
can also apply the same argument for

D(Pα) =
{
ψ
∣∣ ψ ∈ A, ψ′ ∈ L2, ψ(a) = αψ(b)

}

for any complex number of modulus |α | = 1. Thus, P has an entire “circle” of different
possible self-adjoint extensions, P ( Pα ( P∗, but no maximal self-adjoint extension.

What do these different self-adjoint extensions mean physically? If we take P to be
the Hamiltonian, then the solutions of Schrödinger’s equation†

iψt = iψx

† The factors of ~ cancel.
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are just translated waves
ψ(t, x) = f(x− t). (5.15)

On a finite interval, a localized wave packet will, for small t, translate unchanged. However,
after it reaches the endpoint 1, since the norm must be preserved, it has to reappear at
the other endpoint 0, i.e., the interval should be viewed as bent into a circle. The different
self-adjoint extensions of P then tell how the wave reappears, with α endowing it with an
extra phase factor. Therefore, different self-adjoint extensions lead to different physics.

Next consider the same operator, but on the half line [0,∞). We have the domain

D(P ) =
{
ψ
∣∣ ψ ∈ A, ψ′ ∈ L2, ψ(0) = 0

}
.

The integration by parts argument proceeds as before:

〈ϕ , P ψ 〉 =
∫ ∞

0

ϕ(x) (− i )ψ′(x) dx = iϕ(x)ψ(x)
∣∣∣
∞

0
+

∫ ∞

0

(− i )ϕ′(x)ψ(x) dx = 〈P ϕ , ψ 〉.

Again, the boundary conditions are too strong for self-adjointness, and

D(P∗) =
{
ϕ
∣∣ ϕ ∈ A, ϕ′ ∈ L2

}
.

Then P(P∗, so P is a closed, symmetric, but not self-adjoint operator. Its adjoint P∗ is a
proper extension of P , but is not symmetric since P∗∗(P∗. However, in this case there is
no possible way to extend P to be self-adjoint. (This will follow from Weyl’s Theorem 5.11
on deficiency indices stated below.) In this case, the solutions to the Schrödinger equation
run into problems when they hit the endpoint x = 0, and there is nowhere for them to go
while simultaneously preserving the norm.

Finally, if we look at P on the entire real line, then no boundary conditions are needed,
and P is self-adjoint on its natural domain of definition

D(P ) =
{
ψ
∣∣ ψ ∈ A, ψ′ ∈ L2(R)

}
.

Now there are no endpoints to worry about, and the corresponding solutions to the
Schrödinger equation are just translations (5.15) of the initial state ψ(0, x) = f(x).

There is a useful criterion for an symmetric operator to admit self-adjoint extensions,
due to Weyl, which we state without proof.

Theorem 5.11. Let L be a symmetric operator on a Hilbert space E . Then the
following three conditions are equivalent:

(i) L is essentially self-adjoint;

(ii) ker(L∗ ± i ) = {0};
(iii) rng (L± i ) is dense in E .

More generally, we define the deficiency indices of a closed symmetric operator to be

m = dimker(L∗ + i ), n = dimker(L∗ − i ). (5.16)

Then L has a self-adjoint extension if and only if m = n, in which case there is a (real)
m2–parameter family of different possible extensions corresponding to different possible
isometric mappings of ker(L∗ − i ) onto ker(L∗ + i ).
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For instance, the momentum operator P has deficiency indices (1, 1) on the finite
interval, since e±x lie in the kernel of P∗ ± i . This results in the 1-parameter family Pα
of self-adjoint extensions which map ex to αe−x for |α | = 1. On the half line, P∗ + i
has no kernel (since ex is not in L2), whereas P∗ − i still has e−x in its kernel. Thus the
deficiency indices are (0, 1), and no self-adjoint extension is possible. On the entire line,
neither operator has a kernel, so the deficiency indices are both 0, and P is self-adjoint.

Example 5.12. Consider the operator L = − d2/dx2 on the entire real line. A
domain is given by

D(L) =
{
ψ
∣∣ ψ ∈ C1, ψ′′ ∈ L2(R)

}
.

(This can be weakened by admitting functions in the Sobolev space H2, consisting of L2

functions whose first and second (weak) derivatives are also in L2.) Then L is self-adjoint
on D(L) since

〈ϕ , Lψ 〉 =
∫ ∞

−∞

ϕ(x)
[
−ψ′′(x)

]
dx =

[
ϕ′(x)ψ(x)− ϕ(x)ψ′(x)

]∣∣∣
∞

−∞
−
∫ ∞

−∞

ϕ′′(x)ψ(x) dx

=

∫ ∞

−∞

[
−ϕ′′(x)

]
ψ(x) dx = 〈Lϕ , ψ 〉.

Note especially that the assumption that ϕ and ψ are C1 is required so that no extraneous
boundary terms show up inside the interval. The spectrum of L is continuous, and consists
of the nonnegative real axis. Each λ = k2 > 0 is doubly degenerate. Note that, for λ < 0,
the solutions to Lψ = λψ are real exponentials, so to obtain an element of the spectrum,
we would need to have ψ decaying at both ±∞. We cannot piece them together to form
an eigenfunction, e.g., by setting

ψ(x) =

{
e−kx, x > 0,

ekx, x < 0,
where k > 0, −k2 = λ,

which, while certainly L2, is no longer C1, and lies outside the domain of definition of
L. If we try to extend the domain of definition of L to include such piecewise smooth
functions, we would no longer have a self-adjoint operator since the integration by parts
would produce an extra contribution at x = 0. In the language of distributions, the second
derivative of such a function is not, in fact in L2, since it has a delta function discontinuity
at x = 0 and hence is not a constant multiple of the function. Again, we see that domains
of definition for self-adjointness are extremely important.

Here, one can explicitly construct the resolvent. For λ not on the nonnegative real
axis, let k2 = −λ with Re k > 0. Then, given ϕ(x) ∈ L2, the L2 solution to

Lψ − λψ = −ψ′′ − λψ = ϕ

is given by convolution with the Green’s function:

ψ(x) = Rλϕ(x) = (L− λ I )−1ϕ(x) =

∫ ∞

−∞

e−k| x−y |

2k
ϕ(y) dy. (5.17)
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Thus, for λ not on the nonnegative real axis, the resolvent is a bounded operator on L2,
and hence the spectrum is contained in the nonnegative real axis.

It is also instructive to consider the operator on the half line [0,∞). We begin with
L = − d2/dx2 defined on the domain of C∞ function of compact support in (0,∞). In this
case, the deficiency indices are both 1 since the L2 solutions of −ψ′′ = ± iψ are multiples
of

ψ±(x) = exp

( −1± i√
2

x

)
.

It is not hard to see that the resulting one-parameter family of self-adjoint extensions of
L have domain

D(La) =
{
ψ
∣∣ ψ ∈ L2, ψ′ ∈ A, ψ′′ ∈ L2, ψ′(0) + αψ(0) = 0

}
.

where α ∈ R ∪ {∞}, with the boundary condition for α = ∞ being ψ(0) = 0. Now, for
α 6= ∞, a bounded solution to the stationary Schrödinger equation in this domain is

e i kx + β e− i kx,

where β = ( i k + α)/( i k − α), and k =
√
λ. This corresponds to a wave of momentum

k coming in from ∞, and reflecting at x = 0 with the change of phase given by β. The
case α = ∞ corresponds to a hard wall potential, where the induced phase change for all
momenta is β = −1.

So far we have been dealing with approximate eigenfunctions for these operators.
However, these will not serve as legitimate state variables since they do not belong to
L2. To construct a bona fide wave function, we must sum up a collection of approximate
eigenfunctions, weighted by their phase. Specifically, we look at the combination

ψ(x) =

∫ ∞

−∞

ψ̂(k) e ikx dk,

corresponding to the weighting factor ψ̂(k) ∈ L2, which is just the Fourier transform of
ψ(x). Depending on the nature of the weighting factor, we will have different probability

distributions. For instance, if ψ̂(k) is concentrated near k = k0, then ψ(x) corresponds
to a quantum particle whose momentum has, when measured, a value near ~k0 with very
high probability. This is because application of the momentum operator P = − i ~ ∂x
to the approximate eigenfunction yields ~ke i kx, so its “expected value” is ~k. Thus,
except for the factor of ~, we can identify the wave number k with the momentum of the
corresponding particle. Similarly, if ψ(x) is localized near x0, then it corresponds to a
quantum particle whose position measurements are concentrated near x0. Note that, by
the Uncertainty Principle, if the momentum is concentrated, the position is spread out
over the entire line, and vice versa.

Now, consider the time evolution of such a wave function under the Schrödinger equa-
tion

i ~ψt = − ~2 ψxx,
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where we have restored the factors of ~ so as to be better able to compare with the physics.
The approximate eigenfunctions individually evolve according to

ψ(t, x, k) = e i kx− i ~ k2t, (5.18)

which corresponds to a traveling periodic wave having wave velocity c(k) = ~k, which
coincides with the momentum of the particle. Again, these solutions are not in L2 and so
are not physical. To construct a physical solution to the Schrödinger equation, we take a
suitable superposition

ψ(t, x) =

∫ ∞

−∞

ψ̂(k) e i kx− i ~ k2t dk,

corresponding to the weighting factor ψ̂(k) ∈ L2. Now, the behavior of this solution is less
clear, although for specific weighting functions the integral can be evaluated explicitly, of
course. For instance, if

ψ̂(k) = e−α(k−k0)
2

, α > 0,

is a (un-normalized) Gaussian, then, completing the square in the integral yields

ψ(t, x) =

√
π

α+ i ~ t
eρ+ i σ,

where

ρ = − α(x− 2~ k0 t)
2

4α2 + ~2 t2
, σ = − 4α2 k0x− 4α2 ~ k20 t+ ~ x2t

4α2 + ~2 t2
. (5.19)

The corresponding probability density on position space is

|ψ(t, x) |2 dx =
πe2ρ√
α2 + ~2 t2

dx.

Note that the probability density is the highest where ρ = 0, i.e., where x = 2~ t. Therefore,
the probability wave moves with combined velocity 2~, which is twice the velocity of the
individual wave with wave number k0.

Dispersion and Stationary Phase
References : [28], [40], [57], [60].

At first sight the preceding discussion may seem paradoxical (or even wrong), but
is merely a manifestation of the well-known distinction between phase velocity and group
velocity for a packet of waves in a dispersive medium. In general, a linear partial differential
equation governing the propagation of waves is called dispersive if the individual Fourier
modes move with different velocities, corresponding to complex exponential solutions of
the form

ψ(t, x, k) = e i kx− iωt, (5.20)

where the wave number k and the temporal frequency ω are related according to the
dispersion relation ω = ω(k). For example in the case of the Schrödinger equation, in view
of (5.18), the dispersion relation is ω = ~ k2. The individual wave (5.20) moves with wave
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speed or phase velocity cp = ω(k)/k, but a packet of waves with wave numbers concentrated
near k moves with the group velocity cg = ω′(k), which, except in trivial cases, e.g., the
linear wave equation, is not the same. (It can be higher or lower, depending on the precise
dispersion relation.) The energy in the system also travels with the group velocity, not
the phase velocity. A familiar example is when you drop a rock into a still pond. The
individual waves move with the phase velocity, but the group of waves corresponding to
the disturbance moves with the group velocity. Thus, one observes (in the deep water
case, where the phase velocity is approximately twice the group velocity) individual wave
crests appearing at the back of the main disturbance, moving through the disturbance
first growing in size and then decreasing, and finally disappearing at the front of the
disturbance. (Try it!) In quantum mechanical contexts, a similar phenomena happens for
the wave function solutions to Schrödinger’s equation, except that the group velocity is
now larger than the phase velocity, and so the waves appear at the front of the disturbance,
and retreat to the back before disappearing.

Furthermore, there will be some spreading out of the wave due to dispersion. For
the exponential e−α(x−a)2 , the larger α is, the more concentrated it is near x = x0. In
the present case, if α is small, then the initial wave function ψ(x) is concentrated in
position space near x = 0. (To introduce a phase shift to concentrate ψ(x) near x =
δ, we would multiply the original weighting function by a complex exponential e− i δ.).
However, as soon as ~ t gets to be of any negligible size, the corresponding coefficient
α(t) = α/(4α2 + ~2 t2), as prescribed in (5.19), becomes small, and the wave packet has
spread out over a large region of position space. This reflects the fact that, by specifying
the initial position of the particle rather precisely, the Uncertainty Principle implies that we
have very little knowledge of the initial momentum, and so after a time the particle could
have ended up almost anywhere. On the other hand, if α is large, so the initial momentum
is well specified, although we have little knowledge of the initial position, then it remains
reasonably localized in momentum space, but with a slight spreading as t increases. But
the observed momentum of the particle is governed by the group velocity, not the phase
velocity corresponding to its initial momentum!

For more general weighting functions, we can no longer evaluate the basic integral
directly. However, our qualitative conclusions still hold. To derive these we need to
analyze oscillatory integrals of the above and more general type. This can be done using
the method of stationary phase, that dates back to Lord Kelvin in the nineteenth century.

Consider a superposition of the individual harmonic waves (5.20):

ψ(t, x) =

∫ ∞

−∞

f(k) e ikx− iω(k)t dk. (5.21)

We are interested in the behavior for large t, x. The interesting limit is as t −→ ∞ with the
speed c = x/t held fixed, so we are looking at waves traveling with velocity c. Accordingly,
we rewrite the integral as

ϕ(t) =

∫ ∞

−∞

f(k) e− i η(k)t dk, where η(k) = ω(k)− ck. (5.22)

According to Kelvin, the main contribution to the oscillatory integral (5.22) will be at the
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stationary points of η(k), i.e., those points for which

η′(k) = ω′(k)− c = 0;

otherwise, the the complex exponential oscillates rapidly and makes no net contribution
to the integral. Let us assume that there is just one such point k0 for a given c. Note
that, by the earlier discussion, these are precisely the points corresponding to the group
velocity c = ω′(k) of the wave packet. Then we expand

η(k) = η(k0) +
1
2 η

′′(k0)(k − k0)
2 + · · ·

near k0, and assume f(k0) 6= 0. The dominant contribution to the integral will be

ϕ(t) ≡
∫ k0+ε

k0−ε

f(k0) exp
(
− i t

[
η(k0) +

1
2
η′′(k0)(k − k0)

2
] )
dk

≡ f(k0) e
− i η(k0)t

∫ k0+ε

k0−ε

exp

(
− i

2
η′′(k0)(k − k0)

2 t

)
dk

≡ f(k0) e
− i η(k0)t

∫ ∞

−∞

exp

(
− i

2
η′′(k0)(k − k0)

2 t

)
dk

≡ f(k0) e
− i η(k0)te− iπ signη′′(k0)/4

√
2π

t | η′′(k0) |
.

The last integral (which is not absolutely convergent!) is evaluated by changing it into a real
Gaussian integral via rotating the path of integration through ±π/4, the sign depending
on the sign of η′′(k0). This can all be rigorously justified, [40].

Theorem 5.13. Consider the integral

ϕ(t) =

∫ ∞

−∞

f(k) e iη(k)t dk. (5.23)

where η(k) is real, while f(k) can be complex. Assume that

(i) η ∈ C4;

(ii) η′ has a finite number of nondegenerate zeros: η′(kj) = 0, η′′(kj) 6= 0;

(iii) f ∈ C3 with f, f ′, f ′′ bounded;

(iv) (f/η′)′ ∈ L1 for | x | ≫ 0.

Then

ϕ(t) ∼
∑

j

f(kj) exp

[
iπ sign η′′(kj)

4

] √
2π

t | η′′(kj) |
, t −→ ∞. (5.24)

Proof : Using a partition of unity argument, we can assume that η has either one or
no zeros in the support of f . If η′ 6= 0 everywhere, then we can integrate by parts:

∫ ∞

−∞

f(k) e iη(k)t dk =
1

t

∫ ∞

−∞

g(k) e iη(k)t dk,
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where g(k) = ( i f(k)/η′(k))′, which is L1 by assumption. Thus the integral is O(t−1) at
least. (In fact, if f ∈ C∞ and of compact support, the integral is O(t−n) for any n ∈ N.)

If η′(k0) = 0 is the only zero of η′ in the support of f , we proceed as follows. Without
loss of generality, we assume k0 = 0, η(k0) = 0, and so η(k) = ±ak2 + O(k3) near the
critical point k0 = 0, where a = 1

2
| η′′(0) | 6= 0 by assumption. By a Lemma of Morse, we

can introduce new coordinates k = ζ(u) near 0, such that

η(ζ(u)) = ±u2.

If η ∈ Ck, then it is not hard to see that ζ is at worst Ck−1. Then, changing variables, the
integral becomes ∫ ∞

−∞

h(u) e± i u2t du

where h(u) = f(ζ(u)) ζ ′(u) is bounded, with its first two derivatives bounded.

Lemma 5.14. Suppose h(u) is a C2 function on R such that h, h′, h′′ are bounded.
Then ∫ ∞

−∞

h(u) e± iu2t du = h(0)

√
π

t
e± iπ/4 +O(t−3/2), t −→ ∞. (5.25)

Proof : For brevity, we just do the case where the sign is positive. We first need to
show that the integral exists. To prove that it converges uniformly in t for t 6= 0, let a, b
be real, a large negative, b large positive. Integrating by parts, we find

∫ b

a

h(u) e iu2t du =
1

2 i t

∫ b

a

h(u)

u
(e iu2t)′ du =

1

2 i t

h(u)

u
e iu2t

∣∣∣∣
b

a

− 1

2 i t

∫ b

a

(
h(u)

u

)′

e iu2t du

=

[
1

2 i t

h(u)

u
− 1

(2 i t)2u

(
h(u)

u

)′
]
e iu2t

∣∣∣∣∣

b

a

+
1

(2 i t)2

∫ b

a

(
1

u

(
h(u)

u

)′
)′

e iu2t du.

Now (
h(u)

u

)′

=
h′(u)

u
− h(u)

u2

(
1

u

(
h(u)

u

)′
)′

=
h′′(u)

u2
− 3

h′(u)

u3
+ 3

h(u)

u4
.

Therefore, provided h, h′, h′′ are bounded, the boundary terms go to zero as a → −∞,
b → ∞, and the final integral is absolutely convergent. Therefore, the original integral
converges uniformly as a→ −∞, b→ ∞.

The second step is to show that

∫ ∞

−∞

e iu2t du =

√
π

t
e± iπ/4. (5.26)

To do this, note that the integral

F (λ) =

∫ ∞

−∞

eλu
2

du
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is convergent for Reλ ≤ 0 except for λ = 0, is continuous as a function of λ, and, moreover,
is an analytic function of λ for Re λ < 0. Moreover, for 0 > λ real, we know that

F (λ) =

√
π

−λ .

Therefore, to evaluate F (λ) on the imaginary axis λ = ± i t, we must analytically continue

the square root +
√

−λ to the imaginary axis, which leads to the branch

√
± i t =

√
t e∓ i π/4.

This proves formula (5.26).

To prove the Lemma, we replace h(u) by h(u)− h(0), which accounts for the leading
term in the asymptotic expansion. Therefore, we need only show that if h(0) = 0, then
the integral can be bounded by a multiple of t−3/2. We perform the same integration by
parts as above, to deduce that in this case

∫ ∞

−∞

h(u) e iu2t du = − 1

2 i t

∫ ∞

−∞

ĥ(u) e iu2t du, where ĥ(u) =

(
h(u)

u

)′

which, since h(0) = 0, is C1. Iterating, we find that

∫ ∞

−∞

ĥ(u) e iu2t du = ĥ(0)

√
π

t
e±iπ/4 − 1

2 i t

∫ ∞

−∞

h̃(u) e iu2t du,

where

h̃(u) =

(
ĥ(u)− ĥ(0)

u

)
′

.

As before, the last integral is absolutely convergent, so that it can be bounded by a constant
K independent of t. Therefore,

∣∣∣∣
∫ ∞

−∞

ĥ(u) e iu2t du

∣∣∣∣ ≤
| ĥ(0) | √π

2 t3/2
+
K

t2
=

| h′′(0) | √π
4 t3/2

+
K

t2
,

which establishes Lemma 5.14, and hence Theorem 5.13. Q.E.D.

6. One–Dimensional Problems.

References : [26], [36], [45], [46], [50].

Consider a one-dimensional Hamiltonian of the form

H(p, q) =
p2

2m
+ V (q), (6.1)
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corresponding to a particle of mass m in a potential force field V (q). The corresponding
stationary Schrödinger equation is

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ = λψ. (6.2)

For simplicity, we choose units so that ~2 = 2m; equivalently, rescale both V (x) and λ by
2m/~2 times themselves. Thus, we look at the equation

ψ′′ +
[
λ− V (x)

]
ψ = 0 (6.3)

on the entire line, so x ∈ R.

Example 6.1. Step potential : Consider the case of potential in the form of a step
function:

V (x) =

{
a, x > 0,

b, x < 0,
(6.4)

where we assume that a < b. We want a solution ψ(x) to Schrödinger equation (6.2) which
is (at least) C1. There are three cases:

Case 1 : If λ < a, then the solution is exponential in both regions. However, it is
not hard to see that it cannot be C1 and exponentially decaying at both ±∞. A similar
statement holds if λ = a.

Case 2 : If a < λ < b, then the solution is exponential for x −→ −∞, and oscillatory
for x −→ +∞. Up to multiple, there is exactly one function which remains bounded for
all x. Therefore, each such λ is in the continuous spectrum, with multiplicity 1. Similar
remarks hold for λ = b.

Case 3 : If b < λ, then the solution is oscillatory in both regions. Thus there are two
bounded C1 solutions for each such λ, which is hence in the continuous spectrum, with
multiplicity 2.

Now we analyze the behavior of the quantum system, and contrast it with its classical
counterpart. In Case 2, a classical particle will come in from the positive x axis with speed
k =

√
λ− a , will rebound elastically at the barrier x = 0, and then travel back out to ∞

with the same speed.

The corresponding quantum solution takes the form

ψ(x) =

{
e− i kx +Re i kx, x > 0,

T eκx, x < 0,

where k =
√
b− λ . Because ψ ∈ C1, we find

R = e iϕ =
i k − κ

i k + κ
, T = 1 +R.

The corresponding time-dependent solution has the form

ψ(t, x) = e− i kx− iλt + e i k(x+δ)− i λt for x > 0,
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which consists of an incident wave traveling with velocity λ/k, and a reflected wave trav-
eling with the opposite velocity, but suffering a time delay δ experienced upon collision.
Furthermore, for x < 0, the wave function ψ(t, x) 6= 0, and so there is a nonzero prob-
ability of finding the particle o the other side of the potential barrier. Of course, these
solutions are not C1 as they stand, and so, to have a physically meaningful statement, we
must superimpose several solutions and apply the stationary phase approximation to the
integrals. We leave it to the reader to verify that the statements we have made carry over
to this approximation.

In Case 3, a classical particle will come in from the positive x axis with speed k =√
λ− a , and will continue on to −∞ with reduced speed l =

√
λ− b , or the reverse. The

corresponding quantum solution takes the form

y(x) =

{
e− i kx +Re i kx, x > 0,

T e i lx, x < 0,

where, because ψ ∈ C1, we find

R =
k − l

k + l
, T = 1 +R,

are real. The quantity R is called the reflection coefficient , and measures the probability
that the particle will be reflected by the barrier, whereas T is called the transmission

coefficient , and represents the probability that it will be transmitted. Note that |T |2
measures the probability of the particle being transmitted though the barrier, while |R |2
measures the probability of the particle being reflected. In all cases, there is a nonzero
probability of the particle bouncing off the potential barrier.

Example 6.2. Penetration of a square potential barrier or square well.

Suppose

V (x) =

{
h, 0 < x < a,

0, x < 0 or x > a.
(6.5)

Again, we seek a solution ψ(x) which is C1. There are two cases:

Case 1 : If h > 0, we have a square potential barrier. For λ < 0, the quantum
mechanical solution ψ(x) is exponential all three regions. However, it is not hard to
see that a C1 solution is monotone, and hence the spectrum can only be positive. For
λ = k2 > 0, the solution is oscillatory and hence each such λ belongs to the continuous
spectrum, with multiplicity 2.

Consider the solution of the form

ψ(x) =

{
e− i kx +Re i kx, x > a,

Te− i kx, x < 0.

In the region 0 < x < a the solution will be either exponential or sinusoidal depending on
whether λ is less than or greater than h. The transmission coefficient can be straightfor-
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wardly calculated to be

|T |2 =





µ

µ+ h2 sin2(κa)
, λ > h,

µ

µ+ h2 sinh2(κa)
, λ < h,

where
κ =

√
|λ− h |,

µ = 4λ(λ− h).

Also

|R |2 + |T |2 = 1,

so the probabilities of being transmitted or reflected add up to 1, as they should.

As before, we can contrast the behavior of a classical and quantum particle. The
classical particle coming in from +∞ will rebound off the barrier if its energy λ is less than
the potential height h; otherwise it will be slowed down in the barrier, but traverses it and
continues on to −∞. In contrast, the quantum particle always has a nonzero probability of
penetrating the barrier. As λ increases from 0 to h, the transmission coefficient increases

monotonically from 0 to
(
1 + 1

4 hλ
2
)−1

. This effect is known as the tunnel effect and plays

an important role in radioactivity. For λ > h, complete transmission, |T |2 = 1, occurs
only for special values of the energy, namely when κa is a multiple of π. As the energy
increases, the transmission probability oscillates between 1 and a minimum value on the
order of µ(2λ − h)−2. The effect is particularly marked when the barrier is very high or
thick, and when the kinetic energy λ− h in the region of the barrier is small.

Case 2 : If h < 0, we have a square potential well. For λ = −k2 < 0, the solution is
exponential in the regions x < 0, x > a. If λ ≤ h, then it is also exponential in the well,
and as before, any C1 solution must be monotone, so it cannot be exponentially decaying
at both ends. If h < λ < 0, then any bounded solution must, up to multiple, take the form

ψ(x) =





e−kx, x > a,

A sin(κx+ δ), 0 < x < a,

B ekx, x < 0,

where κ =
√
λ− h ,

and A and B are real. If ψ is to be C1, we must have

A sin δ = B, Aκ cos δ = Bk, A sin(κa+ δ) = B, Aκ cos(κa+ δ) = −Bk.

We can determine A,B provided

tan δ =
κ

k
= − tan(κa+ δ).

We have

sin2 δ =
tan2 δ

1 + tan2 δ
=

κ2

κ2 + k2
=
h+ λ

h
=
κ2

h

Eliminating the phase shift δ,

κa+ 2 sin−1 κ√
h
= nπ, (6.6)
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for some integer n. There are a finite numberm ≥ 0 of solutions κ, n to (6.6), corresponding
to a finite number of negative eigenvalues λ1 < λ2 < . . . < λm < 0 of the Schrödinger
equation — m may be zero if the well is too shallow — and so to a finite number of
negative energy bound states of the quantum mechanical problem. In the classical picture
of a potential well, there are bound states corresponding to all values of the energy greater
than the minimum of the well. Thus, the Schrödinger equation has served to quantize
the bound states of the classical system into discrete energy levels, while retaining the
continuous character of the non-bound or scattering states.

Consider a scattering solution

ψ(x) =

{
e− i kx +Re i kx, x > a,

T e− i kx, x < 0,

with reflection coefficient R and transmission coefficient T . For λ > 0, the transmission
and reflection coefficients can be straightforwardly calculated to be

|T |2 =
µ

µ+ h2 sin2 ka
, |R |2 = 1− |T |2, where

κ =
√
λ− h ,

µ = 4λ(λ− h).

Note that, in contrast with a classical particle, a quantum particle usually has a non-zero
probability of being reflected by the potential well. Exceptions occur when sinκa = 0, at
which points, the reflection coefficient is zero and the particle is completely transmitted.
Thus, there is a resonance effect in the quantum probabilities of transmission/reflection.

The Harmonic Oscillator

The classical harmonic oscillator has energy

H(p, q) =
1

2m
(p2 +m2ω2q2), (6.7)

leading to the Hamiltonian system

dp

dt
= −mω2q,

dq

dt
=

p

m
, (6.8)

with is a linear system of first order ordinary differential equations. The resulting motion
is oscillatory of frequency ω.

The corresponding quantum mechanical Hamiltonian operator takes the same form,
but where q and p are operators satisfying the canonical commutation relation

[q, p ] = i ~.

Let us rescale to eliminate the inessential constants:

Q =

√
mω

~
q, P =

1√
m~ω

p, H =
1√
~ω

H,

so that
H = 1

2(P
2 +Q2),
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where Q,P are operators satisfying

[Q,P ] = i .

In the Schrödinger representation

Q = x, P = − i
d

dx
,

and the stationary Schrödinger equation is

1

2

(
− d2

dx2
+ x2

)
ψ = λψ. (6.9)

As we will see below, the solutions to this eigenvalue problem are expressed in terms of
Hermite polynomials. It is convenient to proceed a little more abstractly as follows:

Define the “creation” and “annihilation” operators

A∗ =
1√
2
(Q− iP ), A =

1√
2
(Q+ iP ), (6.10)

so

[A,A∗ ] = 1,

and

H = N + 1
2 , where N = A∗A.

Note that eigenfunctions of N are eigenfunctions of H, but the eigenvalues are shifted by
1
2 . Furthermore, note

AA∗ = N + 1, NA = A(N − 1), NA∗ = A∗(N + 1).

Now suppose ψλ is an eigenfunction of N corresponding to the eigenvalue λ. Then ψλ−1 =
Aψλ (if not zero) is an eigenfunction of N with eigenvalue λ−1, and ψλ+1 = A∗ψλ (if not
zero) is an eigenfunction of N corresponding to the eigenvalue λ+ 1:

Nψλ−1 = NAψλ = A(N − 1)ψλ = (λ− 1)Aψλ = (λ− 1)ψλ−1,

Nψλ+1 = NA∗ψλ = A∗(N + 1)ψλ = (λ+ 1)A∗ψλ = (λ+ 1)ψλ+1.

Moreover,

‖ψλ−1 ‖2 = ‖Aψλ ‖2 = 〈Aψλ , Aψλ 〉 = 〈ψλ , A∗Aψλ 〉 = 〈ψλ , Nψλ 〉 = λ ‖ψλ ‖2

which implies that λ ≥ 0, with Aψλ = 0 if and only if λ = 0. Applying the same argument
to ψλ−1, with ψλ−2 = Aψλ−1, we deduce that, if λ 6= 0, then λ ≥ 1. Continuing in this
fashion, we conclude that every eigenvalue of N is a nonnegative integer, and, moreover,
every nonnegative integer belongs to the spectrum, since

‖ψλ+1 ‖2 = 〈A∗ψλ , A∗ψλ 〉 = 〈ψλ , AA∗ψλ 〉 = 〈ψλ , (N + 1)ψλ 〉 = (λ+ 1) ‖ψλ ‖2
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is never zero for λ ≥ 0. We normalize, so that ψn is now the normalized eigenfunction
corresponding to the eigenvalue 0 ≤ n ∈ N. Then

Aψn =
√
n− 1 ψn−1, A∗ψn =

√
n+ 1 ψn+1. (6.11)

If one interprets the state ψn as having n quanta, then the operator A∗ “creates” an
additional quantum, while the operator A∗ “annihilates” one, hence the names creation

and annihilation operators . One can also interpret the Hamiltonian as describing a system
of indistinguishable particles, all in the same dynamical state, whose energy is ~ω. In
this case ψn represents the state having n particles, with ψ0 being the vacuum state. In
this case, the operator N represents the number of particles, and the operators A∗ and A
“create” and “destroy” particles.

In the Schrödinger representation,

A∗ =
1√
2

(
− d

dx
+ x

)
, A∗ =

1√
2

(
d

dx
+ x

)
. (6.12)

The vacuum ψ0 must satisfy Aψ0 = 0, i.e.,

dψ0

dx
= −xψ0, hence ψ0(x) =

1

π1/4
e−x

2/2

is a normalized Gaussian. Then

ψn(x) =
1

π1/4
√
n!

(A∗)n e−x2/2 =
1

2n/2 π1/4
√
n!
Hn(x)e

−x2/2, (6.13)

where Hn is the nth Hermite polynomial

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2

. (6.14)

The eigenfunctions (6.13) form a complete orthonormal basis in L2. The operator N , and
hence also H, is essentially self-adjoint, and can be extended to a self-adjoint operator on
a suitable subdomain of L2.

Scattering and Inverse Scattering
References : [1], [14], [21], [48].

We return to the one-dimensional Schrödinger equation

ψ′′ +
[
λ− V (x)

]
ψ = 0. (6.15)

The potential V (x) is required to tend to 0 sufficiently rapidly as | x | → ∞, in order that
∫ ∞

−∞

(1 + x2) |V (x) | dx <∞. (6.16)

We are interested in the quantum scattering problem for this equation. Thus, we will look
at solutions having the asymptotic form

ψ(x) ∼
{
e− i kx +R(k)e ikx, x −→ +∞
T (k)e− i kx, x −→ −∞,

(6.17)
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where k2 = λ. As in Example 6.1, R(k) is known as the reflection coefficient and T (k)
the transmission coefficient . Physically, |R(k) |2 gives the probability of a particle with
momentum k reflecting off of the potential V (x), while |T (k) |2 gives the probability of
the particle passing through the potential.

The asymptotic form (6.17)is to be expected because of the decay of the potential at
±∞. The rigorous result is the following.

Theorem 6.3. Assume that the potential V (x) satisfies (6.16). Given k ∈ C with
Im k ≥ 0, there exist unique solutions ψ(x, k), ϕ(x, k) to the Schrödinger equation

ψ′′ +
[
k2 − V (x)

]
ψ = 0

satisfying the uniform asymptotic estimates

ψ(x, k) ∼ e i kx
(
1 + o(1)

)
, ψx(x, k) ∼ e i kx

(
i k + o(1)

)
, x −→ +∞,

ϕ(x, k) ∼ e− i kx
(
1 + o(1)

)
, ϕx(x, k) ∼ e− i kx

(
− i k + o(1)

)
, x −→ −∞.

Moreover, for each fixed x, the solutions ψ, ϕ, and their x derivatives are analytic functions
of k for Im k > 0 and continuous for Im k ≥ 0.

Furthermore, for Im k ≤ 0, the complex conjugate solutions

ψ(x, k) = ψ(x,−k) = ψ(x, k), ϕ(x, k) = ϕ(x,−k) = ϕ(x, k),

satisfy the alternative asymptotic estimates

ψ(x, k) ∼ e− i kx
(
1 + o(1)

)
, ψx(x, k) ∼ e− i kx

(
− i k + o(1)

)
, x −→ +∞,

ϕ(x, k) ∼ e i kx
(
1 + o(1)

)
, ϕx(x, k) ∼ e i kx

(
i k + o(1)

)
, x −→ −∞,

and are analytic for Im k < 0 and continuous for Im k ≤ 0. For k = 0, one also requires
solutions which asymptote to x at +∞ or at −∞. The solutions ψ, ϕ, ψ, ϕ are known as
the Jost solutions for the problem.

Proof : This is fairly standard result from the theory of ordinary differential equations.
We replace the Schrödinger equation by the linear integral equation

ψ(x, k) = e i kx +
1

k

∫ ∞

x

V (y)ψ(y, k) sink (y − x) dy (6.18)

which is solved by the method of successive approximation. In the course of the proof, we
establish the important estimate

∣∣ e− i kxψ(x, k)
∣∣ ≤ exp

(
1

k

∫ ∞

x

|V (y) | dy
)
. (6.19)

This proves the existence of the Jost solution ψ, and the uniqueness also follows from
the standard theory of ordinary differential equations. The corresponding result for ϕ is
similar; details appear in the references, especially [21]. If we substitute (6.19) into the
integral equation (6.18), we deduce that

e− i kxψ(x, k) = 1 +
1

2 ik

∫ ∞

x

V (y)dy +O
(
| k |−2

)
. (6.20)
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Similarly, we find

e i kxϕ(x, k) = 1− 1

2 i k

∫ x

−∞

V (y) dy +O
(
| k |−2

)
. (6.21)

In particular, we can recover the potential V (x) by differentiating either of these formulas
and letting k −→ ∞:

V (x) = −2 lim
k→∞

(
i k

∂

∂x

[
e i kxϕ(x, k)

])
= −2 lim

k→∞

(
i k

∂

∂x

[
e− i kxψ(x, k)

])
.

(6.22)

For k 6= 0, the Jost solutions ψ(x, k) and ψ(x, k) are linearly independent, since their
Wronskian

W [ψ, ψ ] = ψ ψx − ψx ψ

satisfies the asymptotic estimate

W [ψ(x, k), ψ(x, k) ] ∼ −2 i k + o(1), x −→ +∞.

However, the Wronskian of any two solutions to the Schrödinger equation is a constant,
independent of x, hence we have

W [ψ(x, k), ψ(x, k)] = −2 i k.

The key to the scattering theory is to write the Jost solution at −∞, i.e., ϕ(x, k), in
terms of the Jost solutions at +∞. Now these are only all defined for real values of k.
Thus, we know that for real k 6= 0, there exist functions a(k), b(k) such that

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ(x, k).

In fact, by the asymptotic formulas, we see that

a(k) =
W [ϕ(x, k), ψ(x, k)]

2 ik
, b(k) = − W [ϕ(x, k), ψ(x, k) ]

2 i k
, (6.23)

We note that the reflection and transmission coefficients are given in terms of a and b by

R(k) =
b(k)

a(k)
, T (k) =

1

a(k)
. (6.24)

Moreover, the function a(k), which is the key to the problem, as defined by the Wronskian
relation (6.23), is analytic on the upper half plane Im k > 0, and continuous down to the
real axis, except possibly at k = 0. (On the other hand, b(k) is only defined on the real
axis.) Note also that, on the real axis, a(−k) = a(k)]. In fact, the elementary Wronskian
relation

W [ϕ, ψ ]W [ϕ, ψ ]−W [ϕ, ψ ]W [ϕ, ψ ] =W [ψ, ψ ]W [ϕ, ϕ ]

implies that, for k real,

| a(k) |2 − | b(k) |2 = 1,

1/3/23 67 c© 2023 Peter J. Olver



which is equivalent to the probability relation

|R(k) |2 + |T (k) |2 = 1, (6.25)

between the reflection and transmission coefficients. This mathematical formula encapsu-
lates the physical statement that the collision of the particle with the quantum potential
is perfectly elastic; either the particle reflects or is transmitted with no loss of energy.

Theorem 6.4. The spectrum of the Schrödinger equation is composed of the con-
tinuous spectrum, which is the positive real axis λ ≥ 0 (k real) and a finite number of
simple negative eigenvalues λ1 < λ2 < . . . < λn < 0. These correspond to the zeros of
a(k), which are all purely imaginary: kj = iκj = i

√
−λj .

Proof : First note that the bound states of the Schrödinger equation correspond to
solutions which, for Im k > 0, are asymptotic to e i kx as x → +∞, and asymptotic to
e− i kx as x → −∞. In other words λ = k2 will be an eigenvalue if and only if the Jost
solution ϕ(x, k) is a multiple of the Jost solution ψ(x, k). But this is equivalent to their
Wronskian vanishing, so that eigenvalues of the Schrödinger equation correspond to zeros
of the function a(k), or, equivalently, to the poles of the reflection coefficient R(k) in the
complex plane. We therefore need to analyze the behavior of the analytic function a(k).

First, if ψ = ψ(x, k), ψ̃ = ψ(x, k̃) are any two solutions corresponding to different
values of the eigenvalue, we have

W [ψ, ψ̃ ]
∣∣∣
b

x=a
=
(
ψ ψ̃x − ψx ψ̃

) ∣∣∣
b

x=a
=

∫ b

a

(
ψ ψ̃xx − ψxx ψ̃

)
dx =

(
k2 − k̃2

) ∫ b

a

ψ ψ̃ dx.

(In particular, choosing k = k̃ proves the constancy of the Wronskian.) Now, let k̃ = −k,
and evaluate this identity for the Jost solutions ϕ(x, k), ϕ(x,− k) = ϕ(x, k). Then

W
[
ϕ(x, k), ϕ(x,− k)

]
=
(
k2 − k2

) ∫ x

−∞

|ϕ(y, k) |2 dy.

Now, if k is an eigenvalue, then ϕ(x, k) is a multiple of ψ(x, k). Therefore, the Wron-
skian on the left hand side of the previous equation is a multiple of the Wronskian
W
[
ψ(x, k), ψ(x,− k)

]
. But, as x −→ +∞ this latter Wronskian goes to 0, hence we

conclude that if k is an eigenvalue,

(
k2 − k2

) ∫ ∞

−∞

|ϕ(y, k) |2 dy = 0.

Since ϕ is not identically 0, this implies that k is purely imaginary, and so λ = k2 is real,
negative. We note that it is not possible for 0 to be an eigenvalue since the solutions in
this case are never exponentially decreasing at ±∞. We conclude that all the eigenvalues
of the Schrödinger equation (6.15) are strictly negative.

We next show that there are only a finite number of eigenvalues, which is equivalent
to proving that the function a(k) has at most a finite number of zeros for Im k > 0. This
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will follow from an estimate of its asymptotic behavior as | k | −→ ∞. We begin with the
connection formula

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ(x, k) ∼ a(k)e− i kx + b(k)e i kx, x −→ +∞,

which is valid for real k 6= 0. On the other hand, consider our earlier integral equation for
the solution:

ϕ(x, k) = e i kx − 1

2 ik

∫ x

−∞

[
V (y)e ik(x+y) − e i k(x−y)ϕ(y, k)

]
dy

= e i kx

(
1

2 ik

∫ x

−∞

V (y)e− i kyϕ(y, k)dy

)

+ e− i kx

(
1− 1

2 i k

∫ x

−∞

V (y)e i kyϕ(y, k)dy

)
.

Comparing these two expressions as x −→ ∞, we deduce that

a(k) = 1− 1

2 i k

∫ ∞

−∞

V (y)e ikyϕ(y, k)dy,

b(k) =
1

2 ik

∫ ∞

−∞

V (y)e− i kyϕ(y, k)dy.

By analyticity, the formula for a(k) is valid for Im k ≥ 0. In particular, if we use our
exponential estimate on | e ikxϕ(x, k) | we deduce the key estimate

a(k) = 1− 1

2 ik

∫ ∞

−∞

V (y)dy +O(| k |−2), Im k > 0.

Therefore, as | k | −→ ∞, the function a(k) is asymptotic to the constant 1. Finally, we
must also eliminate the possibility that a(k) has zeros accumulating at k = 0. Under our
assumption on the potential, the integral

M =

∫ ∞

−∞

V (y)ϕ(y, 0)dy

exists and is finite since the solutions for k = 0 are asymptotic to linear functions αx+ β
as x→ ±∞. Then, as k → 0,

a(k) = 1− M

2 ik
− 1

2 i

∫ ∞

−∞

V (y)
e i kyϕ(y, k)− ϕ(y, 0)

k
dy.

Using some further estimates on the integrand, which, in the limit as k −→ 0 reduces
to the derivative of e i kyϕ(y, k) with respect to k at k = 0, which can be bounded by
C(1 + y2) for Im k ≥ 0, we conclude that if M = 0, then the limit a(0) exists; whereas if
M 6= 0 then a has a simple pole at k = 0. In either case, the zeros of a are bounded away
from k = 0. This completes the proof that the analytic function a(k) has at most a finite
number of zeros.
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We prove next that the zeros of a(k) are all simple. First we differentiate the
Schrödinger equation with respect to k:

−ψxxk + V ψk = k2ψk + 2kψ,

where ψk = ∂ψ/∂k. Multiply the Schrödinger equation by ψk and subtract this equation
multiplied by ψ:

ψ ψxxk − ψkψxx = −2kψ2.

Integrating from a to b, we have

W [ψ, ψk ]
∣∣∣
b

x=a
= −2k

∫ b

a

ψ2 dx.

In particular, for the Jost solution ψ(x, k), this implies

lim
x→−∞

W
[
ψ(x, k), ψk(x, k)

]
= 2k

∫ ∞

−∞

ψ(x, k)2 dx.

Now, if kj = iκj is a zero of a(k) corresponding to the eigenvalue λj = −κ2j , then

ϕ(x, kj) = cjψ(x, kj) for some constant cj 6= 0. On the other hand, differentiating the

identity W [ϕ, ψ ] = 2 i ka(k) with respect to k, we find

W [ϕk, ψ ] +W [ϕ, ψk ] = 2 i a(k) + 2 i ka′(k).

Suppose λ = k2 is an eigenvalue, so a(k) = 0. Evaluating this expression at −∞, using
the previous formula and noting that the first term, which is proportional to W [ϕk, ϕ]
vanishes there, yields

i a′(kj) = cj

∫ ∞

−∞

ψ(x, kj)
2 dx 6= 0.

Let χ(x) be the normalized real eigenfunction corresponding to the eigenvalue λj = −κ2j ,
so ‖χj ‖2 = 1. The associated normalization constant dj is defined so that

χj(x) = djψ(x, kj).

Since χj is only defined up to sign, we can choose dj > 0 without loss of generality. Then

d2j =
1

‖ψ(x, kj) ‖2
= − i

cj
a′(kj)

. (6.26)

We have now defined all the important quantities for the scattering problem.

Definition 6.5. Given a potential V (x), the scattering data S consists of

(i) The reflection coefficient R(k) defined for k ≥ 0, with R(k) = o(1) as k → ∞.

(ii) The eigenvalues λ1, . . . , λn, which are negative.

(iii) The normalization constants d1, . . . , dn, which are positive.
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The basic result is that the potential is uniquely determined by its scattering data S.
Moreover, to reconstruct the potential from S, it suffices to solve a certain linear integral
equation known as the Gel’fand-Levitan-Marchenko (GLM) equation. The key to this are
the transformation operators which map solutions of the trivial Schrödinger equation with
zero potential to those of the Schrödinger equation with potential V . Define the Fourier
transforms

K+(x, y) =
1

2π

∫ ∞

−∞

[
ψ(x, k)− e i kx

]
e− i ky dk, y ≥ x,

K−(x, y) =
1

2π

∫ ∞

−∞

[
ϕ(x, k)− e− i kx

]
e i ky dk, y ≤ x.

(6.27)

The existence of these functions follows from the estimates on the Jost solutions. Moreover,
the Payley-Wiener Theorem from Fourier analysis proves that K+(x, y) = 0 for y < x,
and similarly K−(x, y) = 0 for y > x. (The precise result is in [52], which proves that

the Fourier transform f̂(y) of the function f(k) vanishes for y < x if and only if f(k) is

entire for Im k > 0, and

∫ ∞

−∞

| f(a+ i b) |2 da = O(e−2y b). In our case, ψ(x, k) − e i kx

satisfies these conditions.) Therefore, inverting the Fourier transforms, we deduce the
transformation formulas

ψ(x, k) = e i kx +

∫ ∞

x

K+(x, y)e iky dy, ϕ(x, k) = e− i kx +

∫ x

−∞

K−(x, y)e− i ky dy,

expressing the Jost solutions as Volterra integral operators applied to the “bare solutions”
e± i kx. Note that bothK+ andK− are real, since taking complex conjugates and replacing
k by −k leads to the same expressions. The asymptotic expansion of these integrals shows
that

ψ(x, k)e− i kx = 1 +
i

k
K+(x, x) + O

(
| k |−2

)
.

Comparison with our previous expression (6.20), we deduce that

V (x) = 2
d

dx
K+(x, x). (6.28)

Therefore, knowledge of the kernel K+ allows us to reconstruct the potential V . The goal
now is to derive an integral equation for K+.

Now, since T (k) −→ 1 and hence R(k) −→ 0 sufficiently rapidly as k −→ ∞, we can
ensure the existence of the Fourier transforms

T̂ (y) =
1

2π

∫ ∞

−∞

[
T (k)− 1

]
e− i ky dy, R̂(y) =

1

2π

∫ ∞

−∞

R(k)e iky dy.

We now take our fundamental physical solution

T (k)ϕ(x, k) = ψ(x, k) +R(k)ψ(x, k),

which we write in the form
[
T (k)− 1

]
ϕ(x, k) =

[
ψ(x, k)− e− i kx

]

+R(k)
[
ψ(x, k)− e i kx

]
+R(k)e ikx −

[
ϕ(x, k)− e− i kx

]
,

1/3/23 71 c© 2023 Peter J. Olver



which is amenable to Fourier transform. We compute the Fourier transform of the indi-
vidual terms, in order of difficulty:

1

2π

∫ ∞

−∞

R(k)e ikxe i ky dk = R̂(x+ y),

1

2π

∫ ∞

−∞

[
ϕ(x, k)− e− i kx

]
e i ky dk = K−(x, y)

1

2π

∫ ∞

−∞

[
ψ(x, k)− e− i kx

]
e i ky dk =

1

2π

∫ ∞

−∞

[
ψ(x, k)− e i kx

]
e− i ky dk = K+(x, y),

since K+ is real, and

1

2π

∫ ∞

−∞

[
ψ(x, k)− e i kx

]
R(k)e iky dk =

∫ ∞

−∞

K+(x, z)R̂(y + z) dz

by the convolution theorem for Fourier transforms. The final integral is a bit harder. We
evaluate

1

2π

∫ ∞

−∞

[
T (k)− 1

]
ϕ(x, k)e iky dy

by contour integration. Let Γ = ΓR be the contour in the upper half plane consisting of a
semi-circle CR of radius R≫ 0 and the line segment from −R to R. Then, by the residue
theorem, since T (k) = 1/a(k) has poles at the eigenvalues kj = iκj ,

1

2π i

∮

ΓR

[
T (k)− 1

]
ϕ(x, k)e iky dy =

n∑

j=1

Res
[
T (k)ϕ(x, k)e iky

] ∣∣
k=kj

=

n∑

j=1

ϕ(x, kj)e
i kjy

a′(kj)
=

n∑

j=1

cj ψ(x, kj)e
−κjy

a′(kj)
=

n∑

j=1

i d2j ψ(x, kj)e
−κjy.

We then re-express ψ in terms of the kernel K+, to finally deduce

1

2π i

∮

ΓR

[
T (k)− 1

]
ϕ(x, k)e iky dy = i

n∑

j=1

d2j

[
e−κj(x+y) +

∫ ∞

−∞

K+(x, z)e−κj(y+z) dz

]
.

We now plug all these formulas back into the original Fourier transform formula. To this
end, we define the function

F (x) = R̂(x) +
n∑

j=1

d2j e
−κjx =

1

2π

∫ ∞

−∞

R(k)e i kx dk +
n∑

j=1

d2j e
−kjx.

Note that F is entirely determined by the scattering data. Finally recall thatK−(x, y) van-
ishes for y > x. Then, our formula becomes the celebrated Gel’fand–Levitan–Marchenko

(GLM) equation

K+(x, y) + F (x+ y) +

∫ ∞

x

K+(x, z)F (z + y)dz = 0, y > x. (6.29)

1/3/23 72 c© 2023 Peter J. Olver



Therefore, to find the kernel K+(x, y), one needs only solve a linear integral equation. To
recover the potential, we continue K+ to the diagonal x = y and use formula (6.28). Thus,
the reconstruction of the potential from the scattering data is a linear procedure! There
are now some technical matters to be overcome in proving the existence of a solution to
the GLM equation, and verifying that the potential satisfies the growth assumption. This
will be the case provided the Fourier transform of the reflection coefficient satisfies

∫ ∞

a

| R̂(x) | dx <∞ for a > −∞,

and one more technical condition to get the transmission coefficient behaving properly as
k → 0. We refer to the references for details.

Example 6.6. Reflectionless potentials . The GLM equation allows us to solve the
following problem: characterize those potentials V (x) for which there is no quantum me-
chanical reflection, i.e., all particles are transmitted with probability 1.

Consider first the case of just one bound state corresponding to the eigenvalue λ = −κ2
with κ > 0. According to the formula for the kernel in the GLM equation, we have

F (x) = d2e−κx.

where d > 0 is the normalization coefficient. The GLM equation (6.29) reduces to

K+(x, y) + d2 e−κ(x+y) +

∫ ∞

x

K+(x, z) d2 e−κ(y+z) dz = 0, y > x.

To solve this, note that we can factor

K+(x, y) = γ(x)e−κy,

where γ(x) satisfies

0 = γ(x) + d2 e−κx +

∫ ∞

x

γ(x)d2 e−2κz dz = γ(x)

(
1 +

d2

2κ
e−2κx

)
+ d2 e−κx.

Therefore,

γ(x) = − d2 e−κx

1 +
d2

2κ
e−2κx

, K+(x, y) = − d2 e−κ(x+y)

1 +
d2

2κ
e−2κx

,

and so the potential is

V (x) = −2
d

dx
K+(x, x)

= 2
d

dx

d2 e−2κx

1 +
d2

2κ
e−2κx

=
−4κd2 e−2κx

(
1 +

d2

2k
e−2kx

)
2 =

−4κ2(√
2κ

d
ekx +

d√
2κ

e−κx

)
2
,
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or, more compactly,

V (x) = −κ2 sech2 k(x− δ), where δ =
1

k
log

(
d√
2κ

)
. (6.30)

Note that the normalization constant only enters into the phase d of the potential. Thus,
the sech2 potential (6.30) has no quantum mechanical reflection, and sustains a single
bound state.

In the case of several eigenvalues, the solution of the GLM equation also reduces to an
algebraic problem, but the computations are a bit more complicated. The kernel is now

F (x) =

n∑

j=1

d2j e
−kjx.

We look for a solution of the form

K+(x, y) =

n∑

j=1

wj(x)e
−kjy.

Plugging into the GLM equation (6.29), and separating out the exponentials in y, we
deduce that the column vector of functions w(x) = [w1(x), . . . , wn(x) ]

T must satisfy the
linear system

M(x)w(x) = −e(x),

where
e(x) = [e1(x), . . . , en(x) ]

T has entries ej(x) = d2j e
−kjx,

and M(x) is an n× n matrix with entries

Mjk(x) = δjk +

∫ ∞

x

e−κkz d2j e
−κjz dz = δjk +

d2j e
−(κj+κk)x

κj + κk
.

Therefore
w(x) = −M(x)−1 e(x).

The corresponding potentials are

V (x) = −2
d

dx
K+(x, x) = −2

d

dx

n∑

j=1

wj(x)e
−κjx = −2

d

dx

n∑

j,k=1

M(x)−1
jk d

2
k e

−(κj+κk)x

= −2
d

dx
tr

[
M(x)−1 dM

dx

]
= −2

d

dx

[
1

detM(x)

d

dx
detM(x)

]
= −2

d2

dx2
log detM(x).

A slight modification of the matrix M leads to a simpler formula. Let T (x) be the matrix
obtained from M by multiplying the jth row by e−κjx and the kth column by eκkx, so

Tjk(x) = δjk +
d2j e

−2κjx

κj + κk
. (6.31)
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Clearly detT (x) = detM(x), hence

V (x) = −2
d2

dx2
log detT (x). (6.32)

This gives a general formula for all the reflectionless potentials. In general, these are
pretty complicated, although they can be viewed as certain nonlinear combinations of the
basic sech2 potentials, each one providing one of the eigenvalues. For certain values of the
normalization constants, these can be effectively separated into n disjoint one-eigenvalue
potentials.

Isopectral Flows

Let V (t, x) be a one-parameter family of potentials, where we identify the parameter
t with time. These are called isospectral if they all have identical eigenvalues. The GLM
equation (6.29) characterizes (at least in principle) all such potentials. The problem of
isospectral flows is to construct such families as solutions to certain differential equations.
There is an efficient method due to Lax for realizing an isospectral flow, [31].

Theorem 6.7. Let
L(t) = ∂2x + V (t, x) (6.33)

denote a one-parameter family of Schrödinger operator depending on the time-varying
potential V . Suppose B is a skew adjoint operator such that the commutator [B,L ] is a
multiplication operator. Then the flow determined by the Lax representation

Lt = [B,L ] (6.34)

is isospectral.

Note that the Lax representation will reduce to a (typically nonlinear) evolution equa-
tion

∂V

∂t
= K[V ] (6.35)

for the potential V (t, x), where K is a certain operator arising from the form of the
commutator: K[V ] = [B,L ].

Proof : Let L(t) be a solution to the Lax equation (6.34). Then these operators are
unitarily equivalent, meaning that there is a one-parameter family of unitary operators
U(t) such that

L(t) = U(t)L(0)U(t)−1. (6.36)

Indeed, by Theorem 4.1, the skew adjoint operator B generates a one-parameter unitary
group of operators

Ut = BU, U(0) = I .

Defining L(t) by (6.36), we see that

Lt = BUL(0)U−1 − UL(0)U−1B = BL− LB,
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so that L(t) satisfies the Lax equation e.qLax Suppose λ is an eigenvalue for L(0) corre-
sponding to the eigenfunction ψ0(x). Then λ is also an eigenvalue for L(t) corresponding
to the eigenfunction ψ(t, x) = U(t)ψ0(x), because

L(t)ψ(t, x) = (U(t)L(0)U(t)−1)U(t)ψ0(x) = U(t)L(0)ψ0(x) = λU(t)ψ0(x) = λψ(t, x).

This completes the proof. Q.E.D.

A simple example is provided by the operator B = ∂x. Note that

[B,L ] = Vx

is the operator of multiplication by the derivative of the potential. The corresponding
isospectral flow (6.35) coincides with the unidirectional wave equation

Vt = Vx,

so we deduce the easy result that any translation of a potential has the same eigenvalues.
The next example is the third order differential operator

B = ∂3x +
3
2V ∂x +

3
4Vx. (6.37)

Note that B is skew-adjoint. A short computation shows that

[B,L ] = 1
4
Vxxx +

3
2
V Vx

is also a multiplication operator. The corresponding isospectral flow (6.35) is the celebrated
Korteweg-deVries equation

Vt =
1
4 Vxxx +

3
2 V Vx,

which models long surface waves on shallow water and a broad range of other physical
phenomena, [57]. In fact, there are operators B of all odd orders, which in turn give
rise to higher order isospectral flows, [24]. All of these flows are, in fact, completely
integrable, possessing an infinite number of symmetries and conservation laws, and can thus
can be viewed as infinite-dimensional counterparts of the classical completely integrable
Hamiltonian systems.

Moreover, these isospectral evolution equations can all be solved by the method of
inverse scattering. The eigenvalues of the corresponding Schrödinger operator are con-
stant, independent of t. The rest of the scattering data, while not constant, has a rather
elementary time evolution. Note that the (generalized) eigenfunctions will evolve in time
according to ψt = Bψ, where B is the Lax operator. Taking the Korteweg-deVries example
(6.37), we have

ψt = ψxxx +
3
2
V ψx +

3
4
Vxψ.

Now suppose that ψ(x) is the physical solution

ψ(x) ∼
{
e− i kx +R(k)e ikx, x −→ +∞,

T (k)e− i kx, x −→ −∞,
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as before. For | x | large, V (x) is negligible, and hence ψ evolves according to the linear
equation ψt = ψxxx. If the initial data ψ(0, x) is physical, then ψ(t, x) will be a multiple
of this solution

ψ(t, x) ∼
{

e i k3t e− i kx +R(k)e− i k3t e i kx, x −→ +∞,

T (k)e ik3t e− i kx, x −→ −∞,

which is e i k3t times the physical solution for V (t, x). Therefore, we conclude that the
transmission coefficient T (t, k) corresponding to V (t, x) is constant in time, while the
reflection coefficient has the elementary time evolution

R(t, k) = e−2 i k3tR(0, k).

Similarly, the normalization constants were defined as dj = ‖ψ(x, kj) ‖−1, hence

dj(t) = e2k
3

j tdj(0).

Therefore, to solve the Cauchy problem for the Korteweg-deVries equation:

(i) Compute the scattering data S(0) for the initial potential V (0, x).

(ii) Determine the time evolution for the scattering data S(t) as above.
(iii) Solve the GLM equation to determine V (t, x).

For example, the n-soliton solutions correspond to the case when the reflection coef-
ficient is identically 0, and so these can be explicitly found as above. In particular, the
one-soliton solution corresponds to the reflectionless potentials with a single bound state,
and hence have the sech2 profile (6.30) moving to the left as a traveling wave unchanged in
form and with constant speed. Moreover, the larger the amplitude of a soliton, the faster
it moves. For n ≥ 2, it can be shown that, as t → +∞, the n-soliton solutions break
up into a distinct collection of one-soliton traveling wave solutions, ordered by size, each
soliton corresponding to one of the eigenvalues. As t → −∞, a similar break up occurs,
but the solitons are in reverse order. Also, there is a phase shift of the individual solitons
reflecting the effect of the nonlinear collision. See [1, 21] for further developments.

7. Symmetry in Quantum Mechanics.

References : [9], [36], [37], [39], [42], [49], [53], [54], [55].

Why is Symmetry Important?

For a classical mechanical system, a symmetry group is a group of transformations
which leaves the Hamiltonian function invariant†. Thus, for example, the group of ro-
tations in space leaves the Kepler Hamiltonian invariant, and the group of simultaneous

† More accurately, this defines a canonical symmetry group. The symmetry condition requires
that the group map solutions to solutions, but there may also be non-canonical symmetries not
of the form discussed here. See [42] for full details.

1/3/23 77 c© 2023 Peter J. Olver



translations leaves the Hamiltonian energy for the n-body problem invariant. The most
important symmetry groups are continuous groups of canonical transformations. Consider
a one-parameter group

(p, q) 7−→ (p(ε), q(ε))

generated by the Hamiltonian function F (p, q), meaning that as functions of the group
parameter ε, the transformations are solutions to Hamilton’s equations (2.1) with Hamil-
tonian F and ε playing the role of t. The condition that the resulting transformations
form a symmetry group (for H time-independent) is that their Poisson bracket vanish:

{F,H } = 0, (7.1)

which is equivalent to the conservation law that F (p, q) = constant. For example, transla-
tion invariance of the Hamiltonian is equivalent to conservation of linear momentum, and
rotational invariance of the Hamiltonian is equivalent to conservation of angular momen-
tum. Invariance under time translations is equivalent to conservation of energy, where H
does not depend explicitly on t. Thus, there is an intimate relationship between symmetry
and conservation laws. This is the essence of Noether’s Theorem.

For the corresponding quantum mechanical system, the classical Hamiltonian H and
the associated conserved function F generating a symmetry group are replaced by self-
adjoint operators H and F on an appropriate Hilbert space E . The Poisson bracket sym-
metry condition (7.1) is replaced by the commutation condition

[H,F ] = 0. (7.2)

(For simplicity, we ignore potential technical difficulties with domains of definition of these
operators.) As a first consequence of this condition, we see that the physical quantity
represented by the operator F is conserved in the quantum mechanical equation; indeed,
if ψ(0, x) is an eigenfunction for F with eigenvalue µ, and ψ(t, x) is the solution of the
Schrödinger equation for H, then ψ(t, x) remains an eigenfunction for F with eigenvalue
µ. We also discover that the operator F maps the space of solutions to the stationary
Schrödinger equation

Eλ = { ψ | Hψ = λψ }

to itself (where defined): F(Eλ) ⊂ Eλ. This means that we have a “representation” of
the group on this space, and can thus apply the powerful methods of group representation
theory to study the solutions to the Schrödinger equation. Indeed, representation theory
enables us to deduce consequences of the symmetry conditions which do not depend on the
particular quantum mechanical realization of the physical system, but only on the pure
symmetry properties of the Hamiltonian. This is similar to our earlier treatment of the har-
monic oscillator, where most of the the quantum mechanics was derived abstractly without
knowledge of the particular realization in physical coordinates. This will be particularly
important when we generalize the Schrödinger equation to wave functions with more than
one component, and, indeed, various physically observed phenomena will necessitate such
a treatment. In this case, the underlying symmetry and representation theory will serve
as very important guides to the construction of physically meaningful models.
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Initially, the two most important groups are the rotation group (and its covering
group) and the discrete group of permutation of identical particles. However, many other
symmetries arise naturally, e.g., crystallographic groups, the Lorentz group in the relativis-
tic regime, the Heisenberg group, which appears in the harmonic oscillator, etc. Whereas
continuous symmetry groups in quantum mechanics always have classical analogues, based
on the associated infinitesimal generators, discrete groups and certain global aspects of
continuous groups often do not.

Group Representations

Let G be a group. By a representation of G we mean a (continuous) group homomor-
phism

ρ :G −→ L(V )

to the space of (bounded) linear transformations of a (complex, normed) vector space V ,
satisfying

ρ(g · h) = ρ(g) · ρ(h), ρ(g−1) = ρ(g)−1, g, h ∈ G. (7.3)

If V is finite-dimensional, and hence we can identify V ≃ Cn where n = dimV , the
representation ρ maps G to the group GL(n) of complex n×n matrices in such a way that
group multiplication gets mapped to matrix multiplication. Two representations ρ on V
and σ on W are called equivalent if there is a (bounded) invertible linear transformation
A:V −→W such that ρ(g) = A−1σ(g)A for all g ∈ G. In the finite-dimensional case, this
means V and W have the same dimension, and A just amounts to a change of basis.

By the direct sum of two representations ρ1, ρ2, we mean the representation

ρ = ρ1 ⊕ρ2:G −→ L(V1 ⊕V2), ρ(g) = ρ1(g) ⊕ρ2(g), (7.4)

on the direct sum vector space. In finite dimensions, this means that the matrix represent-
ing ρ(g) assumes block diagonal form with respect to the appropriate bases. A subspace
W ⊂ V is called invariant if ρ(g)W ⊆ W for all g ∈ G. Note that the restriction of
ρ to any invariant subspace is also a representation of G. A representation ρ is called
irreducible if the only closed invariant subspaces are the trivial ones, namely {0} and V
itself. A representation is called completely reducible if it decomposes as a direct sum of
irreducible representations. (In the infinite-dimensional situation, we mean Hilbert direct
sums.)

Theorem 7.1. If G is a finite group, or a compact Lie group, then every irreducible
representation is finite-dimensional. Moreover, every (continuous) representation is com-
pletely reducible.

The compact case is a consequence of the celebrated Peter–Weyl Theorem.

A representation ρ on an inner product space V is called unitary if it maps

ρ :G −→ U(V )

to the space of unitary linear transformations on V , meaning that

〈 ρ(g)ψ , ρ(g)ψ 〉 = 〈ψ , ψ 〉 for all g ∈ G, ψ ∈ V. (7.5)
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It is not difficult to show that every unitary representation is completely reducible, as a
consequence of the following result.

Proposition 7.2. Let ρ be a unitary representation of G. If W is an invariant
subspace, then its orthogonal complement W⊥ is also invariant, and hence ρ decomposes
as the direct sum of two smaller representations: ρ = ρ |W ⊕ρ | W⊥.

The complete reducibility of all representations of finite and compact Lie groups fol-
lows from the fact that all their representations are equivalent to unitary representations.
This is not true for non-compact groups; see below.

Theorem 7.3. If G is a finite group, or a compact Lie group, then every (continuous)
representation is equivalent to a unitary representation.

Proof : In the finite case, we define the new inner product

(ϕ;ψ ) =
1

#G

∑

g∈G

〈 ρ(g)ϕ, ρ(g)ψ 〉, (7.6)

on V , where #G denotes the number of elements of G. It is straightforward to check that
(7.6) defines an inner product, and each ρ(h) for h ∈ G then is a unitary map. For G a
compact Lie group, we replace the summation in (7.6) by integration with respect to the
invariant (Haar) measure.

To deduce equivalence, we let A be the map taking the orthonormal basis of V in the
new inner product to that in the old. In the infinite-dimensional case, we also need to show
that A is continuous, which is the same as the two inner products being equivalent. Q.E.D.

Example 7.4. Let G = SO(2) be the group of rotations in the plane R2. Since every
rotation in the plane is uniquely prescribed by its angle, SO(2) is topologically a circle,
S1, parametrized by the angular coordinate θ. Since SO(2) is abelian, every irreducible
representation is one-dimensional. (This is because commuting unitary operators can be
simultaneously diagonalized.) The representations are given by

ρn(θ) = e inθ, where n ∈ Z. (7.7)

Any other (complex) representation can be decomposed into a direct sum of these
irreducible representations. For instance, the standard representation in terms of rotation
matrices

ρ(θ) =

(
cos θ − sin θ
sin θ cos θ

)

can be rewritten in terms of the complex eigenvectors e1 ± i e2 as the direct sum of the
irreducible representations corresponding to n = 1 and n = −1:

ρ(θ) = ρ1(θ) ⊕ρ−1(θ) =

(
e inθ 0
0 e− inθ

)
.

Similarly, the representation of SO(2) on the space of quadratic polynomials q(x, y) is given
by

ρ(2)(θ)q(x, y) = q(ρ(θ)−1(x, y)) = q(x cos θ + y sin θ,−x sin θ + y cos θ).
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It takes the matrix form

ρ(2)(θ) =




cos2 θ − cos θ sin θ sin2 θ
2 cos θ sin θ cos2 θ − sin2 θ −2 cos θ sin θ

sin2 θ cos θ sin θ cos2 θ




relative to the standard monomial basis consisting of x2, xy, y2. It can be decomposed into
the following direct sum of irreducible representations (check!):

ρ(2) = ρ2 ⊕ρ0 ⊕ρ−2.

From now on, we will restrict our attention to finite-dimensional representations so
as to avoid problems with unbounded operators, etc. Also, unless otherwise stated, all
representations will be on complex vector spaces, even though the Lie group may be real.
The following technical result is absolutely crucial.

Schur’s Lemma 7.5. Let ρ be a complex unitary representation of G on the finite-
dimensional vector space V . Then ρ is irreducible if and only if the only linear transfor-
mations A:V −→ V satisfying

ρ(g)A = Aρ(g) for all g ∈ G, (7.8)

are multiples of the identity : A = λ I . Furthermore, if ρ and ρ̃ are two irreducible
representations of G on spaces V, Ṽ respectively, and B:V −→ Ṽ is a linear map such that

ρ̃(g)B = B ρ(g) for all g ∈ G, (7.9)

then either B is invertible, so that ρ and ρ̃ are equivalent representations, or B = 0.

Proof : To prove the first statement, let λ be an eigenvalue of A, and let {0} 6=W ⊂ V
be the associated eigenspace. It is easy to see that the condition above implies that W is
invariant under ρ. Therefore, if ρ is irreducible, W = V , and A = λ I . (Note that this
part does not require unitarity of the representation ρ.) Conversely, if ρ is reducible, there
is a nontrivial invariant subspace {0} 6= W ( V , whose orthogonal complement is also
invariant. Setting A to be orthogonal projection of V onto W , it is easy to check that
condition (7.8) holds.

To prove the second statement, it is easy to see that kerB is an invariant subspace
of V under ρ. Thus, since ρ is irreducible, either kerB = V , in which case B = 0, or
kerB = {0}. In the latter case, rngB is also seen to be an invariant subspace of Ṽ , hence,

by irreducibility, rngB = Ṽ , and B is invertible. Q.E.D.

Lie Algebra Representations

Let g be a finite-dimensional Lie algebra. By a Lie algebra representation, we mean a
linear map

ρ : g −→ gl(V ),
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to the Lie algebra gl(V ) consisting of all linear operators on the vector space V (i.e., the
space of all n×n matrices if V is n-dimensional) which respects the Lie bracket. Explicitly,

ρ [A,B ] = [ρ(A), ρ(B)] = ρ(A) ρ(B)− ρ(B) ρ(A), (7.10)

where the right hand bracket is the matrix commutator: [A,B ] = AB − BA. If G is a
Lie group, and ρ a representation, then ρ induces a representation of the associated Lie
algebra g, also, for simplicity, denoted ρ. Explicitly, if A ∈ g generates the one-parameter
subgroup exp(tA) ⊂ G, then

ρ(A) =
d

dt
ρ(exp tA)

∣∣∣∣
t=0

.

This follows easily from the standard commutator formula for the Lie bracket:

[A,B ] =
d

dt
exp
(
−
√
tB
)
exp
(
−
√
t A
)
exp
(√

tB
)
exp
(√

t A
) ∣∣∣∣

t=0

.

which also works for matrices. Conversely, if ρ is any representation of the Lie algebra g,
then exponentiation induces a local representation of the corresponding Lie group G:

ρ(expA) = exp ρ(A),

using the fact that the exponential map exp: g → G is one-to-one in a neighborhood of
the identity, which defines the Lie group representation in such a neighborhood. If G is
connected, then every element can be written as a finite product of such exponentials, and
hence each representation of a connected Lie group is uniquely prescribed by its associated
Lie algebra representation. However, a Lie algebra representation may not extend to a Lie
group representation!

For example, the one-dimensional representation of the one-dimensional Lie algebra
so(2) ≃ R, with generator J , given by

ρ(J) = 1,

does not extend to a representation of the group SO(2). Indeed,

ρ(etJ) = etρ(J) = et, but e2πJ = I .

This representation does extend to the simply connected covering group of SO(2), which
is just the (non-compact) additive group of real numbers G = R:

ρ(t) = et.

It is an example of a non-unitary representation of a non-compact group which cannot be
made unitary by any choice of metric: there is no inner product on R1 such that

‖ etψ ‖ = ‖ψ ‖ for all ψ ∈ R1 and all t ∈ R.

The obstructions to extending a local representation induced from a Lie algebra rep-
resentation to the entire Lie group are topological in nature. If we were to work with
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just simply connected Lie groups, then every Lie algebra representation would extend to
a Lie group representation and there would be a one-to-one correspondence between the
two. However, many of the important groups, e.g., the group of rotations, are not simply
connected, and, moreover, by going to the simply connected covering group, we may well
lose compactness.

A Lie group representation ρ is irreducible if and only if the corresponding Lie algebra
representation is irreducible. The Lie group representation ρ is unitary if and only if the
corresponding Lie algebra representation is skew-adjoint, i.e.,

ρ : g −→ u(V ),

maps g to the space u(V ) of skew-adjoint operators on the inner product space V , using
the fact, cf. Theorem 4.1, that a skew-adjoint operator generates a one-parameter unitary
group. In the finite-dimensional case, where V ≃ Cn, by using an orthonormal basis so
that the inner product is in canonical form, u(V ) ≃ u(n) can be identified as the Lie
algebra of skew-adjoint, complex matrices under the commutator bracket.

Representations of the Orthogonal Group

The first important case of a non-commutative compact group is the special orthogonal
group of rotations in three-dimensional space:

SO(3) =
{
A
∣∣ ATA = I , detA = 1

}
. (7.11)

Its Lie algebra so(3) can be identified with the space of skew-symmetric matrices, and is
spanned by the matrices

Lx =




0 0 0
0 0 −1
0 1 0


 , Ly =




0 0 1
0 0 0

−1 0 0


 , Lz =




0 −1 0
1 0 0
0 0 0


 , (7.12)

generating the one-parameter subgroups of rotations around the z, y, x axes respectively.
They satisfy the commutation relations

[Lx, Ly ] = Lz, [Lz, Lx ] = Ly, [Ly, Lz ] = Lx. (7.13)

Note that these are the same as the Poisson bracket relations among the three components
of angular momentum†

j = q ∧ p.

The corresponding quantum operators are

J =
(
Jx,Jy,Jz

)
= − i ~q ∧ ∇, (7.14)

which satisfy the commutation relations

[Jx,Jy ] = i ~Jz, [Jz,Jx ] = i ~Jy, [Jy,Jz ] = i ~Jx. (7.15)

† As above, we use ∧ to denote the vector cross product.
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Note that if we rescale by i ~, setting Jν = i ~Lν , we recover the commutation relations
of the Lie algebra so(3), and hence the quantum angular momentum operators give a
representation of the Lie algebra so(3) on (a subspace of) the Hilbert space of state vectors.
(Note that the angular momentum operators Jν are self-adjoint, whereas the generators
of so(3) are skew-symmetric matrices, so the factor of i is essential.)

Because the angular momentum operators do not commute, according to the Uncer-
tainty Principle, we cannot simultaneously measure all three components (except in the
case when all three vanish). Indeed, according to the general Uncertainty Relation (4.27),

∆Jα∆Jβ ≥ 1
2 ~ 〈 Jγ 〉, α, β, γ all different.

Thus, if we know one component, say Jx exactly, so ∆Jx = 0, then measurements of the
other two components are completely random, except in the special case when they all
vanish. This poses an interesting conceptual conundrum: the angular momentum “vector”
can never have a well-defined direction, in contrast to the position and momentum vectors.
The only time it can be well-defined is when it is zero.

The square of angular momentum is the operator

J 2 = J 2
x + J 2

y + J 2
z . (7.16)

It commutes with all three angular momentum operators. Therefore, one can measure the
square of angular momentum and one component of angular momentum exactly, but not
the other two components! Similarly, for a system composed of a number of particles,
the total angular momentum and its square obey the same commutation relations as the
individual pieces.

It is customary in quantum mechanics to ignore the particular realization and define
an angular momentum operator to be a vector of self-adjoint operators

J = (Jx, Jy, Jz),

which obey the commutation relations

[Jx, Jy ] = iJz, [Jz, Jx ] = i Jy, [Jy, Jz ] = iJx, (7.17)

where we suppress the Planck factor of ~ by either choosing units in which it is 1 or by
rescaling the operators. This includes the case of a single particle, as well as systems of
particles, where J represents (up to a factor of ~) the total angular momentum of the
system. If we set J = iL, then the components of L are skew adjoint operators, and com-
prise a representation of the Lie algebra so(3) satisfying the commutation relations (7.12).
Therefore, according to our general results, the underlying Hilbert space decomposes into
a direct sum of irreducible finite-dimensional subspaces. If our Schrödinger equation is
rotationally invariant, and so the Hamiltonian operator commutes with the angular mo-
mentum operator J, then the same is true for the solution space for each value of the
energy. Thus, in order to understand the angular momentum of the system, we need to
understand the irreducible representations of so(3).

Their construction is facilitated by introducing the following alternative basis of the
(complexification of) so(3):

J+ = Jx + iJy, J− = Jx − iJy , Jz. (7.18)
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Observe that these operators satisfy

J− = (J+)
∗, (7.19)

along with the commutation relations

[J+, J− ] = 2Jz, [Jz, J+ ] = J+, [Jz, J− ] = −J−. (7.20)

The operators J+, J− are called, respectively, raising and lowering operators , for reasons
that will soon become clear. (This will also be reminiscent of our treatment of the harmonic
oscillator.) Further,

J2 = J2
x + J2

y + J2
z = 1

2 (J+J− + J−J+) + J2
z , (7.21)

Thus, (7.20, 21) imply

J−J+ = J2 − Jz(Jz + 1), J+J− = J2 − Jz(Jz − 1). (7.22)

Now, suppose we are looking for a (necessarily finite-dimensional) irreducible repre-
sentation of these operators. (For simplicity, we suppress ρ in the formulas.) Since each
J2
ν is a positive definite self-adjoint operator, their sum J2 is also positive definite, and

hence has only non-negative eigenvalues. For later convenience, these eigenvalues will be
denoted as λ = j(j+1), where j is known as the azimuthal quantum number . Since J2 also
commutes with Jz, we can find a simultaneous eigenvector ψj,l, without loss of generality
assumed to be normalized, ‖ψj,l ‖ = 1, associated with the eigenvalues j(j + 1) and l,
respectively:

J2ψj,l = j(j + 1)ψj,l, Jzψj,l = lψj,l, (7.23)

where l is called the magnetic quantum number . Set

ψ̂j,l+1 = J+ψj,l. (7.24)

Then, as the notation indicates,

J2 ψ̂j,l+1 = j(j + 1) ψ̂j,l+1, Jzψ̂j,l+1 = (l + 1) ψ̂j,l+1.

Thus ψ̂j,l+1, if non-zero, is also a simultaneous eigenvector with corresponding eigenvalues
j(j + 1) and l + 1. A similar statement holds for

ψ̂j,l−1 = J−ψj,l, (7.25)

which has corresponding eigenvalues j(j + 1) and l − 1. The net effect is that J+ raises
the magnetic quantum number l by 1, while J− lowers it by 1.

Now consider

J−ψ̂j,l+1 = J−J+ψj,l = J2ψj,l − Jz(Jz + 1)ψj,l

=
[
j(j + 1)− l(l + 1)

]
ψj,l = (j − l)(j + l + 1)ψj,l.

By a similar computation,

J+ψ̂j,l−1 = (j + l)(j − l + 1)ψj,l.
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Therefore, using (7.19),

‖ ψ̂j,l+1 ‖2 = 〈 J+ψj,l , J+ψj,l 〉 = 〈ψj,l , J−J+ψj,l 〉 = (j − l)(j + l + 1) ‖ψj,l ‖2

= (j − l)(j + l + 1),

‖ ψ̂j,l−1 ‖2 = 〈 J−ψj,l , J−ψj,l 〉 = 〈ψj,l , J+J−ψj,l 〉 = (j + l)(j − l + 1) ‖ψj,l ‖2

= (j + l)(j − l + 1).

Since ‖ ψ̂j,l+1 ‖, ‖ ψ̂j,l−1 ‖ ≥ 0, we deduce

(j − l)(j + l + 1) ≥ 0, (j + l)(j − l + 1) ≥ 0,

which imply

−j ≤ l ≤ j.

Moreover ψ̂j,l+1 = J+ψj,l = 0 if and only if l = j, while ψ̂j,l−1 = J−ψj,l = 0 if and only if

l = −j. Thus, when | l | < j, we can normalize the two new eigenvectors by setting

ψj,l+1 =
ψ̂j,l+1√

(j − l)(j + l + 1)
, ψj,l−1 =

ψ̂j,l−1√
(j + l)(j − l + 1)

.

Now, if we start with ψj,l and apply J+ successively, we produce a sequence of eigenvec-
tors 0 6= ψj,l+k, k = 0, 1, 2, . . . unless l+k = j. Therefore, to maintain finite-dimensionality,
we must require j− l to be an integer. Similarly, if we start applying J−, we infer that j+ l
is also an integer. Adding these two integers, we deduce that 2j must be an integer, so j

must be a non-negative integer: 0, 1, 2, 3, . . . , or half-integer: 1
2
, 3
2
, 5
2
, . . . . In this fashion,

we have constructed all the irreducible representations of so(3).

Theorem 7.6. . Every irreducible representation of the Lie algebra so(3) is charac-
terized by the azimuthal quantum number j which can assume any non-negative integral
or half-integral value:

j = 0, 1
2 , 1,

3
2 , 2,

5
2 , . . . .

The representation ρj corresponding to a given value of j has dimension 2j + 1, and is

characterized by the fact that the squared angular momentum operator J2 has eigenvalue
j(j + 1). There is an orthonormal basis of corresponding representation space Vj ≃ C2j+1

provided by the eigenvectors ψj,l for l = −j,−j + 1, . . . , j − 1, j, of the operator Jz,
satisfying

J2ψj,l = j(j + 1)ψj,l,

Jzψj,l = l ψj,l,

J+ψj,l =
√
j(j + 1)− l(l + 1) ψj,l+1,

J−ψj,l =
√
j(j + 1)− l(l − 1) ψj,l−1.

(7.26)

For example, j = 0 is the trivial one-dimensional representation in which J = 0. The
case j = 1 is equivalent to the standard three-dimensional representation of the orthogonal
group.
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Consider the standard realization of the generators of so(3) as the quantum operators
of angular momentum,

J = − iq ∧∇, (7.27)

acting on the Hilbert space E = L2(R3) of square integrable functions of q = (x, y, z) ∈ R3.
If we go to spherical coordinates (r, ϕ, θ), as in (2.25), then the constituent irreducible
representations are spanned by joint eigenfunctions of the operators

Jz = − i
∂

∂θ
, J2 = −

(
1

sinϕ

∂

∂ϕ
sinϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂2θ

)
. (7.28)

The operator J2 is known as the spherical Laplacian, since it ca be identified as the
Laplace–Beltrami operator on the unit sphere S2 ⊂ R3 with induced constant curvature
Riemannian metric.

We now seek the eigenfunction ψj,l(ϕ, θ) satisfying (7.23). (When looking for these
eigenfunctions, we can safely ignore the radial coordinate.) Now, Jz is just differentiation
in the θ direction, hence

ψj,l(ϕ, θ) = χj,l(ϕ) e
i lθ.

Since θ is periodic of period 2π, the magnetic quantum numbermmust be an integer, which
implies that the azimuthal quantum number j must be an integer too. Therefore, for the
standard angular momentum operators (7.27), there are no half-integral representations!
The functions χj,l(ϕ) must satisfy the ordinary differential equation

− 1

sinϕ

d

dϕ
sinϕ

d

dϕ
χj,l +

l2

sin2 ϕ
χj,l = j(j + 1)χj,l.

If we set u = cosϕ, then this becomes the Legendre equation

[
(1− u2)

d2

du2
− 2u

d

du
+ j(j + 1)− l2

1− u2

]
χj,l = 0,

whose solutions are the associated Legendre functions, [41]. However, we can find their
formulas directly. First, χj,j is an eigenfunction for J+ with eigenvalue j. In spherical
coordinates,

J± = e± i θ

(
± ∂

∂ϕ
+ i cotϕ

∂

∂θ

)
,

and so χj,j is a solution to the first order ordinary differential equation

df

dϕ
− j (cotϕ)f = 0.

Solving, we find

χj,j(ϕ) = cj sin
j ϕ, ψj,j(ϕ, θ) = cje

i j θ sinj ϕ.

The other eigenfunctions are found by applying the lowering operator J− repeatedly

ψj,l(ϕ, θ) = Jj−l− ψj,j(ϕ, θ), l = −j, . . . , j.
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This implies

χj,l(ϕ) = cj,l sin
−l ϕ

dj−l

d cosϕj−l
sin2j ϕ = cj,lP

l
j(cosϕ), l = −j, . . . , j,

where the P lj are the associated Legendre functions

P lj(u) =
1

2jj!
(1− u2)l/2

dj+l

duj+l
(u2 − 1)j . (7.29)

For normalization, we take

ψj,l(ϕ, θ) = Y lj (ϕ, θ) = (−1)l

√
(2j + 1)(j − l)!

4π (j + l)!
e i lθ P lj(cosϕ), (7.30)

where Y lj (ϕ, θ) is a certain trigonometric polynomial in cosϕ and sinϕ, known as the (j, l)th

spherical harmonic.

The reason that no half-integral representations appear in this particular example is
a general property of the rotation group that is easily established.

Theorem 7.7. There are no representations of SO(3) possessing half integral az-
imuthal quantum number j.

Proof : Note that exp(2π iJz) = I , since Lz = i Jz generates the rotations around

the z-axis. Therefore ρ
[
exp(2π iJz)

]j
ψ = ψ for all ψ in the representation space. On the

other hand,

ρ[ exp(2π iJz) ]
jψ = exp(2π i j)ψ,

hence j must be an integer. Q.E.D.

The problem is that the group SO(3) is not simply connected. Its simply connected
covering group is the special unitary group

SU(2) =
{
A ∈ GL(2,C)

∣∣ ATA = I, detA = 1
}
. (7.31)

Every matrix in SU(2) can be written in the form

A =

(
α β

−β α

)
, where |α |2 + | β |2 = 1.

Therefore, topologically, we can identify SU(2) with the three sphere S3 ⊂ C2, which is
compact and simply connected. If we write α = s+ i t, β = u+ i v, then

A = s I + t iσz + u iσy + v iσx, s2 + t2 + u2 + v2 = 1,

where I is the identity matrix, and

σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, σz =

(
1 0
0 −1

)
, (7.32)
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are the so-called Pauli matrices . The Lie algebra of SU(2), denoted su(2), consists of all
trace-free skew-adjoint (skew-Hermitian) 2× 2 matrices

su(2) =
{
A ∈ gl(2,C)

∣∣ ST = −S, trS = 0
}
. (7.33)

Thus, its general element has the form

S =

(
i z ix− y

ix+ y − i z

)
= i x σx + i y σy + i z σz,

which implies that the matrices iσx, i σy, i σz form a basis for su(2). In calculations, it is
slightly preferable to use the scaled basis

Lx = − i

2
σx, Ly = − i

2
σy, Lz = − i

2
σz, (7.34)

which have the same commutation relations (7.13) as the Lie algebra so(3). Therefore,

so(3) ≃ su(2)

are isomorphic Lie algebras, and hence SO(3) and SU(2) are locally isomorphic Lie groups.

To exhibit the isomorphism explicitly, consider the adjoint representation of SU(2) on
its Lie algebra su(2) ≃ R3:

ρ(A)S = ASA−1, S ∈ su(2), A ∈ SU(2). (7.35)

(The adjoint representation is a general construction of importance in the theory of Lie
groups. The reader should check that it defines a valid representation.) Now

det
[
ρ(A)S

]
= detS = x2 + y2 + z2,

and hence ρ(A) is a real orthogonal transformation on su(2) ≃ R3. Moreover, as ρ(A) is
continuous and SU(2) is connected, det ρ(A) = 1 for all A ∈ SU(2), so

ρ : SU(2) −→ SO(3).

It is easy to see that ρ covers SO(3) since ρ reduces to the identity on the Lie algebra
level, and every matrix in SO(3) can be written as a product of exponentials. Moreover,
ρ(A) = ρ(−A), so ρ covers each rotation matrix twice. In fact, it can be readily checked
that ρ(A) = I if and only if A = ± I , so ρ is a double covering and

SO(3) ≃ SU(2)/Z2, (7.36)

where Z2 denotes the discrete subgroup consisting of ± I . Therefore, as SU(2) was topo-
logically a three-sphere, SO(3) is topologically the real projective space RP3.

The standard representation of the Lie algebra su(2) ≃ so(3) is two-dimensional, and
hence must be the half-integral representation corresponding to j = 1

2 . Indeed,

J2 = −1
4s

2
1 − 1

4s
2
2 − 1

4s
2
3 = −3

4 I ,

which implies that j(j+1) = 3
4
, and hence j = 1

2
. In fact, the representations of so(3) can

all be written as symmetric powers of the basic representation of su(2), i.e., if we view the

1/3/23 89 c© 2023 Peter J. Olver



2 × 2 matrices in su(2) acting on the vector space of linear polynomials in u, v, then the
representation ρj will act on the homogeneous polynomials of degree 2j in u, v. Given

P (u, v) = a0u
2j + a1u

2j−1v + a2u
2j−2v2 + · · · + a2jv

2j ,

then Q = ρj(A)P , where A =

(
a b
c d

)
∈ SU(2) is given by

Q(u, v) = P (au+ cv, bu+ dv).

Indeed, the representation has dimension j + 1, and is irreducible, since the monomials
ukv2j−k form (up to scale) the basis constructed above:

ρj(J+)P (u, v) =
d

dt
ρj(exp tJ+)P (u, v)

∣∣∣∣
t=0

=
d

dt
P (u, tu+ v)

∣∣∣∣
t=0

= u
∂P

∂v
.

Similarly, we deduce

ρj(J+)P = u
∂P

∂v
, ρj(J−)P = v

∂P

∂v
, ρj(Jz)P =

u

2

∂P

∂u
+
v

2

∂P

∂v
, (7.37)

and so, as required,

ρj(J+)u
kv2j−k = (2j − k)uk+1v2j−k−1,

ρj(J−)u
kv2j−k = kuk−1v2j−k+1,

ρj(Jz)u
kv2j−k = (k − j)ukv2j−k,

ρj(J
2)ukv2j−k = j(j + 1)ukv2j−k.

There is one remaining question: are these the only representations which appear?
This is related to the issue of completeness , which is answered by the following result:

Theorem 7.8. The spherical harmonics Y lj (ϕ, θ), j = 0, 1, 2, . . . , l = −j, . . . , j,
form a basis for the space L2(S2) of square integrable functions on the sphere.

In other words, every square-integrable function f(ϕ, θ) can be expanded in a “Fourier
series” in terms of the spherical harmonics, which converges in norm. This theorem is a
consequence of the celebrated Peter-Weyl Theorem, which states that the matrix elements
of the irreducible representations of a compact Lie group G form a complete orthonormal
basis for the space L2(G) of square-integrable functions on G. The simplest example is
the group G = SO(2), where these functions are e inθ, and we are back to the theory
of Fourier series. The spherical harmonics constitute the next important example of this
general theory.

However, there is a fairly elementary direct proof of Theorem 7.8, cf. [49]. Consider
the space of homogeneous harmonic polynomials of degree j:

Pj =
{
p(x, y, z)

∣∣ ∆p = 0, p(λx, λy, λz) = λjp(x, y, z)
}
.

If we write a polynomial p in spherical coordinates, we see that it has the form

p(r, ϕ, θ) = rj h(ϕ, θ),
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where, according to the formula for separating Laplace’s equation in spherical coordinates

J2h = j(j + 1)h,

where J2 is the spherical Laplacian (7.28), and the j(j+1) comes from the radial component
of the Laplacian operator:

∆ =

(
∂2

∂r2
+

2

r

∂

∂r

)
− 1

r2
J2. (7.38)

We conclude that h is a linear combination of spherical harmonics, and so a basis for Pj
is provided by the basic harmonic polynomials

p(x, y, z) = rj Y lj (ϕ, θ), l = −j, . . . , j.

To establish completeness, let g(ϕ, θ) be any continuous function on the unit sphere.
We define

f(x, y, z) = r g(ϕ, θ),

so f is continuous on all of R3. Now, by a Theorem of Weierstrass, we can approximate f
uniformly by polynomials over any compact domain, which we assume contains the unit
sphere. To show that g can be approximated by spherical harmonics, then, we need only
show that any polynomial can be expressed as a sum of harmonic polynomials multiplied
by powers of r. Specifically, if P (x, y, z) is any polynomial of degree n = 2m or 2m + 1,
then there exist harmonic polynomials pn, pn−2, . . . , pn−2m, indexed by their degrees,
such that

P (x, y, z) = pn(x, y, z)+r
2 pn−2(x, y, z)+r

4 pn−4(x, y, z)+ · · · +r2m pn−2m(x, y, z). (7.39)

We prove this claim by induction on the degree n. The result is obvious for n = 0 or 1 since
every constant or linear polynomial is automatically harmonic. Suppose P has degree n.
Then ∆P has degree n− 2, hence, by induction,

∆P (x, y, z) = qn−2(x, y, z) + r2 qn−4(x, y, z) + · · · + r2m−2 qn−2m(x, y, z),

where the qk are harmonic polynomials. Set pk = qk/ [ (n− k)(n+ k + 1)], so that

∆[r2k pn−2k ] = qn−2k.

Then, if we define pn by (7.39), we compute ∆P to find ∆pn = 0. Q.E.D.

The Hydrogen Atom

The simplest system with a Coulomb interaction is the hydrogen atom, which consists
of a single proton and a single electron. By going to center of mass coordinates, the
Hamiltonian reduces to

H = − ~2

2m
∆+ V (r) = − ~2

2m
∆− e2

r
(7.40)
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where we are considering the case of an attractive potential between two oppositely charged
particles of charge ±e. The stationary Schrödinger equation is then

~2

2m
∆ψ +

(
e2

r
+ E

)
ψ = 0, (7.41)

where we interpret the eigenvalue as the energy: λ = E. Equation (7.41) can be solved by
separation of variables in spherical coordinates r, ϕ, θ. We write

ψ(r, ϕ, θ) = ξ(r)χ(ϕ, θ).

The Laplacian separates into

−~2 ∆ = P 2 = P 2
r +

1

r2
L2,

where

Pr = − i ~
1

r

∂

∂r
r = − i ~

(
∂

∂r
+

1

r

)

is the radial momentum operator, so

P 2
r = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
,

whereas

L2 = ~2J2 = −~2
(

1

sinϕ

∂

∂ϕ
sinϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂2θ

)

is the total moment of angular momentum:

L2 = L2
x + L2

y + L2
z, L = (Lx, Ly, Lz) = − i ~q ∧ ∇. (7.42)

For a general spherically symmetric potential, then, the stationary Schrödinger equation
separates into the angular component

L2χ = µχ, (7.43)

where µ is the separation constant, and a radial component

1

2m

(
P 2
r +

µ

r2

)
ξ + V (r)ξ = Eξ,

which is the same as
[

~2

2m

(
− ∂2

∂r2
+

2

r

∂

∂r
+
µ

r2

)
+ V (r)− E

]
ξ = 0.

If we set
η(r) = r ξ(r),

then the equation becomes
[
− ~2

2m

d2

dr2
+

~2µ

2mr2
+ V (r)− E

]
η = 0. (7.44)
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Note the resemblance with the usual one-dimensional Schrödinger equation (6.15).

The angular equation (7.43) does not depend on the particular potential under con-
sideration. Since L2 is just a multiple of the spherical Laplacian (7.28), its solutions are
the standard spherical harmonics Y lj (ϕ, θ), as in (7.30). Therefore, the separation constant
µ only achieves the values j(j + 1), where j, the azimuthal quantum number, is integral,
corresponding to the integral representations of SO(3).

In the case of a Coulomb interaction, V (r) = −e2/r, and the radial equation (7.44)
becomes

η′′ +

[
−j(j + 1)

r2
+

2me2

~2r
+

2mE

~2

]
η = 0. (7.45)

If the energy E > 0, then the solution to this equation is oscillatory, and represents an
unbound scattering state, assocaited with the continuous spectrum of the Schrödinger
operator. If E < 0, then the asymptotic form of a solution which is regular at the origin
will be a linear combination of exponentials eκr and e−κr, where κ =

√
−2mE /~. For

this to be an acceptable eigenfunction, the coefficient of the increasing exponential must
vanish; this will only happen for certain discrete values of the energy E.

If we make the change of variables

x = 2κr =
2r

√
−2mE

~
,

then the radial equation reduces to one only involving the dimensionless parameter

ν =
e2

~

√
m

−2E
,

namely

η′′ +

[
−j(j + 1)

x2
+
ν

x
− 1

4

]
η = 0. (7.46)

If we make the change
η(x) = xj+1e−x/2ζ(x),

then ζ satisfies the Laplace ordinary differential equation (not to be confused with the
Laplace partial differential equation!)

x ζ ′′ + (2j + 2− x)ζ ′ − (j + 1− ν)ζ = 0. (7.47)

The solution which is regular at the origin can be written in terms of the confluent hyper-

geometric function

ζ(x) = F (j + 1− ν, 2j + 2, x) =

∞∑

i=0

Γ(j + 1 + i− ν)(2j + 1)! xi

Γ(j + 1− ν)(2j + 1 + i)! i!
. (7.48)

In general, this represents an infinite series, asymptotically behaving as x−j−1−νex for x
large, and hence cannot represent an eigenfunction. However, if j + 1 − ν is a negative
integer, then the series terminates, and the solution reduces to a polynomial, and we have
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an eigenfunction. Thus the bound states of the hydrogen atom are prescribed by the
quantum condition

ν = n = j + k + 1, where k = 0, 1, 2, . . . ,

is the radial quantum number . The solutions have the form

xj+1e−x/2L2j+1
k (x), (7.49)

where Lik denotes the associated Laguerre polynomial :

L0
k(x) = ex

dk

dxk
xke−x, Lik(x) = (−1)i

di

dxi
L0
i+k(x). (7.50)

They represent orthogonal polynomials on the interval (0,∞) with respect to the weight
function xke

−x. Moreover, Lik is a polynomial of degree k having exactly k zeros on the
interval (0,∞).

If we replace the parameter ν by its assumed value in terms of the angular momentum
j and the radial quantum number k, and solve for the energy E, we deduce the complete
energy spectrum of the hydrogen atom:

Ej,k = − me4

2~(j + k + 1)2
. (7.51)

Therefore, the energy takes on a denumerably infinite number of values, since both the
azimuthal and radial quantum numbers can take on any non-negative integral value. The
energy itself only depends on the principal quantum number

n = j + k + 1, (7.52)

with the energy level corresponding to

En = − me4

2~2n2
= − α2 ε

2n2
, (7.53)

where

ε = mc2 = .51072 MeV (1 MeV = 106 electron volts) (7.54)

is the rest energy of the electron (m is actually the reduced mass), and the dimensionless
number

α =
e2

~c
≈ 1

137
, (7.55)

known as the fine structure constant . Numerically, the ground state energy, n = 1, has
the value E1 = −13.5983 eV.

The energy level En is degenerate, since the angular momentum quantum number j
can assume values from 0 up to n− 1; the order of degeneracy is

n−1∑

j=0

(2j + 1) = n2.
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In traditional spectroscopy, the various eigenstates are designated by the positive integer
n followed by a letter, s, p, d, f, g, . . . , indicating the value of j = 0, 1, 2, . . .. The mag-
netic quantum number l appearing in the spherical harmonic component, indicating the
orientation of the state, is simply not mentioned. Thus we have the following states:

Energy j = 0 j = 1 j = 2 j = 3 . . .

E1 1s

E2 2s 2p

E3 3s 3p 3d

E4 4s 4p 4d 4f

The energy levels (7.53) accumulate at 0, after which the continuous spectrum starts.
(This qualitative behavior is common to all “short-range potentials”.) The normalized
eigenfunctions corresponding to the quantum state labelled by n, j, l is

ψn,j,l(x) =
2j+1

nj+2 aj+(3/2)

√
(n− j − 1)!

(n+ j)!3)
rjL2j+1

n−j−1

(
2r

na

)
e−r/(na)Y lj (ϕ, θ), (7.56)

where

a =
~2

me2
= 0.529× 10−8 cm, (7.57)

This number, which has the units of distance, is known as the radius of the hydrogen atom,
or the Bohr radius .

If the system is in the pure state ψn,j,l, the mean value of the radius r gives the average
radial distance of the electron from the nucleus. A calculation proves that the expected
value of the radius in the eigenstate (7.56) is

〈 r 〉n,j,l =
3n2 − j(j + 1)

2
a, (7.58)

independent of l. In particular, 3
2 a is the mean value of the radius of a hydrogen atom in

the ground state (n = 1, j = 0). Note that the radii are not monotone in n, so states of
higher angular momentum and higher energy may lie “closer” to the nucleus than ones of
lower energy. (However, this only happens for n ≥ 7, which is rare in physical situations.)
We also have

〈 r2 〉n,j,l =
n2
[
5n2 + 1− 3j(j + 1)

]

2
a2,

When j = n− 1 is maximal, the wave function is especially simple. We find

〈 r 〉n = n2
(
n+ 1

2

)
a, 〈 r2 〉n = n2

(
n+ 1

2

)
(n+ 1)a2,

hence the root-mean square deviation in r is

∆rn =
√

〈 r2 〉n − 〈 r 〉2n = 1
2 n

√
2n+ 1 a =

〈 r 〉n√
2n+ 1

.
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Thus, for large values of n, ∆rn/〈 r 〉n becomes small, and the electron remains practically
localized in a sphere of radius n2a, whereas the energy of the level, −e2/n2a, is the same
as that of a classical electron describing a circular orbit or radius n2a. This gives an
illustration of the general correspondence rule that the quantum system reduces to the
classical laws of motion for very large quantum numbers. The states of maximal angular
momentum correspond to the classical circular orbits.

The Zeeman Effect

In the physical measurements of a quantum system, we can never detect the degenera-
cies of a given energy level directly without some physical operator to distinguish the wave
functions for that level. The magnetic quantum number of the basic hydrogen atom needs
some additional physical effect to make itself manifest. This is provided by the Zeeman
effect, obtained by measuring the spectrum of the hydrogen atom in a magnetic field. The
cylindrically symmetric magnetic field has the effect of breaking the spherical symmetry
of the atom and reducing the symmetry group from SO(3) to SO(2). Each representation
of SO(3) corresponding to the azimuthal quantum number j then splits up into 2j + 1
distinct one-dimensional representations of SO(2).

We begin with the classical Hamiltonian for a hydrogen atom:

H =
|p |2
2m

− e2

r
.

The Hamiltonian of the same atom placed in a static magnetic field with potential A(q)
is given by replacing the momentum p by p − eA(q)/c. In particular, for a constant
magnetic field, A = 1

2 H ∧ q, and we have

∣∣∣p− e

c
A(q)

∣∣∣
2

= |p |2 − e

c
H · L+

e2

4c2
|H |2 · |q⊥ |2,

where q⊥ denotes the projection of q onto the plane perpendicular to the field H. There-
fore, the corresponding quantum Hamiltonian takes the form

H = H0 −
e

2mc
H · L+

e2

8mc2
|H |2 |q⊥ |2,

where H0 denotes the Hamiltonian for the free atom, and L denotes the usual angular
momentum operator (7.42). In the present situation, the third term plays a negligible role,
(even for a very strong field and a very heavy atom) and can be ignored. Thus, we consider
the reduced Hamiltonian

H = H0 −
e

2mc
H · L. (7.59)

Now, the eigenfunctions ψn,j,l of H0 have energy eigenvalue En,j. Actually, for a hydro-

gen atom, accidental symmetry implies that the energy En,j = En only depends on the

principal quantum number n, cf. (7.53). This is no longer the case when dealing with mul-
tiple electron atoms, where one can distinguish the energy levels associated with differing
azimuthal quantum numbers j. Since the ensuing argument remains valid, we retain the
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dependence of the energy on both n and j. If we assume H = h0k is in the direction of the
z-axis, then these remain eigenfunctions of the modified Hamiltonian, but with eigenvalues

En,j − µh0 l = − me4

2~n2
− µh0 l, l = −j, . . . , j, (7.60)

where the constant

µ =
e~

2mc
= 0.927× 10−20 erg/gauss (7.61)

is known as the Bohr magneton, and can be identified as the magnetic moment of an
electron. Therefore, each degenerate level has split into an odd “multiplet” of 2j + 1
equally spaced levels, whose spacing is independent of the atom under consideration, and
whose average energy is En,j . These theoretical predictions are only partly confirmed
by experiment. For atoms with an odd number of electrons, the multiplets are all even
(the anomalous Zeeman effect), which is what one would expect if the azimuthal quantum
number were a half integer. Also the spacing of levels varies from multiplet to multiplet.
These are all handled by the hypothesis of electron spin, to be discussed below.

Addition of Angular Momenta

Suppose we have a system consisting of several particles. The total angular momentum
of the system will be a sum of the individual angular momenta,

J =
∑

Jν .

The underlying representation space will be the tensor product of the individual Hilbert
spaces. Indeed, by separation of variables, we can write the general wave function as a
sum of products of wave functions for the individual subsystems.

Let G be a group. By the tensor product of two representations ρ1, ρ2, we mean the
representation

ρ = ρ1 ⊗ρ2:G −→ L(V1 ⊗V2), ρ(g) = ρ1(g) ⊗ρ2(g), (7.62)

on the tensor product vector space. The matrix entries of the tensor product are the prod-
ucts of the corresponding entries of the individual representations. If the representations
are unitary, then we can decompose the tensor product into irreducible representations

ρ1 ⊗ρ2 =
⊕

k

ρk,

where the factors may appear with various multiplicities. In particular, the tensor product
of irreducible representations is not necessarily irreducible, and we have formulae of the
form

ρi ⊗ρj =
⊕

k

aki,j ρk, (7.63)

known as the Clebsch-Gordan series (although in finite dimensions, it is necessarily a finite
sum).
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Remark : This is a bit of a misnomer, since Clebsch and Gordan only worked in clas-
sical invariant theory, and didn’t have representation theory in mind at all. It appears
that the terminology comes from a remark in Weyl ’s book [54] in which he says that this
series is “. . . essentially identical with the Clebsch-Gordan series in . . . [classical] invariant
theory.”

In order to compute the Clebsch-Gordan series, we need to know how to recognize
which irreducible representations occur in a general reducible representation. The simplest
approach to this is through the theory of group characters, which is of importance in its
own right.

Definition 7.9. Let ρ :G −→ L(V ) be a representation of the group G on a finite-
dimensional vector space V . The character of the representation ρ is the map obtained by
taking the trace:

χ:G −→ C, χ(g) = tr ρ(g). (7.64)

Note that since trS−1AS = trA, the character of a representation is independent of
any basis on V , and so equivalent representations have the same character. For finite or
compact Lie groups, the converse also holds, as we will see below. Also, if the representation
is unitary, then

χ(g−1) = tr ρ(g−1) = tr ρ(g)−1 = tr ρ(g)∗ = χ(g).

Given a representation ρ of a compact Lie group or finite group G and a basis
{e1, . . . , en } of the representation space V , we define the corresponding matrix elements

ρij(g), i, j = 1, . . . , n,

which are continuous functions on the group G. We define an inner product on G by using
the invariant integral

〈 f , h 〉 =
∫

G

f(g) h(g)∗ dg (7.65)

given by the Haar measure on G to average over the group. (This is normalized so that
the total measure of G is 1.) For a finite group, we use the analogous averaging sum.

Theorem 7.10. Let ρλ and ρµ be irreducible representations of the compact Lie or
finite group G. Then their matrix elements satisfy the following orthogonality relations:

〈 ρλij , ρ
µ
kl 〉 = 0, unless λ = µ, i = j, k = l,

〈 ρλij , ρλij 〉 =
1

dimVλ
.

(7.66)

Proof : Let B:V µ −→ V λ be any linear transformation. Define A:V µ −→ V λ by

A =

∫

G

ρλ(g)Bρµ(g)−1dg =

∫

G

ρλ(g)Bρµ(g)∗dg. (7.67)

The invariance of the integral readily implies that

ρµ(g)A = Aρλ(g)
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for any g ∈ G. Therefore, according to Schur’s Lemma 7.5, A = 0 if λ 6= µ, while A = α I
if λ = µ. Choosing B to have all zero entries except for a single 1, the last integral in
(7.67) reduces to

Aik =

∫

G

ρλij(g)ρ
µ
kl(g)

∗ dg = 〈 ρλij , ρ
µ
kl 〉.

This implies the first set of zero orthogonality relations. To check the latter set, we need
to compute α, which is done by taking traces:

α dimV λ = tr(α I ) = trA =

∫

G

tr ρλ(g)Bρλ(g)−1dg =

∫

G

trB dg = trB.

Taking B as before completes the proof. Q.E.D.

The matrix elements of the irreducible representations of standard Lie groups can
be expressed in terms of the special functions of mathematical physics, e.g., spherical
harmonics, Bessel functions, hypergeometric functions, etc. Many of the fancy addition
formulas, recurrence relations, differential equations, etc. satisfied by these functions are
then simple by-products of standard representation theory. See the book by Talman, [49],
for an introduction to this “unified theory of special functions”.

Corollary 7.11. The characters χλ of the irreducible representations ρλ of a finite
or compact Lie group G satisfy the orthogonality relations:

〈χλ , χµ 〉 = δλ,µ. (7.68)

Theorem 7.12. . Let ρ be an arbitrary finite-dimensional unitary representation of
G with character χ. Then ρ decomposes as a direct sum of irreducible representations

ρ =
⊕

λ

nλρ
λ.

The number of times the irreducible representation ρλ occurs in ρ is given by

nλ = 〈χ , χλ 〉.

Proof : Since χ is a trace, and the ρλ occur in block diagonal form in ρ, we have

χ =
∑

λ

nλχ
λ.

The result then follows from the orthogonality relations (7.68). Q.E.D.

Theorem 7.12 can be used to compute the Clebsch-Gordan coefficients for tensor
products of representations; we need only determine the character of the tensor product,
and rewrite it in terms of the characters of the irreducible representations. Note that the
character of the tensor product of two representations is just the ordinary product of the
two characters:

χ1
⊗χ2(g) = χ1(g)χ2(g).
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Therefore, to determine the Clebsch-Gordan series of the tensor product of two irreducible
representations, we need only decompose the product of their characters into a sum of
irreducible characters:

χi χj =
⊕

k

aki,jχ
k,

where, according to the previous result

aki,j = 〈χi χj , χk 〉.
In practice, though, it is often easier to determine the Clebsch-Gordan series directly from
the character expansion.

In the case of SU(2), we proceed as follows. (The same arguments apply to the orthog-
onal group SO(3).) Consider the irreducible representation ρj on the space of homogeneous
polynomials of degree 2j, as described above. The character χj of ρj can be computed
explicitly by taking the trace relative to the standard basis ukv2j−k, but this expression
is too complicated to make practical use of. A better way to proceed is as follows. Let
A ∈ SU(2) be diagonalized by a similarity matrix

B = SAS−1 =

(
e i τ/2 0
0 e− i τ/2

)
, −2π < τ ≤ 2π.

(Note that τ represents the angle of the corresponding rotation in SO(3).) Then the
representation of B is diagonal:

ρj(B)ukv2j−k = e i (j−k)τukv2j−k.

Therefore

χj(A) = χj(B) = tr ρj(B) =

2j∑

k=0

e i (j−k)τ =

j∑

k=−j

e i kτ =
sin
(
j + 1

2

)
τ

sin 1
2 τ

.

Therefore, to determine the Clebsch-Gordan series, we need to rewrite the product χi χj

in terms of the χk. We compute, assuming j ≥ i:

χi ⊗χj(A) = χi(A)χj(A) =
i∑

p=−i

j∑

q=−j

e i pτ e i q τ =

j+i∑

k=j−i

k∑

n=−k

e i kτ =

j+i∑

k=j−i

χk(A).

Therefore, we conclude:

ρi ⊗ρj = ρi+j ⊕ρi+j−1
⊕ · · · ⊕ρ| i−j |. (7.69)

Theorem 7.13. The tensor product ρi ⊗ρj of two irreducible representations of
SU(2) decomposes as a direct sum of one copy of each of the irreducible representations
ρk for k = i+ j, i+ j − 1, . . . , | i− j |.

Corollary 7.14. In a system of two particles, if the first particle has total angular
momentum i and the second has total angular momentum j, then the system has possible
total angular momenta ranging from | i− j | to i+ j.
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Note that this holds for both integral and half-integral values of i and j. In particular,
two half-integral representations combine to give a direct sum of integral representations.

In fact, we can write this decomposition even more explicitly. Suppose we have intro-
duced the basis vectors ψj,l of the representation ρj as above. Then the tensor product of
basis elements must decompose into a sum of basis elements of the component representa-
tions, i.e., we have

ψi,l ⊗ψj,m =

j+i∑

k=j−i

k∑

n=−k

Ck,ni,j,l,mψk,n. (7.70)

The coefficients Ck,ni,j,l,m are known as the Wigner coefficients , also known as Clebsch-

Gordan coefficients or vector coupling coefficients . They are uniquely determined up to
a phase factor, since the normalized eigenvectors ψj,m are determined up to a phase. In
fact, it possible to consistently choose the phases such that all the Wigner coefficients
are real. Note first that by orthonormality, which is guaranteed by the unitarity of the
representations,

Ck,ni,j,l,m = 〈ψi,l ⊗ψj,m , ψk,n 〉. (7.71)

Hence, assuming reality — otherwise the coefficient would have a complex conjugate —
we have the converse expansion

ψk,n =
∑

i,j,l,m

Ck,ni,j,l,mψi,l ⊗ψj,m. (7.72)

Next, note that

Jzψj,m = mψj,m, hence Jz(ψi,l ⊗ψj,m) = (l +m)ψi,l ⊗ψj,m.

Applying Jz to both sides of (7.72), we conclude that

Ck,ni,j,l,m = 0 unless l +m = n.

A slick way to compute the Wigner coefficients is to use an invariant theoretic argu-
ment.

Theorem 7.15. Let (u, v), (x, y) and (ξ, η) denote independent variables. Define the
function

F (u, v, x, y, x, h) = (uy − vx)i+j−k(ξ u+ ηv)i−j−k(ξ x+ ηy)j−i−k. (7.73)

Then the coefficient of
ξk+n ηk−n√

(k + n)! (k − n)!
(7.74)

is given by a multiple, depending only on i, j, k, of

∑

i,j,l,m

Ck,ni,j,l,m
ui+l vi−l√

(i+ l)! (i− l)!

xj+m yj−m√
(j +m)! (j −m)!

. (7.75)
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For the proof, one demonstrates that the function (7.73) is invariant under the group
SU(2) acting covariantly on u = (u, v) and x = (x, y) and contravariantly on ω = (ξ, η):

u 7−→ Au, x 7−→ Ax, ω 7−→ A−Tω, A ∈ SU(2).

This implies that the quantities

u ∧ x = uy − vx, u ·ω = ξ u+ ηv, x ·ω = ξ x+ ηy,

are invariant under SU(2), and, indeed, under all of SL(2,C). On the other hand, the
simpler function

(ξ u+ ηv)2j = (2j)!
∑

n

uk+n vk−n√
(k + n)! (k − n)!

ξk+n ηk−n√
(k + n)! (k − n)!

is also clearly invariant under the same group. Therefore, the coefficients of (7.74) in
each expression have the same covariant transformation rules, which suffices to prove the
theorem. Q.E.D.

Evaluating (7.73), we find a closed form expression for the Wigner coefficients.

Corollary 7.16. For l +m = n, Ck,ni,j,l,m is equal to a multiple αki,j of the sum

∑

p

(−1)p
√

(i+ l)! (i− l)! (j +m)! (j −m)! (k + n)! (k − n)!

(i− l − p)! (n+ l − j + p)! (j +m− p)! (n− i−m+ p)! p! (i+ j − n− p)!

(7.76)
The (finite) sum is over all integers p such that no negative factorials occur. To obtain
normalized eigenvectors, one chooses

αki,j =
√
2k + 1

√
(k + i− j)! (k − i+ j)! (i+ j − k)!

(i+ j + k + 1)!
.

Another common quantity associated with the Wigner coefficients are the 3-j symbols

defined by

Ck,ni,j,l,m = (−1)i−j+n
√
2k + 1

(
i j k
l m −n

)
.

The 3-j symbols are so called because i, j, k are often denoted j1, j2, j3. Note that they
are zero unless the sum of the three lower indices is 0. They are invariant under circular
permutations of the columns, and get multiplied by (−1)i+j+k under transposition of two
columns, or under simultaneous change of the signs of l,m, n.

Another convenient means of computing these coefficients is the “step down method”.
Note first that if we have maximal values for k, n, so that i+ j = k = n, then there is only
one term in the sum (7.76). Therefore, we can set

Ci+j,i+ji,j,i,j = 1, i.e., ψi+j,i+j = ψi,i ⊗ψj,j.
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If we then apply J− to this, we find, using formula (7.26),

J−ψi+j,i+j =
√

2 i+ 2j ψi+j,i+j−1 =
√
2 i ψi,i−1

⊗ψj,j +
√

2j ψi,i ⊗ψj,j−1.

Therefore

ψi+j,i+j−1 =

√
i

i+ j
ψi,i−1

⊗ψj,j +

√
j

i+ j
ψi,i ⊗ψj,j−1,

hence

Ci+j,i+j−1
i,j,i−1,j =

√
i

i+ j
, Ci+j,i+j−1

i,j,i,j−1 =

√
j

i+ j
.

There is another eigenvector for Jz corresponding to the eigenvalue i + j − 1, namely
ψi+j−1,i+j−1. This will be orthogonal to ψi+j,i+j−1, and hence can be taken to be

ψi+j−1,i+j−1 =

√
j

i+ j
ψi,i−1

⊗ψj,j −
√

i

i+ j
ψi,i ⊗ψj,j−1.

hence

Ci+j−1,i+j−1
i,j,i−1,j =

√
j

i+ j
, Ci+j−1,i+j−1

i,j,i,j−1 = −
√

i

i+ j
.

One can continue this process of applying J− and using orthogonality to deduce recurrence
relations for the Wigner coefficients:

√
(k + n)(k − n+ 1) Ck,n+1

i,j,l,m

=
√

(i− l)(i+ l + 1) Ck,ni,j−1,l,m +
√

(j −m)(j +m+ 1) Ck,ni,j,l,m−1.

A similar recurrence comes from applying J+:

√
(k − n)(k + n+ 1) Ck,n−1

i,j,l,m

=
√

(i+ l)(i− l + 1) Ck,ni,j+1,l,m +
√

(j +m)(j −m+ 1) Ck,ni,j,l,m+1.

When k = n, the left hand side of the first recurrence vanishes, which allows one to derive
all the Wigner coefficients Ck,ki,j,l,m in terms of one of them, say Ck,ki,j,i,j say, which is given
by the general formula above.

Example 7.17. For two particles of angular momentum i = j = 1
2 , each particle has

two possible states corresponding to m = ± 1
2 , which we denote by ψ+, ψ−, respectively.

The combined system has angular momentum k = 1 or 0, with eigenfunctions ψ0 for
k = 0, and ϕ−, ϕ0, ϕ+, corresponding to k = 1, m = −1, 0, 1, respectively. The Wigner
coefficients for this simple case correspond to the rules

ϕ+ = ψ+
⊗ψ+,

ϕ− = ψ−
⊗ψ−,

ϕ0 =
√

1
2
ψ+

⊗ψ− +
√

1
2
ψ−

⊗ψ+,

ψ0 =
√

1
2
ψ+

⊗ψ− −
√

1
2
ψ−

⊗ψ+.

1/3/23 103 c© 2023 Peter J. Olver



More complicated is the case of two particles of angular momentum 1. The combined
system has total angular momentum 0, 1, or 2, and we find:

ψ2,2 = ψ1,1
⊗ψ1,1,

ψ2,1 =
√

1
2
ψ1,1

⊗ψ1,0 +
√

1
2
ψ1,0

⊗ψ1,1,

ψ1,1 =
√

1
2
ψ1,1

⊗ψ1,0 −
√

1
2
ψ1,0

⊗ψ1,1,

ψ2,0 =
√

1
6 ψ1,1

⊗ψ1,−1 +
√

2
3 ψ1,0

⊗ψ1,0 +
√

1
6 ψ1,−1

⊗ψ1,1,

ψ1,0 =
√

1
2 ψ1,1

⊗ψ1,−1 −
√

1
2 ψ1,−1

⊗ψ1,1,

ψ0,0 =
√

1
3 ψ1,1

⊗ψ1,−1 −
√

1
3 ψ1,0

⊗ψ1,0 +
√

1
3 ψ1,−1

⊗ψ1,1,

ψ2,−1 =
√

1
2 ψ1,−1

⊗ψ1,0 +
√

1
2 ψ1,0

⊗ψ1,−1,

ψ1,−1 =
√

1
2
ψ1,−1

⊗ψ1,0 −
√

1
2
ψ1,0

⊗ψ1,−1,

ψ2,−2 = ψ1,−1
⊗ψ1,−1.

The 3-j coefficients also arise naturally in the addition of three angular momenta.
Specifically, suppose we have a system of three particles, with azimuthal quantum numbers
j1, j2, j3 and magnetic quantum numbers l1, l2, l3. For the system to have zero total angular
momentum, we must have l1+l2+l3 = 0, and the j’s must satisfy the triangular inequalities

| j1 − j2 | ≤ j3 ≤ j1 + j2, etc.

Then the wave function of the system is

ψ0 =
∑

l1,l2,l3

(
j1 j2 j3
l1 l2 l3

)
ψj1,l1 ⊗ψj2,l2 ⊗ψj3,l3 .

Note that the 3-j symbols are zero unless l1 + l2 + l3 = 0.

Intensities and Selection Rules

If a hydrogen atom emits a light photon by transition from one energy level to another,
the frequency ν is determined by the rule

~ ν = En −Em =
α2 ε

2

(
1

m2
− 1

n2

)
, (7.77)

provided n > m; see (7.54, 55). The observed spectra of hydrogen are known as the Balmer

series when m = 1, which is in the ultraviolet part of the electromagnetic spectrum, the
Lyman series when m = 2, which is in the visible part, the Paschen series when m = 3,
which is in the infrared part. The theory and data fit very accurately. The same relation
holds when the atom absorbs energy from a photon of frequency ν.

The intensities of these spectral lines are measured by a standard quantum mechanics
formula. For dipole radiation, the probability of an atom jumping from a state ψ to a
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state χ with lower energy in a given time period is proportional to the sum of the norms
of the “matrix elements” of the position operator Q, i.e.,

| 〈ψ ,Qχ 〉 |2.
The intensity of the emitted light corresponding to this transition is proportional to the
transition probability. In particular, if the matrix elements are all 0, then there can be
no transition. This leads to certain “selection rules” which prescribe which transitions are
possible, by saying which matrix elements are non-zero.

Now suppose we are in a system with rotational symmetry. Suppose ψ corresponds
to azimuthal quantum number j and χ corresponds to azimuthal quantum number k, i.e.,
ψ lies in the representation space corresponding to the irreducible representation ρj and
similarly for χ. Now the operator Q corresponds to multiplication by the linear polyno-
mial x, whose angular components correspond to the three-dimensional representation ρ1.
Therefore, we can regard Qχ as an element of the tensor product representation ρ1 ⊗ρk,
which decomposes as the direct sum of three representations

ρ1 ⊗ρk = ρk+1
⊕ρk ⊕ρk−1 unless k = 0 or 1

2 .

In the exceptional cases,

ρ1 ⊗ρ0 = ρ1, ρ1 ⊗ρ1/2 = ρ3/2 ⊕ρ1/2.

Now, according to the orthogonality conditions, the elements of different representa-
tion spaces are always orthogonal. Therefore, the matrix elements 〈ψ ,Qχ 〉 are necessarily
zero unless j = k + 1, k, or k − 1. Therefore, only the following transitions of azimuthal
quantum number are allowed:

j 7−→ j − 1, j, j + 1, with the transition 0 7−→ 0 not allowed. (7.78)

To get the selection rules for the magnetic quantum number, we need to look at
how the individual basis elements in the tensor product decompose. According to the
construction of the Wigner coefficients (7.71), we see that the basis element ψj,l will be

represented as a linear combination of ψk,m’s in the tensor product representation ρj ⊗ρk

only when l = m− 1, m, or m+ 1. Therefore we have the corresponding selection rule for
the magnetic quantum number

l 7−→ l − 1, l, l + 1. (7.79)

This implies that, in the Zeeman effect (7.60) governing the splitting of spectral lines due
to a magnetic field, instead of the (2j + 1)(2j′ + 1) lines one would expect without the
selection rules, the intensities of these lines are all zero (in the approximation we are using)
and so one would only expect to observe three lines in all, symmetrically arranged around
the unperturbed lines. However, many of the observations do not follow this rule, but
are rather manifestations of the “anamolous Zeeman effect” which requires electron spin.
One can, through a more detailed analysis of the Wigner coefficients, find the different
probabilities of the various transitions. Also, physically, the emitted photon corresponding
to the transition m 7−→ m is polarized in the z direction, whereas in the other two cases,
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an observer in the xy plane will observe linearly polarized light, whereas an observer in
the z direction will observe circularly polarized light. This is because the first transition
only gives nonzero values for the operator Z corresponding to the z coordinate, while the
other two correspond to the operators X ± i Y .

Parity

For most physical systems, the Hamiltonian is not just invariant under the rotation
group SO(3), but under the full orthogonal group O(3), consisting of rotations and reflec-
tions. Topologically, O(3) consists of two disjoint copies of SO(3) with the second compo-
nent generated by multiplying a rotation by the reflection represented by − I . Therefore,
it is not hard to see that the representations of O(3) will be determined by representations
of SO(3) along with a representation of − I , which must take one of the values ± I on the
representation space.

The complete list of representations of O(3) is labelled by a non-negative integer
j = 0, 1, 2, . . ., and a sign ±1, where

ρ̂ j,±(A) = ρj(A), ρ̂ j,±(−A) = ±ρj(A), A ∈ SO(3). (7.80)

The sign ± associated with a state ψ in a particular representation ρ̂j,± is known as the
parity of the state. For systems with O(3) symmetry, it is a conserved quantity for the
Schrödinger equation. As with all non-infinitesimal quantum mechanical objects, it has no
classical analogue.

Interestingly, only half of the representations of O(3) appear among the spherical
harmonics, which is why we failed to observe it when we treated the hydrogen atom before.
Indeed, the representation corresponding to the spherical harmonics with total angular
momentum j consists of polynomials (in x, y, z) of degree j, and so has parity (−1)j . The
other representations cannot arise among scalar-valued functions. Thus, in a scalar wave
theory, only the representations ρ̂ 0,+, ρ̂ 1,−, ρ̂ 2,+, ρ̂ 3,−, . . . actually occur. Under tensor
products, the parities multiply, i.e., ρ̂ i,δ ⊗ ρ̂ j,ε where δ, ε = ±1, will decompose into the
direct sum of ρ̂ k,κ, where k runs from | i− j | to i + j, and κ = δ ε. Thus, two particles
both in a state of even or of odd parity will combine to give an even parity state, whereas
if the particles have opposite parity, the combined system will have odd parity.

This immediately gives the selection rule for parity. Since the position operator Q

corresponds to the representation ρ̂ 1,− given by the linear polynomials, the tensor product
ρ̂ 1,−

⊗ ρ̂ j,ε will decompose into three (or two or one) representations all with opposite
parity to ρ̂ j,ε. Therefore, the selection rule for parity is

ε 7−→ −ε,

i.e., for any transition to occur, the system must change parity! In particular, for the
scalar wave theory of the hydrogen atom, the selection rule j 7−→ j is ruled out by reasons
of parity. More generally, this is known as Laporte’s Rule: for O(3) symmetric systems
governed by the scalar wave equation, the azimuthal quantum number can only change by
an odd integer.
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In terms of the spectral lines of the hydrogen atom, this gives the observed transi-
tions. Recall that each energy level En has states labelled s, p, d, f , etc. corresponding to
azimuthal quantum numbers j = 0, 1, . . . , n− 1. For hydrogen, the energy levels are given
by the formula

En = − β

n2
, (7.81)

for some constant β. For an alkali atom, e.g., lithium, sodium, potassium or cesium, which
has just one valence electron moving in a central field due to the nucleus and the other
electrons, it is observed that the energy levels are given by a formula of the form

En,j = − β

(n− k)2
, (7.82)

where k depends on j (and, technically speaking, n as well, but not significantly). This
formula follows from the perturbation theory. The wave lengths of alkali spectral lines can
be obtained from terms like these, which were arranged into series, called s, p, d, f series,
of the form 1s, 2s, 3s, . . . , 2p, 3p, 4p, . . . , 3d, 4d, 5d, . . . , . . ., where the integer indicates
the value of the principal quantum number n. Now, the selection rule (7.78) for j says
that transitions only occur between neighboring series, i.e., for radiation, we can have a
transition from a p state to an s state or an f state, but we cannot have a transition from
a p state to another p state. Similarly, an s state can only change into a p state. Note that
the main quantum number n is still allowed to change in any fashion (although it must
decrease for emission, and increase for radiation, as energy must be conserved). This is
what is physically observed.

Spin

Spin manifests itself in quantum mechanics as an “intrinsic angular momentum” of a
quantum particle or system. It is needed to explain a number of experiments whose results
do not corroborate with the scalar form of the Schrödinger equation. One can, however,
account for these observations by assuming that an electron has its own internal angular
momentum or spin which does not depend on its orbital motion or azimuthal quantum
number. This was originally proposed by Goudsmit and Uhlenbeck in the 1920’s. If the
direction of magnetization of a ferro-magnetic bar is reversed, the bar acquires an angular
momentum. The observed ratio between the induced angular momentum and the magnetic
moment are as ~ to 2µ, where µ is Bohr’s magneton (7.61), rather than as ~ to µ, as it
would be if the magnetization were due to the orbital angular momenta of the electrons.
To explain this using electron spin, one assumes that the magnetic moment of a spinning
electron is twice as large as the magnetic moment of a corresponding state with only
angular momentum.

The Stern–Gerlach experiment is another important indicator of the existence of spin.
In this experiment, a beam of silver atoms in the ground state is sent into a magnetic field
varying in a perpendicular direction. The beam splits into two components, corresponding
to the values of ±µ for the internal magnetic moment. It can be assumed that only
one electron in this ion is responsible for the magnetic moment because the spins of the
other electrons cancel out. (This assumption is plausible because a silver ion Ag+ shows no
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Zeeman effect.) This implies that the magnetic moment of the electron in any direction can
only take on the discrete values ±µ, i.e., the angular momentum is quantized. Moreover,
since the ratio of magnetic moment to angular momentum is as µ to 1

2 ~, it follows that
the mechanical spin momentum in any direction is ±1

2
~. Now, in the theory developed

above, the azimuthal quantum number j for the single electron could assume any integral
value, and for such a value there are 2j + 1 different values of the magnetic quantum
number m. The perturbation due to a magnetic field would then split the beam into
2j + 1 smaller beams. But the splitting into just two beams does not fit this theory, and
why no beam corresponding to µ = 0 existed under the perturbation remained unexplained
by the spinless theory.

Another experiment which does not fit the spin-free theory is the anomalous Zeeman
effect. Alkali atoms — the series with nonzero angular momentum j 6= 0, i.e., the p, d, etc.
series — are observed to have the following fine structure. The individual spectral line
is composed of two very close spectral lines, known as a doublet. Moreover, if the atom
is placed into a magnetic field, one of the lines of each doublet splits into 2j + 2 lines,
whereas the other line splits into 2j lines. The existence of a doublet could be explained in
the spin-free theory by allowing two electrons in each distinct energy level. However, each
electron would have azimuthal quantum number j and so each line in the doublet would
split into 2j + 1 finer lines under the external magnetic field.

All of these anomalous effects can be easily explained by introducing the concept
of electron spin. Essentially, spin is an intrinsic angular momentum associated with any
quantum mechanical particle or system. In contrast to the classical angular momentum,
spin is allowed to assume both integral and half-integral values in the quantum theory,
so the underlying symmetry group is SU(2), the double covering of SO(3). The different
values of spin correspond to the different irreducible representations of SU(2). Because the
spin is proportional to ~, it goes to 0 as ~ −→ 0, and so has no classical analogue.

In order to incorporate spin into a quantum system, one postulates that the wave
function ψ of the system depends not only on the spatial coordinates q = (x, y, z), but
also on a discrete “spin variable” σ, so we write

ψ(q, σ) or ψσ(q),

for the wave function; alternatively, we can regard the ψσ as a vector containing the spin
components of the wave function, indexed by the spin variable σ. Their spatial integral

∫
|ψσ(q) |2 dq,

determines the probability that the particle has a certain value σ of the spin. Similarly,
the probability that the particle is in a given region Ω ⊂ R3 is given by the integral

∫

Ω

∑

σ

|ψσ(q) |2 dq,

found by summing over all possible values of the spin.

The spin operator S = (Sx, Sy, Sz), when applied to the wave function, acts on the
spin variables. Since it satisfies the same commutation relations as the angular momentum
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operator J, i.e.,

[Sx, Sy ] = iSz, [Sz, Sx ] = iSy, [Sy, Sz ] = iSx, (7.83)

we can decompose its representation on the state space into irreducible representations.
Since our discussion of the representation theory of the Lie algebra su(2) only depended on
the commutation relations, the same results hold for the spin operator. Each irreducible
representation is characterized by the eigenvalues s(s+1) of the square of the spin operator
S2 = S2

x + S2
y + S2

z , where the spin quantum number s can take on any integral or half
integral value. Moreover, the irreducible representation ρs corresponding to a given value
of s, is (2s + 1)–dimensional, with canonical basis provided by the eigenvectors of the
z-component of the spin Sz, whose eigenvalues are −s,−s + 1, . . . , s − 1, s. Accordingly,
the wave function of a particle of a given spin s has 2s+1 components. Thus a particle of
spin 0, e.g., a p-meson, has a single wave function, the spin is well-defined and the theory
reduces to the standard Schrödinger theory. The majority of elementary particles have
spin 1

2 , including electrons, protons, neutrons, µ-mesons, etc., and so are represented by
a wave function with two spin components: ψ1/2(x) = (ψ1/2,1/2(x), ψ1/2,−1/2(x)), indexed

by the two possible values ±1
2 of the z-component. (The x and y components also take

on the possible values ±1
2
, but their eigenvectors are certain linear combinations of the

components of ψ. In particular, if the particle has a well defined spin in one direction,
the spin has equal probability of being ±1

2
in the other two coordinate directions.) Spin 1

particles, e.g., photons, are characterized by three wave functions, ψ = (ψ1,−1, ψ1,0, ψ1,1)
and so on for higher spins corresponding to other particles or nuclei. In general, the
components of the spin operator act on the components ψs,t, t = −s,−s+ 1, . . . , s− 1, s,
of the wave function as our earlier angular momentum operators did, cf. (7.26):

S2ψs,t = s(s+ 1)ψs,t,

Szψs,t = tψs,t,

S+ψs,t =
√
s(s+ 1)− t(t+ 1) ψs,t+1,

S−ψs,t =
√
s(s+ 1)− t(t− 1) ψs,σ−1.

(7.84)

Here
S+ = Sx + iSy, S− = Sx − iSy. (7.85)

In the case of a particle with spin 1
2 , the action of the spin operator S coincides with 1

2
multiplication by the corresponding Pauli matrices (7.32).

For a particle with spin, its total angular momentum, denoted by L, is the sum of the
orbital angular momentum operator J and the spin operator S:

L = J+ S. (7.86)

Thus L is also a general “angular momentum operator”, and acts on the wave functions ac-
cording to the tensor product rule for the angular momentum operators J and S. Therefore,
for a particle with orbital angular momentum j and spin s, the total angular momentum
can take on the values l = | j − s |, | j − s | + 1, . . . , j + s. In the case of an electron with
orbital angular momentum j, the total angular momentum can be l = j ± 1

2 , unless j = 0,
in which case l = 1

2
is the only possible value. Similar results hold for systems of particles;

one sums the individual spin operators to get the total spin, and the individual orbital
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angular momentum operators to get the total orbital angular momentum operator for the
system; the sum of these latter two operators is the total angular momentum for the sys-
tem. Note that a system consisting of an even number of particles always has integral spin,
and hence integral total angular momentum.

Thus, the group SU(2) will act on the space of “spinor fields” ψ = (ψσ) with in-
finitesimal generators iL = i (J+ S), given by the tensor product of the standard three-
dimensional physical representation ρ1 on the angular momentum component J, and the
spin representation ρs on the spin components S. Its action on the physical coordinates
reduces to the standard rotations SO(3), whereas its action on the spinor components re-
mains SU(2) for half-integral spin, and reduces to SO(3) in the case of integral spin. In
other words, the representation is

ρ(A)ψ(q) = ρs(A)ψ(R−1 q), where R = π(A) ∈ SO(3).

For example, if we have a particle of spin 1
2
, and we “rotate” the coordinate system

through an angle 2π, i.e., A = − I , then the physical variables remain fixed, while the spin
components of the wave function change sign. However, a rotation through 4π returns
everything to its original state. The same holds for any particle with half-integral spin; in
the case of integral spin, everything is unchanged under just 2π rotations.

Remark : In fact, this behavior is even manifested as a classical phenomenon, known
as the “spinor spanner”. Attach an object, e.g., a spanner or, as it is known in North
America, a wrench, by strings to the walls of a container. If the object is rotated about
an axis through an angle of 2π, one cannot disentangle the strings without moving the
object, whereas a rotation through 4π does allow a disentangling! (Try it.) This is, of
course, another manifestation of the double connectivity of the rotation group SO(3).

The claim is that physical rotations of a system will act on a particle with spin
according to the exponential map of the given representation of the total angular momen-
tum operator L. For instance, consider a particle of spin s = 1

2 , which has wave function
ψ(q) =

(
ψ−(q), ψ+(q)

)
, where the ± subscripts are shorthand for the indices σ = ±1

2
,

respectively, and we suppress s. Under a rotation of our coordinate system q̃ = Rq, the
wave function will transform into the rotated wave function ψ̃(q̃) = Aψ(R−1q̃) = Aψ(q),
where A = ρ(R) is a linear transformation (2 × 2 matrix) depending on the rotation R.
Now the quantity (

|ψ−(q) |2 + |ψ+(q) |2
)
dq

measures the probability of the particle being found in the infinitesimal volume dq. Since
this must be invariant under rotations of the coordinate system, we conclude that

|ψ−(q) |2 + |ψ+(q) |2 = | ψ̃−(q̃) |2 + | ψ̃+(q̃) |2.
This implies that the matrix A = ρ(R) is unitary. Note also that there is some indeter-
minacy in the definition of A since each state is only determined up to a multiplication of
a phase factor e iα, hence we conclude that ρ(R) forms a “projective unitary representa-
tion” of the orthogonal group. Moreover, we can assume that ρ(R) has determinant 1 by
multiplying it by a suitable phase factor. Composing two rotations, we conclude that

ρ(RS) = ±ρ(R)ρ(S),
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where the ± follows because both sides must have determinant 1, so the only freedom
is to replace A by −A. Thus, ρ determines a (possibly) double-valued two-dimensional
representation of the rotation group, hence it is either trivial, or the representation ρ1/2.
But we know from experiment that a rotation around the z-axis through an angle π reverses
the spin, so the action cannot be trivial. Therefore, ρ is the representation generated by
the spin operator S.

The invariance of the probability density under rotations motivates a general definition
of an algebra of spinors analogous to the standard tensor algebra of covariant and con-
travariant tensors. Note the analogy of the equation governing the action of spinor fields
under elements of SU(2) with the behavior of vector fields v under ordinary rotations:

ρ(R)v(q) = Rv(R−1 q), where R ∈ SO(3).

Since the representations of SU(2) are given by polynomials in the basic representation
ρ1/2, we deduce that if we multiply spinor fields together, we get “decomposable” higher
spin fields. Thus, given a spinor ψ = (ψ−, ψ+) corresponding to a linear polynomial in u, v,
its tensor square ψ ⊗ 2 = (ψ2

−, 2ψ−ψ+, ψ
2
+) will transform according to the representation

ρ1, once we rewrite it in terms of the orthonormal basis u2/
√
2, uv, v2/

√
2. In other

words, the square of a spinor field of spin 1
2
is an ordinary vector field. In this way we can

index spinor fields of arbitrary spin s by the powers of the basic spin 1
2 fields.

Consider an electron in a state with a fixed angular momentum j, corresponding
to the representation ρj of SO(3), where j is integral. These correspond to the 2j + 1
solutions of the scalar Schrödinger equation. Now, for a spinning electron, if we neglect
the interaction of spins and orbits, its components ψ± are each solutions to the same scalar
Schrödinger equation, hence they each assume the 2j + 1 possible values. Therefore, the
full wave function ψ transforms according to the tensor product representation ρ1/2 ⊗ρj.
This decomposes into ρj+1/2

⊕ρj−1/2, unless j = 0, in which case there is only one term,
ρ1/2. The states with j = 0 are known as singlet states, whereas those with j > 0 are
known as doublets, owing to this splitting. This is manifested in the fine structure of the
spectral lines of the alkali atoms, where the lines split into two for the doublet states,
but remain one for singlet states. For atoms with several (free) electrons, there are further
possible splittings, triplet, etc., corresponding to combinations of these electrons into states
of higher spin. Moreover, if the atom is placed into a magnetic field, one of the lines of
each doublet splits into 2j + 2 lines, corresponding to the representation ρj+1/2, whereas
the other line splits into 2j lines, corresponding to the representation ρj−1/2. Note that
the spin-free theory would predict that each line corresponding to a given value of j would
split into 2j + 1 finer lines under a magnetic field. Thus, the spin theory explains the
anomalous Zeeman effect.

Proceeding as we did earlier analyzing the normal Zeeman effect, recall that the spin-
free quantum Hamiltonian had the form

H = H0 + µH · J.

Here H0 denotes the Hamiltonian for the free atom, µ is the Bohr magneton, H = h0 k
is a uniform field, which is taken parallel to the z-axis, and J denotes the usual “orbital”
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angular momentum operator, and we are (as before) ignoring a small term. To incorporate
spin, we use the modified operator

H = H0 + µH · (J+ 2S) = H0 + µH · (L+ S),

where S is the spin operator. The factor of 2 follows from the observed correspondence
between the spin and the mechanical angular momentum, or can be derived directly from
the relativistic theory. The extra term involving the spin operator S, which now couples
the Schrödinger equations for two components of the wave function ψ is referred to as
spin-orbit coupling, which refers to the fact that the spin and the magnetic fields interact.
Note that we have now moved beyond our earlier “näıve quantization”, in which we could
readily replace classical Hamiltonians by simple quantum ones according to the standard
quantum rules. The spin terms have no classical analogue, and so cannot be derived by
inspection of the classical Hamiltonian.

The change in energy ∆E due to the splitting is determined as follows: recall that we
only needed to determine the eigenvalues of the modified Hamiltonian, which was originally

H = H0 + µh0 Jz,

but in the spin theory has become

H = H0 + µh0 (Jz + 2Sz).

On the irreducible (2j + 1)–dimensional space corresponding to the angular momentum
j, the operators J,S commute, and so determine two irreducible representations of su(2).
According to Schur’s lemma, they are equivalent representations, i.e., there is an invertible
map taking one to the other. However, since the operators Jz and Sz commute, they can
be simultaneously diagonalized, and so, by Schur’s lemma, the representations of su(2)
corresponding to the operators J and S must be proportional:

J = λS.

In particular, if we label the states by the representation corresponding to L, then

J+ 2S = gL,

where the number g is called the Landé factor . The energy levels corresponding to the
different magnetic quantum numbers will then be

En,j − gµh0 l = − me4

2~n2
− gµh0 l, l = −j, . . . , j, (7.87)

differing from the spin-free theory (7.60) only by the Landé factor.

To compute the Landé factor g, we note the elementary identity

L · (J+ 2S) = 3
2
L2 + 1

2
S2 − 1

2
J2,

since L = J+ S, hence, on the given representation space

L · (J+ 2S) = 3
2 l (l + 1) + 1

2 s(s+ 1)− 1
2 j (j + 1).
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On the other hand,
L · (J+ 2S) = gL2 = g l (l + 1).

Therefore the Landé factor is

g =
3

2
+
s(s+ 1)− j (j + 1)

2 l (l + 1)
. (7.88)

Note that if there is no spin, so s = 0 and j = l, then g = 1. On the other hand, if the
orbital angular momentum is 0, then g = 2. We have

∆E =
mgµ

h0
.

Note that if g = 0, then splitting does not occur.

This result, coupled with the earlier selection and intensity rules serves to describe
the observed spectral lines of the alkali elements — except for the “hyperfine structure”
due to interactions with the nucleus.

Systems of Identical Particles

When a quantum mechanical system consists of two or more indistinguishable parti-
cles, some special considerations come into play. In classical mechanics, identical particles
do not lose their individuality, despite the fact that they have identical physical properties.
Once we label each individual particle, we can follow it through any interaction, and say
with precision which particle is which at all times. In quantum mechanics, this does not
apply, since we cannot measure everything about a particle at any instant. Thus, when
we observe two electrons at one time, and so label them, and then we make another ob-
servation at a later time, there is no way to say which electron is which. Thus in quantum
mechanics, identical particles have completely lost their individuality, and there is no way
of distinguishing them with certainty.

Consider first a system of two particles. If the particles are different, then the wave
function of the system will be the product ψ(ξ1, ξ2) = ψ1(ξ1)ψ2(ξ2), where ψ1(ξ) represents
the individual state of the first particle and ψ2(ξ) the state of the second particle. Here
ξ is used to denote the spatial coordinates (x, y, z), as well as any spin coordinates that
might be required. The underlying state space is just the tensor product of the individual
state spaces. Now consider what happens if the particles are identical. Suppose we make
an observation of the system, and determine that one of the particles is in the state given
by the wave function ψ1(ξ) while the other particle in the state given by the wave function
ψ2(ξ). Since the particles are identical, there is no way of determining which of the two
particles is in the first state, and which in the second. In practice, these wave functions
will be localized in different regions of space, so that the combined wave functions

ψ(ξ1, ξ2) = ψ1(ξ1)ψ2(ξ2), ψ̃(ξ1, ξ2) = ψ1(ξ2)ψ2(ξ1),

are independent and represent two possible states of the system giving the same observa-
tion. Thus, the observation does not allow us to distinguish between the state ψ and the
state ψ̃, or, for that matter, any linear combination αψ + β ψ̃ of these two states. Thus
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we are unable to precisely determine the state of the system by observation, and we say
that there is an exchange degeneracy of the system.

In order to analyze this situation, it is useful to introduce the symmetric and anti-
symmetric combinations of these two possible states:

ψS(ξ1, ξ2) =
ψ1(ξ1)ψ2(ξ2) + ψ2(ξ1)ψ1(ξ2)√

2
, ψS(ξ2, ξ1) = ψS(ξ1, ξ2),

ψA(ξ1, ξ2) =
ψ1(ξ1)ψ2(ξ2)− ψ2(ξ1)ψ1(ξ2)√

2
, ψA(ξ2, ξ1) = −ψA(ξ1, ξ2),

the factors
√
2 coming from the normalization constraint. Note that since the Hamiltonian

must be invariant under the interchange of particles, if the system starts out in a symmetric
or anti-symmetric state, it must remain there. In general, the system will be in a linear
combination of these two states:

y = αψS + β ψA, |α |2 + | β |2 = 1,

where the parameters α, β will be constant in time. The probability density of finding one
particle at position ξ1 and the other at position ξ2 is

|ψ(ξ1, ξ2) |2 + |ψ(ξ2, ξ1) |2 = 2
(
|α |2 |ψS(ξ1, ξ2) |2 + | β |2 |ψA(ξ1, ξ2) |2

)
.

Now, if the probabilities are going to be independent of the particular linear combination of
symmetric and anti-symmetric wave functions giving the state of the system, this quantity
must be independent of the parameters α, β. This only happens if

|ψS(ξ1, ξ2) | = |ψA(ξ1, ξ2) |.

However, the latter equation is rarely true. For instance, if the two wave packets overlap,
then at the point ξ1 = ξ2 we have ψS(ξ1, ξ1) 6= 0, whereas ψA(ξ1, ξ1) = 0, which is not
consistent with the above equation. Therefore, the existence of an exchange degeneracy is
a real problem, as it does not allow one to make predictions of the statistical distribution
of measurements of the system, even after observing the initial state of the two particles.

One way to overcome this difficulty is to introduce a symmetrization postulate that,
for a system of two particles, the possible states are necessarily either symmetric or anti-
symmetric. Particles that are symmetrical under interchange are said to obey Bose–

Einstein statistics , and are called bosons , whereas those that are anti-symmetrical un-
der interchange are said to obey Fermi–Dirac statistics , and are called fermions . (The
statistics refer to the statistical mechanics of a large number of these particles. Ordinary
classical particles obey yet another kind of statistics, in which one can distinguish the
particles by label, called Maxwell–Gibbs statistics .) According to relativistic quantum me-
chanics, particles with an integral spin are always bosons, whereas those with half integral
spin are always fermions. Note that an important consequence of the nature of fermions is
the Pauli Exclusion Principle: two fermions cannot be in the same state. This is because
any anti-symmetric wave function must vanish identically when ξ1 = ξ2. Note that as a
consequence, we deduce that in any system, two electrons cannot have the same quantum
numbers n, j, l, and the same spins. This leads to the explanation of the periodic table.
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For a system of two particles the symmetric and anti-symmetric states are the only
two possibilities, since we can always decompose any wave function of two particles into
a purely symmetrical and a purely anti-symmetrical part. For three or more particles,
things are even more complicated, as this is no longer true. Indeed, the number of possible
permuted versions of the product ψ1(ξ1)ψ2(ξ2) · · · ψn(ξn) is n!, but there is only one
completely symmetrical linear combination, and only one completely anti-symmetrical
linear combination. The other possible combinations decompose into other representations
of the group of permutations, as discussed below.

Let Sn denote the symmetric group consisting of all n! permutations of {1, 2, . . . , n}.
The Hamiltonian must be invariant under permutations of the particles, i.e., H · π̂ = π̂ · H
for every π ∈ Sn, where

π̂ ψ(ξ1, . . . , ξn) = ψ(ξπ1, ξπ2, . . . , ξπn). (7.89)

Therefore, we can decompose the space of solutions to the associated Schrödinger equation
into irreducible representation spaces for the symmetric group Sn. It is thus of great
interest to study the representation theory of this group. The Symmetrization Hypothesis

states that only the completely symmetric or completely anti-symmetric wave functions
are of interest. Thus in systems of identical particles, many of the possible eigenvalues of
the Hamiltonian or energies of the system are excluded on symmetrization grounds.

One way to physically justify this restriction to purely symmetrized or anti-symmetr-
ized wave functions is as follows. The normalized wave function of a system of two particles
has the form ψ(ξ1, ξ2). Interchanging the particles amounts to interchanging their coor-
dinates, giving the wave function ψ(ξ2, ξ1), which is also clearly normalized. Now the
principle of indistinguishability of identical particles says that ψ(ξ1, ξ2) and ψ(ξ2, ξ1) must
be the same physical state, hence

ψ(ξ1, ξ2) = αψ(ξ2, ξ1),

where α is some complex number of modulus 1. Performing the interchange again, we
deduce that α2 = 1, hence α = ±1. In the case α = 1, the wave function ψ(ξ1, ξ2) is
symmetrical with respect to interchange, whereas in the case α = −1, the wave function
ψ(ξ1, ξ2) is anti-symmetrical with respect to interchange. Similar arguments hold for sys-
tems of more than two particles. The wave function ψ(ξ1, . . . , ξn) of a system of n bosons
must be symmetrical under permutations, and is so given by

ψ(ξ1, . . . , ξn) =
1√
n!

∑

π∈Sn

ψ1(ξπ1)ψ2(ξπ2) · · · ψn(ξπn). (7.90)

Similarly, the wave function of n fermions takes the form

ψ(ξ1, . . . , ξn) =
1√
n!

∑

π∈Sn

(signπ)ψ1(ξπ1)ψ2(ξπ2) · · · ψn(ξπn) =
1√
n!

det
[
ψi(ξj)

]
, (7.91)

the latter expression known as a Slater determinant . Again, the Pauli exclusion principle
holds: no two fermions can be in the same state, as otherwise the combined wave function
would vanish.
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The analysis of systems of identical particles in more detail requires a knowledge of
the representation theory of the symmetric group Sn. Intimately tied to this theory is the
theory of symmetry classes of tensors, of which the completely symmetric and completely
anti-symmetric ones form just a small part. These will now be discussed, but first we
need to present a brief outline of the representation theory of finite groups, which also has
applications to the crystallographic groups, molecules, etc.

Representation Theory of Finite Groups
References : [15], [19], [37], [53], [54].

Given a finite group G with n = #G elements, the group ring R is identified with the
n-dimensional complex vector space Cn. Its basis elements can be labelled by the group
elements, so we conventionally write

x =
∑

g∈G

xg g

for an element of R, where the xg ∈ C are complex numbers. Thus, there is a one-
to-one correspondence between elements of the group ring and complex-valued functions
x:G −→ C, with x(g) = xg. Note that G acts on R by right multiplication

ρ∗(h) · x =
∑

g∈G

xg(g · h−1), or, equivalently,
(
ρ∗(h) · x

)
(g) = x(g · h) for h ∈ G.

This defines a representation of G, called the (right) regular representation ρ∗. (There
is also a left regular representation.) Since G is finite, ρ∗ can be made into a unitary
representation on R using the inner product

〈 x , y 〉 = 1

n

∑

g∈G

x(g) y(g), x, y ∈ R, (7.92)

which also makes the left regular representation unitary.

As with any representation of a finite group, the right regular representation decom-
poses into a direct sum of irreducible representations. The claim is that every irreducible
representation of G appears in this sum.

Theorem 7.18. Let ρλ acting on V λ, for λ = 1, . . . , m, be a complete system of
inequivalent irreducible representations of a finite group G. Then m < ∞. Moreover, the
right regular representation ρ∗ decomposes

ρ∗ =
⊕

λ

nλ ρ
λ, nλ = dimV λ, (7.93)

where the representation ρλ appears in ρ∗ with multiplicity nλ equal to its dimension.
Thus, ∑

λ

n2
λ = n = #G. (7.94)
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Proof : Each irreducible representation ρλ can be taken to be unitary by suitably
introducing an inner product on V λ. Relative to orthonormal bases of the representation
spaces, the matrix elements of the representations ρλij(g), for i, j = 1, . . . , nλ, form an
orthogonal system of functions on G, as was shown above for compact groups. (The
same proof goes through with averaging over the group replacing the invariant integral.)
Therefore, each function ρλij can be viewed as an independent element of the group ring
R, i.e.,

ρλij ≃
∑

g∈G

ρλij(g) · g.

and, as such, they are all linearly independent. Therefore, they are bounded in number by
the dimension of R. Since each ρλ has n2

λ distinct matrix elements, we find
∑

λ

n2
λ ≤ n = dimR = #G.

In particular, this proves that there are at most finitely many irreducible representations.
We next show that the ρλij(g) form a basis for R. Indeed, let M ⊆ R be the subspace
spanned by the matrix elements. The subspace M is invariant under the right (and left)
regular representation of G, since

ρ∗(h) · ρλij =
∑

g∈G

ρλij(g)g · h−1 =
∑

g∈G

ρλij(g · h)g =
∑

g∈G

∑

k

ρλik(g)ρ
λ
kj(h) · g =

∑

k

ρλkj(h)ρ
λ
ik,

so ρ∗(h) · ρλij is a linear combination of the matrix elements and so lies in M . Note further

that, for each 1 ≤ i ≤ nλ, the elements v1 = ρλi1, . . . , vnλ
= ρλinλ

of M can be regarded

as the basis vectors for a copy of the representation ρλ, since by the definition of matrix
elements,

ρλ(h)vj =
∑

k

ρλkj(h)vk.

Therefore, there are nλ copies of each irreducible representation ρλ contained in M , and
so M has the direct sum decomposition into irreducible representations given for R in the
statement of the theorem.

It remains to show that M = R. Consider the orthogonal complement to M (rela-
tive to the inner product making the right regular representation unitary). Since M is
invariant, M⊥ is therefore also invariant, and therefore decomposes into irreducible repre-
sentations. We can therefore find a suitable orthonormal basis v1, . . . , vnλ

∈ M⊥ for one

of the irreducible representations ρλ contained in M⊥, transforming under G according to
the associated matrix elements. However, since g = e · g,

vj(g) = [ρ∗(g)vj ](e) =
∑

k

ρλkj(h) vk(e),

hence
vj =

∑

k

vk(e) ρ
λ
kj,

which is a linear combination of the matrix elements, and hence is an element of M . This
is a contradiction unless M⊥ = {0}, which completes the proof. Q.E.D.
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Our earlier results concerning the characters of the irreducible representations also
hold here. In particular, the characters form an orthonormal subset of functions on G, i.e.,
an orthonormal basis of a subspace of R. It is easy to characterize this subspace.

Theorem 7.19. The characters of the irreducible representations form an orthonor-
mal basis for the subspace

S =
{
x ∈ R

∣∣ x(h−1gh) = x(g)
}

consisting of functions on G which are invariant under conjugation.

Proof : Let x ∈ S. Expand x in terms of matrix elements

x =
∑

i,j,λ

aλijρ
λ
ij.

Then, since x is conjugation-invariant,

x(g) =
1

n

∑

h∈G

x(h−1gh) =
1

n

∑

h∈G

∑

i,j,λ

aλij ρ
λ
ij(h

−1gh)

=
1

n

∑

h∈G

∑

i,j,k,l,λ

aλij ρ
λ
ik(h

−1) ρλkl(g) ρ
λ
lj(h) =

∑

i,j,k,l,λ

aλij ρ
λ
kl(g)

1

n

∑

h∈G

ρλki(h) ρ
λ
lj(h)

=
∑

i,j,k,l,λ

aλij ρ
λ
kl(g) 〈 ρλki , ρλlj 〉 =

∑

i,k,λ

aλii
nλ

ρλkk(g) =
∑

i,λ

aλii
nλ

χλ(g).

Thus x is a linear combination of the irreducible characters. Q.E.D.

Corollary 7.20. The number of inequivalent irreducible representations of a finite
group G equals the number of conjugacy classes in G.

Definition 7.21. Let ρ be a representation of G on the vector space V . An equiv-
ariant projection operator is a map P :V −→ V satisfying P 2 = P , and P · ρ(g) = ρ(g) · P
for all g ∈ G.

The range and kernel of a projection operator are easily seen to be invariant subspaces
for the representation ρ, with V = rngP ⊕ kerP , and so ρ is irreducible if and only if
there are no non-trivial projection operators. (P = I and P = 0 are trivial projection
operators.) Furthermore, rngP is an irreducible representation of G if and only if P
cannot be decomposed into the sum of two projection operators P = P1 + P2 satifying
P1P2 = 0 = P2P1 and P1, P2 6= 0.

In the special case of the group ring under the right regular representation, there is
another characterization of projection operators. An element of the group ring ε ∈ R is
called an idempotent if it satisfies ε · ε = ε.

Lemma 7.22. Every projection operator for the right regular representation of G
on its group ring R is given by left multiplication by the idempotent ε = Pe.
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Proof : Since P commutes with right multiplication,

P x =
∑

xgP g =
∑

xg(P e)g =
∑

xg εg = εx. Q .E .D .

Note that the image V = εR = { εx | x ∈ R } of an idempotent is invariant under the
right regular representation, and hence is a representation of G. Note also that e itself is an
element of V , being the image of e. The idempotent is primitive if it cannot be expressed as
the sum of two nonzero idempotents, ε = ε1 + ε2, with ε

2
1 = ε1, ε

2
2 = ε2, ε1ε2 = ε2ε1 = 0.

Primitive idempotents determine irreducible representations and conversely. It is useful to
have an alternative characterization of a primitive idempotent.

Lemma 7.23. . An element ε ∈ R is a primitive idempotent if and only if εxε = kε
for every x ∈ R, where k = kx ∈ C is a scalar (depending on x).

Proof : Let V = rngPε = { xε | x ∈ R }. Then the operator y 7−→ y εxε commutes
with the left action of g and maps V to itself. Therefore, by Schur’s lemma, when restricted
to V , it must be a multiple of the identity map and hence is a multiple of Pε on all of
R. Conversely, if we have such an idempotent ε = ε1 + ε2, with ε1ε2 = ε2ε1 = 0, then
εε1ε = (ε1 + ε2)ε1(ε1 + ε2) = ε1, hence ε1 is a multiple of ε, which implies that either ε1
or ε2 is zero, so ε is primitive. Q.E.D.

Lemma 7.24. Two irreducible representation subspaces V and Ṽ define equivalent
representations if and only if their primitive idempotents have the property that there exist
non-zero elements of the form ε̃ xε 6= 0 for some x ∈ R.

Proof : Let A:V −→̃ Ṽ be an equivalence. Let y = A(ε) ∈ Ṽ . Then for any v ∈ V ,

A(v) = A(εv) = A(ε)v = y v,

so the equivalence is given by left multiplication by y 6= 0. Moreover ε̃y ε = y, so y is of
the proper form. Conversely, given y = ε̃ xε 6= 0, it is easy to see that left multiplication
by y commutes with the right regular representation, and so, by irreducibility, defines an
equivalence between the two subspaces. Q.E.D.

Finally, an element σ is called an essential idempotent if σ2 = kσ for some nonzero
scalar k 6= 0. Note that in that case, ε = σ/k is then an idempotent. Therefore, the classi-
fication of irreducible representations of a finite group can be reduced to the determination
of a sufficient number of primitive essential idempotents of the group ring.

Representations of the Symmetric Group

The symmetric group Sn consists of the permutations of {1, 2, . . . , n}. A transposition

is the permutation (ij) which interchanges i and j. Any permutation can be decomposed
into a product of transpositions; if π ∈ Sn can be written as a product of k transpositions,
its sign is defined as signπ = (−1)k. (The decomposition and the number k are not unique,
but the sign is well-defined.) A cycle is a permutation (ij k . . . lm) which takes i to j, j
to k, . . . , l to m and m to i. Any permutation can be uniquely written as the product
of disjoint cycles. For example, the permutation p taking (123456) to (516423) can
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be written as p = (125)(36)(4). (The cycles of length 1, e.g., (4), are just the identity
element.) Since disjoint cycles commute, the order is irrelevant, and we assume that they
are arranged in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λm. The cycle length of a permutation
is the non-increasing sequence of integers λ = (λ1, λ2, . . . , λm), giving the lengths of the
cycles. Note that λ1 + λ2 + · · · + λm = n, so λ is a partition of n. It is easy to show
that two permutations π and π̃ are conjugate, i.e., π = s π̃ s−1, if and only if they have the
same cycle length. Therefore, the conjugacy classes of Sn are indexed by the partitions λ
of n. Therefore, to each partition of n there corresponds a unique conjugacy class, and
hence a unique irreducible representation of the symmetric group Sn.

It is convenient to represent a partition λ = (λ1, λ2, . . . , λm), λ1 ≥ λ2 ≥ . . . ≥ λm,
λ1 + λ2 + · · · + λm = n, by a corresponding shape or Young diagram†, which consists
of a a planar arrangement of n boxes, with λ1 boxes in the first row, λ2 boxes in the
second row, etc. For each shape λ, we construct a tableau by filling in the boxes in λ by
the integers 1, 2, . . . , n in any order. Clearly there are n! tableaux corresponding to each
shape. A tableau is called standard if its rows and columns are strictly increasing. The
number nλ of standard tableaux of shape λ will play a key role, and is given by the hook

length formula due to Frame, Robinson, and Thrall, [23]:

nλ =
n !∏

i,j∈λ

hij
. (7.95)

The denominator is the product of the hook lengths for all boxes (i, j) in λ, where the
(i, j)th hook consists of all the boxes (i, j), (i′, j), i′ > i, (i, j′), j′ > j which lie in λ,
and the hook length is the number of such boxes. This formula can be straightforwardly
proved by induction on n.

Given a tableau T let R(T ) ⊂ Sn denote the permutations which just permute the
rows of T and C(T ) ⊂ Sn denote the permutations which just permute the columns of T .
Define the element

σT =
∑

τ∈R(T )

∑

χ∈C(T )

(signχ) τ χ, (7.96)

known as the Young symmetrizer associated with the tableau T .

Theorem 7.25. For each tableau T , the element σT is a primitive essential idem-
potent. The invariant subspace VT = σTR is equivalent to the irreducible representation
space ρλ for Sn corresponding to the shape λ. The dimension nλ of ρλ, and its multiplicity
in the right regular representation ρ∗, equals the number of standard tableau of shape λ:

ρ∗ =
⊕

λ

nλ ρ
λ, and so R =

⊕

T standard

VT . (7.97)

† Named after the early twentieth century mathematician Alfred Young, and not an indication
of its youth!
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Proof : Given a tableau T and π ∈ Sn, let πT denote the tableau obtained by per-
muting the entries of T according to π. It is not hard to show that

R(πT ) = πR(T )π−1, C(πT ) = πC(T )π−1, hence σπT = πσT π
−1.

This immediately implies that if T and T̃ have the same shape λ, and hence there is a
permutation π taking T to T̃ , then the representations corresponding to VT and VT̃ are
isomorphic. Q.E.D.

Next we investigate the structure of the components of the Young idempotent.

Lemma 7.26. Let T be a tableau. A permutation π ∈ Sn can be written as π = τ χ
where τ ∈ R(T ), χ ∈ C(T ), if and only if no two entries which lie in the same row of T
end up in the same column of πT .

Proof : First suppose π = τ χ. An important tricky point throughout the proof is that
τ χT is not obtained by first using χ to permute the columns of T , and then using τ to
permute the rows of χT , since τ is not necessarily in R(χT ). (Try this on an example!)
However, we can rewrite τ χT = (τ χτ−1)τ T , and first use τ to permute the rows of T ,
and then, by the above remark, τ χτ−1 ∈ C(τ T ) will permute the columns of τ T . In
particular, since τ T has the same rows as T , but arranged in different order, and τ χτ−1

acts on τ T by permuting its columns, the different row elements of T must end up in
different columns of πT = τ χT = (τ χτ−1)τ T .

Conversely, if no two elements of the same row of T lie in the same column of πT ,
the integers in the first column of πT lie in different rows of T , so we can perform a row
permutation on T to put them all into the first column. Similarly for the second and
subsequent columns of πT . Therefore, there is a permutation τ ∈ R(T ) such that τ T
has the same column elements as πT , but in different order. This implies that there is a
column permutation χ̃ ∈ C(τ T ) such that πT = χ̃τ T . but C(τ T ) = τ C(T )τ−1. Thus,
χ̃ = τ χτ−1 for some χ ∈ C(T ), hence π = χ̃ τ = τ χτ−1 τ = τ χ, as desired. Q.E.D.

Lemma 7.27. An element x ∈ R satisfies

τ xχ = (signχ)x, for all τ ∈ R(T ), χ ∈ C(T ), (7.98)

if and only if x = kσT for some scalar k.

Proof : First note that σT satisfies (7.98) because

τ σT = σT , τ ∈ R(T ), σTχ = (signχ)σT , χ ∈ C(T ).

Conversely, note that (7.98) implies that

x(τ χ) = (signχ)x(e), τ ∈ R(T ), χ ∈ C(T ).

Setting k = x(e), we need only prove that x(π) = 0 whenever π is not of the form τ χ. But
this implies that there are two entries in some row of T which lie in the same column of πT .
Let τ denote the transposition of these two entries, so τ ∈ R(T ), and χ = π−1 τ π ∈ C(T )
is also a transposition. Then, using (7.98), x(π) = x(τ πχ) = −x(π). Q.E.D.
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As a corollary, we prove that the Young symmetrizer σT is a primitive essential idem-
potent. Indeed, from our earlier equations

τ σ2
Tχ = τ σT σTχ = (signχ)σ2

T , τ ∈ R(T ), χ ∈ C(T ),

so by the lemma, σ2
T = kσT . To show k 6= 0, it suffices to prove that the trace of the linear

transformation defined by σT is not 0:

trσT =
∑

π

〈 π , σT π 〉 =
∑

π

1 = n!

Finally, to show the primitiveness, we only need show y = σTxσT is a multiple of σT for
every x ∈ R. But

τ yχ = τ σT xσT χ = (signχ)σT xσT = (signχ)y, τ ∈ R(T ), χ ∈ C(T ),

so by the lemma y is a multiple of σT .

The last item to check is that the irreducible representations corresponding to tableau
having different shapes are not equivalent. By Lemma 7.24, it suffices to prove that if T

and T̃ are tableaux with different shapes, then σT̃ xσT = 0 for all x ∈ R. First note that

if T has two entries in the same row which lie in the same column of T̃ , then σT̃ σT = 0,

since the transposition of these two entries, denoted τ ∈ R(T ) ∩ C(T̃ ), which implies
that σT̃ σT = σT̃ τ τ σT = −σT̃ σT . Now, if these tableaux have different shapes, then it is
not hard to see that, by possibly interchanging the two tableau, this condition will always
hold. (Just look at the first row of different length, and assume that that row of T is longer

than that of T̃ .) The same holds for πT , so σT̃ πσT = σT̃ σπT π = 0 for all permutations
π, which is enough to prove inequivalence. Note: We can also reprove equivalence of the
representations corresponding to tableau of the same shape. Choose π ∈ Sn mapping T to

T̃ . Then σT̃ πσT = πσT π
−1πσT = kπσT 6= 0. Q.E.D.

Symmetry Classes of Tensors

References : [4], [13], [15], [33], [34], [53], [54], [56], [61].

There is a deep connection between the representation theory of the symmetric group
and the classification of symmetry classes of tensors, based on the representation theory
of the general linear group. Note first that if W is a finite-dimensional vector space, the
general linear group GL(W ) consisting of all invertible linear transformations A:W −→W
is not a compact Lie group, and hence our earlier statements about representations for
finite groups and compact Lie groups do not necessarily apply. Indeed, it is not true that
every representation of GL(W ) is unitary; nor is it true that all irreducible representation
are finite-dimensional; nor is it true that every reducible representation decomposes as
the direct sum of two representations! However, there is an important special class of
representations of GL(W ) for which analogues of these statements hold, the “polynomial
representations” or “tensor representations”.

Let ⊗n
W =W ⊗ · · · ⊗W
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denote the n-fold tensor product of W with itself. Then GL(W ) has a natural representa-
tion on this space, namely the tensor product representation, which is uniquely determined
by its action on decomposable tensors:

(
⊗n

A)(w1
⊗ · · · ⊗wn) = (Aw1) ⊗ · · · ⊗ (Awn), A ∈ GL(W ). (7.99)

As we will see, the tensor product space
⊗n

W decomposes into a direct sum of irreducible
subspaces, and, moreover, this decomposition is (essentially) identical with the decompo-
sition of the regular representation of the symmetric group Sn.

Indeed, Sn acts on
⊗n

W by permuting the factors:

ρW (π)(w1
⊗ · · · ⊗wn) = wπ−11

⊗ · · · ⊗wπ−1n, π ∈ Sn. (7.100)

(The inverse is needed to make ρW a true representation.) We can therefore decompose⊗n
W into irreducible representations of Sn:

ρW =
⊕

λ

kλ ρ
λ,

where the direct sum is over all partitions λ of the integer n.

The group ring of Sn acts on
⊗n

W by linearity. In particular, the Young symmetrizers
(7.96) will determine projection operators

σT :
⊗n

W −→
⊗n

W.

The range of σT will be denoted byWT . Since the actions of Sn and GL(W ) commute, WT

is invariant under GL(W ), and so forms a representation space. The claim is that this is an
irreducible representation. Moreover, two such subspaces are equivalent representations if
and only if their tableaux have the same shape. Since the subspaces will be independent if
and only if the corresponding projections are independent, we conclude that there is a one-
to-one correspondence between standard tableaux and the different irreducible components
of the tensor product space.

Theorem 7.28. The tensor product representation of GL(W ) decomposes into a
direct sum of irreducible representations

⊗n
W =

⊕

λ

nλLλW (7.101)

where the sum is over all shapes which have n boxes and at most dimW rows. The
representation space LλW corresponding to the shape λ has multiplicity nλ equal to the
number of standard tableaux of shape λ. Projection operators realizing this decomposition
are provided by the Young symmetrizers corresponding to all the standard tableaux.

In particular, when λ = (n) has only one row, then LλW =
⊙n

W is the nth symmetric

power of W , that is, the space of fully symmetric tensors. On the other hand, when
λ = (1, 1, . . . , 1) has only one column, then LλW =

∧n
W is the nth exterior power of W ,

that is, the space of fully anti-symmetric tensors. Each of these occurs with multiplicity
nλ = 1 in (7.101) because there is only one standard tableau of the given shape, namely
that obtained by filling in the integers 1, . . . , n in increasing order along the row or column.
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In fact, one can use the fact that
⊗n

W is a representation space for the product group
Sn ×GL(W ) to give a more invariant description of the above decomposition:

⊗n
W =

⊕

λ

Mλ
⊗LλW (7.102)

where Mλ is the representation space, known as the Specht module, corresponding to the
irreducible representation ρλ of Sn. In this form, Sn only acts on theMλ’s, whereas GL(W )
only acts on LλW , the Weyl module corresponding to the partition λ. The operation Lλ,
which in simple cases gives the symmetrization or skew-symmetrization operation, is known
as the shape functor or Schur functor and has very general functorial properties.

The proof of (7.102) follows from some more general results about commutator alge-
bras. Let ρ be a representation of a finite group G on the vector space V . Then ρ induces
a representation of the group ring R on V by linearity:

ρ(x)v =
∑

xg ρ(g)v, v ∈ V, x =
∑

xg g ∈ R. (7.103)

Let

K = K(R) = {A ∈ L(V ) | [A, ρ(x)] = 0 for all x ∈ R } (7.104)

denote the commutator algebra of R, which forms an algebra of linear maps of V .

For the action of Sn on
⊗n

W , the commutator algebra K is spanned by the tensor
product action

⊗n
GL(W ) of the general linear group, i.e.,

K =

{
n∑

i=1

ciAi ⊗ · · · ⊗Ai

∣∣∣∣∣ ci ∈ C, Ai ∈ GL(W )

}
. (7.105)

To see this, given a basis e1, . . . , em of W , we introduce a basis

eI = ei1 ⊗ · · · ⊗ein , 1 ≤ iν ≤ m,

of
⊗n

W . A linear transformation B:
⊗n

W −→
⊗n

W is written in matrix form (BIJ)
relative to this basis. It is easy to see that B commutes with the action of Sn on

⊗n
W if

and only if its matrix elements are symmetric:

B
π(I)
π(J) = BIJ , π ∈ Sn.

Such transformations are referred to as bisymmetric. But this means that B can be viewed
as an element of the space of symmetric tensors in the tensor space

⊗nL(W ) of the vector
space L(W ) of linear transformations on W , and it is well known that the set of powers
A ⊗ · · · ⊗A span the space of symmetric tensors over any vector space.

Now, we can decompose V into irreducible representations of G (and hence irreducible
representations of R), or into irreducible representations of the commutator algebra K.
(The definitions for K are similar.) Remarkably, these two decompositions are, although
not identical, essentially “isomorphic”, in the following sense.
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Theorem 7.29. Suppose ρ decomposes V into irreducible representation spaces

V =
⊕

λ

kλVλ,

where Vλ is the representation space for the irreducible representation ρλ. Then there is
a corresponding decomposition of V into irreducible representation spaces for the commu-
tator algebra K:

V =
⊕

λ

lλXλ,

where each Xλ is an irreducible representation space for K. The multiplicity kλ of Vλ is the
same as the dimension of Xλ, and the multiplicity lλ of Xλ is the same as the dimension
of Vλ. Moreover, each copy of Xλ can be realized as the image of a primitive idempotent
ελ in the group ring R, i.e.,

Xλ = ρ(ελ)V = { ρ(ελ)v | v ∈ V } ,

corresponding to all independent primitive idempotents ε ∈ R such that ρ(ε) 6= 0.

Suppose we decompose

V =
⊕

λ

nλVλ =
⊕

λ

nλ⊕

i=1

V iλ ,

where ρ | V iλ is isomorphic to ρλ. Given B ∈ K, we decompose it into block matrix form

(Bi,kλ,µ) relative to this decomposition, where each block

Bi,kλ,µ: V
k
µ −→ V iλ

satisfies
Bi,kλ,µ ρ

µ(g) = ρλ(g)Bi,kλ,µ for all g ∈ G.

By Schur’s Lemma 7.5, this implies that Bi,kλ,µ = 0 if λ 6= µ, while Bi,kλ,µ is a multiple of the

identity if λ = µ. Now choose a basis { ei,kλ | k = 1, . . . , nλ } for each V iλ. Set

Xk
λ = span {ei,kλ }, i = 1, . . . , nλ.

Then each Xk
λ is invariant under K and S | Xk

λ = L(Xk
λ) consists of all linear transfor-

mations, so Xk
λ is an irreducible representation space for K. Note that this immediately

implies that the commutator algebra of K coincides with the space of linear transforma-
tions restricting to L(V iλ) on each irreducible representation space of G. This is the same
as the action of the group ring R on V iλ since the matrix elements of each irreducible repre-
sentation ρλ form an orthogonal basis of the space L(Vλ), and hence R | V iλ = L(V iλ). Thus
we have shown that ρ(R) and K are commutators of each other: K(K(ρ(R))) = ρ(R).

Now, consider a K⊥-invariant subspace U ⊂ V . We know that V is the direct sum of
suitable V kλ ’s, hence there is an associated invariant complement U⊥, so that V = U ⊕U⊥.
Let P :V −→ V be the projection corresponding to this direct sum decomposition of V .
Then the invariance of U and U⊥ shows that P commutes with all operators in K, i.e.,
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P lies in the commutator algebra of K, so that P corresponds to an idempotent element
e ∈ R, with P = ρ(ε). Moreover, the image of P is an irreducible representation space for
K if and only if (a) ε is a primitive idempotent and, (b) ρ(ε) 6= 0. The second condition
depends on the precise nature of the representation ρ under consideration.

Lemma 7.30. Let dimW = m. Let ε denote the standard representation of Sn on⊗n
W . Let εT denote the Young idempotent corresponding to the tableau T of shape λ.

Then ρ(εT ) = 0 if and only if λ has more than m rows.

Proof : By suitably relabeling the copies ofW in
⊗n

W , we can assume without loss of
generality that T is the simplest standard tableau of the given shape λ, obtained by filling
in λ with the entries 1 to n row by row, so the first row has the integers 1, . . . , λ1, in order,
the second has λ1 + 1, . . . , λ1 + λ2, etc. Let e1, . . . , en be a basis for W . If λ has less than
m rows, then it is easy to see that the element e∗ = e1 ⊗ · · · ⊗e1 ⊗e2 ⊗ · · · ⊗e2 ⊗e3 ⊗ · · ·,
having λ1 copies of e1 followed by λ2 copies of e2, etc., gets mapped to a nonzero element

upon multiplication by εT . Indeed, applying the first factor
∑

(signχ)χ of εT to e∗
leads to a combination of basis elements, only one of which, namely e∗ itself, still has e1
in the first λ1 copies of W in

⊗n
W . The second factor

∑
τ only permutes the factors

corresponding to the different rows of λ, so the element e∗ gets mapped to a nonzero

multiple of itself, and none of the other elements in
∑

(signχ)χ(e∗) can cancel this out.

On the other hand, since the factor
∑

(signχ)χ skew symmetrizes the columns, if W has
fewer basis elements than the number of rows of T , each basis element will be automatically
mapped to zero by this factor, and so ρ(εT ) = 0. Q.E.D.

Tensor Products

The Clebsch-Gordan series for the symmetric group Sn will determine the decompo-
sition of the tensor product of two irreducible representations:

ρλ ⊗ρµ =
⊕

ν

aλ,µν ρν , (7.106)

where λ, µ, ν denote shapes corresponding to n. (In combinatorics, this is also known
as the “inner product” of the representations ρλ, ρµ.) Remarkably, very little is known
in general about the coefficients aλ,µν , aside from special isolated results, tables for lower
order ones, and some computational rules for finding them.

More interesting is the theory of the tensor products of irreducible polynomial repre-
sentations of the general linear group:

LλW ⊗LµW =
⊕

ν

bνλ,µLνW. (7.107)

Note that since LλW ⊂
⊗n

W, LµW ⊂
⊗m

W , where n,m are the number of boxes in
λ, µ respectively, then terms in the sum on the right hand side only include the LνW
when ν has n+m boxes. Quantum mechanically, the above decomposition corresponds to
determining the possible permutational symmetries of a total system when the symmetry
classes of two constituent subsystems are known. This decomposition corresponds to an
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operation on the representations of the symmetric groups known as the “outer product”
to distinguish it from the inner or tensor product. In group theoretic language, the outer
product of the irreducible representation ρλ of Sn and the irreducible representation ρµ

of Sm will give a (usually reducible) representation of Sn+m obtained by “inducing” the

representation of Sn × Sm on the tensor product ρλ ⊗ρµ to Sn+m ⊃ Sn × Sm.

The coefficients in the tensor product deomposition (7.107) can be explicitly computed
using the Littlewood–Richardson Rule. To implement the algorithm, we do the following:
First, fill in the (simpler) shape µ with 1’s in the first row, 2’s in the second, etc. Then
append the resulting indexed boxes one at a time to the blank shape λ in order subject to
the restrictions:

(i) The resulting diagram is standard (strictly increasing columns; non-decreasing rows.)

(ii) When the symbols are read in order right to left, top to bottom, at no stage does
the total number of j’s exceed the total number of i’s for any i < j.

The final collection of shapes constructed this way gives the decomposition of the tensor
product. Interestingly, except for the shapes with more than dimW columns giving zero
Weyl modules, this decomposition is independent of the underlying dimension of W .

Example 7.31.

W ⊗LλW =
⊕

µ

LµW, (7.108)

the sum being over all shapes µ obtained from λ by appending a single box. More generally,

⊙k
W ⊗LλW =

⊕

µ

LµW, (7.109)

the sum being over all shapes µ obtained from λ by adding on k boxes such that no two
of these boxes appear in the same column. These special cases (7.108, 109) are known as
the Pieri formulae.

A more complicated example is:

[21] ⊗ [21] = [42] ⊕ [412] ⊕ [32] ⊕2 [321] ⊕ [313] ⊕ [23],

whose justification is left as an exercise for the reader.

Suppose we have two vector spaces W,Z. We seek a decomposition of the Weyl
modules associated with their tensor product:

Lλ(W ⊗Z) =
⊕

µ,ν

cµ,νλ LµW ⊗LνZ. (7.110)

where we are decomposing with respect to GL(W ) ⊗GL(Z) ⊂ GL(W ⊗Z). This formula
can be reduced to the earlier question about the tensor product of representations of Sn.
We prove that

cµ,νλ = aλ,µν ,

where the a’s are as in (7.106). Indeed, we know that

⊗n
(W ⊗Z) =

⊕

λ

Vλ ⊗Lλ(W ⊗Z).
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On the other hand,

⊗n
(W ⊗Z) =

⊗n
W ⊗

⊗n
Z =

⊕

µ,ν

Vµ ⊗Vν ⊗LµW ⊗LνZ,

from which the result follows immediately. The most important cases can be done directly:

∧n
(W ⊗Z) =

⊕

λ

LλW ⊗L
λ̃
Z,

⊙n
(W ⊗Z) =

⊕

λ

LλW ⊗LλZ. (7.111)

In both cases the sum is over all partitions λ of n, and in the first, λ̃ denotes the “dual”
partition to λ obtained by interchanging the rows and columns.

Plethysm

Yet another mechanism of combining irreducible representations of the general linear
group together is though the operation of plethysm. Essentially, given a vector space W ,
one views LλW as a vector space in its own right, and so forms Lµ(LλW ) which is an
irreducible representation for GL(LλW ). Restricting back to GL(W ), this decomposes
into irreducible representations:

Lµ(LλW ) =
⊕

ν

dνµ,λLνW. (7.112)

Again, except for special cases, the general form of this plethysm is unknown. However,
there are various ways of reducing this formula to just symmetric plethysms. A very useful
fact is the formal determinantal formula:

LλW = “det ”
(⊙λi+i−jW

)
. (7.113)

Here, in computing the “determinant” of the indicated m×m matrix, m being the number
of rows in λ, one uses tensor products to multiply the entries, ordered by their row number.
For example,

L(2,1)W = “det ”

(⊙2
W

⊙3
W⊙0

W
⊙1

W

)

=
⊙2

W ⊗

⊙1
W −

⊙3
W ⊗

⊙0
W =

⊙2
W ⊗W −

⊙3
W.

But by the Pieri formula (7.109),
⊙2

W ⊗W = L(2,1)W ⊕

⊙3
W , so the formula is correct.

Extensive tables† of plethysms can be found in [12].

Orbital–Spin and Total Angular Momentum Coupling

These denote different methods of decomposing the states of the electrons of an atom.
In the orbital-spin coupling scheme (or LS–coupling), we want to treat the orbital angular

† The tables are stated in the combinatorial language of Schur functions, [33], but can be
directly translated into the identical formulas for Schur functors.
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momenta and spins separately. Therefore, we want a decomposition into summands of the
form

σ ⊗ρS

where the second factor refers to the irreducible representation spaces for the spin operator.
The particular summands

ρJ ⊗ρS

corresponding to a system of electrons with total orbital angular momentum j and total
spin s are denoted by symbols of the form 2s+1X , where X = S, P,D, . . ., are the capital
versions of the letter series s, p, d, . . ., used to denote the different orbital angular momenta
of the individual electrons. The number 2s + 1 denotes the multiplet for the state, so we
get singlet, doublet, triplet, etc. states corresponding to 2s+ 1 = 1, 2, 3, . . . . Note further
that each such state decomposes into irreducible representations

ρ| j−s | ⊕ρ| j−s |+1
⊕ · · · ⊕ρj+s,

corresponding to the eigenvalues of the total angular momentum operator L = J+ S. To
distinguish these, a subscript is used: 2s+1Xl. Thus the symbol 2P3/2 denotes a system

with j = 1, s = 1
2 , and l =

3
2 . For example, if we have one electron in the p shell and one

in the d shell, this corresponds to the state space

σ = (ρ1 ⊗ρ1/2) ⊗(ρ2 ⊗ρ1/2).

If j ≥ s, then the multiplet will indeed split into 2s+ 1 parts, but for j < s, there will be
fewer parts than the multiplet terminology indicates. The splitting is basically the same
as the splitting of the spectral line under a magnetic field, as in the Zeeman effect for a
one electron atom. The initial orbital-spin coupling decomposition leads to

σ = (ρ1 ⊗ρ2) ⊗ρ0 ⊕ (ρ1 ⊗ρ2) ⊗ρ1 = (ρ1 ⊕ρ2 ⊕ρ3) ⊗ρ0 ⊕ (ρ1 ⊕ρ2 ⊕ρ3) ⊗ρ1

corresponding to states 1P, 1D, 1F, 3P, 3D, 3F . The complete decomposition has states
1P1,

1D2,
1F3, etc.

Example 7.32. For a helium atom, (or other atom with two free electrons), the
orbital angular momentum bound states for a single electron will be indicated by

σ = ρ0 ⊕ρ1 ⊕ρ2 ⊕ · · ·
corresponding to the s, p, d, . . . series. With spin, these become

σ ⊗ρ1/2 = (ρ0 ⊗ρ1/2) ⊕ (ρ1 ⊗ρ1/2) ⊕ (ρ2 ⊗ρ1/2) ⊕ · · ·
which can be further decomposed according to the total angular momentum. For two
electrons, the Pauli exclusion principle states that we should use the state space

∧2
(σ ⊗ρ1/2) = (

∧2
σ ⊗

⊙2
ρ1/2) ⊕(

⊙2
σ ⊗

∧2
ρ1/2),

which we decompose according to the principle of orbital-spin coupling. Now

∧2
ρ1/2 = ρ0,

⊙2
ρ1/2 = ρ1,
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so the state space splits into a sum of two spaces, one having total spin 0, i.e., a singlet, and
one having total spin 1, i.e., a triplet. The singlet states can all be regarded as symmetric
in the orbital wave functions, while the triplet states are anti-symmetric in the orbital
wave functions. Note that the orbital symmetry character χ, corresponding to the two
different representations of S2, will have the selection rule χ 7−→ χ, since the position
operator Q amounts to multiplication by the symmetric sum of the individual positions
q+ q̃ of the two electrons, and so preserves the symmetry of the state. This implies that
any matrix elements corresponding to states with different symmetry will be automatically
zero. Therefore, spectral lines will only come from transitions within the singlet series and
the triplet series, i.e., there cannot be a transition from a triplet term to a singlet term.
Similar remarks hold for more complicated electron configurations.

If both electrons have angular momentum j, then we are in the representation space

∧2(ρj ⊗ρ1/2) = (
∧2ρj ⊗

⊙2ρ1/2) ⊕ (
⊙2ρj ⊗

∧2ρ1/2) = (
∧2ρj ⊗ρ0) ⊕(

⊙2ρj ⊗ρ1).

Therefore the singlet terms are anti-symmetric in the orbital wave functions, whereas the
triplet terms are symmetric(!). Furthermore, it can be shown that since

∧2
ρj ⊕

⊙2
ρj = ρj ⊗ρj = ρ0 ⊕ρ1 ⊕ · · · ⊕ρ2j,

we have the singlet and triplet terms decomposing as

∧2
ρj = ρ1 ⊕ρ3 ⊕ · · · ⊕ρ2j−1,

⊙2
ρj = ρ0 ⊕ρ2 ⊕ . . . ⊕ρ2j,

respectively. The selection rules for the symmetry character will require that the spectral
lines coming from the singlet series and the triplet series, i.e., corresponding to different
values of j, are distinct.

Furthermore, we can split the different lines for each series by decomposing the angu-
lar momentum pieces of the representation, which can be obtained from the orbital-spin
coupling scheme by further decomposing the representations. Alternatively, in the total an-
gular momentum coupling scheme, (“j j coupling”) we first decompose ρj ⊗ρ1/2 according
to the usual rules, and then use the known plethysm for the exterior power. For instance,
if j > 0, then

∧2(ρj ⊗ρ1/2) =
∧2( ρj+1/2

⊕ρj−1/2
)
=

∧2ρj+1/2
⊕

(
ρj+1/2

⊗ρj−1/2
)

⊕

∧2ρj−1/2.

these can be further decomposed according to the usual rules.

In general, we need to determine a plethysm of the form Lλρ
j, i.e., a “restricted

plethysm”. There is a trick for su(2) = so(3) which can reduce this to a nonrestricted
plethysm computation. Note that the complexification of this Lie algebra is the same as
the complex Lie algebra sl(2) = sl(2,C), so the representation theory is basically the same.
Moreover, the analytic irreducible representations of GL(W ) remain irreducible when re-
stricted to the special linear group SL(W ); the only difference is that some previously
different representations become isomorphic. Indeed, it is easy to show that for GL(m),
the representations [km] corresponding to a rectangular shape with m rows of length k are
all one-dimensional, corresponding to the determinantal representation

A 7−→ (detA)k,
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and hence, on restriction to SL(m) are all trivial. Moreover, the Littlewood-Richardson
Rule shows that for any shape λ with at most m rows

[λ+ km] ≃ [λ] ⊗ [km] as representations of GL(m),

since all the other terms have more thanm rows. Here λ+km denotes the shape obtained by
sticking λ onto the shape km, having rows λν+k for ν = 1, . . . , m. Thus, for SL(m) we can
always delete rectangles with m rows from any shape and get an equivalent representation.
In the case of SL(2), this means that all three-rowed shapes reduce to zero, and the two-
rowed shape representation (p, q), p ≥ q, of GL(2) becomes equivalent to the representation
(p−q, 0) = (p−q) when restricted to SL(2). This observation permits an easy computation
of the plethysm formulas for SL(2), and hence SO(3), using known plethysm formulas for
GL(2), as given in [61].

For example, consider the case of three p electrons. This requires the decomposition
of ∧3

(ρ1 ⊗ρ1/2) = (
∧3
ρ1 ⊗

⊙3
ρ1/2) ⊕ (L(2,1)ρ

1
⊗L(2,1)ρ

1/2) ⊕(
⊙3

ρ1 ⊗

∧3
ρ1/2)

= (
∧3
ρ1 ⊗ρ3/2) ⊕(L(2,1)ρ

1
⊗ρ1/2).

Thus the states split into a doublet, S = 1
2 , and a quadruplet, S = 3

2 . Note that this arises
since ⊗3

ρ1/2 = ρ1/2 ⊗ρ1/2 ⊗ρ1/2 = ρ1/2 ⊗ (ρ0 ⊕ρ1) = 2ρ1/2 ⊕ρ3/2,

hence ⊙3
ρ1/2 = ρ3/2, L(2,1)ρ

1/2 = ρ1/2,
∧3
ρ1/2 = 0,

the final equality coming from the fact that ρ1/2 is only two-dimensional. Alternatively, we
can use the identification of ρ1/2 with the standard representation of GL(2) on W = C2,

and so identify
⊙3

W with ρ3/2, while L(2,1)W identifieswith W , and hence with ρ1/2.

To decompose the orbital angular momentum components, we identify ρ1 with the
representation

⊙2
W of GL(2), so that we need the plethysm formulae

∧3
(
⊙2

W ) = L(3,3)W ⊕L(4,1,1)W, L(2,1)(
⊙2

W ) = L(3,2,1)W ⊕L(4,2)W ⊕L(5,1)W.

Hence, ignoring the three-rowed shapes which all give zero since dimW = 2, and converting
the equivalent two-rowed shapes according to the earlier rule, we deduce

∧3ρ1 = ρ0, L(2,1)ρ
1 = ρ1 ⊕ρ2.

Actually, the first of these is trivial, as ρ1 is a three-dimensional representation, so
∧3
ρ1 is

one-dimensional, and hence must be the trivial representation ρ0. This gives the complete
orbital-spin decomposition

∧3
(ρ1 ⊗ρ1/2) = (ρ0 ⊗ρ3/2) ⊕(ρ1 ⊗ρ1/2) ⊕(ρ2 ⊗ρ1/2).

Therefore, a state describing 3p electrons splits into the terms 4S, 2P, 2D. The sub-terms
are then found to be 4S3/2,

2P1/2,
2P3/2,

2D3/2,
2D5/2. Note that the quadruplet term does

not actually split any further as it has zero orbital angular momentum, but each of the
doublets do split.
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In the case of four or more p electrons, there is a trick. Note that if W is a vector
space of dimension m, the natural pairing

∧k
W ⊗

∧m−k
W −→

∧m
W

allows us to identify
∧m−k

W with
∧m

W ⊗

∧k
W∗, where ∗ denotes the dual space. In

particular, if we restrict to SL(W ), then the space
∧m

W is the trivial representation,

hence
∧m−k

W ≃
∧k
W∗. Finally, if our representation is unitary, then we can identify W

with its dual W∗, so ∧m−k
W ≃ ∧k

W . Taking W = ρj ⊗ρ1/2, corresponding to electrons
with orbital angular momentum j, we know that dimW = 2(2j + 1), which is the total
number of electrons which can occupy the shell indexed by j. For the p shell, this number
is 6. We conclude that the possible states occupied by k electrons having orbital angular
momentum j, i.e., the decomposition of

∧k
(ρj ⊗ρ1/2), are the same as the states occupied

by 2(2j+1)−k electrons in the same shell, i.e., the decomposition of
∧2(2j+1)−k

(ρj ⊗ρ1/2).
Thus, the possible states of 4p electrons are the same as the states of 2p electrons, which
we already analyzed. Physicists refer to this as electrons being equivalent to “holes”.

8. Relativistic Quantum Mechanics.

References : [7], [8], [20], [36].

The fact that velocities are limited by the speed of light introduces new twists in the
quantum mechanical interpretation of physical phenomena. In the non-relativistic case,
the uncertainty in measuring the energy of a particle or system is related to the length of
time in which the measurements are made according to the Uncertainty Relation (4.26):

∆p∆q ≥ ~.

For small changes, the speed v is given by

v ≈ ∆q

∆t
,

and thus

v∆p >∼
~

∆t
. (8.1)

Now if we make a measurement of the momentum of a particle, we must in general affect
its velocity. Since the uncertainty in momentum is the same both before and after the
measurement, we conclude that the measurement of the momentum of a particle results
in a change in its velocity, and the change becomes greater the shorter the duration of the
measurement process.

In the relativistic case, the limit imposed by the speed of light implies that we can
never measure the momentum of a particle with precision! Now, v is limited by c, and
hence, by (8.1),

∆p >∼
~

c∆t
,

which gives a limit to the highest accuracy theoretically available in measuring the mo-
mentum of a particle in a given time span. In particular, the shorter the time interval in
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which we try to measure the momentum, the less accuracy we are able to attain. For a
particle whose momentum is changing, this is extremely worrying, since the only way to
get a good measurement of the instantaneous momentum is to measure it in a short time
period. And an exact measurement is possible only if the measurement takes place over
an infinite time interval!?!

In fact, there is as yet no logically consistent and complete relativistic quantum theory.
Nevertheless, we are able to apply some basic techniques to analyze the relativistic features
of quantum mechanical states, and deduce new features which, remarkably, do compare
favorably with experiments. The most striking was Dirac’s prediction of the positron,
based on his relativistic equation for the electron, and which he initially discounted due to
lack of experimental evidence!

The Lorentz Group

The fundamental symmetry groups in special relativity are the linear Lorentz group
and the Poincaré group, which includes translations. Here we concentrate on the proper-
ties, representation theory, and applications of the former in relativistic quantum mechan-
ical systems.

The pseudo-metric on flat Minkowski space-time R4 is

ds2 = c2dt2 − dx2 − dy2 − dz2, (8.2)

where c is the velocity of light. It is useful to scale time, and introduce the notation
q = (qµ) for the position vector, with

q0 = ct, q1 = x, q2 = y, q3 = z.

Relative to these coordinates, the Minkowski metric has matrix

G = (gµν) = diag (1,−1,−1,−1) = G−1 = (gµν), (8.3)

of signature (1, 3), which indicates the numbers of positive and negative eigenvalues. We
define the dual coordinates (using the Einstein summation convention and tensorial raising
and lowering of indices throughout)

qµ = gµνq
ν , so q0 = ct, q1 = −x, q2 = −y, q3 = −z,

whereby the Minkowski metric (8.2) is

ds2 = gµνdq
µ dqν = dqµ dq

µ.

The linear group L ⊂ GL(4) that leaves the Minkowski metric invariant is known as
the Lorentz group. It consists of the 4× 4 matrices A satisfying

ATGA = G. (8.4)

In mathematics, the Lorentz group is identified as L = O(1, 3), where, in general, O(k, l)
denotes the linear group of isometries of the diagonal metric of signature (k, l) on Rn, with
n = k + l. As with the ordinary orthogonal group, O(k, l) is an 1

2n(n − 1)–dimensional
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Lie group; in particular, the Lorentz group is a 6-dimensional Lie group. The Lie algebra
of the Lorentz group is the 6-dimensional Lie algebra l = o(1, 3) consisting of all 4 × 4
matrices X satisfying

XTG+GX = 0. (8.5)

For n ≥ 3, the only other isometries of a nondegenerate quadratic form are the trans-
lations. In particular, the group of isometries of the Minkowski metric is known as the
Poincaré group, and is the semi-direct product of the Lorentz group and the translation
group:

P(1, 3) = O(1, 3)⋉R4. (8.6)

The defining relation (8.4) for a Lorentz transformation immediately implies that
detA = ±1. Moreover, if we look at the (0, 0) entry, we find

a200 − a210 − a220 − a230 = 1,

hence | a00 | ≥ 1. Thus L = O(1, 3) has four connected components, depending on whether
A has determinant ±1, and whether a00 is positive or negative. These are often denoted
as

L↑
+, L↑

−, L↓
+, L↓

−,

where the + and − refer to the sign of detA, and correspond to spatial orientation, and the
↑ and ↓ refer to the sign of a00, and correspond to time orientation. The proper Lorentz

group L↑
+ is the connected component of the identity. There are three two-component

subgroups, all generated by the proper Lorentz group and an additional discrete symmetry.
The group L+ = SO(1, 3) = L↑

+ ∪ L↓
+, known as the special Lorentz group, requires

detA = +1, and is generated by the inversion map − I . The orthochronous Lorentz group,
L↑ = L↑

+ ∪ L↑
−, characterized by a00 ≥ 1, is generated by the space reversal or parity map

P which has matrix G, as in (8.3). The group L0 = L↑
+ ∪ L↓

−, known as the orthochorous”
Lorentz group, is generated by the time reversal T which has matrix −G. Included in the
Lorentz group is the subgroup O(3) of rotations (and reflections) and the boosts , which
are hyperbolic rotations between the t-axis and a space axis. Every transformation in the
proper Lorentz group can be represented uniquely as BR, where B is a boost and R is a
rotation. Note that the boosts are positive definite symmetric matrices, so this result is
just a restatement of the polar decomposition of matrices. Warning : The boosts do not
form a subgroup of L.

We next prove that the Lorentz group is, like the three-dimensional rotation group
SO(3), a doubly connected Lie group. Moreover, its simply connected covering group is
the group SL(2,C) of 2 × 2 complex matrices of determinant 1, considered as a real Lie
group, even though it comes equipped with a complex structure. Note that SL(2,C) has
complex dimension 3, hence real dimension 6, so at least the dimensions match.

Consider the action of the group SL(2,C) on the space M(2,C) of 2 × 2 complex
matrices given by

ρ(A)X = AXA∗, (8.7)

where ∗ denotes the Hermitian adjoint (conjugate transpose) matrix. This defines a re-
ducible eight-dimensional representation of SL(2,C). The subspace of Hermitian matrices
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H = {X |X∗ = X } forms a four-dimensional invariant subspace ofM(2,C). Note that the
determinant of X is invariant under the representation ρ. If we coordinatize the subspace
H “correctly”, we find

detX = det

(
t− z x+ i y
x− i y t+ z

)
= t2 − x2 − y2 − z2, (8.8)

which is just the Minkowski length. Therefore (8.7) defines a Lorentz transformation of
the matrix X viewed as an element of Minkowski space. Moreover, it is not hard to prove
ρ(A) = ρ(B) if and only if A = ±B, so ρ defines a double covering of the Lorentz group by
SL(2,C). Note that on the subgroup SU(2) ⊂ SL(2,C) this action reduces to the earlier
adjoint action (7.35) used to construct the double covering of SO(3).

The discrete transformations generating the full Lorentz group O(1, 3) have analogues
as follows. Note that the transformation corresponding to the matrix

S =

(
0 −1
1 0

)

produces the Lorentz transformation

(t, x, y, z) 7−→ (t,−x, y,−z),

which is still in the proper Lorentz group. However, the operation

C:X 7−→ X

of complex conjugation preserves the subspace H, and produces the Lorentz transformation

(t, x, y, z) 7−→ (t, x,−y, z).

Therefore, we can identify S ◦C with the parity reversal Lorentz transformation P . Simi-
larly, the operation

ι :X 7−→ −X

also preserves the subspace H, and produces the Lorentz transformation

(t, x, y, z) 7−→ (−t,−x,−y,−z),

which is the Lorentz transformation − I . Finally, to get time reversal, we use the relation
T = − IP , so its representative is ι ◦S ◦C. Thus, the group generated by SL(2,C) com-
bined with the discrete transformations S ◦C and ι forms the simply connected covering
group of the full Lorentz group O(1, 3).

Observe that neither SL(2,C) nor O(1, 3) is compact. Thus, not every representation
is fully reducible, nor is every representation unitary. For example, the standard represen-
tation of the Lorentz group is not unitary as the matrix entries are unbounded. Indeed,
except for the trivial representation, no finite-dimensional representation is unitary, but
there do exist infinite-dimensional irreducible unitary representations. Doubled-valued rep-
resentations of the proper Lorentz group appear as ordinary representations of SL(2,C),
and will be discussed later.
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The Dirac Equation

We now try to deal with the problem of quantizing the equation for the motion of
a relativistic particle. In relativity, the spatial momenta (p1, p2, p3) are the last three
components of a four-vector p = (pµ), the relativistic momentum, with p0 = c−1E being
the scaled energy. The Minkowski length of this vector is the constantmc, which is positive
since the particle moves slower than the speed of light. This leads to the relativistic form
of the energy equation

pµ p
µ = m2c2, i.e., E2 = c2p2 +m2c4,

where p2 = p21+p
2
2+p

2
3 is the classical momentum. Therefore, the relativistic Hamiltonian

is
E = +

√
p2 +m2c2 ,

where we take the positive square root to give the particle positive energy, which indicates
that it moves forward in time. In classical relativistic dynamics, a particle with initially
positive energy always has positive energy.

To quantize this energy equation, we use the Schrödinger representation

Pµ = − i ~
∂

∂qµ
(8.9)

of the momentum operators, leading to the first order wave equation

− i ~ψt =
√

−~∆+m2c2 ψ, (8.10)

where ∆ is the usual Laplacian. We will not try to interpret this integro-differential
equation too rigorously. As a relativistic model, it has some severe problems, since it
is not symmetrical with respect to the four momenta Pµ, so much so that one cannot
generalize it in any relativistic way when external fields are present.

An alternative approach is to work with the original energy equation, the quantized
wave equation for which then takes the form

(PµP
µ +m2c2)ψ = (gµνPµPν +m2c2)ψ = 0. (8.11)

Equivalently, we obtain this by applying the pseudo-differential operator

− i ~ ∂t +
√

−~∆+m2c2 . (8.12)

to (8.10). In explicit form, the resulting partial differential equation is the well-known
Klein-Gordon equation

−~2 ψtt = −~2c2∆ψ +m2c4 ψ, (8.13)

first proposed as a relativistic quantum equation by Schrödinger. As we will see, the
equation is invariant under general Lorentz transformations. It contains the solutions to
(8.10), but has additional solutions since the operator (8.12) is not invertible. Moreover,
the Klein-Gordon equation now includes the negative energy modes, which are outlawed
in special relativity. Classically, this does not present a significant problem due to the
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conservation of energy. However, quantum mechanically, this is a serious issue, since the
energy can leak from positive to negative values. However, the pricipal difficulty with the
Klein-Gordon equation is that it is second order in time, and so the time evolution of a
state is not determined solely by its initial value; one must also prescribe ∂ψ/∂t, which
does not have a physical interpretation. Moreover, it can only describe particles of spin 0,
since there is just one component to the wave function ψ.

Dirac proposed factoring the wave operator, i.e., looking for an equation of the form

4∑

µ=1

γµPµψ = mcψ, (8.14)

whose square is the Klein-Gordon equation (8.13). Multiplying out the factors produces

(γµPµ −mc) (γνPν +mc) = 1
2 (γ

µγν + γν γµ)PµPν −m2c2.

For the summation given by the first term on the right hand side to be the wave operator
on Minkowski space, we must have

γµ γν + γν γµ = 2gµν , (8.15)

where the gµν are the components of the Minkowski metric (8.2). The condition (8.15)
implies that the γµ form the generators of the “Clifford algebra” relative to the Minkowski
inner product, a concept that was introduced by the English mathematician William Clif-
ford in the mid-nineteenth century. We now turn to a detailed study of Clifford algebras.

Clifford Algebras
References : [6], [16], [18].

Let V be a vector space over a field K (we assume K = R or C for simplicity). Let
Q:V → R a quadratic form over V , with associated symmetric bilinear form obtained by
polarization:

Q(x, y) = 1
2

[
Q(x+ y)−Q(x)−Q(y)

]
, so Q(x) = Q(x, x), for x, y ∈ V. (8.16)

Think of Q(x) as a possibly degenerate norm, ‖ x ‖2, with Q(x, y) the associated “inner
product” 〈 x , y 〉.

Given V and Q, the associated Clifford algebra is the quotient space of the tensor
algebra

C(Q) =
⊗∗

V / I(Q), (8.17)

where I(Q) ⊂ ⊗∗
V denotes the two-sided ideal generated by the relations

x ⊗x−Q(x). (8.18)

We use juxtaposition to denote the induced product in the Clifford algebra, so x y denotes
the image of x ⊗y in C(Q), and C(Q) is prescribed by the fundamental relation x2 = Q(x).
Note that, by polarizing, this implies the fundamental defining relations

xy + yx = 2Q(x, y). (8.19)
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Note that if the quadratic form is trivial, Q(x) ≡ 0 for all x, then C(0) is the same as the
exterior algebra

∧∗
V . In all cases, the dimension of the Clifford algebra is the same as the

exterior algebra, namely 2n, where n is the dimension of V , since we can clearly use the
products ei1ei2 · · · eik for 1 ≤ i1 < i2 < · · · < ik ≤ n as basis elements. Both the scalars
K and the vector space V are contained in C(Q).

From now on, we will always assume that the quadratic form Q is non-degenerate,
meaning that Q(x, y) = 0 for all y ∈ V if and only if x = 0. For complex vector spaces,
there is, up to change of basis, only one non-degenerate quadratic form, so all nondegen-
erate Clifford algebras of a given dimension are isomorphic. For real vector spaces, the
nondegenerate quadratic forms are classified by their signature (k, l), and we denote as
C(k, l) the corresponding real Clifford algebras.

Let us start by investigating what are the possible real, non-degenerate, low-dimen-
sional Clifford algebras. There are two non-degenerate one-dimensional Clifford algebras,
denoted

C(1, 0) ≃ R ⊕R, C(0, 1) ≃ C, (8.20)

This is because the Clifford algebra is spanned by 1 and e, subject to e2 = ±1. The
second case is clear if we identify e with i =

√
−1; in the first case, we introduce the basis

f = 1
2 (1 + e), g = 1

2 (1− e), which satisfies f2 = f, g2 = g, fg = gf = 0 to produce the
decomposition. These are sometimes referred to as the hyperbolic complex numbers .

The three two-dimensional Clifford algebras are

C(2, 0) ≃ C(1, 1) ≃M(2,R), C(0, 2) ≃ H, (8.21)

where M(2,R) denotes the algebra of real 2× 2 matrices, and H denotes the quaternions.
This is because the Clifford algebra is spanned by 1, e1, e2, e1e2, subject to the relations
e2i = ±1. If the metric is negative definite, these can be identified with the quaternions
1, i , j , k . Alternatively, one can represent these generators by multiples of the Pauli
matrices (7.32), namely σ0, iσx, iσy,− iσz. In the other two cases, we identify the basis
elements with real 2× 2 matrices, according to the following table:

1 e1 e2 e1e2

C(2, 0) :
(
1 0
0 1

) (
0 1
1 0

) (
1 0
0 −1

) (
0 −1
1 0

)
,

C(1, 1) :
(
1 0
0 1

) (
0 1
1 0

) (
0 1

−1 0

) (
−1 0
0 1

)
,

C(0, 2) :
(
1 0
0 1

) (
0 i
i 0

) (
0 1

−1 0

) (
− i 0
0 i

)
.

For higher dimensions, the classification of real Clifford algebras is based on the fol-
lowing key result.

Theorem 8.1. As algebras,

C(k + 2, l) ≃ C(2, 0) ⊗C(l, k),
C(k + 1, l + 1) ≃ C(1, 1) ⊗C(k, l),

C(k, l + 2) ≃ C(0, 2) ⊗C(l, k).
(8.22)
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Proof : Let Q1 be a quadratic form on R2, and let e1, e2 be an orthonormal basis. Let
Q2 be a quadratic form on Rn−2. We identify Rn = R2

⊕Rn−2, and write z = x+ y ∈ Rn,
where x = ae1 + be2 and y ∈ Rn−2. Define the linear map

A:Rn −→ C(Q1) ⊗C(Q2), A(x+ y) = x ⊗1 + (e1e2) ⊗y. (8.23)

The object then is to extend A to be a Clifford algebra isomorphism from C(Q) to
C(Q1) ⊗C(Q2), by defining a suitable quadratic form Q on Rn, so that the above de-
composition is orthogonal with respect to Q. Thus we need to check that A maps the ideal
I(Q) to 0. Now A(z2) = A(Q(z)) = Q(z). On the other hand,

A(z)2 = x2 ⊗1− (e21 e
2
2) ⊗y2 + (e1e2x+ xe1e2) ⊗y = x2 −Q1(e1)Q1(e2)y

2,

where the third summand vanishes owing to the orthogonality of e1, e2 and the fact that
x is a linear combination of them. Therefore, A will extend to an isomorphism of Clifford
algebras provided we define

Q(z) = Q1(x)−Q1(e1)Q1(e2)Q2(y).

Thus if Q1 is indefinite, then Q = Q1 + Q2, while if Q1 is definite, then Q = Q1 − Q2.
This suffices to prove the result. Q.E.D.

Example 8.2. For the case of R3 with positive definite inner product,

C(3, 0) ≃ C(2, 0) ⊗C(0, 1) ≃M(2,R) ⊗C ≃M(2,C).

Using the above representation of C(2, 0) and the form (8.23) of the map A, we find an
explicit representation to be given by the Pauli matrices

1 −→̃ 1 ⊗1 −→̃ σ0 =

(
1 0
0 1

)
, e1 −→̃ e1 ⊗1 −→̃ σx =

(
0 1
1 0

)
,

e2 −→̃ e2 ⊗1 −→̃ σz =

(
1 0
0 −1

)
, e3 −→̃ e1e2 ⊗1 −→̃ σy =

(
0 − i
i 0

)
.

For example, for the Clifford algebra on anti-Minkowski space, i.e., for the metric
(+ + +−), we have

C(3, 1) ≃ C(2, 0) ⊗C(1, 1) ≃M(2,R) ⊗M(2,R) ≃M(4,R),

is isomorphic to the algebra of 4× 4 real matrices. An explicit form of this isomorphism is
given by the proof of Theorem 8.1, i.e., if we let e1, e2 be a basis for R2 with the positive
definite metric, and e′1, e

′
2 be a basis for R2 with the indefinite metric, then the above

isomorphism is

e1 −→ e1 ⊗1, e2 −→ e2 ⊗1, e3 −→ (e1e2) ⊗e′2, e4 −→ (e1e2) ⊗e′1.
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Using the earlier representations for C(2, 0) and C(1, 1) as M(2,R), we find the associated
representation of C(3, 1) to be

e1 −→̃




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


, e2 −→̃




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


,

e3 −→̃




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


, e4 −→̃




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


.

On the other hand for the Clifford algebra on Minkowski space, we have

C(1, 3) ≃ C(0, 2) ⊗C(1, 1) ≃ H ⊗M(2,R) ≃M(2,H),

is isomorphic to the algebra of 2× 2 quaternionic matrices

e1 −→̃ i ⊗1, e2 −→̃ j ⊗1, e3 −→̃ k ⊗e′1, e0 −→̃ k ⊗e′2,

e1 −→̃
(

i 0
0 i

)
, e2 −→̃

(
j 0
0 j

)
, e3 −→̃

(
0 k
k 0

)
, e0 −→̃

(
0 k

− k 0

)
.

If we use the isomorphism of H with a subalgebra of M(2,C) as given above, this leads to
one form for the Dirac matrices

e1 −→̃
(

iσx 0
0 i σx

)
, e2 −→̃

(
iσy 0
0 iσy

)
,

e3 −→̃
(

0 − iσz
− i σz 0

)
, e0 −→̃

(
0 − i σz
iσz 0

)
.

(8.24)

Alternative representations include the Dirac form

e1 −→̃
(

0 σx
−σx 0

)
, e2 −→̃

(
0 σy

−σy 0

)
,

e3 −→̃
(

0 σz
−σz 0

)
, e0 −→̃

(
σ0 0
0 −σ0

)
,

(8.25)

and the Weyl form

e1 −→̃
(

0 −σx
σx 0

)
, e2 −→̃

(
0 −σy
σy 0

)
,

e3 −→̃
(

0 −σz
σz 0

)
, e0 −→̃

(
0 σ0
σ0 0

)
.

(8.26)

For many purposes, it is the last form which is the most convenient, as the Dirac matrices
exhibit a common block structure.

All these different representations are really equivalent. This is because there is only
one irreducible representation of the algebra of n× n matrices.
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Lemma 8.3. Every irreducible representation of the matrix algebra M(n) by n× n
matrices is given by ρ(A) = SAS−1.

Idea of proof : Given a representation ρ on V , let X :Rn −→ V be any linear map. Set
S =

∑
ρ(Eij)XEij , and show that S intertwines the two representations: ρ(A)S = SA,

hence by Schur’s Lemma 7.5, S must be a multiple of the identity. We then choose X so
that S 6= 0. Q.E.D.

Another interesting example of a Clifford algebra is

C(2, 2) ≃ C(2, 0) ⊗C(2, 0) ≃M(2,R) ⊗M(2,R) ≃M(4,R),

≃ C(0, 2) ⊗C(0, 2) ≃ H ⊗H,

leading to the isomorphism
H ⊗H ≃M(4,R).

Theorem 8.1 implies that there is an eight-fold periodicity among Clifford algebras:

C(k + 8, l) ≃ C(k, l) ⊗C(8, 0), C(k, l + 8) ≃ C(k, l) ⊗C(0, 8), (8.27)

which lies at the foundation of some deep results in algebraic topology and K-theory, e.g.,
the Bott Periodicity Theorem, [11]. From this, we are able to construct a complete table
of real Clifford algebras:

k − l mod8 C(k, l) where k + l = 2m or 2m+ 1

0 M(2m,R)

1 M(2m,R) ⊕M(2m,R)

2 M(2m,R)

3 M(2m,C)

4 M(2m−1,H)

5 M(2m−1,H) ⊕M(2m−1,H)

6 M(2m−1,H)

7 M(2m,C)

Note that these algebras are simple except for k − l ≡ 1 or 5 mod 8.

For complex Clifford algebras, there is just one non-degenerate C(n) for each dimension
n, and the above results simplify:

C(2m) ≃M(2m,C), C(2m+ 1) ≃M(2m,C) ⊕M(2m,C), (8.28)

and so there is a periodicity of 2. Note the curious fact that the complex odd-dimensional
Clifford algebras do not occur as real Clifford algebras!

The Clifford algebra C(Q) comes equipped with a natural grading into odd and even
order parts, stemming from the grading of the tensor algebra, since the basic relations take
even order tensors to even order tensors. We let C+(Q) denote the even subalgebra, which
includes the scalars, but not V itself.
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Proposition 8.4. As algebras,

C+(p+ 1, q) ≃ C(q, p), C+(p, q + 1) ≃ C(p, q), (8.29)

Proof : Let Q1 be a quadratic form on Rn−1, and let Q2 be a quadratic form on R.
Form the decomposition Rn = Rn−1

⊕R, with en the normalized basis vector for R. Define
the linear map

A(x) = xen, A:Rn−1 −→ C(Q),

where Q is a suitable quadratic form on Rn, making the decomposition orthogonal. Then

A(x2) = A(Q1(x)) = Q1(x).

On the other hand,
A(x)2 = −x2 e2n = −Q(en)Q(x).

Therefore, A will extend to a map between Clifford algebras provided we define

Q(x+ y) = Q2(y)−Q2(en)Q1(x), x ∈ Rn−1, y = λen.

In other words, if Q(en) = +1, then Q1 has the opposite sign to Q, while if Q(en) = −1,
then Q2 has the same sign as Q. Q.E.D.

For example, we find

C+(3, 1) ≃ C+(1, 3) ≃ C(3, 0) ≃M(2,C),

even though C(3, 1) and C(1, 3) are not isomorphic. In general, for k > 1,

C(k, l) ≃ C+(k, l + 1) ≃ C(l + 1, k − 1),

which can be checked in the table. For complex Clifford algebras, the same proof shows
that C+(n) ≃ C(n− 1).

Clifford Groups and Spinors

There are a couple of important maps on any Clifford algebra. The transpose is defined
by

λT = λ, λ ∈ K, vT = v, v ∈ V, (xy)T = yTxT , x, y ∈ C(Q).

The automorphism

α(λ) = λ, λ ∈ K, α(v) = −v, v ∈ V, α(xy) = α(x)α(y), x, y ∈ C(Q),

is also important. Note that

C+(Q) = { x | α(x) = x } , C−(Q) = { x | α(x) = −x } .

The Clifford group G(Q) associated with a Clifford algebra C(Q) consists of all invert-
ible elements g ∈ C(Q) such that

ρ(g)v ≡ α(g)v g−1 ∈ V for all v ∈ V.
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Note that ρ defines a representation of G on the vector space V .

We let O(Q) denote the group of linear isometries of the (nondegenerate) quadratic
form Q, meaning those A ∈ GL(V ) that preserve it: Q(Av) = Q(v) for all v ∈ V , and
SO(Q) those of unit determinant. If Q is real, of signature (k, l), then O(Q) ≃ O(k, l) and
similarly for SO(Q).

Lemma 8.5. Given g ∈ G(Q), the map ρ(g) is a linear isometry of the underlying
quadratic form Q.

Proof : Note that since ρ(g)v ∈ V ,

α(ρ(g)v) = −ρ(g)v,

and hence

ρ(g)v = α(g)v g−1 = −α(α(g)v g−1) = −gα(v)α(g−1) = g vα(g)−1.

Therefore, since Q(v) is a scalar,

Q(ρ(g)v) = (ρ(g)v)2 = (α(g)v g−1)(g vα(g−1)) = α(g)v2α(g)−1

= α(g)Q(v)α(g)−1 = Q(v),

which shows that ρ(g) is a linear isometry of Q. Q.E.D.

We also define the restricted Clifford group, denote G+(Q), to be the intersection of
G(Q) with C+(Q), the space of even rank elements of the Clifford algebra.

Theorem 8.6. We have

ρ
(
G(Q)

)
= O(Q), ρ

(
G+(Q)

)
= SO(Q), ker ρ = ρ−1( I ) = K∗ ≡ K \ 0. (8.30)

Proof : Note first that V ∩ G(Q) consists of all non-isotropic vectors w ∈ V , since the
inverse of w is w/Q(w) if Q(w) 6= 0, whereas w2 = 0 if Q(w) = 0, so w ∈ G. Now, for
w ∈ V ∩ G(Q),

ρ(w)v = −w−1vw = −wvw
Q(w)

= −w
(
2Q(w, v)− wv

)

Q(w)
= w − 2Q(w, v)

Q(w)
v.

The last map is just the reflection in the hyperplane Q-orthogonal to w. The first two
results now follow from a Theorem of Cartan and Dieudonné that states that every or-
thogonal transformation of an n-dimensional space can be written as the product of m ≤ n
such reflections.

Next, to show ker ρ = K∗, we need to characterize those g ∈ G such that

α(g)v = v g, for all v ∈ V.

Write g = g+ + g−, where g± ∈ C±(Q). Then α(g) = g+ − g−. Thus the above condition
becomes

g+v = v g+, g−v = −v g−, for all v ∈ V.
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Introduce an orthonormal basis ej of V relative to Q. Given any ej , write

g+ = a+ + ej b−, where a+ ∈ C+(Q), b− ∈ C−(Q),

are such that they do not involve the basis vector ej . Then

g+ej = (a+ + ejb−) ej = a+ej −Q(ej)b−,

whereas
ejg+ = a+ej +Q(ej) b−.

Therefore, the above condition proves that b = 0, so the basis vector ej does not appear in

g+. The only elements with no basis vectors in them at all are elements of K, so g+ ∈ K∗.
A similar argument proves that g− has no basis vectors in it, so g− = 0. Q.E.D.

Given x ∈ C(Q), define
N(x) = α(x)Tx. (8.31)

For example, if x = v1v2 · · · vk is decomposable, then

N(v1v2 · · · vk) = (−1)k(vk · · · v2v1) (v1v2 · · · vk) = (−1)kQ(v1)Q(v2) · · · Q(vk)

is an element of K. However, not every element has N(x) ∈ K; for example

N(e1e2 + e3e4) = (e2e1 + e4e3) (e1e2 + e3e4) = Q(e1)Q(e2) +Q(e3)Q(e4)− 2e1e2e3e4.

Lemma 8.7. The function (8.31) defines a map N :G(Q) −→ K∗ called the induced
spin norm on the Clifford group G.

Proof : Using the previous result, we need only show that N(g) ∈ ker ρ. Note that

α(N(g)) = gTα(g).

Now
α(g)v g−1 = ρ(g)v = (ρ(g)v)T = g−T vα(g)T ,

hence
v = gTα(g)v(α(g)Tg)−1 = α(N(g))vN(g)−1 = ρ(N(g))v,

for all v ∈ V . Therefore ρ(N(g)) = I . Q.E.D.

Note that if g is any element with N(g) ∈ K∗, then we have the useful formula

g−1 =
α(g)T

N(g)
.

If g ∈ G, then this gives

ρ(g)v = g vα(g−1) =
g v gT

N(g)
.

It is not usually true, however, that N(g) ∈ K∗ implies that g ∈ G(Q) or G+(Q). For
instance, in C(2, 0),

N(e1 + λ e1e2) = (−e1 + λe2e1)(e1 + λe1e2) = λ2 − 1,
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which is nonzero for λ 6= ±1, but

ρ(e1 + λe1e2)e1 = (−e1 + λe2e1)e1 (e1 + λe1e2) = (λ2 − 1)e1 − 2λe1e2.

For a real vector space, define the groups

Pin(Q) = { g ∈ G(Q) | N(g) = ±1 } ,
Spin(Q) =

{
g ∈ G+(Q)

∣∣ N(g) = ±1
}
.

(8.32)

Theorem 8.8. The representations

ρ : Pin(Q) −→ O(Q), ρS : Spin(Q) −→ SO(Q), (8.33)

are two-to-one coverings, with ρ(A) = ρ(B) if and only if A = ±B. Moreover, ρS induces a
nontrivial double covering of SO(Q) as long as dimV ≥ 3, or dimV = 2 and Q is definite.

Proof : In the first case, it suffices to note that Pin(Q) includes all vectors v ∈ V
with Q(v) = ±1, and ρ(v) is just the reflection through the hyperplane orthogonal to V .
Moreover, ρ(A) = I if and only if A = λ ∈ R , and N(A) = λ = ±1. For the second result
we proceed the same way, using the fact that every element of SO(Q) can be written as a
product of an even number of reflections, since each reflection has determinant −1.

Note that these imply that every element of Pin(Q) can be written as v1v2 · · · vk for
k ≤ n, where Q(vi) = ±1, i.e., Pin(Q) is generated by the unit “sphere” in V . Similarly
for Spin(Q), except that k must be even.

The nontriviality of the covering follows from the fact that we can connect 1 and −1
by the curve

cos t+ e1e2 sin t, 0 ≤ t ≤ π,

which is contained in Spin(Q) as long as Q(e1)Q(e2) > 0, Q(e1, e2) = 0. Therefore,
Spin(Q) is the simply connected covering group for SO(Q). Q.E.D.

Example 8.9. Consider the case V = R3, with positive definite inner product. Then
C+(3, 0) ≃ H, and consists of all elements of the form

x = a+ be1e2 + ce3e1 + de2e3.

Note first that ρ(x)v ∈ V for all v ∈ V . We find

N(x) = (a+ be2e1 + ce1e3 + de3e2)(a+ be1e2 + ce3e1 + de2e3) = a2 + b2 + c2 + d2,

hence every nonzero element is in G+(3, 0). The representation ρ :H∗ −→ SO(3) reproduces
the well known correspondence between quaternions and rotations. Alternatively, we can
identify 1, e2e3, e3e1, e1e2 respectively with the unitary matrices

σ0 =

(
1 0
0 1

)
, iσx =

(
0 i
i 0

)
, iσy =

(
0 1

−1 0

)
, iσz =

(
i 0
0 − i

)
. (8.34)

Also note that C+(3, 0) is the same as the real matrix algebra spanned by the Pauli matrices,
and the G+(3, 0) is the subgroup of invertible such matrices since

det(aσ0 + bσx + cσy + dσz) = a2 + b2 + c2 + d2.

Furthermore, we can identify the double covering group Spin(3) with the group SU(2) as
before.
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In the case of Minkowski space, the general element of C+(1, 3) has the form

x = a+ be1e2 + ce1e3 + de2e3 + ee0e1 + f e0e2 + g e0e3 + he0e1e2e3.

Then

N(x) = (a2 + b2 + c2 + d2 − e2 − f2 − g2 − h2) + 2(ah− bg + cf − de)e0e1e2e3.

We also find that ρ(x)v ∈ V for all v ∈ V if and only if N(x) ∈ R. Therefore, G+(1, 3)
consists of those elements with

a2 + b2 + c2 + d2 6= e2 + f2 + g2 + h2, ah− bg + cf − de = 0.

We can identify C+(1, 3) with the algebra of 2× 2 complex matrices. The explicit isomor-
phism is given by identifying 1, e2e3, e1e3, e1e2 with the matrices (8.34) as before, along
with identifying e0e1, e0e2, e0e3, e0e1e2e3, respectively, with the matrices

σx =

(
0 1
1 0

)
, −σy =

(
0 i
− i 0

)
, σz =

(
1 0
0 −1

)
, iσ0 =

(
i 0
0 i

)
.

Under this identification

N(x) = Re (detX) + Im (detX) e0e1e2e3,

we see that G+(1, 3) is the set of such matrices which have real, non-zero determinant.
Furthermore, we can identify Spin(1, 3) with the group

{X | detX = ±1 } = SL(2,C) ∪ SL−(2,C),

which is just two disconnected copies of SL(2,C). The representation ρ takes G+(1, 3) to
SO(1, 3), which also has two connected components. Finally, G(1, 3) maps onto the full
Lorentz group; the formulas are left to the reader.

Representations of the Lorentz Group
References : [29], [37], [38].

The (finite-dimensional) real representation theory of SL(2,C) proceeds as follows.
First note that if we consider SL(2,C) as a complex Lie group, then its complex analytic
representations will correspond to the real analytic representations of any real form. In
particular, we can use the tensor representation theory of SL(2,R), or, better the repre-
sentation theory of the compact Lie group SU(2), both of which are real forms of SL(2,C).
Thus the complex finite-dimensional representations of SL(2,C) are indexed by a half-
integer j = 0, 12 , 1,

3
2 , . . . . We can explicitly realize these representations on the space of

homogeneous polynomials p(z), where z = (z1, z2) ∈ C2, of degree 2j by

ρj(A)p(z) = p(A−1z). (8.35)

It is a preferable to use homogeneous (projective) coordinates, so write

f(z) = p(z, 1) = z−2j
2 p(z1, z2), where z = z1/z2,
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so that f is an inhomogeneous polynomial in z having degree 2j. The representation ρj

becomes the linear fractional representation

ρj(A)f(z) = (γz + δ)2jf

(
αz + β

γ z + δ

)
, A−1 =

(
α β
γ δ

)
. (8.36)

Next consider the complex representations of SL(2,C) considered as a real Lie group.
In general if g is any complex m-dimensional Lie algebra with real form g

R
, let ĝ denote it

considered as just a real Lie algebra, of dimension 2m. If A1, . . . , Am form a basis for g
R
,

then they also form a complex basis for g. Therefore, A1, . . . , Am, B1 = iA1, . . . , Bm =

iAm, form a real basis for ĝ ≃ g
R

⊕ i g
R
. The complexification of ĝ, denoted as ĝ

C
is

therefore isomorphic to g ⊕g, and we can use Ck = Ak + iBk and C∗k = Ak − iBk as a
basis implementing this decomposition. Therefore, the analytic irreducible representations
of ĝ are realized as tensor products of irreducible representations of g.

In our case, this implies that the Lorentz algebra so(1, 3) is a real form of the complex
Lie algebra sl(2,C) ⊕sl(2,C), whose other real forms include su(2) ⊕su(2). The irreducible
representations of so(1, 3) are parametrized by two integers or half integers:

ρj,k = ρj ⊗ρk, where j, k = 0, 12 , 1,
3
2 , . . . .

It is usually more convenient to identify the second factor with its complex conjugate
(since the generators are complex conjugates of the generators for the first factor), and so
we write

ρj,k = ρj ⊗ρk, where j, k = 0, 12 , 1,
3
2 , . . . .

Note that the dimension of ρj,k is (2j + 1)(2k + 1). The complex conjugate of the rep-
resentation ρj,k is the representation ρk,j. In particular, the only real representations are
the ones where j = k.

The Clebsch-Gordan series (7.63) for tensor products of these representations are
readily computed from those of su(2), so

ρj,k ⊗ρj
′,k′ =

j+j′⊕

i=| j−j′ |

k+k′⊕

l=| k−k′ |

ρ i,l. (8.37)

The restriction of ρj,k to the subgroup SU(2) ⊂ SL(2,C) decomposes as ρj ⊗ρk, since
SU(2) is essentially the diagonal subgroup for the direct sum decomposition.

The standard representation of the Lorenz group L = SO(1, 3) on four-dimensional
Minkowski space is equivalent to the irreducible representation ρ1/2,1/2. One way to verify
this (see below for an explicit approach) is to note that this representation is clearly
irreducible. The only four-dimensional representations of so(1, 3) are ρ1/2,1/2, ρ3/2,0, and
ρ0,3/2. But on Minkowski space, the subgroup SO(3) (which corresponds to SU(2) in the
double covering) decomposes into a physical representation and a trivial representation
on the time axis, i.e., has the representation ρ1 ⊕ρ0. The only one of the above three

representations which has the same property is ρ1/2,1/2; the other two remain irreducible
upon restriction to SU(2).
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In view of (8.35), the real representation ρj,k of SL(2,C) can be realized on the space
of homogeneous polynomials p(z, z) of degree 2j in z = (z1, z2) and 2k in z = (z1, z2) by

ρj,k(A) p(z, z) = p(A−1z, A−1 z). (8.38)

As above, it is preferable to use homogeneous coordinates, and write

f(z, z) = p(z, 1, z, 1) = z−2j
2 z−2k

2 p(z1, z2, z1, z2), where z = z1/z2,

so that f is an inhomogeneous polynomial in z, z, having degree (2j, 2k). The representa-
tion ρj,k becomes the linear fractional representation

ρj,k(A)f(z, z) = (γz + δ)2j ( γz + δ )2kf

(
αz + β

γz + δ
,
αz + β

γz + δ

)
, A =

(
α β
γ δ

)
. (8.39)

Thus, to check the earlier assertion about the representation ρ1/2,1/2 being that of the
usual Lorentz group, we use the space of complex bilinear polynomials

az1z1 + bz1z2 + cz2z1 + dz2z2.

as the basic representation space ρ1/2,0 ⊗ρ0,1/2. This can be identified with the space of
2 × 2 complex matrices X , which transform according to X 7−→ ATXA under SL(2,C).
Therefore the determinant is invariant. The subspace H of Hermitian matrices is the real
form of this representation, which is equivalent to its complex conjugate, and hence real;
we use the earlier formulation (8.8) to identify this quantity with the Minkowski metric,
whereby

(a, b, c, d) corresponds to (c t+ z, x+ i y, x− i y, c t− z).

Since SL(2,C) is not compact, not all of its irreducible representations are finite-
dimensional. For example, the analogous representation

ρj,k(A)f(z, z) = (γz + δ)j+ i c−1 ( γz + δ )−j+ i c−1f

(
αz + β

γz + δ
,
αz + β

γz + δ

)
, (8.40)

where j = 0, 12 , 1, . . . , and c is any real number, is defined on the Hilbert space of L2

functions of the real variables x, y, where z = x + i y, and defines an irreducible infinite-
dimensional unitary representation. The only finite-dimensional unitary representation is
the trivial representation ρ0,0. A complete classification of these and other representations
can be found in [38]. In general, the representations of the group SL(2,C) are double-

valued representations of the proper Lorentz group L↑
+. Note that this will be the case if

and only if ρ(− I ) = I , where − I is the element of SL(2,C). From the above realization,
this clearly holds if and only if j + k is an integer.

Next consider the group L↑ generated by L↑
+ and the parity reversal matrix P =

diag (1,−1,−1,−1). Recall that P corresponds to the transformation S ◦C acting on the
space H of Hermitian matrices. On the associated representation spaces, this transforma-
tion is equivalent to the operation

z1 7−→ z2, z2 7−→ −z1,
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which maps the representation ρj,k to the conjugate representation ρk,j. If j 6= k, then
we form an irreducible representation by summing these two representations: ρj,k ⊕ρk,j; it
can be shown that, for j 6= k, this is an irreducible representation of L↑. If j = k, then this
representation decomposes into two irreducible representations; the representation space
splits into invariant subspaces

V j,j ⊕V j,j = V j,j+
⊕V j,j− , V j,j± =

{
(v,±v)

∣∣ v ∈ V j,j
}
.

The two resulting representations, ρj,j+ and ρj,j− are then irreducible representations of the
simply connected covering group for L↑. (Unfortunately, our use of ± does not quite agree
with the standard use; see [37].) These representations are single-valued if and only if
j + k is an integer. The usual representation of L↑ on Minkowski space is equivalent to

ρ
1/2,1/2
+ , since we identify a 2× 2 matrix with the bilinear polynomial

a(z1z1 + w1w1) + b(z1z2 + w1w2) + c(z2z1 + w2w1) + d(z2z2 + w2w2),

where (a, b, c, d) represents (ct + z, x + i y, x − i y, ct − z). The action of P , which then
takes z1 to w2 and z2 to −w1, and vice versa, has the effect

(a, b, c, d) 7−→ (d,−b,−c, a),
which is the same as the parity reversing map P on (t, x, y, z).

The full Lorentz group is obtained from the group L↑ by adding in total inversion − I .
Since this commutes with all elements, and its square is the identity, to each representation
of L↑ there corresponds two representations of L, one where total inversion is represented
by the identity I ; the other where it is represented by − I .

Relativistic Spinors

For the Lorentz group, one introduces two kinds of basic spinors: those corresponding
to the standard representation ρ1/2,0 = ρ1/2 of SL(2,C) on the two-dimensional vector
space C2, and those corresponding to the complex conjugate representation ρ0,1/2. These
are then multiplied together in the obvious way to give spinors of higher rank. Traditionally,
one uses regular spinor indices to denote the former and dotted spinor indices to denote
the latter. Thus, the representation space of ρj,k is the same as the space of completely
symmetric spinors in j undotted and k dotted indices. In particular, ordinary vectors are
written as spinors with one undotted and one dotted index. Therefore, two-dimensional
spinors in the representation ρ1/2,0 will have components (a1, a2) corresponding to the

linear polynomial a1z1+a2z2, whereas those in the representation ρ0,1/2 will have the dotted
components (a �

1, a
�

2) corresponding to the linear polynomial a �

1 z1 + a �

2 z2. The ordinary
vectors in Minkowski space will have the four components (a1

�

1, a1
�

2, a2
�

1, a2
�

2) corresponding
to the bilinear polynomial

a1
�

1 z1z1 + a1
�

2 z1z2 + a2
�

1 z2z1 + a2
�

2 z2z2.

In terms of the ordinary x, y, z, t coordinates, we use the identification of this polynomial
with a 2× 2 complex matrix, and restrict to the Hermitian matrices to deduce

a1
�

1 = ct− z, a1
�

2 = x+ i y, a2
�

1 = x− i y, a2
�

2 = ct+ z. (8.41)
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Lorentz–Invariant Equations

Since the fundamental symmetry group of special relativity is the Lorentz group (or
its double covering), it is of great interest to classify equations which are invariant under
it. In the present approach, we will look for first order equations of the form

(AµPµ +B)ψ = 0, Pµ = i ~ ∂µ, (8.42)

where Aµ, B are matrices, which are invariant under some representation of SL(2,C).

Note first that the differential operators Pµ transform under SL(2,C) according to the

representation ρ1/2,1/2. Indeed, if q̃ = Aq is any change of variables, then the derivatives
transform according to the contragredient representation ∂̃ = A−T ∂. Observe that if
A ∈ SL(2,C), then

A−T = J AJ−1 = J AJ, where J =

(
0 1
−1 0

)
.

Therefore, passing to the contragredient representation of SL(2,C) amounts to changing
bases by

z1 7−→ z2, z2 7−→ −z1,

and similarly for the complex conjugate representation. Thus, in the spinor form of the
representation ρj,k, the contragredient representation is obtained by interchanging the
1’s and 2’s, with appropriate plus or minus sign. In particular, the spinor form for the
momenta are the operators

∂1
�

1 = c ∂t + ∂z, ∂1
�

2 = − ∂x + i ∂y, ∂2
�

1 = − ∂x − i ∂y, ∂2
�

2 = c ∂t − ∂z. (8.43)

If the wave function ψ transforms according to the irreducible representation ρj,k,
then the associated momenta Pµψ will transform according to the representation

ρ1/2,1/2 ⊗ρj,k = ρj+1/2,k+1/2
⊕ρj−1/2,k+1/2

⊕ρj+1/2,k−1/2
⊕ρj−1/2,k−1/2, (8.44)

with obvious modifications if j or k is 0. Now if B is invertible, we can rewrite (8.42) in
the form

KµPµ ψ = λψ. (8.45)

The parameter λ represents the mass. If we decompose ψ into irreducible representation
components, we see that, for massive particles λ > 0, the equation (8.45) will couple the
ρj,k component of ψ to the components in the representations appearing in (8.44), and thus
ψ cannot transform according to a single irreducible representation of sl(2,C). We deduce
that a Lorentz-invariant equation for a particle with mass will involve a combination of
various representations. On the other hand, massless particles, i.e., when λ = 0, can be
formed from a single irreducible representation.

For example, if we start out with ψ a scalar, i.e., transforming by the trivial represen-
tation ρ0,0, then Pµψ = ψ,µ will transform according to the representation ρ1/2,1/2. The

components of Pνψ,µ will transform like ρ1/2,1/2 ⊗ρ1/2,1/2, and to obtain a simple closed
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system we need to single out the ρ0,0 summand of this tensor product. This is done us-
ing the Clebsch-Gordan coefficients computed in (8.37). The result is the Klein-Gordon
equation (8.13) written in the first order form

Pµψ = ψ,µ, Pµψ,µ = λψ. (8.46)

This describes the simplest system for a particle of spin 0.

For a particle of spin 1
2 , we need to look at the representation ρ1/2,0. To construct a

Lorentz-invariant equation for a field ψ transforming according to this representation, we
need to consider

ρ1/2,1/2 ⊗ρ1/2,0 = ρ1,1/2 ⊕ρ0,1/2.

Thus, if we single out the ρ0,1/2 component, we can obtain a massless two-component
equation whose left hand side transforms according to ρ0,1/2. This is the Weyl equation,

σµPµψ = 0, (8.47)

where the σµ’s are the Pauli matrices (7.32), which was originally rejected as a physical
equation, since it does not conserve parity. However, it was subsequently vindicated when
the neutrino was observed not to conserve parity, and is used there.

An electron, however, has spin 1
2 , but does conserve parity. Therefore, it should

transform under the four-dimensional irreducible representation ρ1/2,0 ⊕ρ0,1/2. Similar
arguments lead to a system of two coupled sets of Weyl equations:

σµPµψ = λ ψ̃, gµνσνPµψ̃ = λψ, (8.48)

where the λ’s are equal to maintain invariance under space inversion. This is another form
of the Dirac equation, based on the Weyl representation (8.26) for the Dirac matrices, i.e.,
this is equivalent to

γµPµψ = mψ,

where ψ represents the pair of spinors (ψ, ψ̃). The individual components of ψ satisfy the
Klein-Gordon equation (8.13).

Another important example of an invariant equation is Maxwell’s equations for an
electromagnetic field in a vacuum. The details can be found in the references.

Symmetries of the Dirac Equation

The Dirac equation (8.14) is invariant under the full Lorentz group. Indeed, by our
results on the Clifford group, we know that the Lorentz group acts on the Dirac matrices,
which generate the Clifford algebra, according to the standard representation, including
the discrete symmetries of parity reversal, P , and time reversal, T . In addition, it also has
the symmetry of charge conjugation, denoted by C.

Note that each Dirac matrix anti-commutes with the product

γ5 = γ0γ1γ2γ3. (8.49)
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We also need a matrix C which transforms γµ to its complex conjugate γµ, i.e.,

γm = C γµC−1.

Such a matrix exists since both γµ and γµ will be realizations of the Clifford algebra for
Minkowski space (which is real). In the Weyl representation (8.26),

C =

(
0 iσy

− i σy 0

)
, iσy =

(
0 1

−1 0

)
. (8.50)

Now the operator of charge conjugation is the composition of C and complex conjugation.
It leaves the Dirac matrices invariant, and transforms the wave function to its complex
conjugate. Therefore it transforms the Dirac equation under an external field to the same
equation, but with the sign of the charge e reversed, hence its name.

The discrete symmetries P,C, T played a key role in the development of relativistic
quantum mechanics. It was originally thought that every system always admits all three
as symmetries. However, in the early 1950’s, it was experimentally discovered that the
weak interaction does not conserve parity in general, so non-parity-symmetric equations
such as the Weyl equation (8.47) for the neutrino are allowed. However, there is a general
result, the PCT Theorem, that states that all theories must have the combined operator
P ◦C ◦T as a symmetry, even if they do not admit the individual operators.

Relativistic Spin

Note that the action of the Lorentz group SO(1, 3), or, rather, SL(2,C), on a Dirac
wave function ψ is given by the representation

ρ(A)
[
ψ(q)

]
= ρ1(A)ψ(ρ2(A)

−1q),

where ρ1 = ρ1/2,0 ⊕ρ0,1/2 is the spin action, and ρ2 = ρ1/2,1/2 is the usual representation
on Minkowski space. The corresponding conservation law for this action will consist of two
pieces. For the rotation group SU(2), we have the usual angular momentum

Jν = xα∂β − xβ ∂α,

and the spin components
Sν = 1

4 [γα, γβ ].

Note that Sν = 1
2 σν when α 6= β. Thus we re-derive the conservation of total angular

momentum L = J+S for the Dirac equation. In particular, the electron spin of 1
2 appears

as it should.

Particle in an Electromagnetic Field

As with the non-relativistic theory, we obtain the corresponding equation for an elec-
tron or particle of charge e in a electromagnetic field with potential Aλ by replacing the
ordinary momentum operator Pλ = i ~ ∂λ by the perturbed operator

P̂λ = i ~ ∂λ − eAλ.
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The Dirac equation in this case is

(
γλP̂λ −m

)
ψ = 0. (8.51)

Each component of ψ will then satisfy a scalar wave equation, which, however, is not
obtained by replacing the momentum operators in the Klein-Gordon equation by their
perturbed form! The spin will now appear, as follows. Operating on the above equation
by γλP̂λ +m, we find

0 = (γλP̂λ +m)(γµP̂µ −m)ψ = (γλγµP̂λP̂µ +m2)ψ

=
(

1
2

(
γλγµ + γλγµ

)
P̂λP̂µ − 1

2γ
λγµ [ P̂λ, P̂µ ] +m2

)
ψ

= (gλµP̂λP̂µ + i ~eSλµFλµ +m2)ψ,

where S is the spin operator, and Fλµ = ∂λAµ − ∂µAλ is the electromagnetic field; the
electric components E correspond to the case 0 = λ < µ, the magnetic components H when
0 < λ < µ. Thus we recover the appropriate spin terms, which were added in somewhat
ad hoc in the non-relativistic Schrödinger theory, directly from the Dirac equation!

Solutions of the Dirac Equation

We begin by considering the simplest solutions of the Dirac equation, which are plane
waves (free particles), and are given by complex exponentials of the form

ψ(t, x) = u e− i 〈p ,q 〉. (8.52)

Here p is the relativistic momentum, q the position, and u 6= 0 is a non-zero vector which
must be determined by substituting into the Dirac equation. This requires that

(γµpµ −mc I )u = 0, (8.53)

hence the matrix γµpµ −mc I is not invertible. But

(γµpµ −mc I )(γµpµ +mc I ) = |p |2 −m2c2 = p2 −m2c2,

hence the matrix is not invertible if and only if

p2 = m2c2, i.e., E2 = c2p2 +m2c4,

which shows that the relativistic formula for the energy has been preserved. The Dirac
equation has both positive and negative energy solutions, corresponding to

E = ±
√
c2p2 +m2c4 .

Each of these is doubly degenerate because of the charge conjugation (spin in direction
of the momentum) symmetry. Therefore the eigenvalues of the Hamiltonian for this value
of the energy are classified by the sign of the energy ±E and the sign of the spin ± 1

2 .
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If we use the Dirac representation (8.25), then the explicit solution to (8.53) when the
momentum is parallel to the z axis is a linear combination of the solutions

ψ++ =




1
0
α
0


 , ψ+− =




0
1
0
−α


 , ψ−+ =




−α
0
1
0


 , ψ−− =




0
α
0
1


 ,

where

α =
cp

E +mc2
=

√
E −mc2

E +mc2
.

The first two have positive energy, indicated by the first +; the second sign indicates the
sign of the spin. The normalization factor for all these solutions is

√
2E/(E +mc2). In

the positive energy solutions, the first two components are called the “large components”,
and the second two “small components”, since, in the non-relativistic limit, α is small.

Spherically Symmetric Potential

The motion of an electron in an atom is a special case of the motion of a particle in
a spherically symmetrical potential. The Dirac equation in this case is

[
γµPµ −mc+ V (r)

]
ψ = 0. (8.54)

As in the non-relativistic Schrödinger equation, one looks for solutions which are joint
eigenfunctions of the angular momentum operators J2, Jz, and the parity reversal P , i.e.,

J2ψ = j(j + 1)ψ, Jzψ = lψ, P ψ = (−1)j+̟/2ψ,

where j is the angular momentum quantum number, l the magnetic quantum number, and
̟ = ±1 indicates the parity of the state. Separating variables in the Dirac equation leads
to a solution of the form

ψ(t, r, ϕ, θ, t) =
e iEt/c

r

(
α(r)Y(ϕ, θ)

β(r) Ỹ(ϕ, θ

)
, (8.55)

where E is the energy, Y(ϕ, θ), Ỹ(ϕ, θ) are suitable spherical harmonics combined with
spin components for the two representations ρ1/2,0 and ρ0,1/2 respectively. The functions
α(r), β(r) satisfy the system of first order ordinary differential equations

−~α′ +
̟(j + 1

2
)

r
α =

[
E

c
−mc− V (r)

]
β,

~ β′ +
̟(j + 1

2 )

r
β =

[
E

c
+mc− V (r)

]
α,

(8.56)

For V (r) ≡ 0 (i.e., a free particle), the solution to this system can be expressed in terms
of Bessel functions. For the Coulomb potential V (r) = −Z e2/r, a formal series solution
takes the form

α = rse−κr(a0 + a1r + · · · ), β = rse−κr(b0 + b1r + · · · ), (8.57)
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where, from the indicial equation,

κ =

√
m2c4 − E2

c2
, s =

√(
j + 1

2

)2 − Z2e4 .

As with the non-relativistic Schrödinger equation, it can be proved that the series (8.57)
will correspond to a bound state if and only if it terminates. Calculating the recursion
relation for the coefficients, we find that this happens precisely at the energy levels

~2En,j =
mc2

√
1 +

Z2e4
(
n+ s− j − 1

2

)2

. (8.58)

If we expand this in inverse powers of n, we find

En,j =
mc2

~2

[
1− Z2e4

2n2
− Z4e8

2n4

(
n

j + 1
2

− 3

4

)
+ · · ·

]
. (8.59)

The first term is the relativistic rest mass of the electron, which must be ignored in any non-
relativistic calculation of energy levels. The second term coincides with the non-relativistic
formula for the energy levels of the hydrogen atom; in particular it retains the accidental
degeneracy in that it does not depend on the orbital angular momentum quantum number
j. The following term is the relativistic correction to the energy levels. Note that the
energy level is slightly decreased, with the larger decrease happening for smaller angular
momenta j. This agrees broadly with the experimental results on the fine structure of the
spectrum. The agreement, however, is not perfect, and additional corrections, to account
for the so-called Lamb shift, are based on “radiative corrections” taking into account the
interactions between the electron, the nucleus, and the quantized electromagnetic field.

Non-relativistic Limit

In the non-relativistic limit, the energy E differs little from the relativistic rest energy,
i.e., the kinetic energy K satisfies

K = E −mc2 ≪ mc2.

This implies that the velocity of the particle is small:

K

m
= 1

2
ν2 ≪ 1.

In this case the small components of the wave function ψ have size O(v/c).

The easiest way to compute the non-relativistic limit is with the Dirac form (8.25) of
the Dirac matrices, where

γ0 −→̃
(
σ0 0
0 −σ0

)
, γk −→̃

(
0 σk

−σk 0

)
.

1/3/23 155 c© 2023 Peter J. Olver



The relativistic energy of the electron will includes its relativistic rest energy mc2, which
must be excluded to arrive at the non-relativistic approximation. Thus we set

ψ =

(
ϕ
χ

)
exp

(
− imc2t

~

)

for the wave function, where ϕ is the large and χ the small component. Substituting into
the Dirac equation, we deduce a system of two two-component equations

i ~ ∂tϕ+ c σkPkχ = 0, ( i ~ ∂t + 2mc2)χ+ c σkPk ϕ = 0, (8.60)

which are so far identical with the Dirac equation. Now in the second system, only the
term 2mc2χ is comparable in magnitude to ϕ, so we can neglect the first term, solve for
χ and substitute into the first system. This gives

i ~ ∂tϕ =
1

2m
(σkPk)

2ϕ.

However, using the identity

(σkak)(σ
kbk) = a · b+ iσ · a ∧ b,

we deduce that the system reduces to

i ~ ∂tϕ = − 1

2m
PkP

k ϕ,

i.e., it decouples into a pair of scalar Schrödinger equations.

If we perform the same analysis for an electron in a magnetic field, with four-potential
A = (E,B), then an additional term due to the cross product in the above identity enters
the equation:

i ~ ∂tϕ =

[
1

2m

(
Pk −

e

c
Bk

)2
+ eE − e~

2mc
σk(curlB)k

]
ϕ. (8.61)

The additional term coming from the curl of the magnetic potential is exactly the terms
introduced ad hoc earlier to account for the electron spin. Thus the Dirac theory, in the
non-relativistic limit, reduces to the Pauli theory!

A significant problem is to figure out what to do with the negative energy states
predicted by the Dirac equation. Dirac postulated that all these states are full, and so, by
the Pauli exclusion principle, no positive energy states can cross over. This is referred to as
the “Dirac sea”. However, this does allow the possibility of a negative energy wave function
becoming one with positive energy, leaving behind a hole in the Dirac sea. These holes
correspond to positrons, but were initially discounted by Dirac due to lack of experimental
evidence. The theory was dramatically vindicated after their discovery the following year.
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