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Abstract

We prove the convergence of normal form series for suitably nonsingular analytic
submanifolds under a broad class of infinite-dimensional Lie pseudo-group actions. Our
theorem is illustrated by a number of examples, and includes, as a particular case, Chern
and Moser’s celebrated convergence theorem for normal forms of real hypersurfaces with
trivial isotropy. The construction of normal forms relies on the equivariant moving
frame method, while the convergence proof is based on the realization that the normal
form can be recovered as part of the solution to an initial value problem for an involutive
system of differential equations, whose analyticity is guaranteed by the Cartan–Kähler
Theorem.
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1 Introduction

In general, a normal form, also known as a canonical form, is defined as a simple representa-
tive element chosen from an equivalence class of objects. The identification of a normal form
serves to simplify the treatment of such objects, and also solves the equivalence problem;
namely, two objects are equivalent if and only if they have the same normal form. A simple
algebraic example is the Jordan canonical form, which represents the similarity class of a
square matrix, [58]. In dynamical systems, [45, 46], normal forms are extensively used to
study bifurcations, classify singular points, and determine the behavior of solutions.

In the present paper, we focus on the problem of determining normal forms of analytic
p-dimensional submanifolds under the action of a Lie pseudo-group, which includes the case
of Lie group actions. Such problems arise in a wide range of applications, including classical
invariant theory, [49], ordinary differential equations, [17,29,62], partial differential equations,
[7, 44], differential operators, [31], the calculus of variations, [30, 32, 34], control theory, [22],
nonholonomic geometry, [15], image processing, [4,8,26], and many more. Normal forms can
be algorithmically constructed using the method of equivariant moving frames, [18,41,52,54],
which produces formal power series whose non-constant Taylor coefficients provide a complete
set of independent differential invariants of the pseudo-group action on submanifolds. Our
main result is a theorem guaranteeing the convergence of such formal power series under
rather general conditions on the Lie pseudo-group action in the infinite-dimensional case —
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since convergence in the case of finite-dimensional Lie group actions is immediate — and on
the cross-section used for the moving frame construction.

Our results were inspired by the seminal paper of Chern and Moser, [12], that constructed
normal form power series for nonsingular analytic real hypersurfaces in complex manifolds,
and then proved their convergence. This particular equivalence problem was first studied
by Poincaré in [59], who gave two heuristic counting arguments that indicated that two real
hypersurfaces in C2 are, in general, biholomorphically inequivalent, and raised the question
of finding the invariants that distinguish real hypersurfaces. This question was then solved
in the two-dimensional case by Cartan, [9], and, subsequently, in higher dimensions by Chern
and Moser, [12]. Their analysis was based on an ingenious combination of Cartan’s equiva-
lence method and an innovative convergence proof, based on their method of chains, which
relies on the observation that the successive transformations mapping a regular hypersur-
face to its normal form can be characterized as solutions to ordinary differential equations,
and are therefore analytic. On the other hand, Kolář, [35], produced examples of singular
hypersurfaces whose normal form power series are divergent, thus indicating the subtlety
of the convergence issue. The normal form approach promoted by Chern and Moser has
inspired many developments in CR geometry, [3, 36, 39, 66], and has also been applied to
differential equations, [20, 38, 43, 61], control systems, [60], and the geometry of submani-
folds, [5, 13, 24, 25, 52]. In the authors’ previous paper [57], Chern and Moser’s analysis was
extended to construct normal form power series for singular hypersurfaces by applying the
equivariant method of moving frames for Lie pseudo-groups, [54]. However, the convergence
of the resulting power series continued to rely on the Chern–Moser chain-based arguments
that only apply to a limited range of problems; see, for instance, [16,20,36–39,42]. The present
paper grew out of our inability at the time to provide an independent proof of convergence.

In this paper we establish a new proof of convergence, that applies in great generality,
and includes Chern and Moser’s convergence theorem for normal forms of real hypersurfaces
with trivial isotropy as a special case. Our result is based on characterizing the normal
form as part of the solution to a suitable involutive initial value problem, whose solutions
are analytic as a consequence of the Cartan–Kähler existence theorem. Since the theory
of involutive differential equations is at the heart of our proof, we begin the paper with
an introduction to the general theory, as developed in [19, 63]. We will use a purely partial
differential equation version of the Cartan–Kähler existence theorem, which thus circumvents
all the differential form constructions that appear in most other treatments, e.g., [6, 48].

There are four key steps in our argument. The first is to recall that every analytic
Lie pseudo-group is characterized by an involutive system of partial differential equations
known as its determining equations, [53, 64], in that every local diffeomorphism belonging
to the pseudo-group is a solution to the determining equations and conversely. One of
our key innovations is to formulate a system of partial differential equations satisfied by
the restriction of the pseudo-group transformations to a prescribed submanifold, which we
call the reduced determining equations. If the pseudo-group satisfies a certain reducibility
condition, we show, using the Cartan–Kuranishi Prolongation Theorem, that the reduced
determining equations are involutive, and, moreover, their first p Cartan characters are equal
to those of the Lie pseudo-group determining equations. Fortunately, a very wide range of Lie
pseudo-groups are reducible, including all those that act eventually freely on an open subset
of the submanifold jet space, which are precisely the pseudo-groups that can be handled by
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the equivariant method of moving frames, [54, 56]. The next step is to rewrite the reduced
determining equations in an equivalent form, which we call the normal form determining
equations, which have the property that part of their solution is the normal form of the
submanifold upon which we based the reduction. Since the rewriting is simply a change of
variables, involutivity of the normal form determining equations is assured. The final step
is to apply the method of equivariant moving frames to prescribe formally well-posed initial
conditions for the normal form determining equations. These initial conditions are given
by what we call a well-posed cross-section defining the moving frame. A well-posed cross-
section is a refinement of the notion of algebraic cross-section introduced in [55], the key
difference being that a well-posed cross-section is determined with respect to a Pommaret
basis, while an algebraic cross-section is established using a Gröbner basis. In doing so, we
show that once the reduced pseudo-group action becomes free at order nf , the moving frame
construction, and thus the prescribed initial conditions, is compatible with the involutivity
of the normal form determining equations starting at order nf + 1. This enables us to
appeal to the Cartan–Kähler Theorem to demonstrate that the solution to the normal form
determining equations is analytic, which, in particular, implies the analyticity of the normal
form and hence convergence of the power series constructed by the moving frame algorithm.
Moreover, our proof sheds new light on Chern and Moser’s notion of chains used to prove
the convergence of the normal forms constructed within their paper, [12]; see also [16, 42].

To the best of our knowledge, our convergence theorem provides the most general result
available in the literature. All related works on the subject prove the convergence of power
series normal forms within a specific context, [16,20,36–38]. In CR geometry, one of the most
general convergence result recently appeared in the work of Lamel and Stolovitch, [39], where
the convergence of normal form power series for a class of nondegenerate CR submanifolds
subject to certain constraints on the normal form was established. Their results, however,
only apply to a very particular family of pseudo-group actions.

The equivariant approach to moving frames [18,41,52,54] that underlies the final stage of
our construction generalizes the classical method due to Cartan, [10, 14], and is completely
algorithmic. The version used here differs from the original implementations introduced
in [18] for general Lie group actions and [54, 55] for infinite-dimensional Lie pseudo-groups,
in that it is based on the action of the reduced pseudo-group instead of the original pseudo-
group. That said, both implementations yield the same differential invariants. In [52], the
moving frame construction was reinterpreted as the specification of a normal form for sub-
manifolds under the pseudo-group action. The paper [54] ends with two examples of the
normal form construction for relatively simple infinite-dimensional Lie pseudo-group actions,
although, being concerned with the algebraic formulation of the method, the resulting power
series were only formal, and the question of convergence was not considered. We note that
Arnaldsson, [1, 2], has recently combined equivariant moving frames with Cartan’s equiva-
lence method for solving equivalence problems, basing his method on involutive bases for
polynomial ideals.

Remark 1.1. Our results are demonstrated by a running example also considered in [53–
55]. In the final section, we present a number of further examples illustrating our methods
and results, including revisiting the Chern-Moser example of nonsingular real hypersurfaces.
Applications to additional substantial pseudo-group actions will be the subject of subsequent
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papers.

2 Jet Bundles and Partial Differential Equations.

In this section we review the standard geometric language of jet spaces for studying systems
of differential equations, and present the basic operations of prolongation and projection.
While many of our considerations hold in more general contexts, we work in the analytic
category throughout as we will rely on the Cartan–Kähler Theorem to prove the convergence
of normal form power series.

Let X be an analytic p-dimensional manifold, and π : M → X an analytic fiber bundle
with q-dimensional fibers. Locally, the total space M is isomorphic to the Cartesian product
X × U ⊂ Rp × Rq. Accordingly, we introduce the local coordinates z = (x, u) ∈ M with
x = (x1, . . . , xp) ∈ X parametrizing the base space, and so will play the role of independent
variables, and u = (u1, . . . , uq) ∈ U the fibers, which will be the dependent variables in our
system of differential equations. In the following, we let m = p + q denote the dimension of
the total space M .

In general, given two analytic manifolds, say X and U , and an integer 0 ≤ n < ∞, we
let Jn = Jn(X ,U) denote the n-th order jet space, whose points (jets) represent equivalence
classes of local functions u : X → U up to n-th order contact, or, equivalently, possessing
the same order n Taylor series at the base point x, [48]. In particular J0 = J0M = M .
In the above framework, we can identify such functions with local sections of M → X , and
Jn(X ,U) ⊂ JnM is an open subset (coordinate chart) of the jet bundle JnM of sections of the
fiber bundle. Even more generally, the graphs of sections form p-dimensional submanifolds of
M that are transverse to the fibers, and thus JnM ⊂ Jn(M, p) is an open dense submanifold
of the (extended) submanifold jet bundle, [47]. However, since all our considerations are
local, we can concentrate on Jn = Jn(X ,U) throughout. For any 0 ≤ k < n, we have the jet
projection

πn
k : J

n → Jk, (2.1)

together with the base projection

πn : Jn → X given by πn = π ◦πn
0 .

The induced coordinates on the n-th order jet space Jn ≃ X × U (n) are given by z(n) =
(x, u(n)) where x ∈ X and u(n) ∈ U (n). Separating the jet coordinates by order,

U (n) = U0 × U1 × · · · × Un, 0 ≤ n <∞,

where
Uk = {(. . . , uαJ , . . .) : |J | = k, α = 1, . . . , q}, 0 ≤ k ≤ n,

denotes the space coordinatized by all k-th order derivatives of the dependent variables,
which has dimension

tk = dim Uk = q

(
p+ k − 1

k

)
.

Throughout the paper we use the symmetric multi-index notation for derivatives. Thus, J =
(j1, . . . , jk), with 1 ≤ jν ≤ p, corresponds to the k-th order derivative ∂J = ∂k/∂xj1 · · · ∂xjk ,
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and the jet coordinate uαJ represents the J-th derivative of uα(x) at the base point x. We
also use the concatenation notation J, i = (j1, . . . , jk, i) to denote the symmetric multi-index
obtained by appending i to J . Inversely, we use J \ k to denote the multi-index obtained by
removing k ∈ J from J .

As noted above, we can identify finite order jets of sections with Taylor polynomials.
Explicitly, for 0 ≤ n < ∞, we identify a jet z(n) = (x, u(n)) ∈ Jn with the q-tuple of
polynomials of degrees ≤ n whose entries are

Pα
n (y) =

∑
0≤|J |≤n

uαJ
J !

(y − x)J , α = 1, . . . , q. (2.2)

If (x, u(n)) is the n-jet of a section u(x), so uαJ represents the J-th partial derivative of its
component uα(x) at x, then Pα

n (y) is the corresponding Taylor polynomial of degree n.
There are two inequivalent ways to define the infinite order jet bundle. The usual method

is to define J∞ as the projective (or inverse) limit of the finite order jet bundles Jn under the
projection maps (2.1). Thus, an infinite jet has local coordinates xi, uαJ for all i = 1, . . . , p,
α = 1, . . . , q, and all multi-indices |J | ≥ 0. We can identify such an infinite jet with a
collection of formal power series

Pα(y) =
∑
|J |≥0

uαJ
J !

(y − x)J , α = 1, . . . , q. (2.3)

Since the coefficients uαJ are arbitrary, there is no guarantee that (2.3) converges.
An alternative approach is, in analogy with the finite order case, to define infinite jets as

equivalence classes of sections up to infinite order contact, which is equivalent to the condition
that their Taylor series (2.3) agree at the base point. Since we restrict to analytic sections,
the corresponding Taylor series converge and, indeed, uniquely determine the section. Since
the coefficients uαJ must now define a convergent series, with a non-zero radius of convergence,
they are no longer allowed to be arbitrary. Thus, the result of the latter construction is a
subbundle A∞ ⊂ J∞ of the preceding infinite jet bundle, which consists of infinite jets that
produce convergent Taylor series, as in (2.3). We will call A∞ the analytic infinite jet bundle.

Traditionally, the equivariant moving frame calculus takes place in the ordinary infinite
jet bundle J∞, without regard to convergence. Thus, the goal of this paper is to provide
conditions, on both the pseudo-group action and the cross-section defining the normalizations,
that guarantee that the normal form determined by the moving frame normalizations belongs
to the analytic infinite jet bundle A∞.

A system of n-th order differential equations is given by a system of equations

∆(x, u(n)) =
(
∆1(x, u

(n)), . . . ,∆l(x, u
(n))
)
= 0 (2.4)

involving the n-th order jet space coordinates. To avoid singularities, the defining functions
∆: Jn → Rl are assumed to be analytic, the corresponding subvariety

R(n) = {(x, u(n)) |∆(x, u(n)) = 0} ⊂ Jn (2.5)

forms an analytic fibered submanifold of the fiber bundle πn : Jn → X , and the Jacobian
matrix of the defining functions is of maximal rank on R(n), as in [47].
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Prolongation and projection are two natural operations on differential equations. The
former lifts the system of differential equations to higher orders by differentiation, while the
latter lowers the order by keeping only the equations (if any) of a specified lower order. The
prolongation of (2.4) to order n+k is the fibered submanifoldR(n+k) ⊂ Jn+k locally described
by the system of equations

R(n+k) =

{
∆ν(x, u

(n)) = 0, 1 ≤ ν ≤ l

DJ
x∆ν(x, u

(n)) = 0, 1 ≤ |J | ≤ k

}
,

where

Dxi =
∂

∂xi
+

q∑
α=1

∑
|J |≥0

uαJ,i
∂

∂uαJ
, i = 1, . . . , p, (2.6)

are the usual total derivative operators, which mutually commute, and DJ
x = Dxj1 · · ·Dxjk ,

for J = (j1, . . . , jk) a symmetric multi-index, are their higher order iterations. On the other
hand, the projection of the n-th order differential equation R(n) to a differential equation of
order n− k, with 0 ≤ k ≤ n, which encodes the relations (if any) among derivatives of order
≤ n− k, is given by

πn
n−k(R(n)) ⊆ Jn−k.

To construct a local representation of πn
n−k(R(n)) one starts with (2.4) and eliminates, using

only algebraic operations, all derivatives of order greater than n− k in as many equations as
possible. If there are no equations of order ≤ n−k, then, at least locally, πn

n−k(R(n)) = Jn−k.
As in [63], we assume that the systems of differential equations are regular so that, to avoid
dealing with singular points and subsets, all projections and prolongations are assumed to
be fibered submanifolds.

The k-th prolongation and projection of a system of differential equations R(n) is given
by

πn+k
n (R(n+k)) ⊆ R(n).

This process may not return the original system R(n) due to the existence of integrability
conditions. A system of differential equations R(n) is said to be formally integrable if for all
k ≥ 0, the equality

πn+k+1
n+k (R(n+k+1)) = R(n+k) (2.7)

holds. In other words, a system of differential equations is formally integrable if, no matter
the order at which the system is prolonged, no additional integrability conditions arise.

3 Involutivity.

Formal integrability does not in itself suffice to guarantee the existence of solutions to a
system of differential equations, and, for this purpose, we need to introduce the notion of
involutivity. To this end, we summarize the theory of involutive systems of partial differential
equations, in the form presented by Seiler in his book [63]; see also [19].

We begin with the linearization of a system of partial differential equations. Consider the
tangent bundle TJn → Jn parametrized by (x, u(n), ξ, ψ(n)). Any vector field (section of TJn)
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is locally represented by

v =

p∑
i=1

ξi
∂

∂xi
+

∑
0≤|J |≤n

q∑
α=1

ψα
J

∂

∂uαJ
,

where the coefficients ξi, ψ
α
J depend on z(n) = (x, u(n)). We introduce the vertical (fiber)

projection πV : TJn|z(n) → TU (n)|z(n) given by removing the horizontal component1:

πV (v) =
∑

0≤|J |≤n

q∑
α=1

ψα
J

∂

∂uαJ
.

The (vertical) linearization L(n)
R |z(n) ⊂ TU (n)|z(n) of the system of differential equations

R(n) given by (2.4) at a point z(n) ∈ R(n) consists of the system of linear equations

L(n)
R = πV (v)∆ =

{ ∑
0≤|J |≤n

q∑
α=1

∂∆ν

∂uαJ
ψα
J = 0, ν = 1, . . . , l

}
. (3.1)

We further introduce the highest order term map H : TU (n)|z(n) → TUn|z(n) which only retains
the terms ψα

J of order |J | = n in (3.1). The resulting system of linear equations

Σn
R = H(L(n)

R ) =

{ ∑
|J |=n

q∑
α=1

∂∆ν

∂uαJ
ψα
J = 0, ν = 1, . . . , l

}
.

is called the symbol of the differential equation R(n). Its l× q
(
p+ n− 1

p− 1

)
coefficient matrix

Mn
R =

(
∂∆ν

∂uαJ

)
is called the n-th order symbol matrix. In line with the common regularity assumption, we
suppose in the following that all algebraic properties of the symbol, e.g., rank, etc., are
independent of the point z(n) ∈ R(n) under consideration.

The columns of the symbol matrix Mn
R correspond to the unknowns ψα

J of order |J | = n.
In order to formulate the involutivity and solvability of the system of partial differential
equations, we need to order the columns in an intelligent manner; our preferred ordering
will be prescribed by the notion of the class of a multi-index, which relies on a choice of
ordering of the independent variables. For general arguments, we use the natural ordering
x1 ≺ x2 ≺ · · · ≺ xp throughout. With this choice of ordering, the definition of class is as
follows.

Definition 3.1. The class of a multi-index J = (j1, . . . , jk) is the smallest index that appears
in J :

cls J = min{j1, . . . , jk}.
1We will often suppress the dependence on z(n) to avoid cluttering formulas.
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Note that, in the set Uk of jet coordinates uαJ of order |J | = k, there are

t
(i)
k = q

(
p+ k − i− 1

k − 1

)
multi-indices J of class i. Thus,

tk = t
(1)
k + · · ·+ t

(p)
k

is the total number of jet coordinates of order exactly k.
We sort the columns of the symbol matrix Mn

R using a class respecting term ordering so
that if cls J > clsK, then the column corresponding to the unknown ψα

J must be to the left
of the column corresponding to the unknown ψβ

K . Within a fixed class, one is free to choose
any ordering of the columns. For example, if p = 3 and we order x ≺ y ≺ z, then one possible
ordering of the order n = 2 columns of a symbol matrix is ψzz, ψyz, ψyy, ψxz, ψxy, ψxx, so the
first column has class 3, the next two, which can be switched, have class 2 and the final three,
again in any order, are of class 1.

With this column ordering, let Mn
R,REF be the row reduction of Mn

R to its row-echelon
form, cf. [58]. Every unknown ψα

J corresponding to the first non-vanishing entry of each row
in Mn

R,REF, i.e., its pivot, is called the leader of the row. We will use rn to denote the rank
of the symbol matrix Mn

R, i.e., the number of leaders/pivots.
The jet coordinates uαJ of order |J | = n that correspond to the leader columns of the

symbol matrixMn
R are known as principal derivatives. It follows that the number of principal

derivatives of order n is
rn = rankMn

R,

which also equals the number of independent differential equations of order n in the system.
The other jet coordinates of order n corresponding to the non-pivot columns are known as
parametric derivatives. The number of parametric derivatives of order n is given by

dn = tn − rn.

We let

r(n) =
n∑

k=0

rk

denote the total number of principal derivatives of order ≤ n, and

d(n) = q

(
p+ n

n

)
− r(n) =

n∑
k=0

dk,

the total number of parametric derivatives of order ≤ n. By the Implicit Function Theorem
and our regularity assumptions, d(n) equals the fiber dimension of the n-th order system (2.5).

An n-th order system of partial differential equations is said to be in Cartan normal form,
if its symbol matrices of order 0 ≤ k ≤ n are either empty or in reduced row-echelon form
with respect to the above class-respecting ordering of the columns. We further say that it is
in reduced Cartan normal form if, in addition, the entire symbol matrix

M
(n)
R =

(
M0

R M1
R · · · Mn

R
)T
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is in reduced row-echelon form, [19]. Thus, the differential equations are in the reduced
Cartan normal form when they take the form

uαJ = ∆α
J(x, . . . , u

β
K , . . .), (3.2)

where uαJ are the principal derivatives, and all the jet coordinates uβK appearing on the right
hand side are parametric and correspond to the columns that have nonzero entries in the
corresponding row of the reduced row echelon form of the entire symbol matrix. At order
|K| = |J |, these are all parametric derivatives that appear after uαJ in the class respecting
term ordering, that is clsK ≤ cls J . As a consequence of the Implicit Function Theorem, any
regular system of differential equations of order n can be placed in reduced Cartan normal
form.

Definition 3.2. The number of leaders of class 1 ≤ k ≤ p in the row-echelon symbol matrix
Mn

R,REF is denoted by b(k)n . The resulting b(1)n , . . . , b(p)n are called the indices of the n-th order
symbol Σn

R.

We are now able to state the key definition of an involutive symbol.

Definition 3.3. The symbol Σn
R with indices b(k)n is said to be involutive if the symbol matrix

Mn+1
R of the prolonged symbol Σn+1

R satisfies

rn+1 = rankMn+1
R =

p∑
k=1

kb(k)n . (3.3)

Remark 3.4. We observe that the class of a derivative is not invariant under coordinate
transformations. The notion of a δ-regular coordinate chart is characterized by the fact that
the sum on the right hand side of (3.3) takes its maximal value under all possible (linear)
changes of coordinates. In particular, a necessary condition for δ-regularity is that the highest
index b(p)n takes its maximal value. For a first order system of differential equations, this
means that a maximal number of equations must be solvable for an xp-derivative, and hence
the surface xp = 0 cannot be characteristic. Clearly, the involutivity condition (3.3) requires
that we work in a δ-regular coordinate system. Indeed, we will assume throughout that we
are always working in δ-regular coordinates, noting that generic coordinate systems are δ-
regular, [23,63]. In some of our examples, the most natural coordinate system for the system
is not δ-regular, and so the involutivity criterion (3.3) is not satisfied, and we must impose a
suitable change of variables before conducting the analysis.

Definition 3.5. A system of differential equationsR(n) is involutive if it is formally integrable
and its symbol Σn

R is involutive.

Formal integrability requires verifying (2.7) for all k ≥ 0. The next result states that,
when the system is involutive, it suffices to check integrability when k = 0. A proof can be
found in [63].

Theorem 3.6. A system of differential equations R(n) is involutive if and only if its symbol
Σn

R is involutive and πn+1
n (R(n+1)) = R(n).
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Thus, to check involutivity at order n, one needs to make sure that the coordinate chart
is δ-regular, then verify the algebraic involutivity condition (3.3) for the indices of order n,
and finally check that there are no integrability conditions at order n+ 1.

The indices b(k)n determine the number of principal derivatives of order n and of class k
in the system of differential equations R(n). On the other hand, the number of parametric
derivatives of order n and class k is given by the Cartan character c(k)n , which is related to
the corresponding index via the equation

c(k)n = t(k)n − b(k)n , 1 ≤ k ≤ p. (3.4)

We note that, by [63, Proposition 8.2.2], involutivity implies that the Cartan characters are
non-increasing:

c(1)n ≥ c(2)n ≥ · · · ≥ c(p)n ≥ 0. (3.5)

Remark 3.7. Owing to their direct relationship (3.4), when formulating results or illustrative
examples, one can work either just with the indices or just with the Cartan characters,
depending upon one’s preference. We have chosen to display both in order to suit readers of
either persuasion.

Remark 3.8. If c(k)n > c(k+1)
n = 0 is the last nonzero Cartan character of an involutive system

of differential equations, then the general solution to the system depends on c(k)n functions
of k variables, which can be identified with the initial conditions of order k. On the other
hand, the number of functions of less than k variables required to express a general solution
is not well-defined; see also [6, 11,48,63].

Any system of differential equations (2.4) can be written as a first-order system of differ-
ential equations by setting the jet coordinates uαJ of order |J | ≤ n− 1 to be new dependent
variables. To write down this new system of equations, we introduce the del notation

∂iu
α
J =

∂uαJ
∂xi

to denote differentiation. Then a first order representation R̃(1) of R(n) is given by

R̃(1) =


∆̃ν(x, (u

(n−1))(1)) = 0, 1 ≤ ν ≤ l

∂iu
α
J = uαJ,i, |J | < n− 1, 1 ≤ i ≤ p

∂iu
α
J = ∂ku

α
J,i\k, |J | = n− 1, k = cls J < i ≤ p

 .

The function ∆̃ν is not uniquely defined, as there are in general several possibilities to express
a higher-order derivative uαJ in terms of the new coordinates. To easily compute the indices
of the symbol Σ1

R̃, we use the mapping

uαJ =

{
uαJ , |J | ≤ n− 1,

∂ku
α
J\k, |J | = n, cls J = k.

(3.6)
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Proposition 3.9. Let c̃
(1)
1 , . . . , c̃

(p)
1 be the Cartan characters of the first order representation

R̃(1) and c(1)n , . . . , c(p)n those of the original system of differential equations R(n). Then

c̃
(k)
1 = c(k)n , 1 ≤ k ≤ p,

and the differential equation R(n) is involutive if and only if its first order representation R̃(1)

is involutive.

The proof of Proposition 3.9 may be found in [63, Appendix A.3]. For a first-order system
of differential equations R(1), the reduced Cartan normal form is

uαp = ∆α
p (x, . . . , u

β
k , . . .), 1 ≤ α ≤ b

(p)
1 ,

uαp−1 = ∆α
p−1(x, . . . , u

β
k , . . .), 1 ≤ α ≤ b

(p−1)
1 ,

...

uα1 = ∆α
1 (x, . . . , u

β
k , . . .), 1 ≤ α ≤ b

(1)
1 ,

uα = ∆α(x, uδ), 1 ≤ α ≤ b0,

(3.7)

with
0 ≤ b0 ≤ b

(1)
1 ≤ · · · ≤ b

(p−1)
1 ≤ b

(p)
1 ≤ q,

and where all the derivatives appearing on the right hand side of each equation are parametric
of class smaller than or equal to the class of the principal derivative occurring on the left
hand side of the equation. If b0 = 0 there are no algebraic equations. If b0 > 0, since the
equations are in reduced Cartan normal form, no derivatives of order 0 or 1 of the parametric
uα’s appear on the right hand side of any of the equations.

Formally well-posed initial value conditions for the first-order system of differential equa-
tions in Cartan normal form (3.7) are prescribed by

uα(x1, . . . , xp) = fα(x1, . . . , xp), b
(p)
1 < α ≤ q,

uα(x1, . . . , xp−1, 0) = fα(x1, . . . , xp−1), b
(p−1)
1 < α ≤ b

(p)
1 ,

...

uα(x1, 0, . . . , 0) = fα(x1), b
(1)
1 < α ≤ b

(2)
1 ,

uα(0, . . . , 0) = fα, b0 < α ≤ b
(1)
1 .

(3.8)

Remark 3.10. In (3.8) we use the convention that if, for example, b
(p)
1 = q, then the first set

of equations in the initial conditions (3.8) are vacuous, and similarly for the other equations.

As they should, the initial conditions (3.8) specify the parametric jets occurring on the
right hand side of the system of differential equations (3.7). For example, the parametric
derivative of class 1 are determined by differentiating the equations uα(x1, 0, . . . , 0) = fα(x1)

for b
(1)
1 < α ≤ b

(2)
1 . The parametric derivatives of class 2 are obtained from the initial

conditions on the plane {(x1, x2, 0, . . . , 0)}, and so on.
We are now able to state the Cartan–Kähler Theorem for first order involutive systems of

differential equations, which are placed in reduced Cartan normal form (3.7). This fundamen-
tal existence theorem is a consequence and generalization of the basic Cauchy–Kovalevskaya
existence theorem for analytic system of partial differential equations, [48,63].
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Theorem 3.11. Let the functions ∆α
k and fα in (3.7) and (3.8) be real-analytic at the origin.

If the system (3.7) is involutive, then it possesses one and only one solution that is analytic
at the origin and satisfies the initial conditions (3.8).

4 Lie Pseudo-Groups.

In this section, we apply the preceding constructions to the differential equations defin-
ing Lie pseudo-group actions, referring to [53] for details. Let D = D(M) denote the Lie
pseudo-group of all local diffeomorphisms2 φ : M →M . We will employ Cartan’s convenient
notational convention and use lower case letters to denote source coordinates and the cor-
responding capital letters to denote target coordinates. Thus, given a local diffeomorphism
φ ∈ D, its local coordinate formula will be written Z = φ(z) with Z = (Z1, . . . , Zm) and
z = (z1, . . . , zm).

Given 0 ≤ n < ∞, let D(n) ⊂ Jn(M,M) be the space of n-th order jets of local diffeo-
morphisms of M , which forms a groupoid under composition. We let D(∞) ⊂ J∞(M,M)
denote the corresponding space of infinite order jets of diffeomorphisms, and A(∞) ⊂ D(∞)

the subspace of analytic diffeomorphism jets, i.e., those that define convergent Taylor series.
Given a regular analytic Lie pseudo-group G ⊂ D, let G(n) ⊂ D(n) denote the subgroupoid

consisting of n-th order jets of pseudo-group diffeomorphisms, which we can identify with
the n-th order determining equations of G, whose solutions are the pseudo-group elements.
Note that, by analyticity, G(∞) ⊂ A(∞). According to Theorem 3.4 of [28], there exists an
order n⋆ ∈ N such that, for all finite n ≥ n⋆, the determining equations

G(n) =
{
∆ν(z, Z

(n)) = 0, ν = 1, . . . , ln
}

(4.1)

are involutive. Separating the pseudo-group jet coordinates by order, we let

D(n) ≃M ×D(n) =M ×D0 ×D1 × · · · ×Dn,

G(n) ≃M ×G(n) =M ×G0 ×G1 × · · · ×Gn,

where
Dk = { (. . . , Za

B, . . .) | |B| = k, a = 1, . . . ,m }

denotes the space of k-th order derivatives of the local diffeomorphism Z = φ(z) ∈ D, and
similarly for Gk. We then have

tk = dim Dk = m

(
m+ k − 1

k

)
,

while the number of derivatives of order k ≥ 1 and of class a is

t
(a)
k = m

(
m+ k − a− 1

k − 1

)
, 1 ≤ a ≤ m.

2In general, the notation allows φ to only be defined on an open subset of M .
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For k ≥ 1, we note the relations
m∑
a=1

t
(a)
k = tk,

m∑
a=1

a t
(a)
k = tk+1,

n∑
k=0

tk = t(n) = dimD(n).

For the Lie pseudo-group G, and each 0 ≤ n < ∞, we let d(n) = dimG(n) denote the
fiber dimension of the projection πn : G(n) →M . For 0 ≤ k ≤ n, let dk = dimGk denote the
number of parametric pseudo-group parameters of order k so that d(n) = d0 + d1 + · · ·+ dn.
The number of principal pseudo-group parameters of order k is then given by rk = tk − dk.

Let

jnV =
m∑
a=1

∑
0≤|B|≤n

ζaB
∂

∂Za
B

denote a vertical vector field in TD(n). The linearization of the pseudo-group determining
equations (4.1) at the identity jet 1(n)

z are the linearized determining equations

L(n)
G =

{
Lν(z, ζ

(n)) =
∑

0≤|B|≤n

m∑
a=1

∂∆ν

∂Za
B

∣∣∣∣
1(n)
z

ζaB = 0, ν = 1, . . . , ln

}
, (4.2)

which serve to define the Lie algebroid associated with the Lie pseudo-group groupoid G(n),
[53]. As in the previous section, we introduce the highest order term map H : TD(n)|

1
(n)
z
→

TDn|
1
(n)
z

which only keeps the linear terms of order n in (4.2) to obtain the n-th order
pseudo-group symbol

Σn
G = H(L(n)

G ) =

{ ∑
|B|=n

m∑
a=1

∂∆ν

∂Za
B

∣∣∣∣
1(n)
z

ζaB = 0, ν = 1, . . . , ln

}
.

Our regularity assumption on G requires that the algebraic properties of the symbol are
independent of the point (z, Z(n)) ∈ G(n).

For n ≥ n⋆, the order of involutivity, the indices and Cartan characters of the determining
equations G(n) satisfy

m∑
a=1

b(a)n = rn and
m∑
a=1

c(a)n = dn, (4.3)

and, since the equations are involutive,
m∑
a=1

ab(a)n = rn+1 and
m∑
a=1

ac(a)n = dn+1.

Example 4.1. The following well-studied Lie pseudo-group

X = f(x), Y = fx(x) y + g(x), U = u+
fxx(x) y + gx(x)

fx(x)
, (4.4)

where f ∈ D(R), and g ∈ C∞(R), will serve as our running example illustrating the con-
structions. The determining equations G(2) of order two (in Cartan normal form) are

Xy = Xu = 0, Yx = (U − u)Xx, Yy = Xx, Yu = 0, Uu = 1,

Xxx = UyXx, Xxy = Xxu = Xyy = Xyu = Xuu = 0, Yxx =
(
Ux + (U − u)Uy

)
Xx,

Yxy = UyXx, Yxu = Yyy = Yyu = Yuu = 0, Uxu = Uyy = Uyu = Uuu = 0.

(4.5)
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Thus, the parametric jet variables parametrizing G(2) are
X, Y, U, Xx, Ux, Uy, Uxx, Uxy; (4.6)

all the other second order jet coordinates, i.e., those appearing on the left hand side of the
determining equations (4.5), are principal. We observe that d0 = d1 = 3, d2 = 2, and so
d(0) = 3, d(1) = 6, d(2) = 8. It is not hard to see that, in general, the order n ≥ 2 parametric
variables are Uxn , Uxn−1 y, hence dn = 2 and d(n) = 2n+ 4. Using the notation

j∞V =
∑
|B|≥0

ξB
∂

∂XB

+ ηB
∂

∂YB
+ ϕB

∂

∂UB

to denote a vertical vector field, the corresponding linearized determining equations L(2)
G of

order two are obtained by applying v to the determining equations (4.5) and then evaluating
the result at the identity jet; namely, set X = x, Y = y, U = u, Xx = Yy = Uu = 1, and all
other jet coordinates to 0; the result is

ξy = ξu = 0, ηx = ϕ, ηy = ξx, ηu = 0, ϕu = 0,

ξxx = ϕy, ξxy = ξxu = ξyy = ξyu = ξuu = 0,

ηxx = ϕx, ηxy = ϕy, ηxu = ηyy = ηyu = ηuu = ϕxu = ϕyy = ϕyu = ϕuu = 0.

The symbol Σ2
G is given by the equations

ξxx = ξxy = ξyy = ξxu = ξyu = ξuu = 0, ηxx = ηxy = ηyy = ηxu = ηyu = ηuu = 0,

ϕxu = ϕyy = ϕyu = ϕuu = 0.

Using the term ordering x ≺ y ≺ u, the indices are

b
(1)
2 = 7, b

(2)
2 = 6, b

(3)
2 = 3,

while the Cartan characters are

c
(1)
2 = 2, c

(2)
2 = c

(3)
2 = 0. (4.7)

On the other hand, the determining equations of order three are obtained by differentiating
those of order 2 and then replacing any principal derivatives using the preceding equations,
producing

Xxxx = (Uxy + U2
y )Xx, Xxxy = Xxxu = Xxyy = Xxyu = Xxuu = Xyyy = 0,

Xyyu = Xyuu = Xuuu = 0, Yxxx =
(
Uxx + (U − u)(Uxy + U2

y ) + 2UxUy

)
Xx,

Yxxy = (Uxy + U2
y )Xx, Yxxu = Yxyy = Yxyu = Yxuu = Yyyy = Yyyu = Yyuu = Yuuu = 0,

Uxxu = Uxyy = Uxyu = Uxuu = Uyyy = Uyyu = Uyuu = Uuuu = 0,

from which we see that the algebraic involutivity constraint

b
(1)
2 + 2b

(2)
2 + 3b

(3)
2 = r3 = 28

is satisfied. Alternatively, in terms of the Cartan characters

c
(1)
2 + 2c

(2)
2 + 3c

(3)
2 = d3 = 2.

Since π3
2(G(3)) = G(2), the determining equations (4.5) are involutive. Based on the Cartan

characters (4.7), the solution depends on two functions of one variable, as was already clear
from the original formula (4.4) for the pseudo-group transformations.
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5 Reduction of Lie Pseudo-Group Actions.

We are now interested in the action of a Lie pseudo-group on p-dimensional submanifolds
of the total space M . To work in local coordinates, we assume that the submanifolds are
transverse to the fibers, and thus form local sections ofM → X . In this section, we formulate
the reduced determining equations for the action of pseudo-group elements on sections, and
prove that they form an involutive system of differential equations. This construction is a
key intermediate step towards our formulation of the system of differential equations satisfied
by the normal forms of submanifolds.

As in [54, 55], let E (n) → Jn denote the lifted bundle obtained by pulling back the diffeo-
morphism jet bundle D(n) → M to the submanifold jet space via the standard projection
πn
0 : J

n →M . Local coordinates on E (n) are given by (z(n), Z(n)) = (x, u(n), X(n), U (n)), where
z(n) = (x, u(n)) are coordinates on the submanifold jet bundle Jn while Z(n) = (X(n), U (n))
are the fiber coordinates of the diffeomorphism jet bundle D(n). The lifted bundle has the
structure of a groupoid using the double fibration with source map σ(n)(z(n), Z(n)) = z(n) and
target map τ (n)(z(n), Z(n)) = Z(n) · z(n) prescribed by the prolonged action of the diffeomor-
phisms on submanifold jets.

When writing out the action of a pseudo-group transformation on a submanifold, we will
use, in accordance with Cartan’s convention, lower case letters, so u = u(x), for the source
submanifold and its jet coordinates. However, to avoid notational confusion, especially when
distinguishing submanifold jets from diffeomorphism jets, we will use hats on the dependent
variable and its derivatives to denote the target submanifold, which we thus write as Û =
Û(X) with the order zero jet being simply Û = U . Later, once the reader becomes used to
which symbol denotes which type of jet coordinate, the hats can be dropped to clean up the
formulas, and, indeed, we shall do so in the examples in the final section.

Example 5.1. In the case of planar curves, given the action of a diffeomorphism of R2

on curves, the source curve is the graph of a scalar function u = u(x) for x, u ∈ R, while
the target is the graph of a scalar function, which, in accordance with the above-stated
convention, is written as Û = Û(X) for X, Û ∈ R, and its jet coordinates are Û , ÛX , ÛXX , . . ..
The coordinates on the lifted bundle E (n) are thus given by

(z(n), Z(n)) = (x, u(n), X(n), U (n))

= (x, u, ux, uxx, . . . , X, U,Xx, Xu, Ux, Uu, Xxx, Xxu, Xuu, Uxx, Uxu, Uuu, . . .).

where u, ux, uxx, . . . are the curve jet coordinates and X, U , Xx, Xu, Ux, Uu, . . . are the
diffeomorphism jet coordinates. The source and target maps are

σ(n)(z(n), Z(n)) = (x, u, ux, uxx, . . .),

τ (n)(z(n), Z(n)) = (X, Û, ÛX , ÛXX , . . .)

=

X,U, Ux + uxUu

Xx + uxXu

,

[
(Xx + uxXu)(Uxx + 2uxUxu + u2xUuu + uxxUu)

− (Ux + uxUu)(Xxx + 2uxXxu + u2xXuu + uxxXu)
]

(Xx + uxXu)3
, . . .

 ,
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where the higher order target jets are obtained by repeatedly applying the operator of implicit
differentiation

DX =
1

DxX
Dx =

1

Xx + uxXu

Dx

to Û ; see also (6.1) below.

The horizontal total derivative operators on E (∞) are

Dxj = Dxj +

q∑
α=1

(
uαj Duα +

∑
|J |≥1

uαJ,j
∂

∂uαJ

)
, j = 1, . . . , p, (5.1)

where3

Dza =
∂

∂za
+

m∑
b=1

∑
|A|≥0

Zb
A,a

∂

∂Zb
A

, a = 1, . . . ,m,

are the total derivative operators on the diffeomorphism jet bundle D(∞). We use the same
notation (2.6) and (5.1) for the total derivative operators on J∞ and E (∞), respectively,
since they coincide when F (z(n)) = F (x, u(n)) does not depend on the diffeomorphism jet
coordinates.

Given a local section f : X → M , whose graph defines a p-dimensional submanifold s =
f(X ), and a local diffeomorphism φ ∈ D(M), with s ⊂ domφ, we will call the composition
φ = φ ◦f the reduction of φ to the submanifold s. The reduced map φ : X →M is in general
not a section of M since φ ◦f(x) does not necessarily belong to the fiber of M over x ∈ X .
On the other hand, its image, namely S = φ

[
f(X )

]
= φ(s) is an equivalent submanifold. If

we assume that the image S is transversal to the fibers of M , we can locally identify it with
the graph of a local section F : X →M , so S = F (X ).

Remark 5.2. We will use overbars to denote reduced maps and jet coordinates. As with the
hats, these can also dropped once the reader becomes used to which symbol denotes which
jet coordinate, and, indeed, we shall do so in the final section.

Let 0 ≤ n <∞. The reduced action of local diffeomorphisms on submanifolds is encoded
by the reduction map r(n) : E (n) → Jn(X ,U ×M) given by

r(n)(x, u(n), X(n), U (n)) = r(n)(z(n), Z(n)) = (z(n), Z(n)) = (x, u(n), X(n), U (n)), (5.2)

where Z(n) = (X(n), U (n)) has components

Za
J = DJ

xZ
a for 0 ≤ |J | ≤ n, a = 1, . . . ,m,

which are obtained by successively applying the total derivative operators (5.1) to the dif-
feomorphism target coordinates Z = (X,U). We call Za

J the reduced jet coordinates. The
reduction map is compatible with the reduction of diffeomorphisms to submanifolds. Namely,
given a diffeomorphism φ and a section s = f(x) = (x, u(x)) contained in its domain, let
(x, u(n), X(n), U (n)) ∈ E (n) be given by their combined jets, so that (x, u(n)) = jnf |x and
(x, u,X(n), U (n)) = jnφ|(x,u), then jn(φ ◦f) = r(n)(x, u(n), X(n), U (n)).

3Here za can be either xj or uα.
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Example 5.3. Let M = R2 and X = R, corresponding to plane curves s = {(x, u(x))}.
Then the reduction map (5.2) is computed by successively applying the total differential
operator

Dx = Dx + uxDu + uxx
∂

∂ux
+ uxxx

∂

∂uxx
+ · · · , (5.3)

where

Dx =
∂

∂x
+Xx

∂

∂X
+ Ux

∂

∂U
+Xxx

∂

∂Xx

+Xxu
∂

∂Xu

+ Uxx
∂

∂Ux

+ Uxu
∂

∂Uu

+ · · · ,

Du =
∂

∂u
+Xu

∂

∂X
+ Uu

∂

∂U
+Xxu

∂

∂Xx

+Xuu
∂

∂Xu

+ Uxu
∂

∂Ux

+ Uuu
∂

∂Uu

+ · · · ,
(5.4)

to X,U , producing, at order n = 2,

r(2)(x, u, ux, uxx, X, U,Xx, Xu, Ux, Uu, Xxx, Xxu, Xuu, Uxx, Uxu, Uuu)

= (x, u, ux, uxx, X, U,Xx, Ux, Xxx, Uxx)

= (x, u, ux, uxx, X, U,DxX,DxU,D
2
xX,D

2
xU)

= (x, u, ux, uxx, X, U,Xx + uxXu, Ux + uxUu,

Xxx + 2uxXxu + u2xXuu + uxxXu, Uxx + 2uxXxu + u2xUuu + uxxUu).

Observe that the expressions for the reduced jet coordinates are obtained by total differen-
tiation of X = X(x, u), U = X(x, u), treating u as a function of x.

We will regard Jn(X ,U ×M)→ Jn(X ,U) = Jn as a fiber bundle over the submanifold jet
bundle, so that the reduced jet coordinates Z(n) = ( . . . Za

J . . . ) are its fiber coordinates.

5.1 The Reduced Determining Equations.

Just as the original pseudo-group jets satisfy a system of differential equations G(n) ⊂ D(n), so
do the reduced pseudo-group jets. To construct this system, first define the lifted subgroupoid
H(n) ⊂ E (n) to be the pullback of G(n) to Jn. We then define the n-th order reduced pseudo-
group jet bundle by applying the reduction map (5.2) to the lifted subgroupoid:

G(n) = r(n)(H(n)) ⊂ Jn(X ,U ×M), (5.5)

which can be written as a system of equations of the form

G(n) =
{
∆ν(z

(n), Z(n)) = 0, ν = 1, . . . , ln
}
. (5.6)

If we fix a section s = {(x, u(x))} with jet z(n) = jns|x = (x, u(n)(x)), then (5.6) can be viewed
as an n-th order system of differential equations for the reduced diffeomorphism Z = φ(x),
that we call the reduced determining equations, whose properties will be investigated shortly.

In local coordinates, the reduced determining equations encode all the algebraic relations
existing among the reduced jets Z(n). These are obtained by writing out the formulas for the
reduced jet coordinates in terms of the parametric pseudo-group jet coordinates, and then
eliminating the latter from the resulting algebraic expressions, i.e., implicitizing the resulting
parametric formulae, thereby producing the identities involving only the submanifold jet
coordinates and the reduced jet coordinates.
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Example 5.4. Recalling the determining equations (4.5) of the Lie pseudo-group (4.4), we
now deduce the reduced determining equations, assuming that u = u(x, y). The pseudo-group
jet coordinates parametrizing G(2) are given in (4.6). At order zero, we trivially have

X = X, Y = Y, U = U.

Next, at order one,

Xx = Xx +Xuux = Xx, Xy = Xy +Xuuy = 0,

Y x = Yx + Yuux = Yx = (U − u)Xx, Y y = Yy + Yuuy = Xx,

Ux = Ux + Uuux = Ux + ux, Uy = Uy + Uuuy = Uy + uy.

Differentiating again, and skipping details of the computations, at order two we obtain

Xxx = UyXx, Xxy = 0, Xyy = 0,

Y xx =
(
Ux + (U − u)Uy

)
Xx, Y xy = UyXx, Y yy = 0,

Uxx = Uxx + uxx, Uxy = Uxy + uxy, Uyy = uyy.

Implicitization, i.e., eliminating the parametric variables X, Y, U,Xx, Ux, Uy, Uxx, Uxy, we find
that, up to order two, the relations among the reduced pseudo-group jets are

Xy = 0, Y x = (U − u)Xx, Y y = Xx, Xxx = (Uy − uy)Xx,

Xxy = Xyy = 0, Y xx =
(
Ux − ux + (U − u)(Uy − uy)

)
Xx,

Y xy = (Uy − uy)Xx, Y yy = 0, Uyy = uyy,

(5.7)

which thus form the second order reduced determining equations. We note that the para-
metric variables are X,Y , U,Xx, Ux, Uy, Uxx, Uxy.

A key observation that we will need in Section 7 is that the reduced determining equations
must become identities when the pseudo-group element is the identity map, and hence the
two sections coincide. Algebraically, this specialization amounts to equating

X i = xi, X i
i = 1, X i

J = 0, i = 1, . . . , p, J ̸= i, |J | ≥ 1,

Uα
K = uαK , α = 1, . . . , q, 0 ≤ |K| ≤ n.

(5.8)

The equations defining G(n) must vanish identically on the affine subvariety defined by (5.8).
Thus, in the case of the pseudo-group in Example 5.4, every reduced determining equation
in (5.7) vanishes identically when

Xx = Y y = 1, Xy = Y x = Xxx = Xxy = Xyy = Y xx = Y xy = Y yy = 0,

U = u, Ux = ux, Uy = uy, Uyy = uyy.
(5.9)

According to [47, Proposition 2.10], this implies that the equations can be expressed as a
linear combination

∆ν =

p∑
i=1

Ai
ν(X

i − xi) + Ai,i
ν (X i

i − 1) +
∑
J ̸=i

1≤|J |≤n

Ai,J
ν X i

J

+

q∑
α=1

∑
0≤|K|≤n

Bα,K
ν (Uα

K − uαK),

(5.10)
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where the coefficient functions Ai
ν , A

i,i
ν , A

i,J
ν , Bα,K

ν are analytic.
We now state the key condition to be imposed on the pseudo-group actions to be consid-

ered in this paper.

Definition 5.5. The pseudo-group G is order n reducible on the local section s : X → M
if, for all x ∈ dom s with z(n) = jns|x, the reduction map r(n) : H(n)|z(n) → G(n)|z(n) is one-
to-one on the indicated fibers. The pseudo-group G is reducible on s if it is reducible for all
sufficiently large n ≥ n♮. The integer n♮ is called the order of reducibility.

As we will see in Theorem 6.5 below, all pseudo-groups for which the moving frame
calculus is applicable automatically satisfy this condition on generic sections. In particular,
this implies that any finite-dimensional Lie group action is reducible.

Definition 5.6. A section s : X →M is called regular if G is reducible on it.

In what follows, we will only deal with regular sections. In particular, the reduced deter-
mining equations are to be evaluated only on regular sections. Assuming analyticity, if the
pseudo-group is regular on one section, regularity holds on generic sections.

Let d(n) denote the fiber dimension of the reduced determining equations (5.6), which can
be identified as the number of parametric reduced pseudo-group parameters of order ≤ n. A
simple property of reducible Lie pseudo-groups is given in the following result.

Lemma 5.7. Let G be a reducible Lie pseudo-group with order of reducibility n♮. Then for
all n ≥ n♮, the number of independent reduced pseudo-group parameters equals the number of
pseudo-group parameters. That is,

d(n) = d(n). (5.11)

In other words, reducibility requires that the reduction map does not change the fiber
dimensions at sufficiently high orders. Since

0 ≤ d(n) ≤ (p+ q)

(
p+ q + n

n

)
and 0 ≤ d(n) ≤ (p+ q)

(
p+ n

n

)
, (5.12)

we see that reducibility imposes constraints on the size of the pseudo-group G, in that it
cannot be too large; see Lemma 5.11 below. For example, G cannot be the diffeomorphism
pseudo-group D, which maximizes the inequality for d(n).

Example 5.8. Returning to Example 5.4, in view of (5.7) and its prolongations, it follows
that the parametric reduced pseudo-group jets are

X, Y , U, Xx, Uxk , Uxk−1y, k ≥ 1. (5.13)

Thus, the reduced dimensions satisfy

d(1) = 6 = d(1), d(2) = 8 = d(2), and, in general, d(n) = 2n+ 4 = d(n),

thus proving that this pseudo-group is reducible.
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Example 5.9. An example where n♮ > 1 in Definition 5.5 is provided by the 5-dimensional
Lie group action

X = a x+ b, U = c u+ d x+ e,

where a, c ̸= 0 and b, d, e ∈ R. Up to order two, the determining equations are

Xu = Xxx = Xxu = Xuu = 0, Uxx = Uxu = Uuu = 0.

Prolonging, we deduce that, as expected,

d(n) = 5 for all n ∈ N.

On the other hand, assuming the regularity condition uxx ̸= 0, the reduced determining
equations, up to order three, are

Xxx = Xxxx = 0, Uxxx =
uxxx
uxx

Uxx,

and d(1) = 4, while d(n) = 5 for n ≥ 2. Thus, d(n) = d(n) for all n ≥ n♮ = 2.

Example 5.10. Consider the Lie pseudo-group

X = x, U = f(x, u).

In this case,

d(n) =

(
n+ 2

2

)
while d(n) = n,

and hence the pseudo-group is not reducible, basically because it has a one-dimensional base
but the transformations depend upon a function of two variables. It is also easily seen that
the prolonged action on Jn(R,R) is never free.

The last example can be easily generalized, proving that a reducible pseudo-group cannot
depend on functions of ≥ p+1 variables. We state this fact in terms of its Cartan characters.

Lemma 5.11. If the pseudo-group is reducible, then c(p+α)
n⋆

= 0 for α = 1, . . . , q.

Proof. For the purpose of contradiction, assume there is a Cartan character c(p+α)
n⋆

̸= 0 for
some α = 1, . . . , q. The pseudo-group thus admits at least one function depending on at least
p+ 1 variables, and hence

d(n) ≥ an =

(
p+ n+ 1

n

)
=

(p+ 2) · · · (p+ n+ 1)

n!
,

where an is the number of jet components of order 0 ≤ |J | ≤ n associated with a function
f(z1, . . . , zp+1) of p+ 1 variables.

On the other hand, according to (5.12),

d(n) ≤ (p+ q)

(
p+ n

n

)
=

(p+ q)(p+ 1)(p+ 2) · · · (p+ n)

n!
=

(p+ 1)(p+ q)

p+ n+ 1
an < an ≤ d(n),

whenever n ≥ max{n⋆, n♮, p
2 + pq + q}, and hence the reducibility condition (5.11) cannot

hold when n is sufficiently large. Q.E.D.
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5.2 The Linearized Reduced Determining Equations.

Linearizing the reduced determining equations (5.6) at the reduced identity pseudo-group jet
yields the linearized reduced determining equations

L(n)

G =
{
Lν(z

(n), ζ(n)) = 0, ν = 1, . . . , ln
}
. (5.14)

Keeping only the highest order terms, we obtain the reduced symbol

Σn
G = H(L(n)

G ), (5.15)

where, again, H is the highest order term map which only keeps the order n terms in the
linearized reduced determining equations (5.14). On the other hand, the coefficient matrix
of the reduced symbol (5.15) yields the n-th order reduced symbol matrix Mn

G , from which

we can compute the reduced indices b(i)n and reduced Cartan characters c(i)n for i = 1, . . . , p.
As in the previous section, we separate the reduced pseudo-group jets by order and let

D(n) ≃ Jn ×D(n) = Jn ×D0 ×D1 × · · · ×Dn,

G(n) ≃ Jn ×G(n) = Jn ×G0 ×G1 × · · · ×Gn,

where
Dk = {(. . . , Za

B, . . .) : |B| = k, a = 1, . . . ,m}
denotes the space of k-th order derivatives of reduced local diffeomorphisms and similarly for
Gk. The number of derivatives of order k is

tk = dim Dk = m

(
p+ k − 1

k

)
.

Of those, the number of derivatives of class 1 ≤ i ≤ p is

t
(i)
k = m

(
p+ k − i− 1

k − 1

)
,

so that
p∑

i=1

t
(i)
k = tk,

p∑
i=1

i t
(i)
k = tk+1,

n∑
k=1

tk = t(n) = dimD(n).

For the reduced Lie pseudo-group G, we let dk = dimGk denote the number of parametric
reduced pseudo-group parameters of order k, so that d0 + · · · + dn = d(n) = dimG(n). The
number of principal reduced pseudo-group parameters of order k is then given by

rk = tk − dk.

Finally, the indices and Cartan characters of the reduced determining equations (5.6) satisfy

b(i)n + c(i)n = t(i)n , i = 1, . . . , p, (5.16)

with
p∑

i=1

b(i)n = rn = rankMn
G and

p∑
i=1

c(i)n = dn = dimΣn
G.
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5.3 Involutivity of the Reduced Determining System.

The aim of this section is to prove that the reduced determining system (5.6) is involutive.
Moreover, the first p Cartan characters of the determining system and its reduction coincide.

Theorem 5.12. Let G be reducible. Then there exists n⋆ ∈ N such that for all n ≥ n⋆ ≥
max{n⋆, n♮},

c(i)n = c(i)n , i = 1, . . . , p, c(p+α)
n = 0, α = 1, . . . , q. (5.17)

In particular, the involutivity of the n-th order determining equations G(n) implies the invo-
lutivity of the n-th order reduced determining equations G(n).

Proof. First of all, the second set of equalities in (5.17) follows from Lemma 5.11 with n ≥ n⋆.
Since G is reducible, consider the reduced determining equations G(n♮), where n♮ is the

order of reducibility. By the Cartan–Kuranishi Theorem [63, Theorem 7.4.1], after prolonga-
tion and projection, there exists n⋆ ≥ n♮ such that the reduced determining equations G(n⋆)

are involutive.
Let n ≥ n⋆ ≥ max{n⋆, n♮} and k ≥ 1. By the definition (3.4) of the Cartan characters

d(n+k) = d(n+k−1) +

p∑
i=1

c
(i)
n+k and d(n+k) = d(n+k−1) +

p∑
i=1

c
(i)
n+k.

Reducibility of the pseudo-group implies that d(n+k) = d(n+k) and d(n+k−1) = d(n+k−1), which
requires

p∑
i=1

(
c
(i)
n+k − c

(i)
n+k

)
= 0. (5.18)

Using [63, Eq. (8.8a)], the higher order Cartan characters are related via the equation

c
(i)
n+k =

p∑
j=i

(
k + j − i− 1

k − 1

)
c(j)n , i = 1, . . . , p. (5.19)

Thus,

p∑
i=1

c
(i)
n+k =

p∑
i=1

p∑
j=i

(
k + j − i− 1

k − 1

)
c(j)n =

p∑
j=1

j∑
i=1

(
k + j − i− 1

k − 1

)
c(j)n

=

p∑
j=1

(
k − 1 + j

k

)
c(j)n = c(1)n + (k + 1)c(2)n + · · ·+ (k + 1) · · · (k + p− 1)

(p− 1)!
c(p)n .

Substituting the last expression and its reduced version into (5.18), we obtain(
c(1)n − c(1)n

)
+ (k + 1)

(
c(2)n − c(2)n

)
+ · · ·+ (k + 1) · · · (k + p− 1)

(p− 1)!

(
c(p)n − c(p)n

)
= 0.

Viewing this expression as a degree p− 1 polynomial in the variable k which vanishes for all
k ∈ N, we conclude that c(i)n − c(i)n = 0 for i = 1, . . . , p. Q.E.D.
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Remark 5.13. Theorem 5.12 implies that if G is reducible, then, at a sufficiently high order,
the determining equations of the pseudo-group and the reduced determining system contain
the same number of parametric pseudo-group jets and, furthermore, their first p Cartan
characters are the same.

Example 5.14. Continuing Example 5.4, we linearize the second order reduced determining
equations (5.7) at the reduced identity jet and obtain

ξy = 0, ηx = ϕ, ηy = ξx,

ξxx = ϕy, ξxy = ξyy = 0, ηxx = ϕx, ηxy = ϕy, ηyy = ϕyy = 0.
(5.20)

The order two reduced symbol is then given by the equations

ξxx = ξxy = ξyy = ηxx = ηxy = ηyy = ϕyy = 0

so that the reduced indices and Cartan characters are

b
(1)
2 = 4, b

(2)
2 = 3, c

(1)
2 = 2, c

(2)
2 = 0.

On the other hand, order 3 reduced determining equations are

Xxxx =
(
(Uy − uy)2 + (Uxy − uxy)

)
Xx, Xxxy = Xxyy = Xyyy = 0,

Y xxx =
(
Uxx − uxx + (U − u)

(
Uxy − uxy + (Uy − uu)2

)
+ 2(Uy − uy)(Ux − ux)

)
Xx,

Y xxy =
(
Uxy − uxy + (Uy − uy)2

)
Xx, Y xyy = Y yyy = 0, Uxyy = uxyy, Uyyy = uyyy,

from which we see that r3 = 10, d3 = 2, and π3
2(G(3)) = G(2). Since

b
(1)
2 + 2b

(2)
2 = r3 or, equivalently, c

(1)
2 + 2c

(2)
2 = d3,

the reduced determining equations (5.7) of order n⋆ = 2 are involutive.

Remark 5.15. In the previous example, the order at which the reduced determining equa-
tions became involutive, was the same as the order of the original determining equations
(recall Example 4.1) , i.e. n⋆ = n⋆ = 2. The next example shows that this does not always
hold, and that, in general, n⋆ ≥ n⋆.

Example 5.16. To illustrate the second half of the prededing remark, consider the Lie
pseudo-group

X = x+ a, Y = y + b, U = f(x)u+ g(x) y + h(x),

with f ∈ D(R), g, h ∈ C∞(R), and a, b ∈ R. The determining equations, up to order two,
are

Xx = Yy = 1, Xy = Xu = Yx = Yu = 0,

Xxx = Xxy = Xyy = Xxu = Xyu = Xuu = 0,

Yxx = Yxy = Yyy = Yxu = Yyu = Yuu = 0, Uyy = Uyu = Uuu = 0.

The corresponding indices and Cartan characters are

b
(1)
2 = b

(2)
2 = 6, b

(3)
2 = 3, c

(1)
2 = 3, c

(2)
2 = c

(3)
2 = 0.
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Computing the order three determining equations, we obtain

Xxxx = Xxxy = Xxxu = Xxyy = Xxyu = Xxuu = Xyyy = Xyyu = Xyuu = Xuuu = 0,

Yxxx = Yxxy = Yxxu = Yxyy = Yxyu = Yxuu = Yyyy = Yyyu = Yyuu = Yuuu = 0,

Uxyy = Uyyy = Uyyu = Uxyu = Uyuu = Uxuu = Uuuu = 0.

Since there are no integrability conditions, and moreover,

b
(1)
2 + 2b

(2)
2 + 3b

(3)
2 = 27 = r3, c

(1)
2 + 2c

(2)
2 + 3c

(3)
2 = 3 = d3,

this proves involutivity at order n⋆ = 2. On the other hand, the reduced determining equa-
tions, up to order two, are

Xx = Y y = 1, Xy = Y x = 0, Xxx = Xxy = Xyy = Y xx = Y xy = Y yy = 0, (5.21)

with reduced indices b
(1)
2 = 4, b

(2)
2 = 2, and reduced Cartan characters c

(1)
2 = 2, c

(2)
2 = 1. Fur-

thermore, provided the regularity condition uyy ̸= 0 holds, the order 3 reduced determining
equations are

Xxxx = Xxxy = Xxyy = Xyyy = 0, Y xxx = Y xxy = Y xyy = Y yyy = 0, Uyyy =
uyyy
uyy

Uyy.

Therefore, the involutivity test b
(1)
2 +2b

(2)
2 = 8 ̸= r3 = 9 fails, as does c

(1)
2 +2c

(2)
2 = 4 ̸= d3 = 3.

On the other hand, the reduced determining equations become involutive at order n⋆ = 3
with

b
(1)
3 = 6, b

(2)
3 = 3, c

(1)
3 = 3, c

(2)
3 = 0, b

(1)
3 + 2b

(2)
3 = 12 = r4, c

(1)
3 + 2c

(2)
3 = 3 = d4.

Remark 5.17. According to Theorem 5.12, the conditions (5.17) on the Cartan characters
eventually hold whenever the Lie pseudo-group is reducible. We note that (5.17) may also
hold for some non-reducible pseudo-groups, and that these equalities imply the involutivity
of the associated determining equations. Indeed, assume (5.17) holds for all n ≥ n⋄ ≥ n⋆,
for some natural number n⋄. First, (4.3) and (5.16), together with (5.17), imply dn = dn.
Similarly, at order n + 1 we have dn+1 = dn+1. Combining the last equality with (5.17), we
conclude that

p∑
i=1

i c(i)n =
m∑
a=1

a c(a)n = dn+1 = dn+1.

Thus, the reduced determining equations G(n) satisfy the algebraic involutivity test. More-
over, since G(n) is involutive, πn+1

n (G(n+1)) = G(n), which implies πn+1
n (H(n+1)) = H(n). Then,

using (5.5),

πn+1
n

(
G(n+1)

)
= πn+1

n

(
rn+1(H(n+1))

)
= r(n)

(
πn+1
n (H(n+1))

)
= r(n)(H(n)) = G(n),

which thereby proves involutivity of the reduced determining equations G(n).

We now illustrate the remark with an example.
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Example 5.18. Consider the pseudo-group action

X = x+ a, U = λu+ f(x),

where a, λ ∈ R, with λ ̸= 0, and f(x) ∈ C∞(R). Up to order two, the determining equations
are

Xx = 1, Xu = 0, Xxx = Xxu = Xuu = Uxu = Uuu = 0.

These equations are involutive with indices and Cartan characters

b
(1)
2 = 3, b

(2)
2 = 2, c

(1)
2 = 1, c

(2)
2 = 0. (5.22)

The number of parametric pseudo-group jets of order ≤ k ∈ N is d(k) = k + 3. On the other
hand, assuming u = u(x), the reduced determining equations of order ≤ 2 are

Xx = 1, Xxx = 0.

At order two, we have the reduced index and reduced Cartan character

b
(1)
2 = 1, c

(1)
2 = 1, (5.23)

while the dimension of the reduced pseudo-group jet bundles are d(k) = k+2. Since d(k) < d(k),
the pseudo-group is non-reducible. But (5.22) and (5.23) satisfy (5.17) when n ≥ 2.

6 Reduced Moving Frames and Normal Forms.

In this section, we review the moving frame construction for infinite-dimensional Lie pseudo-
groups, as originally introduced in [54]. Restricting ourselves to reducible Lie pseudo-groups,
we work with the reduced pseudo-group jets rather than the original jets.

Let G be a reducible Lie pseudo-group acting on (local) sections s = {(x, u(x))} of the
bundle π : M → X . For transformations near the identity 1M , the transformed submanifold
S = φ(s) remains a section. The prolonged action on the n-th order submanifold jet space
Jn is obtained by applying the implicit total derivative operators

DXi =

p∑
j=1

W j
i Dxj , (6.1)

where (W j
i ) = (X i

j)
−1 denotes the entries of the inverse reduced total Jacobian matrix (which

can be simplified using the determining equations), to the reduced target dependent variables
Uα:

Ûα
J = DJ

XU
α = DXj1 · · ·DXjkU

α. (6.2)

If g(n) denotes the parametric reduced pseudo-group parameters of G(n), then, as a conse-
quence of the formula (6.1) for the implicit total derivative operators, the prolonged action
(6.2) can be written in terms of the submanifold jet coordinates (x, u(n)) and the parametric
pseudo-group jets g(n):

(X, Û (n)) = P (n)(x, u(n), g(n)). (6.3)
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Example 6.1. We compute the prolonged action for the Lie pseudo-group (4.4) acting on
surfaces u = u(x, y). In doing so, we take into account the reduced determining equations
(5.7). In particular, we recall that the reduced parametric pseudo-group jets are given in
(5.13). Thus, the lifted total derivative operators (6.1) are

DX =
1

Xx

Dx −
Y x

X2
x

Dy =
1

Xx

[
Dx + (u− U)Dy

]
, DY =

1

Xx

Dy.

The coordinate expressions for the prolonged action at order three are

ÛX =
Ux + (u− U)Uy

Xx

, ÛY =
Uy

Xx

,

ÛXX =
Uxx + (uy − Uy)Ux + (ux − Ux)Uy + (u− U)

(
2Uxy + 2(u− U)uyy + (uy − Uy)Ux

)
X2

x

,

ÛXY =
Uxy + (uy − Uy)Uy + (u− U)uyy

X2
x

, ÛY Y =
uyy

X2
x

,

ÛXY Y =
uxyy + 2(uy − Uy)uyy + (u− U)uyyy

X3
x

, ÛY Y Y =
uyyy

X3
x

. (6.4)

Observe that, as stated in (6.3), the resulting formulas only depend on the reduced parametric
pseudo-group jets and the submanifold jets.

Definition 6.2. . Let H(n) → Jn denote the lifted subgroupoid obtained by pulling back
G(n) → M to Jn. A reduced moving frame ρ(n) of order n is a G(n) equivariant local section:
ρ(n) : Jn → H(n)

.

Remark 6.3. The moving frame introduced in Definition 6.2 differs from the original defi-
nition given in [54] since it is based on the prolonged action of the reduced pseudo-group G
rather than the original pseudo-group G. For non-reducible Lie pseudo-group actions, the two
notions differ, whereas, as we now explain, for reducible pseudo-groups they are equivalent.
We will discuss the explicit construction of a reduced moving frame through the choice of a
cross-section to the pseudo-group orbits in Section 6.2 below.

In the original implementation, a moving frame exists at order n provided the prolonged
action is regular and (locally) free, see [54] for more details.

Definition 6.4. The pseudo-group G acts freely at z(n) ∈ Jn if its isotropy group G(n)
z(n) =

{ g(n) ∈ G(n) | g(n) · z(n) = z(n) } is trivial: G(n)
z(n) = {1

(n)
z | πn

0 (z
(n)) = z }, i.e., the only pseudo-

group jet fixing z(n) is the identity. The pseudo-group acts locally freely at z(n) if G(n)
z(n) is a

discrete group.

Once the pseudo-group acts freely4 on an open subset V (n) ⊂ Jn for some n, persistence
of freeness, [54, 56], implies that G acts freely on the open subset V (n+k) = (πn+k)−1V (n).
We now observe that freeness of the prolonged action implies the reducibility of the Lie
pseudo-group action.

4In general, one expects singular jets in Jn where the action is not free.
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Theorem 6.5. If G acts freely on the open subset V (n) ⊂ Jn(X ,M) then it is order n reducible
on any section whose jet lies in V (n).

Proof. Note that the identity reduced jet 1(n)
z fixes any jet z(n) ∈ Jn, where z = πn

0 (z
(n)).

Thus, because the action of G on Jn factors through the reduced action, each element of

(r(n))−1{1(n)
z } ∩ H(n) (6.5)

fixes z(n). If the action is not reducible, the subset (6.5) will contain non-identity jets, and
hence the isotropy subgroup of z(n) will be non-trivial. Q.E.D.

Theorem 6.5 implies that once the prolonged action becomes free, the reduced prolonged
action is also free, that is, the isotropy group G(n)

z(n) is trivial. For a reducible Lie pseudo-group,
the converse is also true.

Theorem 6.6. Let G be reducible on z(n). If the prolonged action of the reduced pseudo-group
G is free at z(n), then G(n) acts freely at z(n).

Proof. Since G is reducible, the isotropy group G(n)
z(n) must also contain a single jet. Since

1(n)
z ∈ G

(n)

z(n) , it follows that G
(n)

z(n) = {1
(n)
z }. Q.E.D.

Theorems 6.5 and 6.6 imply that for reducible Lie pseudo-groups we can go back and
forth between the construction of a moving frame for the original pseudo-group G and the
reduced pseudo-group G.

6.1 Isotropy.

According to the preceding discussion, there are two types of isotropy of a submanifold jet —
those where the reduced action fixes the jet, and, more restrictively, those with trivial reduced
action. Let us characterize them for better understanding. Note that the observations in this
subsection are not used in the subsequent developments, and can thus be skipped without
loss of continuity.

Given the submanifold jet z(n) ∈ Jn, let D(n)

z(n) ⊂ D(n) denote its isotropy subgroup of order

n, i.e., the set of n-jets of local diffeomorphisms which fix z(n). Let T (n)

z(n) ⊂ D
(n)

z(n) be those

isotropy elements which have trivial reduction. We can thus identify T (n)

z(n) ≃ (r(n))−1{1(n)
z }

where we are now applying the reduction map r(n) — see (5.2) — to an arbitrary diffeomor-

phism jet. Let Q(n)

z(n) = D
(n)

z(n)/T
(n)

z(n) denote the quotient space.

We now investigate D(n)

z(n) , T
(n)

z(n) , and Q
(n)

z(n) . By applying a suitable diffeomorphism, we
can, without loss of generality, assume that our section s is, locally, the trivial zero section,
u(x) ≡ 0, with zero n jet, so z(n) = 0(n). In this setting, a diffeomorphism 1-jet Z(1) =

(X(1), U (1)) belongs to T (1)

0(1)
if and only if

X = U = 0, and

δij = X i
j = X i

xj +

q∑
β=1

uβjX
i
uβ = X i

xj ,

0 = uαj = Uα
j = Uα

xj +

q∑
β=1

uβjU
α
uβ = Uα

xj ,

i, j = 1, . . . , p,

α = 1, . . . , q,
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where δij is the Kronecker delta. On the other hand, Z(1) ∈ D(1)

0(1)
if and only if X = U =

Ûα
Xj = DXj(Uα) = 0, with j = 1, . . . , p, and α = 1, . . . , q. Since the matrix (W i

j ) in the

definition of the total derivative operators (6.1) is invertible, the constraints for Z(1) to be in

D(1)

0(1)
are

X = U = 0, 0 = uαj = Uα
j = Uα

xj +

q∑
β=1

uβjU
α
uβ = Uα

xj ,
j = 1, . . . , p,

α = 1, . . . , q.

By similar computations, Z(n) ∈ T (n)

0(n) if and only if

X = U = 0, X i
xj = δij, X i

J = 0, |J | ≥ 2, Uα
J = 0, |J | ≥ 1,

while Z(n) ∈ D(n)

0(n) if and only if

X = U = 0, Uα
J = 0, |J | ≥ 1.

In other words, at x = 0, D(n)

0(n) consists of n jets of diffeomorphisms of the form

X = f(x, u), U = ug(x, u), f(0, 0) = 0, det(f i
xj)|(0,0) ̸= 0,

q∏
α=1

gα(0, 0) ̸= 0,

while T (n)

0(n) consists of n jets of diffeomorphisms of the form

X = x+ uh(x, u), U = ug(x, u),

q∏
α=1

gα(0, 0) ̸= 0.

In particular, on the zero section, we have X = x and hence T (n)

0(n) consists of n jets of
diffeomorphisms which fix every single point of s, i.e., the jets of the global isotropy subgroup
of s. On the other hand, the quotient space Q(n)

0(n) = D(n)

0(n)/T
(n)

0(n) can be identified with the
space of local diffeomorphisms of the form

X = a(x), U = u, a(0) = 0, det(aij)(0) ̸= 0.

These are just the reparametrizations of the zero section, which are extended to be diffeo-
morphisms with identical reparametrizations of the parallel sections, although the method of
extension is unimportant and just selects a particular representative of the quotient space.

Thus, pseudo-groups whose reduced action is free differ from freely acting pseudo-groups
only by the inclusion of some additional transformations that either belong to the global
isotropy subgroup of the section and/or perform reparametrizations of sections. These all
preserve the section, and thus do not affect the moving frame calculation nor the computa-
tions of differential invariants.

Example 6.7. Suppose p = q = 1, and consider the Lie pseudo-group action

X = x+ a, U = f(x, u), (6.6)
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where fu ̸= 0. Since the reduced parametric pseudo-group jets are X, Uxn , n ≥ 0, and the
prolonged action is ÛXn = Uxn , this pseudo-group admits a free reduced action. On the
other hand, the pseudo-group (6.6) does not act freely anywhere on the jet space J∞. When
p = 1, q = 2, the extended pseudo-group

X = x+ a, U = f(x, u), V = v + b, (6.7)

is of the same form, and furthermore is intransitive and so has nontrivial differential invari-
ants, namely vxn for all n ≥ 1, despite the fact that it does not act freely. On the other hand,
when p = 2, q = 1, the same pseudo-group

X = x+ a, Y = y + b, U = f(x, u), (6.8)

acts freely and transitively on the subset of jet space where uy ̸= 0 at all orders ≥ 1. We note
that the pseudo-groups (6.6) and (6.7) are not reducible, while (6.8) is reducible by virtue of
Theorem 6.5.

6.2 The Reduced Moving Frame Construction.

Coming back to the construction of a reduced moving frame, this is accomplished by selecting
a cross-section K(n) ⊂ Jn that is transversal to the orbits of the prolonged group action (6.2).
As in most applications, we will always assume that K(n) is a coordinate cross-section defined
by fixing d(n) values of the individual jet coordinates z(n) = (x, u(n)) to suitable constants.
Let

I(n)K ⊂ { i, (α, J) | i = 1, . . . , p, α = 1, . . . , q, |J | ≤ n } (6.9)

denote the set of indices of jet coordinates of order ≤ n that determine the cross-section,
which is thus prescribed by d(n) = #I(n)K equations, of the form

K(n) = {xi = ci, uαJ = cαJ | i, (α, J) ∈ I
(n)
K }, (6.10)

for suitable constants ci, cαJ .

Given a cross-section (6.10), the reduced right moving frame5 g(n) = ρ(n)(X, Û (n)) gives the

reduced pseudo-group element that maps a submanifold jet (X, Û (n)) (that belongs to a suit-
able neighborhood of the cross-section) to the cross-section (normal form) jet (x, u(n)) that lies
in the same pseudo-group orbit. Freeness guarantees that the reduced pseudo-group element
is uniquely determined. Conversely, the pseudo-group inverse (g(n))−1 = (ρ(n)(X, Û (n)))−1

defines the reduced left moving frame that sends the cross-section jet (x, u(n)) to the sub-

manifold jet (X, Û (n)).

To explicitly determine the moving frame, we begin by switching (X, Û (n)) and (x, u(n))
in the formulas (6.3) for the prolonged action of the (reduced) pseudo-group:

(x, u(n)) = P (n)(X, Û (n), g(n)), (6.11)

5By an abuse of notation, we use the same symbol to denote the pseudo-group normalization function
and the corresponding moving frame section in Definition 6.2.
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bearing in mind that here g(n) parametrizes the inverse of the pseudo-group element that ap-
pears in (6.3). The reduced right moving frame is constructed by solving the normalization
equations, which are obtained by equating the components of the preceding map correspond-
ing to the choice of cross-section (6.10) to the corresponding normalization constants,

P i(X, Û (n), g(n)) = ci, Pα
J (X, Û

(n), g(n)) = cαJ , with i, (α, J) ∈ I(n)K , (6.12)

for the reduced parametric pseudo-group jets g(n). Transversality of the cross-section and
freeness of the reduced action guarantee, via the Implicit Function Theorem, that the nor-
malization equations can be locally solved, nearby the cross-section, which produces the right
moving frame:

g(n) = ρ(n)(X, Û (n)). (6.13)

Substituting the moving frame expressions (6.13) into (6.11) produces the normalized differ-
ential invariants. Those corresponding to the cross-section coordinates, namely

ci = P i(X, Û (n), ρ(n)(X, Û (n))), cαJ = Pα
J (X, Û

(n), ρ(n)(X, Û (n))), i, (α, J) ∈ I(n)K ,

reduce, by construction, to the normalization constants, and are known as the phantom
differential invariants, whereas the remaining functions

Hj(X, Û (n)) = P j(X, Û (n), ρ(n)(X, Û (n))),

IβK(X, Û
(n)) = Pα

J (X, Û
(n), ρ(n)(X, Û (n))),

j, (β,K) /∈ I(n)K , (6.14)

form a complete system of functionally independent differential invariants of order ≤ n,
known as the basic normalized differential invariants, although in what follows “basic” will
often be dropped from the terminology.

Example 6.8. Returning to our running example, under the assumption that uyy > 0, a
possible cross-section to the prolonged action (6.4) is given by

K(2) = {x = 0, y = 0, u = c0, ux = c1, uy = d0, uxx = c2, uxy = d1, uyy = 1}, (6.15)

where c0, c1, c2, d0, d1 are arbitrary constants. More generally,

K(∞) = {x = 0, y = 0, uyy = 1, uxk = ck, uxky = dk, for all k ≥ 0}. (6.16)

Following the original papers [54,55], and to simplify the computations, we set the arbitrary

constants to zero, i.e., ck = dk = 0. Interchanging Û (3) ←→ u(3) in the prolonged action (6.4),
the normalization equations, up to order two, are obtained by substituting the cross-section
determining equations (6.15) into the prolonged action:

0 = X, 0 = Y , 0 = U, 0 =
Ux + (Û − U)Uy

Xx

,

0 =
Uy

Xx

, 0 =
Uxy + (ÛY − Uy)Uy + (Û − U)ÛY Y

X2
x

, 1 =
ÛY Y

X2
x

,

0 =
Uxx − (ÛY − Uy)Ux + (ÛX − Ux)Uy + (Û − U)(2Uxy + 2(Û − U)ÛY Y + (ÛY − Uy)Ux)

X2
x

,
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where the reduced pseudo-group jets (X,Y , U,Xx, Ux, Uy, Uxx, Uxy) are evaluated at the

source (X, Y, Û(X, Y )). Solving these equations for the reduced pseudo-group parameters,
we obtain the right moving frame

X = 0, Y = 0, U = 0, Xx =

√
ÛY Y , Ux = 0, Uy = 0,

Uxx = 0, Uxy = −Û ÛY Y .
(6.17)

Substituting the pseudo-group normalizations (6.17) into the last two equations of (6.4), with

Û (3) ←→ u(3), we obtain the third order normalized differential invariants

I1,2 =
ÛXY Y + 2 ÛY ÛY Y + Û ÛY Y Y

Û
3/2
Y Y

, I0,3 =
ÛY Y Y

Û
3/2
Y Y

. (6.18)

The left moving frame is obtained by inverting the pseudo-group normalizations (6.17). The
result is

X(0) = X, Y (0) = Y, U(0) = Û , Xx(0) =
1√
ÛY Y

,

Ux(0) =
ÛX + Û ÛY√

ÛY Y

, Uy(0) =
ÛY√
ÛY Y

, Uxy(0) =
ÛXY + Û2

Y + Û ÛY Y

ÛY Y

,

Uxx(0) =
ÛXX + 2 Û ÛXY + 2 ÛY ÛX + 4Û Û2

Y − Û ÛY ÛX − Û2Û2
Y

ÛY Y

.

(6.19)

where the pseudo-group parameters are now evaluated at the origin 0 = (0, 0, 0). One can
verify the validity of (6.19) by substituting the cross-section (6.15), with c0 = c1 = d0 =
d1 = 0, and the pseudo-group normalizations (6.19) into the prolonged action (6.4) to obtain
identities.

The method of (reduced) moving frames can naturally be formulated in terms of power
series as shown in [54, Section 8]. As explained in Section 2, we identify the submanifold jet

(X, Û (∞)) ∈ A∞ of an analytic section with the (locally) convergent power series

Ûα(Y ) =
∑
J

Ûα
J

J !
(Y −X)J , α = 1, . . . , q, (6.20)

centered at the point X ∈ X .
Let K = K(∞) ⊂ J∞ be a coordinate cross-section of infinite order. As in (6.9), we let

IK denote the set of indices i, (α, J) of jet coordinates that prescribe the cross-section, as in
(6.10). We further set

IαK = { J | (α, J) ∈ IK } . (6.21)

Given a left moving frame ρ(∞), a formal power series

uα(y) =
∑
J

uαJ
J !

(y − x)J , α = 1, . . . , q, (6.22)
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is said to be a normal form power series of (6.20) if the right moving frame sends the sub-
manifold power series (6.20) to the normal form power series (6.22) locally, or, inversely, the
left moving frame sends the normal form power series (6.22) back to the submanifold power
series (6.20). The coefficients uαJ with (α, J) ∈ IK represent the normalization constants
prescribed by the cross-section, i.e., the phantom invariants, which serve to fix the normal
form power series. The remaining coefficients uβK with (β,K) ̸∈ IK represent the complete

set of basic normalized differential invariants. Namely, given a submanifold U = Û(X) that
maps to the prescribed normal form (6.22), the resulting formulas for the coefficients uβK in

terms of the jet of Û are the differential invariants, as specified in (6.14).
From the normal form power series (6.22), we can extract the cross-section power series

Cα(y) =
∑
J ∈Iα

K

cαJ
J !

(y − x)J , α = 1, . . . , q, (6.23)

whose Taylor coefficients are the phantom invariants. If IαK is a finite set, then Cα(y) is a
polynomial, while if IαK = ∅, our convention is that Cα(y) does not exist.

Remark 6.9. Since the prolonged pseudo-group transformations only depend on the reduced
pseudo-group jets, the moving frame method applies equally well to non-free actions whose
reduced action is eventually free. However, we have, as yet, been unable to come up with
any truly interesting examples, beyond the rather trivial ones in Example 6.7, and so, as in
almost all other treatments of moving frames, we have restricted our attention to pseudo-
groups which act freely on an open subset of jet space of suitably high order.

7 The Normal Form Determining Equations.

We now formulate a system of differential equations that a normal form must satisfy. These
equations are obtained by suitably manipulating the reduced determining equations for the
pseudo-group.

Consider two sections s, S ⊂M of the fibered manifold π : M → X . In local coordinates,
the “source section” has the form s = {(x, u(x))}, while the “target section” is given by S =

{(X, Û(X))}. As in the previous section, we assume that the source section represents the
normal form while the target section is a prescribed analytic section that we seek to normalize
via a suitable pseudo-group diffeomorphism. In other words, we seek a diffeomorphism φ ∈ G
such that, locally, S = φ(s). In terms of the reduced pseudo-group, this requires

U = Û(X) or, more explicitly, U(x, u(x)) = Û(X(x, u(x))). (7.1)

Now, consider the reduced determining equations

G(n) =
{
∆(n)

(
x, u(n), X(n), U (n)

)
= 0
}

(7.2)

for the reduced pseudo-group diffeomorphism φ(x) = (X,U). Recall that u(n), X(n), U (n)

denote derivatives with respect to the source variables x up to order n. Applying the chain
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rule to differentiate the first equation in (7.1) yields formulae for the x derivatives of U in

terms of the x derivatives of X and the X derivatives of Û :

U (n) = U(n)(X(n), Û (n)), (7.3)

where Û (n) denotes the derivatives of Û with respect to X up to order n. These can be
explicitly computed by successively applying the chain rule total differential operators

Dxi =

p∑
j=1

Xj
xi DXj , i = 1, . . . , p, (7.4)

to Ûα for α = 1, . . . , q. For example, when p = q = 1, we have Dx = XxDX , and hence, up
to order two,

Ux = ÛXXx, Uxx = ÛXXX
2
x + ÛXXxx

Substituting the expressions (7.3) into the reduced determining equations (7.2) produces the
normal form determining equations

N (n) =
{
∆̃(n)

(
x, u(n), X(n), Û (n)

)
= 0
}
. (7.5)

Thus, given a prescribed function Û = Û(X) defining a submanifold (section), whose deriva-

tives Û (n) are known, we can view (7.5) as an n-th order system of differential equations for
the unknown functions X(x), u(x), the latter prescribing the normal form of the prescribed
submanifold.

To investigate involutivity of the normal form determining equations, we linearize at the
identity, keeping in mind that X(n) and u(n) vary, while Û (n) is fixed. The vector field used
for linearization is ∑

0≤|J |≤n

( p∑
i=1

ξiJ
∂

∂X i
J

+

q∑
α=1

ψα
J

∂

∂uαJ

)
.

We begin by linearizing the chain rule formula (7.3), for which we write out its individual
components.

Lemma 7.1. For any α = 1, . . . , q and multi-index J = (j1, . . . , jn), the linearization of the
chain rule equation

Uα
J = Uα

J(X
(n), Û (n)) (7.6)

at the identity is

ϕα
J = DJ

x

(
p∑

i=1

uαi ξ
i

)
−

p∑
i=1

uαJ,i ξ
i. (7.7)

Proof : Linearization at the identity amounts to computing the infinitesimal generator of a
one parameter group. In the case of (7.1), the group can be identified with the induced action
of the inverse of the change of independent variables prescribed by X = X(x) = X(x, u(x))
on the dependent variables u; for details, see the discussion on pages 105–106 of [47]. Because
we are dealing with the inverse, the infinitesimal generator is

−
p∑

i=1

ξi
∂

∂xi
,
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which only acts on the independent variables. Linearizing the induced action on the deriva-
tives (7.6) is the same as computing the prolongation of this vector field, which, according
to [47, Theorem 2.36] is exactly given by the prolongation formula (7.7), the quantity in
parentheses being its characteristic. Q.E.D.

Example 7.2. For example, suppose p = 2, with independent variables x, y, and q = 1, with
dependent variable u. Applying

Dx = XxDX + Y xDY , Dy = XyDX + Y yDY ,

once and twice to Û produces the first and second chain rule formulas

Ux = ÛXXx + ÛY Y x, Uy = ÛXXy + ÛY Y y,

Uxx = ÛXXX
2
x + 2 ÛXYXxY x + ÛY Y Y

2
x + ÛXXxx + ÛY Y xx,

Uxy = ÛXXXxXy + ÛXY (XxY y +XyY x) + ÛY Y Y xY y + ÛXXxy + ÛY Y xy,

Uyy = ÛXXX
2
y + 2 ÛXYXyY y + ÛY Y Y

2
y + ÛXXyy + ÛY Y yy.

(7.8)

Linearizing at the identity, where (5.9) holds, produces

ϕx = ux ξx + uy ηx = Dx(ux ξ + uy η)− (uxx ξ + uxy η),

ϕy = ux ξy + uy ηy = Dy(ux ξ + uy η)− (uxy ξ + uyy η),

ϕxx = ux ξxx + uy ηxx + 2uxx ξx + 2uxy ηx = D2
x(ux ξ + uy η)− (uxxx ξ + uxxy η),

ϕxy = ux ξxy + uy ηxy + uxx ξx + uxy(ξy + ηx) + uyy ηx = DxDy(ux ξ + uy η)−(uxxy ξ + uxyy η),

ϕyy = ux ξyy + uy ηyy + 2uxy ξy + 2uyy ηy = D2
y(ux ξ + uy η)− (uxyy ξ + uyyy η),

(7.9)
in accordance with the general formula (7.7).

Theorem 7.3. The linearization of the normal form determining equations (7.5) at the iden-

tity (X, u(n)) = (x, Û (n)) coincides with the linearization of the reduced determining equations
(7.2) at the identity (X,U (n)) = (x, u(n)) after the substitutions

ϕα
J 7−→ DJ

x

(
p∑

i=1

uαi ξ
i

)
−

p∑
i=1

uαJ,iξ
i − ψα

J , α = 1, . . . , q, J = (j1, . . . , jn). (7.10)

Remark 7.4. The linearization of the normal form determining equations (7.5) in Theorem

7.3 occurs at the point (x, Û (n)). But since at the identity u(n) = Û (n), we may substitute

u(n) for Û (n) in the linearization, which is implicitly done in Theorem 7.3.

Proof : In view of (5.10), the linearized reduced determining equations have the form

Lν =

p∑
i=1

∑
0≤|J |≤n

Ai,J
ν,1 ξ

i
J +

q∑
α=1

∑
0≤|K|≤n

Bα,K
ν,1 ϕα

K , (7.11)
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where the additional 1 subscript means that we evaluate the coefficients at the identity. On
the other hand, substituting (7.6) into (5.10), we deduce that the normal form determining
equations take the form

∆̃ν =

p∑
i=1

 Ãi
ν(X

i − xi) + Ãi,i
ν (X i

i − 1) +
∑
J ̸=i

1≤|J |≤n

Ãi,J
ν X i

J


+

q∑
α=1

∑
0≤|K|≤n

B̃α,K
ν

[
Uα
K(X

(k), Û (k))− uαK
]
,

whose coefficients are obtained from those of (5.10) by using the chain rule substitution (7.3).
Linearizing the latter expressions at the identity, using (7.7), and noting that at the identity

(7.3) reduces to U (n) = Û (n) = u(n), produces

L̃ν =

p∑
i=1

∑
0≤|J |≤n

Ai,J
ν,1 ξ

i
J +

q∑
α=1

∑
0≤|K|≤n

Bα,K
ν,1

[
DK

x

(
p∑

i=1

uαi ξ
i

)
−

p∑
i=1

uαK,iξ
i − ψα

K

]
. (7.12)

Comparing (7.11) and (7.12) completes the proof. Q.E.D.

Remark 7.5. Inverting the substitutions (7.10) for ψα
J , we recover the usual formula for the

prolongation of the vector field

−v = −

(
p∑

i=1

ξi(x)
∂

∂xi
+

q∑
α=1

ϕα(x)
∂

∂uα

)
(7.13)

to jet space. More explicitly, recall from [47] that the n-th order prolongation of v is the
vector field

v(n) =

p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

∑
0≤|J |≤n

ϕ̂α
J

∂

∂uαJ
, (7.14)

where the prolonged vector field coefficients are given by the formula

ϕ̂α
J = ϕα

J −DJ
x

( p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i. (7.15)

Then, under the substitution (7.10), the prolonged vector field −v(n) is mapped to the vector
field

ṽ(n) = −
p∑

i=1

ξi
∂

∂xi
+

q∑
α=1

∑
0≤|J |≤n

ψα
J

∂

∂uαJ
. (7.16)

As an immediate corollary, we are able to characterize the involutivity of the normal form
determining equations.

Theorem 7.6. For any order n, if the reduced determining equations are involutive, then so
are the normal form determining equations.

Proof : The substitution (7.10) is an invertible linear map, which does not alter the algebraic
properties of the symbol, and hence does not affect its involutivity. Q.E.D.
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Example 7.7. In this example we compute the normal form determining equations for
the Lie pseudo-group (4.4). We substitute the chain rule formulas (7.8) into the reduced
determining equations (5.7). The resulting equations, once simplified, are

Xy = 0,

Y x = (Û − u)Xx,

Y y = Xx,

Xxx = ÛYX
2
x − uyXx, Xxy = Xyy = 0,

Y xx =
(
ÛX + 2(Û − u)ÛY

)
X2

x −
(
ux + (Û − u)uy

)
Xx,

Y xy = ÛYX
2
x − uyXx, Y yy = 0, uyy = ÛY YX

2
x,

(7.17)

and the parametric jets are X,Y , u,Xx, ux, uy, uxx, uxy. We now linearize the normal form
determining equations (7.17) at the identity transformation. To do so, we apply the vector
field

j∞ṽ =
∞∑

i,j=0

(
ξij

∂

∂X ij

+ ηij
∂

∂Y ij

+ ψij
∂

∂uij

)
,

to all the equations and then set X = x, Y = y, ÛXiY j = uxiyj for all i, j ≥ 0. This yields
the linear system

ξy = 0, ηx = −ψ, ηy = ξx, ξxx = uy ξx − ψy, ξxy = ξyy = 0,

ηxx = ux ξx − uyψ − ψx, ηxy = uy ξx − ψy, ηyy = 0, ψyy = 2uyy ξx.
(7.18)

Observe that, in accordance with Theorem 7.3, these equations can also be obtained from
the linearized reduced determining equations (5.20) by applying the linear substitutions

ϕ 7−→ −ψ, ϕx 7−→ ux ξx + uy ηx − ψx, ϕy 7−→ ux ξy + uy ηy − ψy,

ϕyy 7−→ 2uxy ξy + 2uyy ηy + ux ξyy + uy ηyy − ψyy,
(7.19)

coming from (7.9), and then simplifying the resulting equations. Since the linear (algebraic)
map defined by (7.19) is invertible, the systems have the same indices and Cartan characters,
and involutivity follows immediately.

For later use in Example 8.4, we compute the normal form determining equations of order
three

Xxxx = (u2y − uxy)Xx − 3uyÛYX
2
x + (ÛXY + 2 Û2

Y + (Û − u)ÛY Y )X
3
x,

Xxxy = Xxyy = Xyyy = Y xyy = Y yyy = 0,

Y xxx = (2uxuy − uxx + (Û − u)(u2y − uxy))Xx − 3(uxÛY + uyÛX + 2(Û − u)uyÛY )X
2
x

+ (ÛXX + 4 ÛXÛY + 3(Û − u)(ÛXY + 2 Û2
Y ) + 2(Û − u)2ÛY Y )X

3
x,

Y xxy = (u2y − uxy)Xx − 3uyÛYX
2
x + (ÛXY + 2 Û2

Y + (Û − u)ÛY Y )X
3
x,

uxyy = −2uyÛY YX
2
x + (ÛXY Y + 2 ÛY ÛY Y − uÛY Y Y + Û ÛY Y Y )X

3
x,

uyyy = ÛY Y YX
3
x.

(7.20)
Linearizing the equations (7.20) at the identity jet yields

ξxxx = (2uxy + u2y)ξx − ψxy − uyψy − uyyψ, ξxxy = ξxyy = ξyyy = 0,

ηxxx = (2uxy + 2uxuy)ξx − ψxx − uyψx − uxψy − (2uxy + u2y)ψ,

ηxxy = (2uxy + u2y)ξx − ψxy − uyψy − uyyψ, ηxyy = ηyyy = 0,

ψxyy = (3uxyy + 2uyuyy)ξx − 2uyyψy − uyyyψ, ψyyy = 3uyyyξx.

(7.21)

36



8 Involutivity and Reduced Moving Frames.

We now reach the heart of the paper, in which we complete the proof of our general con-
vergence result for normal forms of submanifolds. The key remaining step is to establish
the compatibility of the cross-section normalizations producing the moving frame with the
involutivity of the normal form determining system. The main complication is they are not
necessarily compatible at low order. However, as we will demonstrate, beyond the order of
freeness of the prolonged pseudo-group action, this identification can be made. Indeed, this
is to be suspected, since this is also where the algebraic moving frame constructions used
in [55] apply. As noted in [55], the finite number of normalizations imposed at or below
the order of freeness are not, in general, compatible with the algebraic framework used to
establish generating sets of differential invariants and syzygies, and so must be appended to
the former to obtain a complete system of differential invariants. Here we will see a similar
behavior within the involutivity framework. Establishing this connection is a bit technical,
as we now explain.

The involutivity of the normal form determining equations (7.5) relies on the class-based
ordering of multi-indices, which imposes some restrictions on which jets are parametric and
principal. For example, in the normal form determining equations (7.17), the equation

uyy = ÛY YX
2
x

is solved for uyy since it is a principal jet according to the involutivity framework. On the other
hand, recalling the moving frame computations in Example 6.8, we have the normalization
equation

ÛY Y =
uyy

X2
x

=
1

X2
x

which, for the left moving frame, was solved for

Xx =

√
uyy

ÛY Y

=
1√
ÛY Y

.

Thus, the same equation may be solved for different jets depending on whether we implement
the involutivity formalism or the moving frame construction. At the level of the linearized
equations, the equation in question is

2uyy ξx − ψyy = 0.

Since the symbol of the equation is ψyy = 0, involutivity involves solving for ψyy. However,
the moving frame construction requires solving for ξx.

The aim of this section is to show that, while they may differ at low order, if the normal
form determining equations are prolonged to a sufficiently high order, then the determination
of the parametric jets via the symbol of the normal form determining equations is consistent
with the moving frame construction.

Let L(n)
N denote the linearization of the n-th order normal form determining equations

(7.5) at the identity, and let

Σn
N = H(L(n)

N )
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be the corresponding symbol with symbol matrix Mn
N . We first fix some of the freedom that

exists when ordering the columns of Mn
N within a fixed class. To be compatible with the

moving frame construction, we require the columns associated to the reduced pseudo-group
jets X i

K to appear to the left of the columns corresponding to the normal form jets uαJ when
clsK = cls J . This ordering stems from the fact that, in the moving frame method, we
prioritize solving for the reduced pseudo-group jets X i

J over the normal form jets uαK within
a fixed class.

For n ≥ 0, we introduce the n-th order vertical symbol

Ψn = (span {ψ(n)}) ∩ Σn
N , (8.1)

consisting of all the equations in the n-th order symbol that only depend on the coefficients
ψα
J of order |J | = n. Combining these spaces, we define the vertical symbol to be

Ψ =
∞⋃
n=0

Ψn. (8.2)

Example 8.1. In our running example, keeping only the highest order terms in the linearized
equations (7.18), we obtain the symbol equations

ξy = 0, ηx = 0, ηy = ξx,

ξxx = ξxy = ξyy = 0, ηxx = ηxy = ηyy = 0, ψyy = 0.

Therefore, the vertical symbols of order ≤ 2 are

Ψ0 = Ψ1 = ∅, and Ψ2 = {ψyy = 0}.

Similarly, from the order three linearized equations (7.21), we find that the order three vertical
symbol is Ψ3 = {ψxyy = ψyyy = 0}, and more generally,

Ψk = {ψxjyk−j = 0 | 0 ≤ j ≤ k − 2} for k ≥ 2.

Upon row reducing the vertical symbol Ψ, the pivots of ΨREF identify principal normal
form jets. Now the question is whether this identification of the principal normal form jets
is consistent with the moving frame construction. To answer this question, we introduce the
n-th order linearized differential invariant annihilator subbundle

Z(n) = (span {ξ, ψ(n)}) ∩ L(n)
N (8.3)

containing all the linearized normal form equations that only depend on ξ and ψ(n). To
understand the origin of (8.3), we recall that a function I(x, u(n)) is a differential invariant of
G if and only if it is annihilated by all prolonged infinitesimal generators (7.14) of the reduced
pseudo-group action. In view of (7.16), this is equivalent to the infinitesimal constraint

ṽ(n)(I) = −
p∑

i=1

ξi
∂I

∂xi
+

q∑
α=1

∑
0≤|J |≤n

ψα
J

∂I

∂uαJ
= 0. (8.4)

Theorem 8.2. If I(x, u(n)) is a differential invariant, then the infinitesimal invariance equa-
tion ṽ(n)(I) = 0 belongs to Z(n).

Proof. By definition, Z(n) contains all the linear combinations of ξ and ψ(n) that vanish. Since
the infinitesimal invariance criterion (8.4) is of this form, it must belong to Z(n). Q.E.D.
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Applying Theorem 8.2 to the basic normalized differential invariants (6.14), evaluated at

the source variables (x, u(n)) rather than the target variables (X, Û (n)), we conclude that

ṽ(n)(Hj) = ṽ(n)(IβK) = 0 with j, (β,K) /∈ I(n)K (8.5)

are equations in Z(n). Since the basic normalized differential invariants form a complete set of
functionally independent differential invariants of order ≤ n, it follows that, at each regular
jet,

Z(n)|z(n) =
{
ṽ(n)(Hj)|z(n) = ṽ(n)(IβK)|z(n) = 0 | j, (β,K) /∈ I(n)K

}
. (8.6)

Remark 8.3. One needs to be a little careful here. Not every equation defining Z(n) is
necessarily of the form (8.5), because its coefficients need not be partial derivatives of some
function. On the other hand, (8.6) says that, at a fixed regular jet, the linear subvariety
defined by the differential invariant conditions (8.5) coincides with the n-th order linearized
differential invariant annihilator subbundle Z(n).

Keeping only the highest order terms in (8.3), we introduce the n-th order linearized
differential invariant annihilator symbol

Υn = H(Z(n)).

Since ξ has order zero, it follows that for n ≥ 1, the n-th order linearized differential invariant
annihilator symbol Υn only involves linear equations in ψα

J of order |J | = n.

Example 8.4. Recalling the linearized normal form determining equations (7.18) and (7.21),
we conclude that when uyy ̸= 0,

Z(3) =

{
ψyyy =

3uyyy
2uyy

ψyy, ψxyy =

(
3

2

uxyy
uyy

+ uy

)
ψyy − 2uyyψy − uyyyψ

}
. (8.7)

We observe that, in accordance with the preceding remarks, the equations in (8.7) can also
found by setting the linearization of the normalized invariants (6.18), re-expressed in terms
of the source variables (x, u(n)), to zero. Keeping only the highest order terms,

Υ0 = Υ1 = Υ2 = ∅, while Υ3 = {ψxyy = ψyyy = 0} = Ψ3. (8.8)

More generally, Υk = Ψk for all k ≥ 3.
On the other hand, when uyy = 0, we have

Z(2) = {ψyy = 0} and Z(3) = {ψyy = ψxyy = ψyyy = 0},

so that
Υ2 = {ψyy = 0} and Υ3 = {ψxyy = ψyyy = 0}.

In this case, the equality Υk = Ψk holds for all k ≥ 2.

Remark 8.5. It is worth reiterating that all the symbol computations are done at a fixed
jet, whose dependence has been omitted throughout the paper. The last example reminds
us that we need to pay attention to the base jet when performing computations. This is
important when, for example, analyzing singular normal forms, [57].
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Example 8.6. As a second example, consider the Lie pseudo-group

X = f(x), Y = λ y, U = u+ b, V = v + c, (8.9)

where f ∈ D(R), λ > 0, and b, c ∈ R. Here we assume that p = q = 2 with u = u(x, y),
v = v(x, y). Working under the assumption that y ̸= 0, the normal form determining
equations N (2) of order two are

Xx =
ux

ÛX

, Xy = 0, Y x = 0, Y y =
Y

y
, uy =

Y ÛY

y
, vx =

uxV̂X

ÛX

, vy =
Y V̂Y
y

,

Xxx =
uxx

ÛX

− u2xÛXX

Û3
X

, Xxy = Xyy = Y xx = Y xy = Y yy = 0, uxy =
uxY ÛXY

y ÛX

,

uyy =
Y 2ÛY Y

y2
, vxx =

uxxV̂X

ÛX

+ u2x

(
V̂XXÛX − ÛXX V̂X

Û3
X

)
, vxy =

uxY V̂XY

y ÛX

, vyy =
Y 2V̂Y Y

y2
.

We remark that the equations for uy, vx, vy, . . ., can be obtained by successively applying
the chain rule operators

Dx = XxDX =
ux

ÛX

DX , Dy = Y yDY =
Y

y
DY ,

to the last two transformations in (8.9). Linearization at the identity yields the system of

linear equations L(2)
N given by

ξx =
ψx

ux
, ξy = 0, ηx = 0, ηy =

η

y
, ψy =

uy
y
, γx =

vx
ux
ψx, γy =

vy
y
η,

ξxx =
ψxx

ux
− 2

uxxψx

u2x
, ξxy = ξyy = ηxx = ηxy = ηyy = 0, ψxy = uxy

(
ψx

ux
+
η

y

)
,

ψyy = 2
uyy
y
η, γxx =

vx
ux
ψxx + 2

(
vxxux − uxxvx

u2x

)
ψx, γxy = vxy

(
ψx

ux
+
η

y

)
, γyy = 2

vyy
y
η,

where ξ, η, ψ, γ denotes the linearization of X, Y , u, v, respectively. Up to order two, the
symbols are

Σ0
N = ∅, Σ1

N =

{
ξx =

ψx

ux
, ξy = ηx = ηy = 0, ψy = 0, γx =

vx
ux
ψx, γy = 0

}
,

Σ2
N =

{
ξxx =

ψxx

ux
, ξxy = ξyy = ηxx = ηxy = ηyy = ψxy = ψyy = 0,

γxx =
vx
ux
ψxx, γxy = γyy = 0

}
.

In this example,

Z(2) =

{
ψy =

uy
y
η, γx =

vx
ux
ψx, γy =

vy
y
η, ψxy = uxy

(
ψx

ux
+
η

y

)
, ψyy = 2

uyy
y
η,
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γxx =
vx
ux
ψxx + 2

(
vxxux − uxxvx

u2x

)
ψx, γxy = vxy

(
ψx

ux
+
η

y

)
, γyy = 2

vyy
y
η

}
,

which can also be found by applying the vector field

ṽ(∞) = −ξ ∂
∂x
− η ∂

∂y
+
∑
J

(
ψJ

∂

∂uJ
+ γJ

∂

∂vJ

)
to the differential invariants

I0,1 = yuy, I1,1 =
yuxy
ux

, I0,2 = y2uyy,

J1,0 =
vx
ux
, J0,1 = y vy, J2,0 =

vxxux − vxuxx
u3x

, J1,2 =
y vxy
ux

, J0,2 = y2vyy

and setting the result to zero. Finally, we note that

Υ0 = Ψ0 = ∅, Υ1 = Ψ1 =

{
ψy = 0, γx =

vx
ux
ψx, γy = 0

}
,

Υ2 = Ψ2 =

{
ψxy = ψyy = 0, γxx =

vx
ux
ψxx, γxy = γyy = 0

}
.

Remark 8.7. The linear spaces defined above are related to the algebraic constructions in-
troduced in [55]. First, the vertical symbol (8.2) is related to the prolonged symbol submodule
defined in [55, Definition 4.2]. On the other hand, the linearized differential invariant annihi-
lator subbundle Z(n) is equivalent to the prolonged annihilator bundle introduced in [55, eq.
(4.26)].

Since the equations in Z(n) only depend on ξ and ψ(n), all the pivots of the row reduced
symbol Υn

REF identify principal normal form jets in the normal form determining equations
(7.1) that are compatible with the reduced moving frame construction. Indeed, the normal
form equations whose linearization at the identity are in Z(n) must be independent of the
reduced pseudo-group jets X i

J of order |J | ≥ 1. Thus, these equations are of the form

F (x, Û (n), X, u(n)) = 0. (8.10)

The equations that depend on u(n) can then be solved for certain principal normal form jets
uαJ , in a manner that is compatible with the moving frame implementation, as we now explain
in detail. We note that these equations are not solved for any of the base coordinates X i,
since, in the moving frame implementation, X is set equal to the point

X0 = (X1
0 , . . . X

p
0 ) (8.11)

at which the jet of the source section S = {(X, Û(X))} is to be evaluated.
As Example 8.4 exemplifies, in general Ψn ⊆ Υn, where the containment means that the

solution space of Ψn is contained in the solution space of Υn. But if there exists an order n
such that

Ψk = Υk for all k > n, (8.12)
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then we can conclude that the principal normal form jets determined by the pivots of Ψk
REF

are compatible with the moving frame construction. We now show that (8.12) holds with
n = nf , the order at which the prolonged reduced pseudo-group becomes free.

According to Definition 6.4, the reduced Lie pseudo-group G acts freely at z(n) ∈ Jn if
and only if

G(n)
z(n) =

{
(X(n), U (n)) ∈ G(n) | P (n)(z(n), X(n), U (n)) = z(n)

}
=
{
1
(n)
z

}
, (8.13)

where P (n)(z(n), X(n), U (n)) is the function that prescribes the prolonged action (6.2) at order
n. At the infinitesimal level, the Lie pseudo-group acts locally freely if and only if

g
(n)

z(n) =
{
(ξ(n), ϕ(n)) ∈ L(n)

G (z(n), ξ(n), ϕ(n)) | v(n) = 0
}
= {0}, (8.14)

where the prolonged vector field v(n) is defined in (7.14).
The next result shows that persistence of freeness also holds for reduced Lie pseudo-group

actions.

Theorem 8.8. If the reduced pseudo-group G acts (locally) freely at z(n) ∈ Jn, then for all
k > 0 it acts (locally) freely at z(n+k) ∈ Jn+k where πn+k

n (z(n+k)) = z(n).

Proof. The linearized equations (8.14) imply that the symbol of the system of equations
(8.13) is trivial. Therefore the system (8.13) is involutive with vanishing Cartan characters

c(i)n = 0 for i = 1, . . . , p. Since G(n+k)

z(n+k) can be obtained by prolonging G(n)
z(n) , and involutivity

is preserved under prolongation, we conclude, recalling (5.19), that the Cartan characters of

G(n+k)

z(n+k) also vanish, which means that all the jets of order n + k are uniquely determined.

Since 1
(n+k)

z(n+k) ∈ G
(n+k)

z(n+k) , this is the only solution and the reduced pseudo-group remains free
at order n+ k. Q.E.D.

We now make the substitutions (7.3) in (8.13) to obtain{
(X(n), u(n)) ∈ N (n) | P (n)(z(n), X(n),U(n)(X(n), Û (n))) = z(n)

}
=
{
(1(n)

x , Û (n))
}
, (8.15)

which holds whenever the reduced pseudo-group acts freely. At the infinitesimal level, we
use the equality (7.16) to conclude that 0 = v(n) = −ṽ(n), the latter being equivalent to
{ξ = 0, ψ(n) = 0}. Thus, the linearization of (8.15), at the identity transformation, yields{

(ξ(n), ψ(n)) ∈ L(n)
N (z(n), ξ(n), ψ(n)) | ξ = 0, ψ(n) = 0

}
= {0}. (8.16)

Remark 8.9. The local freeness condition (8.16) implies that the system of equations

L(n)
N (z(n), ξ(n), ψ(n)) ∩ {ξ = 0, ψ(n) = 0} is equivalent to {ξ(n) = 0, ψ(n) = 0}. Therefore

any linear combination Y ∈ span{ξ(n), ψ(n)} can be written in the form Y = U + V , with

U ∈ span{ξ, ψ(n)} and the equation V = 0 belonging to L(n)
N .

We now establish the key moving frame/involutivity compatibility result.

Theorem 8.10. If G acts (locally) freely at z(n) ∈ Jn, then the equality Ψk|z(k) = Υk|z(k)
holds for all k > n and all z(k) ∈ (πk

n)
−1{z(n)}.
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Proof. By an inductive argument that relies on the persistence of freeness, it suffices to prove
the equality for k = n + 1. Since Ψn ⊆ Υn for any n ∈ N, it suffices to show the reverse
inclusion. In other words, if Q = 0 is in Ψn+1, by which we mean that Q = 0 is one of the
equations defining Ψn+1, we must show that there exists U ∈ span{ξ, ψ(n)} such that

Q+ U = 0 ∈ Z(n+1).

If this is the case, then Q = H(Q+ U) = 0 is in Υn+1.
Now, since Q = 0 is an equation in the symbol Σn+1

N , there exists Y ∈ span{ξ(n), ψ(n)}
such that

Q+ Y = 0 ∈ L(n+1)
N .

Using Remark 8.9, we have that
Y = U + V,

with U ∈ span{ξ, ψ(n)} and V = 0 in L(n)
N . Thus, the equation

Q+ U = (Q+ Y )− V = 0 ∈ L(n+1)
N .

Since Q = 0 is in Ψn+1 and U ∈ span{ξ, ψ(n)}, we conclude that 0 = Q+U ∈ Z(n+1). Q.E.D.

In light of Theorem 8.10, once freeness is attained at order nf , we can use Ψ
nf+1
REF to

identify the principal normal form jets of order nf +1. Given a multi-index I of order nf +1
we explicitly identify its class by rewriting it as

I = (I \ i), i where cls(I) = i.

With this notation, the principal normal form jets uαI of order nf + 1 satisfy the equations

uα(I\i),i = ∆α
I (x, Û

(nf+1), X, . . . , uβJ , . . . , u
γ
(K\k),k, . . .), (8.17)

where the normal form jets occurring on the right hand side of (8.17) are parametric with
|J | ≤ nf , |K| = nf + 1, and k = cls(K) ≤ cls(I) = i.

Freeness implies that, at order nf , all the reduced horizontal pseudo-group jets of orders
1 ≤ k ≤ nf can be normalized so that

X i
L = Ξi

L(x, Û
(nf ), X, . . . , uβJ , . . .), i = 1, . . . , p, 1 ≤ |L| ≤ nf , (8.18)

where the normal form jets uβJ appearing on the right hand side of (8.18) are parametric with
|J | ≤ nf . Similarly, the principal normal form jets of order ≤ nf satisfy the equations

uαI = ∆α
I (x, Û

(nf ), X, . . . , uβJ , . . .), α = 1, . . . , q, |I| ≤ nf , (8.19)

where the uβJ are also parametric with |J | ≤ nf . Since the equations (8.18) and (8.19) are
obtained by implementing the reduced moving construction, these are not necessarily class
respecting. This means that the class of the parametric normal form jets on the right hand
side of an equation may be greater than the class of the jet occurring on the left hand side of
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the same equation. To obtain class respecting equations for the reduced horizontal pseudo-
group jets, we differentiate the equations in (8.18) for the reduced pseudo-group jets X i

L of
order |L| = nf with respect to the multiplicative variables ℓ ≤ cls(L), thereby obtaining the
equations

X i
L,ℓ = Ξ̃i

L,ℓ(x, Û
(nf+1), X . . . , uβJ , . . . , u

β
J,ℓ, . . .), i = 1, . . . , p, |L| = nf , (8.20)

where we used (8.18) to remove the first order jets X i
j from (8.20). We note that the class

of X i
L,ℓ is now

cls(L, ℓ) = ℓ.

We also observe that all the normal form jets uβJ,ℓ on the right hand side of (8.20) satisfy the
class requirement

cls(J, ℓ) = min{cls(J), ℓ} ≤ ℓ.

Using (8.17) and (8.19), we can remove any principal normal form jet of order ≤ nf + 1
appearing in (8.20) to obtain

X i
L,ℓ = Ξi

L,ℓ(x, Û
(nf+1), X . . . , uβJ , . . . , u

κ
(N\n),n, . . .), i = 1, . . . , p, |L| = nf , (8.21)

where all the normal form jets on the right hand side of the equations are parametric with
|J | ≤ nf , |N | = nf + 1, and n = cls(N) ≤ cls(L, ℓ) = ℓ.

The equations (8.17) and (8.21) account for all the equations of order nf + 1 contained
in the normal form determining equations N (nf+1). Since the normal form equations N (nf )

of order nf are involutive, and involutivity is preserved under prolongation, the msystem of
differential equations given by (8.17) and (8.21) combined with N (nf ) is involutive.

The preceding discussion proves the following result.

Theorem 8.11. Assume the normal form determining equations (7.5) become involutive at
order n⋆ and that the prolonged action of a Lie pseudo-group is free at order nf ≥ n⋆. Then
the normal form determining equations of order nf + 1 are involutive and the determination
of the principal jets of order nf + 1 is consistent with the moving frame construction.

Remark 8.12. Example 8.4 shows that freeness is not necessary to obtain (8.12). Non-free
actions will arise, in particular, in equivalence problems where there are non-trivial isotropy
groups. By appropriately dealing with the isotropy group, a modified version of Theorem
8.11 should still hold. The details are, however, deferred to future study.

Remark 8.13. The normal form equations N (nf ) are given by the equations (8.18) and
(8.19). However, we note that the jets occurring on the left hand sides of the equations are

not necessarily in accordance with the pivots of the symbol matrix M
(nf )
N .

Example 8.14. Continuing Example 7.7, we saw that the order two normal form determining
equations are not compatible with the moving frame construction. But since the prolonged
action becomes free at order two, based on Theorem 8.11, those of order three given in (7.20)
will be compatible. The normal form determining equation of order three remain involutive
with Cartan characters c

(1)
3 = 2, c

(2)
3 = 0.
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Assuming the prolonged action becomes free at order nf ≥ n⋆, we follow the discussion on
page 10 to rewrite the normal form determining equations N (nf+1) as an equivalent system
of first order differential equations

Ñ (1) =


∆̃(1)(x, Û (nf+1), (X(nf ))(1), (u(nf ))(1)) = 0,

∂iX
j
J = Xj

J,i, ∂iu
α
J = uαJ,i, |J | ≤ nf , 1 ≤ i ≤ p,

∂iX
j
J = ∂kX

j
J,i\k, ∂iu

α
J = ∂ku

α
J,i\k, |J | = nf , k = cls J < i ≤ p.

 . (8.22)

According to Proposition 3.9, this first order system remains involutive with the same Cartan
characters as the original normal form determining system N (nf+1). Furthermore, we write
(8.22) in reduced Cartan normal form. Since the second and third lines of (8.22) are already

in Cartan normal form, we focus on the equations ∆̃(1) = 0. When expressing the order
nf + 1 jets as first order derivatives, we use the substitutions (3.6) and make the blanket
assumption that when writing ∂ℓu

γ
L\ℓ, the multi-index L is of order nf +1 and class ℓ. Doing

so, we obtain the first order system of differential equations

∂iu
α
I\i = ∆α

I

(
x, Û (nf+1), X, . . . , uβJ , . . . , ∂ku

γ
K\k, . . .

)
,

∂ℓX
i
L = Ξi

L,ℓ

(
x, Û (nf+1), X, . . . , uβJ , . . . , ∂nu

κ
N\n, . . .

)
,

(8.23)

where the normal form jets uβJ , ∂ku
γ
K\k, ∂nu

κ
N\n appearing on the right hand side of the

equations are parametric with |J | ≤ nf , |L| = nf , |I| = |K| = |N | = nf + 1 and k ≤ i,
n ≤ ℓ ≤ cls(L). We note that the equations in (8.23) are just the equations (8.17) and
(8.21) written as first order differential equations. These equations are supplemented with
the algebraic equations

uαI = ∆α
I (x, Û

(nf ), X, . . . , uβJ , . . .), X i
L = Ξi

L(x, Û
(nf ), X, . . . , uβJ , . . .), (8.24)

given by (8.18) and (8.19). According to Theorem 3.11, provided all the functions ∆α
I ,

Ξi
L, and Ξi

L,ℓ in (8.23), (8.24) are real-analytic at the origin, the formally well-posed initial
conditions

uγK\p(x
1, . . . , xp) = fγ

K\p(x
1, . . . , xp),

uγK\p−1(x
1, . . . , xp−1, 0) = fγ

K\p−1(x
1, . . . , xp−1),

...

uγK\1(x
1, 0, . . . , 0) = fγ

K\1(x
1),

uβJ(0, . . . , 0) = fβ
J ,

(8.25)

specifying the parametric jets occurring on the right hand side of the equations (8.24) are
analytic at the origin, and the algebraic equations

uαI (0, . . . , 0) = ∆α
I (x, Û

(nf ), X, . . . , uβJ , . . .)|(0,...,0),
X i

L(0, . . . , 0) = Ξi
L(x, Û

(nf ), X, . . . , uβJ , . . .)|(0,...,0),
X i(0, . . . , 0) = X i

0,

(8.26)

are satisfied, then the normal form determining system admits one and only one solution
that is analytic at the origin. In particular, the normal form u(x), which forms part of the
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solution is analytic. In (8.26), the right hand side of the third equation are the components
of the point X0 = (X1

0 , . . . , X
p
0 ) ∈ X at which the submanifold is being considered.

Remark 8.15. The initial conditions (8.25) and (8.26) are stated under the assumption that
the pseudo-group G can map the origin 0 ∈ X to the point X0. In applications, the origin
can be replaced by any convenient point p ∈ X . For example, the points where y = 0 are
singular for the pseudo-group (8.9). Here, the origin can be replaced by the point p = (0, 1),
and any point (X0, Y0) with Y0 > 0 is on its group orbit. In general, given p ∈ X , the initial
conditions (8.25) can be modified by considering hyperplanes passing through p. Of course,
it is also possible to make a local change of coordinates preserving δ-regularity so that p is
mapped to 0 and the initial conditions are given by (8.25) and (8.26).

Example 8.16. For our running example, based on the cross-section (6.16), the standard
moving frame implementation yields the general normal form

u(x, y) = c(x) + y d(x) +
y2

2
w(x, y), (8.27)

where w(0, 0) = 1. To use our result to show that the resulting formal power series converges,
since the prolonged action becomes free at order nf = 2, we must consider the order three
normal form determining equations given in (7.20). We note that the last two equations of
(7.20) are solved for the principal normal form jets uxyy and uyyy, in accordance with the
order three vertical symbol (8.8). As first order partial differential equations, these determine
∂x(uyy) and ∂y(uyy). On the other hand, the order three normal form jets uxxy = ∂x(uxy) and
uxxx = ∂x(uxx) are parametric of class one. In accordance with the general initial conditions
(8.25), uxx and uxy are fixed by initial conditions along the x-axis. Differentiating (8.27),
those are given by

uxx(x, 0) = cxx(x), uxy(x, 0) = dx(x), (8.28)

These initial conditions are supplemented with the algebraic initial conditions

X(0, 0) = X0, Y (0, 0) = Y0,

u(0, 0) = c0, ux(0, 0) = c1, uy(0, 0) = d0, uyy(0, 0) = 1.
(8.29)

We note that the initial conditions (8.28), (8.29) can be simplified to

X(0, 0) = X0, Y (0, 0) = Y0, u(x, 0) = c(x), uy(x, 0) = d(x), uyy(0, 0) = 1.

Provided the functions c(x) and d(x) are analytic, part of the solution to the normal form
determining equations (7.20) is given by (8.27), thereby establishing its convergence.

We now incorporate the moving frame construction within the algebraic construction in-
troduced above. As seen in Section 6.2, a moving frame is obtained by selecting a (coordinate)
cross-section (6.10) transversal to the prolonged pseudo-group orbits. Let

L(n)
K =

{
ξi = 0, ψα

J = 0 | i, (α, J) ∈ I(n)K
}

denote the linearization of the n-th order cross-section determining equations K(n). Let
Σn

K = H(L(n)
K ) its symbol, which must be disjoint from the symbol of the linearized differential
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invariant annihilator subbundle, in order that the only solution to all the equations in the
disjoint union

Σn
K ⊔Υn = {0}

is the trivial solution. Thus, the pivots of Σn
K,REF must be complementary to the pivots of

Υn
REF. We call such a cross-section a well-posed cross-section. This terminology stems from

the fact that it provides the formally well-posed initial conditions (8.25), for the normal form
determining equations (8.23) and the algebraic equations (8.26). A well-posed cross-section
is a refinement on the notion of algebraic cross-section introduced in [55], which is prescribed
by a Gröbner basis of the submodule Ψ. On the other hand, implicit in our implementation
of the theory of involutive differentiation equations is the fact that the determination of a
well-posed cross-section is prescribed by a Pommaret basis, [63], and, in general, Pommaret
and Gröbner bases are not necessarily the same. Only when the ideal is stable can one
guarantee that its reduced Pommaret basis equals its reduced Gröbner basis, [40].

Remark 8.17. A well-posed or algebraic cross-section is the Lie pseudo-group analogue of
a minimal order cross-section introduced in [50] for finite-dimensional Lie group actions. In
both cases, it has the property that pseudo-group jets are normalized as soon as possible.
More precisely, a cross-section K ⊂ J∞ is of minimal order if for all n ≥ 0 its projection
K(n) = π∞

n (K) ⊂ Jn forms a cross-section to the orbits of G(n) on Jn.

In light of Theorem 8.10, for all n > nf , the pivots of Σn
K,REF are complementary to the

pivots of Ψn
REF. Therefore, the cross-section equations K>nf = {uαJ = cαj | (α, J) ∈ IK> nf}

specify the parametric jets of order > nf in the normal form determining equations. On the

other hand, the cross-section K(nf ) = {xi = ci, uαJ = cαJ | i, (α, J) ∈ I(nf )
K } of order ≤ nf

determines the parametric derivatives in the normal form equations (8.18), (8.19) of order
≤ nf resulting from the moving frame implementation. When combined, the whole cross-
section K therefore determines the Taylor coefficients of the functions occurring on the right
hand side of the initial conditions (8.25). Indeed, K>nf determines the Taylor coefficients of
order ≥ 1, while K≤nf specifies the order zero Taylor coefficients. This brings us to the main
theorem of the paper.

Theorem 8.18. Let G be an analytic Lie pseudo-group acting transitively on X with its
prolonged action acting eventually freely. If the cross-section

K = {xi = 0, uαJ = cαJ | i, (α, J) ∈ IK} (8.30)

is well-posed, with the normalization constants cαJ defining analytic functions

Cα(y) =
∑
J ∈Iα

K

cαJ
J !
yJ , α = 1, . . . , q, (8.31)

for the cross-section power series, then the corresponding normal form power series

uα(y) =
∑
J

uαJ
J !
yJ

defines an analytic function in the neighborhood of the origin.
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Remark 8.19. Implicit in the statement of Theorem 8.18 is the fact that the coordinates
used to express the well-posed cross-section (8.30) are δ-regular. Indeed, by definition G is
a Lie pseudo-group if its elements are the solutions to an involutive system of differential
equations, and involutivity, within our framework, requires δ-regularity.

Remark 8.20. Kossovskiy and Zaitsev have realized in [37] the importance of working with
well-posed cross-sections when constructing convergent normal forms. As mentioned in the
first paragraph of section two of their work, they resolve the problem of divergence of Kolář’s
normal form for degenerate hypersurfaces in C2, [35], by selecting a well-posed/minimal order
cross-section.

Since the determining equations K>nf of a well-posed cross-section of order > nf are

specified by the well-posed initial conditions (8.25), the set of indices I>nf

K determining the
parametric normal form jets of order > nf admits the Rees decomposition

I>nf

K =
⊎

(α,J)∈I
nf+1

K

Cα(J) (8.32)

consisting of the disjoint union of involutive cones

Cα(J) = {(α, J, k1, . . . , kn) | 1 ≤ kj ≤ cls(J) and n ≥ 0}

with (α, J) ranging over all the tuples in Inf+1
K . According to [63, Proposition 5.1.6], the

Rees decomposition (8.32) is sufficient to guarantee the existence of a Pommaret basis for
the ideal Υ>nf = Ψ>nf . This allows us to introduce a simple criterion to determine that a
cross-section is well-posed without having to compute the normal form determining equations
(8.23), (8.24).

Theorem 8.21. Let G be a Lie pseudo-group whose prolonged action becomes free at order
nf . A cross-section K is well-posed if it is of minimal order and its set of defining indices

I>nf

K admits a Rees decomposition (8.32).

Proof. We need to show that there exists a system of normal form determining equations
that is involutive at order nf + 1 with K providing well-posed initial conditions.

Since the prolonged action becomes free, by Theorem 6.5 the pseudo-group G is reducible
with reduced determining equations (7.2). The normal form determining equations are then
obtained by substituting the chain rule formulas (7.3) into (7.2) to obtain (7.5), which are
subsequently solved for the principal jet pseudo-group jets X i

J and the principal normal form

jets uβK , with (β,K) /∈ I(n)K . In order that I(n)K be as large as possible, we must require that
as many as possible reduced pseudo-group jets X i

J be principal. This, in other words, is
equivalent to requiring that the cross-section K be of minimal order.

The order nf + 1 normal form determining equations are given by equations of the form
(8.23). The equations for the reduced pseudo-group jets do not provide any obstruction to
involutivity, and therefore it suffices to consider the equations for the normal form jets. By
assumption, since I>nf

K admits a Rees decomposition (8.32), the symbols Υ>nf = Ψ>nf admit
a Pommaret basis. The existence of the Pommaret basis implies that it is possible to express
the differential equations for the normal form jets of order nf + 1 is such a way that (8.23)
is involutive with the parametric normal form jets uγK of order |K| = nf + 1 specified by the
cross-section. Q.E.D.
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Example 8.22. For our running example, consisting of the Lie pseudo-group (4.4), a well-
posed cross-section is given by (6.16), which we can verify satisfies the hypotheses of Theorem
8.21. First, for all n ≥ 0, K(n) is transversed to the prolonged pseudo-group action and thus
is of minimal order. Next, since the prolonged action becomes free at order nf = 2, consider
the cross-section determining equations of order > 2 given by

K>2 = {uxk+1 = ck+1, uxky = dk | k ≥ 0}.

The corresponding set of determining indices has the Rees decomposition

I>2
K = {(k + 1, 0), (k, 1) | k ≥ 2}

= {(k + 1, 0) | k ≥ 2}
⊎
{(k, 1) | k ≥ 2} = C(3, 0)

⊎
C(2, 1).

9 Chains.

In [12], Chern and Moser introduced the concept of a chain as a tool for proving the con-
vergence of their normal form power series for CR hypersurfaces S ⊂ Cn+1. A regular curve
C ⊂ S in the hypersurface S is said to be a chain if its projection π(C) ⊂ X onto the space
of independent variables can be rectified by a biholomorphic transformation that also nor-
malizes the Taylor coefficients of the hypersurface S appearing in the Chern–Moser normal
form. In their paper, Chern and Moser employ a finite sequence of transformations to suc-
cessively place the Taylor expansion of the transformed surface in normal form. Since each
transformation is analytic as it either satisfies an algebraic constraint or is the solution to
an analytic system of ordinary differential equations, the final transformed hypersurface is
analytic, and hence its Taylor series, which is now in normal form, converges.

To make the discussion more precise, let us review the convergence argument in [12] when
n = 1 so that S ⊂ C2 is a three-dimensional hypersurface locally parametrized by

S = {(Z,Z, U, V̂ (Z,Z, U))},

where (Z,Z, U) ∈ X are the independent variables with Z ∈ C and U ∈ R. We refer the
reader to [42] for a detailed account of this particular case. As in [12], let W = U + iV .
After translation, we can work at the origin and consider the Taylor expansion

V̂ (Z,Z, U) =
∞∑

j,k=0

ZjZkFj,k(U), (9.1)

where the Taylor coefficients and powers of U are contained in the functions Fj,k. By as-
sumption F0,0(0) = 0, since the hypersurface has been translated to the origin. One then
seeks to find a chain, meaning a curve

C = {(ψ(u), φ(u))} ⊂ S, with φu(0) ̸= 0 (9.2)

whose projection π(C) is holomorphically rectified to the line ℓ = {(0, 0, u)} and sends the
hypersurface Taylor series (9.1) to the Chern–Moser normal form. This is accomplished by
the following sequence of analytic transformations, each of which serves to normalize some
of the Taylor coefficients in the normal form.
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Step 1: The transformation
Z = z + ψ(w), W = φ(w)

is holomorphic, takes π(C) into ℓ and sends (9.1) to6

v =
∑

j+k≥1

zjzkFj,k(u).

We observe that such a transformation does not impose any constraint on the chain.

Step 2: Cancel the harmonic terms zjFj,0(u) and zkF0,k(u) using a transformation of the
form

z∗ = z, w∗ = w + g(z, w) with g(0, w) = 0, (9.3)

so that the new power series is

v =
∑

j≥1 or k≥1

zjzkFj,k(u).

The function g(z, w) is derived in the proof of [12, Lemma 3.2] and is found by solving
an algebraic equation. We note that (9.3) does not affect the line ℓ = {(0, 0, u)}, which
is also the case for all the upcoming transformations.

Step 3: Under the assumption that the hypersurface is Levi nondegenerate, which means
that ∂2V̂ /∂Z ∂Z ̸= 0, normalize zzkF1,k(u) = 0 and zjzFj,1(u) = 0 using

z∗ = z + f(z, w), w∗ = w,

with f(0, w) = 0, fz(0, w) = 0 so that

v = zzF1,1(u) +
∑
j,k≥2

zjzkFj,k(u),

where F1,1(0) ̸= 0. The function f(z, w) satisfies an algebraic equation given in the
proof of [12, Lemma 3.3].

Step 4: Normalize F1,1(u) = 1 using

z∗ = C(w)z, w∗ = w (9.4)

so that the transformed power series is

v = zz +
∑
j,k≥2

zjzkFj,k(u).

To do so, it suffices to take

C(u) =
√
F1,1(u) (9.5)

and then replace u by w to obtain the transformation (9.4).

6During the course of the procedure, the expressions for the Taylor coefficient functions Fjk will change.
We avoid introducing new notation for each version.
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Step 5: Normalize F2,2(u) = 0, F3,2(u) = F3,2(u) = 0, and F3,3(u) = 0, so that the Chern–
Moser normal form is

v = zz + z4z2F4,2(u) + z2z4F2,4(u) +
∑

j+k≥7
j,k≥2

zjzkFj,k(u).

The normalization F3,2(u) = 0 imposes a differential constraint on first component of
the chain (9.2) given by a second order ordinary differential equation

ψuu(u) = Q(ψ(u), ψ(u), ψu(u), ψu(u), u).

The explicit formula for Q is not provided in [12]. For three-dimensional hypersurfaces,
a Lie theoretic description of this equation is given in [42].

The normalization F22(u) = 0 is achieved using the transformation

z∗ = λ(w)z, w∗ = w, (9.6)

satisfying λ(u)λ(u) = 1, λ(0) = 1, and solving the first order ordinary differential
equation

λu(u) = −
i

2
F2,2(u)λ(u).

The transformations (9.4) and (9.6) are slightly different. In light of (9.5), the function
C(w) in (9.4) is real-valued or purely imaginary depending on whether F1,1(u) > 0 or
F1,1(u) < 0, while the function λ(w) in (9.6) is complex-valued.

Finally, the normalization F3,3(u) = 0 is achieved via the transformation

z∗ = z
√
φw(w), w∗ = φ(w),

with φ(R) ⊂ R, φ(0) = 0, φw(0) ∈ (0,∞) and satisfying the third order ordinary
differential equation

φuuu(u) =
3

2

φ2
uu(u)

φu(u)
− 3F3,3(u)φu(u).

This provides constraints on the second component of the chain (9.2).

We now see how this particular Chern–Moser construction can be formulated within our
general framework. To make the connection evident, let us assume for now that the class one
Cartan character of the involutive normal form determining equations is the only nonzero
character, so

c(1)n ̸= 0, c(2)n = · · · = c(p)n = 0. (9.7)

In this particular setting, the general solution depends only on functions of one variable, and
the initial conditions (8.25) reduce to

uγK\1(x
1, 0, . . . , 0) = fγ

K\1(x
1), uβJ(0, . . . , 0) = fβ

J . (9.8)
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Since the Taylor coefficients of the initial conditions (9.8) determine the cross-section K, the
left hand side of the equations (9.8) can be replaced by the cross-section functions (8.31) so
that

Cγ
K\1(x

1, 0 . . . , 0) = fγ
K\1(x

1) and Cβ
J (0, . . . , 0) = fβ

J . (9.9)

We observe that the equations (9.9) are defined on the line ℓ = {(x1, 0, . . . , 0)} ⊂ X . Then,
a one-dimensional chain C is a regular curve in the section S with the property that there
exists a pseudo-group transformation φ ∈ G mapping C to the curve φ−1(C) = ℓ = (ℓ, C(ℓ))
contained in the normal form s, where C(y) is the cross-section function (8.31). In particular,
we note that the projection of the chain onto the space of independent variables π(C) ⊂ X
is rectified to the line φ−1|X (π(C)) = ℓ. In other words, π(C) = φ|X (ℓ).

Thus, to find the chain C = φ(ℓ, C(ℓ)) passing through (X0, Û(X0)), it suffices to find
φ ∈ G such that

(φ|X (ℓ), Û(φ|X (ℓ))) = φ(ℓ, C(ℓ)). (9.10)

Setting (X(x, u), U(x, u)) = φ(x, u) and (X|ℓ, U |ℓ) = φ(ℓ, C(ℓ)) = (X(ℓ, C(ℓ)), U(ℓ, C(ℓ)),
equation (9.10) reduces to solving

Û(X|ℓ) = U |ℓ. (9.11)

We note that (9.11) is the same equation as (7.1) but restricted to the curve ℓ = (ℓ, C(ℓ)).
With ℓ being one-dimensional, the equations (9.11) form a system of ordinary differential
equations for the parametric reduced pseudo-group jets with initial value (X|ℓ(0), U |ℓ(0)) =
(X0, Û(X0)). We now show how this works with two examples.

Example 9.1. Consider the Lie pseudo-group

X = f(x), Y = y + b, U =
u

fx(x)
, (9.12)

acting on surfaces u(x, y), where f ∈ D(R) and b ∈ R. We assume u ̸= 0 in what follows.
The normal form determining equations of order one are

Xy = Y x = 0, Y y = 1, Û Xx = u, ÛYXx = uy. (9.13)

These equations are involutive with indices and Cartan characters

b
(1)
1 = 2, b

(2)
1 = 3, c

(1)
1 = 1, c

(2)
1 = 0.

As it can be seen from the pseudo-group (9.12), the parametric reduced pseudo-group jets
are Xxk , k ≥ 0. A moving frame for the pseudo-group (9.12) was constructed in [54] using
the cross-section

K = {x = y = 0, u = 1, uxk = 0, k ≥ 1}.
This induces the initial conditions

X(0, 0) = X0, Y (0, 0) = Y0, u(x, 0) = 1

for the system of equations (9.13). The corresponding cross-section function is u(x, 0) =
C(x) = 1, and defines the line

ℓ = {(x, 0, 1)} ⊂ s (9.14)
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in the normal form.
A chain C = {(X(x), Y0, Û(X(x), Y0))} ⊂ S is a regular curve that is rectified to the line

(9.14) by a pseudo-group transformation (9.12). First, for the y-coordinate of ℓ to be sent
to Y0 in the chain, a translation with b = Y0 is performed. On the other hand, the function
X(x) satisfies the chain determining equation (9.11), which yields the differential equation

Û(X(x), Y0) = U =
1

Xx(x)
.

In other words,

Xx(x) =
1

Û(X(x), Y0)
with the initial condition X(0) = X0.

This is an ordinary differential equation for X(x), whose right hand side is analytic when the

surface Û(X, Y ) is analytic, and hence defines an analytic normalizing transformation.

Example 9.2. As a second example, we consider our running example, which consists of the
Lie pseudo-group (4.4). The cross-section function corresponding to the normal form (8.27)
is

C(x, y) = c(x) + y d(x) +
y2

2
, (9.15)

where c(x) and d(x) are specified functions, which in the simplest version can be set to zero
c(x) = d(x) = 0, such as in Example 6.8. We now find the chain corresponding to the two
initial conditions

u(x, 0) = c(x) and uy(x, 0) = d(x).

The first initial condition gives the ordinary differential equation

Û(X(x), Y (x, 0)) = c(x) +
Y x(x, 0)

Xx(0)
.

The second initial condition gives

ÛY (X(x), Y (x, 0))Xx(x) = d(x) +
Xxx(x)

Xx(x)
.

Thus, the chain C = {(X(x), Y (x, 0), Û(X(x), Y (x, 0))} is obtained by solving a system of
two ordinary differential equations

Xxx(x) = ÛY (X(x), Y (x, 0))X2
x(x)− d(x)Xx(x),

Y x(x, 0) = (Û(X(x), Y (x, 0))− c(x))Xx(x),
(9.16)

subject to the initial conditions

Y (0, 0) = Y0, X(0, 0) = X0, Xx(0) = X0
x.

Again, analyticity of the surface Û(X, Y ) and the cross-section function (9.15) implies an-
alyticity of the right hand sides of the differential equations (9.16), and thus analyticity of
the normalizing transformation. To obtain the quadratic term in y in the normal form se-

ries (9.15), we need to impose the algebraic constraint X0
x =

√
ÛY Y (X0, Y0) on the initial

conditions.
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The above discussion focused on one-dimensional chains when the constraint on the Car-
tan characters (9.7) holds. In the more general situation, when there are one or more nonzero
higher order Cartan characters, the appropriate analog of chains will include submanifolds
of dimension ≥ 2. For example, if the largest nonzero Cartan character is c(k)n , then a k-
dimensional chain Ck is a submanifold in S that can be mapped to

Pk = (Pk, C(Pk)),

where C(y) is the cross-section function (6.23), and such that the projection π(Ck) ⊂ X is
rectified to the k-dimensional plane Pk = {(x1, . . . , xk, 0, . . . , 0)}. The pseudo-group trans-
formation rectifying the chain will satisfy a system of partial differential equations for the
parametric reduced pseudo-group jets given by

Û(X|Pk
) = U |Pk

.

Inside the k-dimensional chain Ck there may be a sequence of lower dimensional chains
C1 ⊂ C2 ⊂ · · · ⊂ Ck−1 ⊂ Ck, with π(Cj) mapped to the j-dimensional coordinate Pj =
{(x1, . . . , xj, 0, . . . , 0)} under a suitable pseudo-group transformation. The existence of these
subchains will depend on the form of the initial values (8.25), which is ultimately determined
by the Cartan characters, [63, Proposition 8.2.10]. These higher dimensional chains appear
in [16], where Ežov and Schmalz introduce two-dimensional chains when studying normal
forms for elliptic CR submanifolds in C4.

10 Additional Examples.

In this final section we provide four more basic examples illustrating the results of the paper.
We conclude by showing how the convergence theorem of Chern and Moser, [12], can be
deduced from our general theorem; this requires finding suitable coordinates that assure
involutivity of the determining equations. In these examples, we will omit the bar notation
overX and Y and the hat notation on U and its derivatives, which will unclutter the equations
while hopefully not leading to any confusion now that the procedures and meanings are clear.

Example 10.1. In our previous examples, the pseudo-group considered only involved func-
tions depending on one independent variable, namely x. In this example we consider the
pseudo-group

X = f(x), Y = g(y), U = u+ c,

where f, g ∈ D(R) and c ∈ R. The first order reduced determining equations are

Xy = Yx = 0, Ux = ux, Uy = uy, (10.1)

while the order two equations are

Xxy = Xyy = Yxx = Yxy = 0, Uxx = uxx, Uxy = uxy, Uyy = uyy.

Using the ordering x ≺ y, the indices for the order one equations (10.1) are b
(1)
1 = 2 and

b
(2)
1 = 2 so that

b
(1)
1 + 2b

(2)
1 = 6 ̸= 7 = r2.
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Alternatively, the Cartan characters are c
(1)
1 = 1, c

(2)
1 = 1 and

c
(1)
1 + 2c

(2)
1 = 3 ̸= 2 = d2.

Thus the equations (10.1) are not involutive. In fact at any order n the reduced determining
equations are not involutive. To see this, we observe that the order n determining equations
for Y are

Yxn = Yxn−1y = · · · = Yxyn−1 = 0,

which are all of class one with respect to our chosen ordering. From those equations it is
not possible to obtain the equation Yxyn = 0 at order n + 1 since y is not a multiplicative
variable. Changing the ordering to y ≺ x would not resolve the issue as the same problem
would now appear among the determining equations forX. The conclusion is that the current
coordinates are not δ-regular.

As emphasized in mkregularity-r, we must thus introduce new δ-regular coordinates. This
is done, for example, by setting

x = t+ s and y = t− s.

The pseudo-group then becomes

T + S = f(t+ s), T − S = g(t− s), U = u+ c

or

T =
f(t+ s) + g(t− s)

2
, S =

f(t+ s)− g(t− s)
2

, U = u+ c.

Relabeling the variables and functions, we now consider the Lie pseudo-group

X = f(x+ y) + g(x− y), Y = f(x+ y)− g(x− y), U = u+ c. (10.2)

The normal form determining equations can be obtained by recursively applying the total
differential operators

Dx = XxDX + YxDY , Dy = XyDX + YyDY , (10.3)

to the pseudo-group transformations (10.2) and eliminating the derivatives of the functions
f, g from the resulting equations. At first order, this results in

Xx = ft + gt, Xy = ft − gt, Yx = ft − gt, Yy = ft + gt,

XxUX + YxUY = ux, XyUX + YyUY = uy,
(10.4)

where ft, gt represent the first order derivatives of f, g. Provided U2
X − U2

Y ̸= 0, we can
eliminate ft, gt to produce the first order normal form determining equations:

Xx = Yy =
uxUX − uyUY

U2
X − U2

Y

, Xy = Yx =
uyUX − uxUY

U2
X − U2

Y

, (10.5)

where we take ux, uy to be the parametric derivatives. This is consistent with the moving
frame construction, but not the theory of involutivity, which would require solving for uy,
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assuming the ordering x ≺ y. In accordance with the discussion in Section 8, this is a second
example illustrating the discrepancy between the two theories at low order.

The normal form determining equations of order two can be obtained by differentiating
(10.5) using (10.3) — or, alternatively applying them to (10.4) and eliminating the first and
second derivatives of f, g — which produces

Xxy = Yxx, Xyy = Xxx, Yxy = Xxx, Yyy = Yxx, (10.6)

along with

Xxx =
1

U2
X − U2

Y

[
(uxx − UXXX

2
x − 2UXYXxYx − UY Y Y

2
x )UX

− (uxy − UXXXxYx − UXY (X
2
x + Y 2

x )− UY YXxYx)UY

]
,

Yxx =
1

U2
X − U2

Y

[
(uxy − UXXXxYx − UXY (X

2
x + Y 2

x )− UY YXxYx)UX

− (uxx − UXXX
2
x − 2UXYXxYx − UY Y Y

2
x )UY

]
,

(10.7)

and

uyy = uxx −
(u2x − u2y)(UXX − UY Y )

U2
X − U2

Y

. (10.8)

Note that to place (10.7) in the proper Cartan normal form, we should replace Xx, Xy, Yx, Yy
by their formulas from (10.5), although the resulting expressions are a bit unwieldy. The
additional second order parametric derivatives are uxx, uxy.

We can easily verify that the order two normal form determining equations are involutive.
Indeed, the indices and Cartan characters7 are

b
(1)
2 = 4, b

(2)
2 = 3, c

(1)
2 = 2, c

(2)
2 = 0,

and they satisfy the algebraic involutivity tests

b
(1)
2 + 2b

(2)
2 = 10 = r3 or c

(1)
2 + 2c

(2)
2 = 2 = d3.

Since there is no integrability condition, the equations are involutive.
On the space of regular jets V (∞) = {U2

X ̸= U2
Y } ⊂ J∞, the prolonged action becomes free

at order one8 and a cross-section is given by

K = {x = y = 0, uxk = ck, uyxk = dk | k ≥ 0 and c21 − d20 ̸= 0}. (10.9)

The corresponding cross-section function is

C(x, y) = c(x) + y d(x) with c2x(0)− d2(0) ̸= 0,

and the normal form is
u(x, y) = c(x) + y d(x) + y2w(x, y). (10.10)

7As above, we only need to compute one of these sets to verify involutivity.
8Every Lie pseudo-group is free at order n = 0. Freeness is only of interest when n ≥ 1, [54].
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In the simplest case, we can take c(x) = x and d(x) = 0. Observe that the initial conditions
depend on functions of the same variable x, which is not the case if we were to write the
system in the original δ irregular coordinates.

According to the general theory, since the action becomes free at order one, the involu-
tivity of the order two normal form determining equations (10.6), (10.7), (10.8) guarantees
the convergence of the normal form (10.10) provided well-posed analytic initial conditions
are provided and the target function U(X, Y ) is analytic. On the other hand, the equations
(10.5) provide algebraic constraints among the order one jets at the origin. The desired initial
conditions are given by

X(0, 0) = X0, Y (0, 0) = Y0, u(0, 0) = C(0, 0) = c0,

ux(x, 0) = C(x, 0) = cx(x), uy(x, 0) = Cy(x, 0) = d(x),

where c2x(0) − d2(0) ̸= 0 and c(x), d(x) are two analytic functions. This shows that (10.9)
is a well-posed cross-section satisfying the hypotheses of Theorem 8.21. Indeed the cross-
section is of minimal order with the set of defining indices of order > 1 admitting the Rees
decomposition

I>1
K = {(k + 1, 0), (k, 1) | k ≥ 1}

= {(k + 1, 0) | k ≥ 1}
⊎
{(k, 1) | k ≥ 1} = C(2, 0)

⊎
C(1, 1).

Example 10.2. In the examples considered thus far, the Lie pseudo-group actions were
all quasi-horizontal, in the chosen system of coordinates, in the terminology of [2]. This
property is not necessary for the results of this paper to be valid, and we illustrate this fact
by considering the Lie pseudo-group

X = x+ a, Y = y + b, U = f(u), (10.11)

where a, b ∈ R and f ∈ D(R). Of course, the pseudo-group (10.11) can be transformed into
a quasi-horizontal action via the hodograph transformation (x, y, u)→ (u, y, x), but we will
not make this transformation here.

Provided UX ̸= 0, the normal form determining equations of order ≤ 2 are

Xx = Yy = 1, Xy = Yx = 0, uy =
uxUY

UX

, (10.12)

Xxx = Xxy = Xyy = Yxx = Yxy = Yyy = 0,

uxy =
uxUXY + uxxUY

UX

− uxUYUXX

U2
X

, uyy =
uxUY Y

UX

+
uxxU

2
Y

U2
X

− uxU
2
YUXX

U3
X

.
(10.13)

The indices and Cartan characters for the order one determining equations (10.12) are

b
(1)
1 = 2, b

(2)
1 = 3, c

(1)
1 = 1, c

(2)
1 = 0

so that the involutivity condition

b
(1)
1 + 2b

(2)
1 = 8 = r2, or, equivalently, c

(1)
1 + 2c

(2)
1 = 1 = d2
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is satisfied. Since there are no integrability conditions, the order one determining equations
(10.12) are involutive.

The pseudo-group action becomes free at order one. A well-posed cross-section is given
by

K = {x = y = 0, uxk = ck | k ≥ 0 and c1 ̸= 0},

with the set of defining indices of order > 1 admitting the Rees decomposition

I>1
K = {(k, 0) | k ≥ 2} = C(2, 0).

The corresponding cross-section function is

C(x) = c(x) with cx(0) ̸= 0,

and the normal form is given by

u(x, y) = c(x) + y w(x, y). (10.14)

For simplicity, we could take c(x) = x. The action being free at order one, the general theory
dictates that, assuming analyticity of the function U(X, Y ), analyticity of the normal form
(10.14) will follow from the involutivity of the order two normal form determining equations
(10.13) along with the equations (10.12) providing algebraic constraints among the first order
jets at the origin. Formally well-posed initial conditions are given by

X(0, 0) = X0, Y (0, 0) = Y0, u(0, 0) = c(0), ux(x, 0) = cx(x),

with cx(0) ̸= 0.

Example 10.3. Up to this point, all the Lie pseudo-group actions considered only involved
local diffeomorphisms of the real line. We now consider the pseudo-group

X = x+ a, Y = g(x, y), Z = z + b, U = u, (10.15)

where g(x, y) depends on two variables with gy(x, y) ̸= 0 and a, b ∈ R. In this example, we
assume that u = u(x, y, z) is a function of three variables.

Again, omitting bars and hats, the first order normal form determining equations can be
obtained by applying the total differential operators

Dx = DX + YxDY , Dy = YyDY , Dz = DZ , (10.16)

to (10.15). Assuming that UY ̸= 0, we can rewrite them in the form

Xx = 1, Xy = Xz = 0, Yx =
ux − UX

UY

, Yy =
uy
UY

, Yz = Zx = Zy = 0, Zz = 1, uz = UZ ,

(10.17)
where the parametric derivatives are ux, uy. We note that this is compatible, with both
the theory of moving frames and involutivity. The second order normal form determining
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equations can be obtained by applying the differential operators (10.16) to the first order
equations giving

Xxx = Xxy = Xyy = Xxz = Xyz = Xzz = 0, Yxz = Yyz = Yzz = 0,

Zxx = Zxy = Zyy = Zxz = Zyz = Zzz = 0,

Yxx =
uxx − UXX

UY

− 2UXY (ux − UX)

U2
Y

− UY Y (ux − UX)
2

U3
Y

,

Yxy =
uxy
UY

− UXY uy
U2
Y

− UY Y uy(ux − UX)

U3
Y

, Yyy =
uyy
UY

−
UY Y u

2
y

U3
Y

,

uxz = UXZ +
UY Z(ux − UX)

UY

, uyz =
UY Zuy
UY

, uzz = UZZ ,

(10.18)

and similarly for the higher order versions. The indices and Cartan characters for the order
one normal form determining equations (10.17) are

b
(1)
1 = 3, b

(2)
1 = 3, b

(3)
1 = 4, c

(1)
1 = 1, c

(2)
1 = 1, c

(3)
1 = 0,

which satisfy involutivity condition

b
(1)
1 + 2b

(2)
1 + 3b

(3)
1 = 21 = r2 or, equivalently, c

(1)
1 + 2c

(2)
1 + 3c

(3)
1 = 3 = d2.

Since there are no integrability constraints, the order one normal form determining equations
are involutive.

The pseudo-group action becomes free at order one and a well-posed cross-section is given
by

K = {x = y = 0, uxk+1 = ck, uxjyk+1 = dj,k | j, k ≥ 0 and d0,0 ̸= 0}
with the defining indices of order > 1 admitting the Rees decomposition

I>1
K = {(i+ 2, 0), (j, k + 1) | i ≥ 0, j + k ≥ 1}

= {(i+ 2, 0) | i ≥ 0}
⊎
{(j + 1, 1) | j ≥ 0}

⊎
{(j, k + 2) | j, k ≥ 0}

= C(2, 0)
⊎
C(1, 1)

⊎
C(0, 2).

The corresponding cross-section function C(x, y) satisfies the constraints

C(0, 0) = 0, Cx(x, 0) = c(x), Cy(x, y) = d(x, y) with Cy(0, 0) = d(0, 0) ̸= 0.

In the simplest case, we could let C(x, y) = y. In general, the normal form is given by

u(x, y, z) = U0 + C(x, y) + z w(x, y, z), (10.19)

where U0 = U(X0, Y0, Z0) is a constant. Since the prolonged action becomes free at order
one, the convergence of the normal form (10.19) follows from the involutivity of the order two
normal form determining equations (10.18) with the equations (10.17) providing algebraic
constraints on the order one jets at the origin. Since the pseudo-group action (10.15) is
intransitive, we also have the order zero normal form determining equation u = U , which
also needs to be evaluated at the origin. Well-posed initial conditions are given by

X(0, 0, 0) = X0, Y (0, 0, 0) = Y0, Z(0, 0, 0) = Z0,

u(0, 0, 0) = U0, ux(x, 0, 0) = Cx(x, 0) = c(x), uy(x, y, 0) = Cy(x, y) = d(x, y).
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Example 10.4. As our penultimate example, we consider the Lie pseudo-group

X = x+ a, Y = y + b, Z = z + f(x, y), U = u+ g(x, y), (10.20)

where f, g satisfy the Cauchy–Riemann equations

fx = gy, fy = −gx. (10.21)

As in Example 10.3, we obtain the normal form determining equations by recursively applying
the total differential operators

Dx = DX + ZxDZ , Dy = DY + ZyDZ , Dz = DZ , (10.22)

to the pseudo-group transformations (10.20). At first order, we have

Xx = 1, Xy = Xz = 0, Yy = 1, Yx = Yz = 0, Zz = 1, (10.23)

along with

Zx = fx, Zy = fy, UX + ZxUZ = ux + gx, UY + ZyUZ = uy + gy, UZ = uz. (10.24)

Eliminating the derivatives of f, g from the latter equations using (10.21) produces

Zx =
UZ(ux − UX)− (uy − UY )

1 + U2
Z

, Zy =
UZ(uy − UY ) + ux − UX

1 + U2
Z

, uz = UZ , (10.25)

where the parametric derivatives are ux, uy. As in Example 10.1, this is compatible with the
moving frame construction but not involutivity, which would require solving for uy in the
first equation of (10.25), assuming the ordering x ≺ y ≺ z. The second order normal form
determining equations can be obtained by using (10.16) to differentiate (10.23), (10.24), and
then solving the resulting equations, or differentiating (10.23), (10.25) directly. We find

Xxx = Xxy = Xyy = Xxz = Xyz = Xzz = 0,

Yxx = Yxy = Yyy = Yxz = Yyz = Yzz = 0, Zxz = Zyz = Zzz = 0, Zyy = −Zxx,

Zxx = [−uxy + UXY + (uxx − UXX)UZ + (UY Z − 2UXZUZ)Zx

− UZUZZZ
2
x + UXZZy + UZZZxZy]/[1 + U2

Z ],

Zxy = [uxx − UXX + (uxy − UXY )UZ − (2UXZ + UY ZUZ)Zx

− UZZZ
2
x − UXZUZZy − UZUZZZxZy]/[1 + U2

Z ],

uxz = UXZ + UZZZx, uyz = UY Z + UZZZy, uzz = UZZ .

(10.26)

One should replace Zx, Zy by their expressions in (10.25) to express the right hand sides in
terms of only the parametric derivatives ux, uy, uxx, uxy; however, the resulting formulas are
too unwieldy to display.

The indices and Cartan characters for the order two normal form determining equations
(10.26) are

b
(1)
2 = 10, b

(2)
2 = 7, b

(3)
2 = 4, c

(1)
2 = 2, c

(2)
2 = 1, c

(3)
2 = 0.
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Since

b
(1)
2 + 2b

(2)
2 + 3b

(3)
2 = 36 = r3 or, equivalently, c

(1)
2 + 2c

(2)
2 + 3c

(3)
2 = 4 = d3,

and there are no integrability conditions, the order two normal form equations are involutive.
The prolonged pseudo-group action becomes free at order one and a well-posed cross-

section is given by

K = {x = y = z = 0, uxk = ck, uxjyk+1 = dj,k | j, k ≥ 0}.

Similar to the previous example, the set of defining indices of order > 1 admits the Rees
decomposition

I>1
K = C(2, 0, 0)

⊎
C(1, 1, 0)

⊎
C(0, 2, 0).

The corresponding cross-section function C(x, y) satisfies

C(x, 0) = c(x) and Cy(x, y) = d(x, y).

and the normal form is
u(x, y, z) = C(x, y) + z w(x, y, z).

The convergence of the normal form follows from the involutivity of the order two normal form
determining equations (10.26), together with the algebraic constraints obtained by evaluating
the order one equations (10.23), (10.25) at the origin. Formally well-posed initial conditions
are given by

X(0) = X0, Y (0) = Y0, Z(0) = Z0, u(0, 0, 0) = C(0, 0) = c0,

ux(x, 0, 0) = Cx(x, 0) = cx(x), uy(x, y, 0) = Cy(x, y) = d(x, y).

Example 10.5. In [57] we revisited the Chern–Moser normal form problem for nondegenerate
real hypersurfaces in C2 under the action of the pseudo-group of holomorphic transformations,
[12], obtaining five inequivalent classes of normal forms termed locally umbilic, non-umbilic,
generic, circular, and semi-circular. The convergence of these normal forms relied on results
from [12]. We now use Theorems 8.18 and 8.21 to give an alternative argument.

Let z, w = u+ i v be local coordinates on C2. Accordingly, the pseudo-group of holomor-
phic transformations (z, w) 7→ (Z(z, w),W (z, w)) of C2, with W = U + iV , is determined
by the differential equations

Zz = 0, Zv = iZu, Vz = iUz, Vu = −Uv, Vv = Uu. (10.27)

In [57], a real hypersurfaceM ⊂ C2 was locally parametrized as the graph of the real function

v = v(z, z, u). (10.28)

A partial cross-section to the prolonged action was found in [57, eq. (3.14)] and given by

{vzz = 1, z = z = u = v = vzkuℓ = vzkuℓ = vzzuℓ+1 = vzk+2zuℓ

= vzzk+2uℓ = vz2z2uℓ = vz3z2uℓ = vz2z3uℓ = vz3z3uℓ = 0 | k, ℓ ≥ 0}. (10.29)
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Depending on class of the normal form, only a finite number of normalizations must be
added to (10.29) to obtain a complete cross-section. These normalizations do not affect the
convergence argument, and we therefore work with the partial cross-section (10.29). The
normal form for locally umbilic hypersurfaces is given by the Heisenberg sphere v = z z,
which is obviously analytic. We thus focus on the remaining four classes of normal forms.
Since the equations

vzkuℓ = vzzk+2uℓ = vz2z3uℓ = 0

can be obtained by conjugating vzkuℓ = vzk+2zuℓ = vz3z2uℓ = 0, those can be omitted from
(10.29). No information is lost as, for example, the pseudo-group normalization originating
from the normalization vzkuℓ = 0 is recovered by taking the conjugate of the pseudo-group
normalization obtained by solving vzkuℓ = 0. Also, each Taylor coefficient normalization of
the real-valued function (10.28) induces a normalization of its conjugated Taylor coefficient.
We thus focus on the reduced partial cross-section

K =
{
vzz = 1, z = u = vzkuℓ = vzzuℓ+1 = vzk+2zuℓ

= vz2z2uℓ = vz3z2uℓ = vz3z3uℓ = 0 | k, ℓ ≥ 0
}
. (10.30)

Similar to Example 10.1, we need to make a change of variables for the pseudo-group
determining equations (10.27) to become involutive. Reverting back to complex variables,
let

u =
w + w

2
, v =

w − w
2 i

. (10.31)

The determining equations of the pseudo-group then become

Zz = Zw = Wz = Ww = 0. (10.32)

Introducing the ordering w ≺ z ≺ z ≺ w, the indices and Cartan characters of (10.32) are

b
(1)
1 = b

(2)
1 = 0, b

(3)
1 = b

(4)
1 = 2 and c

(1)
1 = c

(2)
1 = 2, c

(3)
1 = c

(4)
1 = 0.

Since the second order determining equations are

Zzz = Zwz = Zzz = Zzw = Zzw = Zww = Zww = 0,

Wzz = Wwz = Wzz = Wzw = Zzw = Www = Www = 0,

the involutivity test b
(1)
1 + 2b

(2)
1 + 3b

(3)
1 + 4b

(4)
1 = 14 = r2 is satisfied.

Substituting the change of variables (10.31) into the hypersurface defining equation (10.28),
and solving for w using the Implicit Function Theorem, we obtain the complex defining equa-
tion9

w = w(z, z, w) (10.33)

of the hypersurface M . Thus, in the new coordinates, the jet variables are wzjzkwℓ with
j, k, ℓ ≥ 0. To find the cross-section in these new jet variables, we substitute the real and

9Kossovskiy and Zaitsev also used the complex defining equation (10.33) in their convergence argument;
see the acknowledgements in their paper [37].
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complex defining equations (10.28), (10.33) into the second equation of (10.31) to obtain the
relationship

w(z, z, w) = w − 2 i v

(
z, z,

w + w(z, z, w)

2

)
. (10.34)

Differentiating (10.34) produces the expressions for the new jet coordinates wJ in terms of
the original ones vK . For example, at order one, we have

wz = −2 i vz − i vuwz, wz = −2 i vz − i vuwz, ww = 1− i vu(1 + ww).

For orders ≥ 2, one finds using induction that

wzjzkwℓ = −2 i vzjzkuℓ + Sj,k,ℓ(wJ , vK), (10.35)

where Sj,k,ℓ is a polynomial involving wJ , with |J | ≤ j+k+ ℓ, and vK = vzαzβuγ , with α ≤ j,
β ≤ k, γ ≥ 1 and |K| ≤ j + k + ℓ. Moreover,

Sj,k,ℓ(wJ , 0) = 0.

Using (10.35) and induction, the partial cross-section in the new complex jet coordinates is

K̃ =
{
ww = 1, wzz = −2 i , z = w = wzkwℓ = wzzwℓ+1 = wzk+2zwℓ

= wz2z2wℓ = wz3z2wℓ = wz3z3wℓ = 0 | k, ℓ ≥ 0
}
.

As shown in [57, Section 4], the prolonged action of the holomorphic pseudo-group becomes
free at some order n0 ≥ 7 for generic, non-umbilic, and semi-circular hypersurfaces. Cir-
cular hypersurfaces retain a one-dimensional isotropy group, but the convergence argument
remains valid at some order n0 ≥ 8. In all cases, it is possible to construct a minimal cross-
section and at the appropriate order n0, one observes that I≥n0+1

K̃
admits the following Rees

decomposition with respect to the ordering w ≺ z ≺ z

n0+1⊎
j=0

C(n0 + 1− j, j, 0)
n0⊎
j=1

C(n0 − j, j, 1)
⊎
C(n0 − 3, 2, 2)

⊎
C(n0 − 4, 3, 2)

⊎
C(n0 − 5, 3, 3).

By Theorem 8.21, the cross-section is well-posed and by Theorem 8.18 we conclude that the
normal form of a nondegenerated hypersurface converges, reproducing Chern and Moser’s
celebrated convergence result.

11 Final Comments.

In this paper, we have proven a fundamental result establishing the convergence of normal
form power series for suitably regular submanifolds under a large class of Lie pseudo-group ac-
tions, which includes, in particular, all those for which the equivariant moving frame methods
developed in [54, 55] can be applied. To do so, we introduced the normal form determining
equations (7.5), whose solution includes the normal form. In Section 8, we showed that,
beyond the order of freeness, the involutivity of the normal form determining equations is
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compatible with the moving frame construction, and that a well-posed cross-section provides
suitable analytic initial conditions. The convergence of the normal form is then guaranteed
by an application of the Cartan–Kähler Theorem.

The results of the paper have been obtained under the assumption that the pseudo-group
eventually acts eventually freely, which is a necessary requirement for the construction of a
moving frame. That said, there are many circumstances where the prolonged pseudo-group
action never becomes free, in which case the geometric problem admits a non-trivial isotropy
groups. In these situations one can construct a partial moving frame, [51,65]. Extending the
results of the current paper to Lie pseudo-groups that do not eventually act freely, and to
singular submanifolds that admit nontrivial isotropy, will be the subject of future research.

We anticipate that our general convergence result will find a wide range of applications
in the construction of normal forms. This include, for example, the investigation of Bishop
surfaces, [27], in CR geometry, the construction of Poincaré–Dulac normal forms, [21,33], as
well as normal forms in control theory, dynamical systems, partial differential equations, and
so on.
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