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The purpose of this note is to explain how to use the equivariant method of moving
frames, [1, 10], to derive the differential invariants, invariant differential operators and
invariant differential forms for surfaces in three-dimensional Euclidean space. This is, of
course, a very classical problem and the results are not new; for the classical moving
frame derivation, see, for instance, [2, 3]. But there are several reasons for performing
this calculation. First, in contrast to the classical treatment, the equivariant moving frame
approach does not require any a priori insight into surface geometry, relying only on the ex-
plicit formulas for the Euclidean group transformations and their infinitesimal generators;
the resulting curvature and higher order differential invariants, invariant differential oper-
ators, invariant differential forms, etc., all follow by direct and algorithmic calculations.
Further systematic calculations will produce the invariant contact forms, and associated
invariant variational bicomplex, [4], leading to the explicit formulas governing Euclidean
signatures, used to solve the equivalence problem for surfaces under Euclidean motions,
[6, 7], Euclidean-invariant variational problems, [4], and Euclidean-invariant geometric
surface flows, [8]. Furthermore, some of these formulae — the invariant differential oper-
ators and invariant differential forms — do not, as far as I know, appear in the existing
literature, making this a useful exercise for further developing such applications.

We assume the reader is familiar with the basics of Lie transformation groups, jet
bundles, [6], and the equivariant approach to moving frames, [1, 10]. In this computation,
we will concentrate on the right-equivariant moving frame map. As we will see, the classical
Darboux moving frame for Euclidean surfaces, [3], can be interpreted as a left-equivariant
moving frame map, which is the group-theoretic inverse of our map: the orthonormal frame
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vectors at a point on the surface form its orthogonal components, while the point on the
surface (which Cartan is always careful to include in what he calls the “repére mobile”) is
the translation component.

Our starting point is the six-dimensional Euclidean group E(3) = O(3) ⋉ R
3, the

semidirect product of the three-dimensional orthogonal group and the three-dimensional
abelian translation group. It acts on R

3 by orientation-preserving rigid motions that map
a point z ∈ R

3 to the transformed point†



X
Y
U


 = Z = Rz+ a, R ∈ O(3), a =



a
b
c


 ∈ R

3, z =



x
y
u


 ∈ R

3. (1)

If we let r1, r2, r3 denote the orthonormal row vectors of the orthogonal matrix‡ R = (rij),

then

X = r
1 · z+ a, Y = r

2 · z+ b, U = r
3 · z+ c.

We are interested in the induced action of E(3) on surfaces S ⊂ R
3. For simplicity,

we assume that the surface is (locally) given as the graph of a function§ u = f(x, y),
sometimes referred to as “a Monge patch”, [2]. The normal to the surface at a point is
given by

N =




−ux
−uy
1


, with Euclidean norm n = ‖N ‖ =

√
1 + u2x + u2y , (2)

so that n = N/n is the (upwards) unit surface normal. At the same point, the tangent
plane to S is thus spanned by the particular (non-orthogonal) tangent vectors

t1 =




1
0
ux


 , t2 =




0
1
uy


 , (3)

and we denote their norms by

t1 = ‖ t1 ‖ =
√

1 + u2x , t2 = ‖ t2 ‖ =
√
1 + u2y . (4)

† We will employ Cartan’s convention of using lower case letters for the source (domain)
variables, and upper case letters for the corresponding target (range) variables of a map.

‡ We use the tensorial convention that superscripts are row indices and subscripts column
indices.

§ This requires that the surface intersects the vertical lines {u = constant} transversally.
Non-transversal surfaces can be treated by interchanging the roles of independent and dependent
variables. Moreover, it is not difficult to adapt the moving frame computations to arbitrarily par-
ametrized surfaces, although one does then need to properly account for the infinite-dimensional
reparametrization pseudo-group.
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The horizontal differentials† of the transformed independent variables are
(
dHX
dHY

)
=M

(
dx
dy

)
, where M =

(
DxX DyX
DxY DyY

)
=

(
r
1 · t1 r

1 · t2
r
2 · t1 r

2 · t2

)
, (5)

where Dx, Dy denote total derivative operators for the independent variables, [6]. The

dual implicit differentiation operators DX , DY are defined by the standard formula

dHF = DXF dHX +DY F dHY = DxF dx+DyF dy, (6)

valid for any differential function F , that is, function of x, y, u and a finite number of
derivatives of u. Explicitly, (

DX
DY

)
= N

(
Dx
Dy

)
(7)

uses the inverse transpose matrix

N =M−T =
1

∆

(
r
2 · t2 −r

2 · t1
−r

1 · t2 r
1 · t1

)
where ∆ = detM = r

3 · n, (8)

the latter formula relying on the fact that R is an orthogonal matrix.

The action of the Euclidean group on surfaces induces an action on their jets (deriva-
tives) known as the prolonged action, [6]. We let Jn = Jn(R3, 2) denote the nth order
surface jet bundle, with local coordinates consisting of the independent variables, x, y, the
dependent variable, u, and “higher order” coordinates representing its partial derivatives
ux, uy, uxx, uxy, uyy, . . . , up to order n. The prolonged Euclidean group action on Jn is ob-

tained by applying the implicit differentiation operators (7) to the transformed dependent
variable U , so the transformed jet coordinates are

UX = DXU, UY = DY U, UXX = D2
XU, UXY = DXDY U = DYDXU, UY Y = D2

Y U,

and so on. The explicit formulas rapidly get very complicated, and so will not be written
down here. However, they are eminently computable in symbolic software such as Mathe-

matica, Maple, etc. Indeed, Mathematica was used to facilitate and verify the present
calculations‡.

Remark : Observe that the matrix (5) is the upper 2 × 2 block of the matrix whose
columns are the rotated tangent vectors: (Rt1, Rt2), whose final row contains the coeffi-
cients of dx and dy in

dHU = DxU dx+DyU dy = (r3 · t1) dx+ (r3 · t2) dy. (9)

† This means that, for simplicity, we are ignoring contact forms, [4, 6], in this calculation, or,
equivalently, regard u as a function of x, y when differentiating. These will be dealt with in the
second part of the paper, although we could include them from the beginning.

‡ However, the later computations are not straightforward, owing to Mathematica’s poor
handling and simplification of rational algebraic functions! I suspect that Maple is not any better
in this regards.
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To compute the equivariant moving frame, we must normalize the 6 = dimE(2)
independent group parameters by setting 6 of the transformed jet variables equal to con-
veniently chosen constants — this corresponds to the choice of a cross-section to the
prolonged group orbits, or, equivalently, to placing the surface in normal form, [12]. The
standard cross-section that produces the classical moving frame, [3, 9], is given by

x = y = u = ux = uy = uxy = 0. (10)

The determination of the moving frame associated with the cross-section (10) relies on
solving the corresponding normalization equations

X = Y = U = UX = UY = UXY = 0 (11)

for the group parameters g = (R, a) ∈ E(3), using the explicit formulas for the prolonged
Euclidean transformations that were obtained by implicit differentiation. The result will
be a right-equivariant moving frame map ρ :V(2) → E(3) defined on a certain open subset

V(2) ⊂ J2 consisting of “regular” surface 2–jets; see (53) below for details.

The preceding moving frame construction based on the cross-section (10) can, alter-
natively, be viewed as “moving” the surface so that it is placed into a certain normal

form

S0 = g · S = {u = f0(x, y)}, (12)

at the point z0 = g · z ∈ S0. First, we apply a suitably chosen translation to make S0

go through the origin, so z0 = 0. Then a subsequent rotation is applied that makes its
tangent plane horizontal at z0, and, further, such that the x and y axis align with the
principal axes or Darboux frame, [3]. (Again, the algorithm does not require knowing
what the latter geometric terms mean.) The required group transformation is precisely
the one given by the moving frame map:

g = ρ(x, y, u, ux, uy, uxx, uxy, uyy). (13)

As a result, the Euclidean normal form surface S0 has the following Taylor expansion at
z0 = 0:

u = 1
2 κ1x

2 + 1
2 κ2 y

2 + 1
6 κ1,1x

3 + 1
2 κ1,2x

2y + 1
2 κ2,1xy

2 + 1
6 κ2,2 y

3 + · · · , (14)

whose coefficients, when written in terms of the surface jet coordinates at the original
point z = g−1 · z0, form a complete system of independent differential invariants, [12]. In
particular, κ1, κ2 are the principal curvatures .

Remark : The regular subset V(2) ⊂ J2, where the moving frame map is well-defined,
consists of those surface 2–jets belonging to the six-dimensional orbits where the prolonged
six-dimensional Euclidean group acts locally freely, meaning the isotropy subgroup of any
jet in V(2) is discrete. Geometrically, as we will see below, the 2–jet of a surface belongs to
the regular subset if and only if it is non-umbilic, meaning that the principal curvatures
are unequal: κ1 6= κ2. It is worth emphasizing that the ensuing moving frame computation
does not require any a priori knowledge of what an “umbilic point” means.
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Let us now present the details of this calculation. The order zero normalizations
X = Y = U = 0 prescribe the translation parameters a = −Rz of the group element
g ∈ E(3). Since they play no further role in the prolonged action or other moving frame
formulae, we can effectively ignore them from here on.

The first order normalizations require that

(
0
0

)
=

(
UX
UY

)
= N

(
DxU
DyU

)
= N

(
r
3 · t1
r
3 · t2

)
, (15)

cf. (7–9). Thus r
3 · t1 = r

3 · t2 = 0, which implies that r
3 is a unit vector orthogonal to

the tangent plane, and hence, up to sign† r
3 = n

T (keeping in mind that the r
j are row

vectors). This requires that the first two rows r
1, r2 of the orthogonal matrix R, which

must be orthogonal to r
3, form an orthonormal basis of the tangent space to S at z, and

hence

r
1 = r̂

1 cosφ− r̂
2 sinφ, r

2 = r̂
1 sinφ+ r̂

2 cosφ, r
3 = n

T , (16)

for some as yet undetermined rotation angle φ. Here

r̂
1 =

t
T
1

t1
, r̂

2 =
t̃
T
2

t1n
, (17)

form an orthonormal basis of the tangent space, whereby

t̃2 =




−uxuy
1 + u2x
uy


, with norm ‖ t̃2 ‖ = t1n =

√
1 + u2x

√
1 + u2x + u2y , (18)

is a vector orthogonal to both t1 and n, which can be easily constructed either via the
Gram–Schmidt process or directly by inspection.

Note: The above normalization means that we are, effectively, parametrizing the or-
thogonal group in factored form:

R = Rφ · R̂ ∈ O(3), (19)

where

Rφ =




cosφ − sinφ 0
sinφ cosφ 0
0 0 1


, R̂ =




r̂
1

r̂
2

r
3


. (20)

So we are, in essence, employing the recursive moving frame algorithm developed in [11].
However, because in this example the required prolonged actions can be computed rela-
tively painlessly, the full recursive machinery will not be used here.

† In this simplified presentation, which is in accordance with the classical treatment in all texts
I know, we will ignore this and later discrete (sign) ambiguities in our specification of the moving
frame. It would be worth taking these properly into account, as in the treatment of Euclidean
space curves in [7].
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Substituting the normalized values (16) for rows of the orthogonal matrix R into the
second order prolonged Euclidean action yields

UXX = V1 cos
2 φ− 2V2 cosφ sinφ+ V3 sin

2 φ,

UXY = V1 cosφ sinφ+ V2(cos
2 φ− sin2 φ) − V3 cosφ sinφ,

UY Y = V1 sin
2 φ+ 2V2 cosφ sinφ+ V3 cos

2 φ,

(21)

where

V1 =
uxx
t21n

=
uxx

(1 + u2x)
√
1 + u2x + u2y

,

V2 =
−uxuyuxx + t21uxy

t21n
2

=
−uxuyuxx + (1 + u2x)uxy
(1 + u2x)(1 + u2x + u2y)

,

V3 =
u2xu

2
yuxx − 2uxuy t

2
1uxy + t41uyy

t21n
3

=
u2xu

2
yuxx − 2uxuy(1 + u2x)uxy + (1 + u2x)

2uyy
(1 + u2x)(1 + u2x + u2y)

3/2
.

(22)

In view of (21), we can thus normalize UXY = 0 by setting

tan 2φ = J̃ , where J̃ =
2V2

V3 − V1
. (23)

Note that, modulo discrete ambiguities stemming from the fact that the Euclidean action
is only locally free on V(2) ⊂ J2,

cosφ =

√
1 + Ĩ

2
, sinφ = −

√
1− Ĩ

2
, where Ĩ =

1√
1 + J̃2

. (24)

The denominator in (23) is nonzero at non-umbilic points — see (53) below — and the
resulting orthogonal matrix R(ux, uy, uxx, uxy, uyy) obtained from (19, 24) serves to define

the O(3) component of the right-equivariant moving frame map ρ:V(2) −→ E(3), whose
translation component a = −Rz was derived at the beginning of our calculation.

Remark : The corresponding left-equivariant moving frame is obtained by applying the
group inversion to the right moving frame map, and hence has corresponding parameter
values (R−1,−R−1

a) = (RT , z). Thus, as noted above, the columns of the orthogonal
matrix RT defined by the left moving frame are the orthonormal Darboux frame vectors
and the translation component z is the point on the surface at which they are based.

With the moving frame map in hand, we are now able to compute invariant objects —
differential invariants, invariant differential operators, invariant differential forms, etc. —
through the process of invariantization. This is performed by first transforming the object
in question according to a general Euclidean transformation, and then substituting the
moving frame formulas for the groups parameters that appear in the transformed object.
Invariantization preserves all algebraic operations, but does not respect differentiation.
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In particular, substituting (23) back into (21) produces the two independent second
order differential invariants:

UXX 7−→ κ1 =
V1 + V3 +

√
(V1 − V3)

2 + 4V 2
2

2
= H +

√
H2 −K,

UY Y 7−→ κ2 =
V1 + V3 −

√
(V1 − V3)

2 + 4V 2
2

2
= H −

√
H2 −K,

(25)

where κ1, κ2 are the principal curvatures , while

H = 1
2 (κ1 + κ2) =

1
2 (V1 + V3) =

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy
2(1 + u2x + u2y)

3/2
,

K = κ1κ2 = V1V3 − V 2
2 =

uxxuyy − u2xy
(1 + u2x + u2y)

2
,

(26)

are, respectively, the mean and Gauss curvatures , thereby reproducing their classical for-
mulas in a Monge patch, [2; p. 409]. (As noted above, their formulas for a general param-
etrized surface can also be obtained by a similar but more intricate computation.)

The invariant differential operators are obtained by substituting the moving frame
normalizations (16, 24) into the implicit differentiation operators (7), leading to

(
D1

D2

)
= N∗

(
Dx
Dy

)
, (27)

where, in view of (19),

N∗ = Qφ N̂ (28)

is the invariantized version of the coefficient matrix (8), whereby

Qφ =

(
cosφ − sinφ
sinφ cosφ

)
=

1√
2

( √
1 + Ĩ

√
1− Ĩ

−
√
1− Ĩ

√
1 + Ĩ

)
, (29)

cf. (23, 24), while, using (8),

N̂ =
1

n

(
r̂
2 · t2 − r̂

2 · t1
− r̂

1 · t2 r̂
1 · t1

)
=

(
1/t1 0

−uxuy/(nt1) t1/n

)

=
1√

1 + u2x
√
1 + u2x + u2y

(√
1 + u2x + u2y 0
−uxuy 1 + u2x

)
.

(30)

One can apply the same invariantization process to all of the higher order transformed jet
coordinates, UXXX , UXXY , . . . , to construct the corresponding higher order differential
invariants. However, a better strategy is to note that, as a consequence of the recurrence
formulae the higher order differential invariants can all be obtained by invariant differen-
tiation of the Gauss and mean curvatures. Details appear below, cf. (61, 67).
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The one remaining issue is that, surprisingly, the formulas (27–30) for the invariant
differential operators do not appear to be symmetric in x and y. However, they are —
indeed they must be — but the symmetry is by no means evident, and is, in fact, not
easy to verify directly, even with the aid of Mathematica. (Again, this is due to its
substandard simplification routines for rational algebraic functions.)

To reveal the underlying symmetry, we need to place the initial orthonormal basis
vectors (17) for the surface’s tangent space in a more symmetric form. This will require
subjecting them to an intermediate rotation in order that their projections onto the xy

plane, which are also the rows of the matrix N̂ in (30), are symmetric under interchange

of the x and y coordinates. To this end, let ψ̂ denote the angle between their projections,
which is, in fact, equal π minus the angle between the original tangent vectors (3), and is
given by the usual dot product formula:

cos ψ̂ = −
uxuy
t1t2

= − t1 · t2
t1t2

. (31)

Let us set

ψ = 1
2 ψ̂ − 1

4 π, (32)

so that

cosψ =

√
1 + P

2
, sinψ = −

√
1− P

2
, where P =

n

t1t2
=

√
1 + u2x + u2y

(1 + u2x)(1 + u2y)
. (33)

By construction, applying the corresponding rotation matrix

Rψ =




cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (34)

to the orthonormal basis tangent vectors r̂
1, r̂2 will make their projections suitably sym-

metric. Indeed, a short computation using (33) reveals that

R̃ = Rψ · R̂ =
1

n



t2 cosψ t1 sinψ ux t2 cosψ + uy t1 sinψ
t2 sinψ t1 cosψ ux t2 sinψ + uy t1 cosψ
−ux −uy 1


. (35)

(The nonconstant entries in the third column are most easily determined by the fact that
the first two rows must be orthogonal to the normal vector in the last row.) The effect of
the combined orthogonal transformation (35) on the second order derivatives is found by
replacing φ by ψ in (21) and then using the formulas (33) for the trigonometric functions
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thereof; we write the result as

W1 =
t22 (t1t2 + n)uxx − 2uxuyt1t2uxy + t21 (t1t2 − n)uyy

2 t1t2n
3

=




√
1 + u2x

√
1 + u2y

[
(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy

]

+
√
1 + u2x + u2y

[
(1 + u2y)uxx − (1 + u2x)uyy

]




2
√

1 + u2x
√
1 + u2y (1 + u2x + u2y)

3/2
,

W2 =
−uxuyt22uxx + 2 t21 t

2
2uxy − uxuyt

2
1uyy

2 t1t2n
3

=
−uxuy(1 + u2y)uxx + 2(1 + u2x)(1 + u2y)uxy − uxuy(1 + u2x)uyy

2
√
1 + u2x

√
1 + u2y (1 + u2x + u2y)

3/2
,

W3 =
t22 (t1t2 − n)uxx − 2uxuyt1t2uxy + t21 (t1t2 + n)uyy

2 t1t2n
3

=




√
1 + u2x

√
1 + u2y

[
(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy

]

−
√
1 + u2x + u2y

[
(1 + u2y)uxx − (1 + u2x)uyy

]




2
√

1 + u2x
√
1 + u2y (1 + u2x + u2y)

3/2
.

(36)

With this in hand, let us return to the final moving frame normalization. To effect
this, we use (35) to rewrite the orthogonal matrix factorization (19) in the form

R = Rϕ · R̃ = Rϕ ·Rψ · R̂ = Rφ · R̂ ∈ O(3), (37)

where φ = ϕ+ ψ. The remaining unnormalized rotation

Rϕ =




cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


. (38)

acts on the second order quantities (36) in the same fashion as in (21), thus producing
symmetric versions of the second order transformed derivative formulae:

UXX =W1 cos
2 ϕ− 2W2 cosϕ sinϕ+W3 sin

2 ϕ,

UXY =W1 cosϕ sinϕ+W2(cos
2 ϕ− sin2 ϕ)−W3 cosϕ sinϕ,

UY Y =W1 sin
2 ϕ+ 2W2 cosϕ sinϕ+W3 cos

2 ϕ.

(39)

We can thus normalize UXY = 0 by setting

tan 2ϕ = J, (40)
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where

J =
2W2

W3 −W1

=
−uxuy t22uxx + 2 t21 t

2
2uxy − uxuy t

2
1uyy

n (−t22uxx + t21uyy)

=
uxuy(1 + u2y)uxx − 2(1 + u2x)(1 + u2y)uxy + uxuy(1 + u2x)uyy√

1 + u2x + u2y
[
(1 + u2y)uxx − (1 + u2x)uyy

] .

(41)

Because we are performing the identical moving frame normalizations, just based on the
alternative parametrization (37) of the orthogonal group, the resulting differential invari-
ants and invariant differential operators will be exactly the same as above. In particular,
substituting (23) back into (21) produces the same principal curvature invariants

UXX 7−→ κ1 =
W1 +W3 +

√
(W1 −W3)

2 + 4W 2
2

2
= H +

√
H2 −K,

UY Y 7−→ κ2 =
W1 +W3 −

√
(W1 −W3)

2 + 4W 2
2

2
= H −

√
H2 −K,

(42)

where H,K are the mean and Gauss curvatures (26). Finally, (40) implies that (again
modulo discrete ambiguities)

cosϕ =

√
1 + I

2
, sinϕ = −

√
1− I

2
, (43)

where

I =
1√

1 + J2
=

W√
H2 −K

, W =W1 −W3 =
(1 + u2y)uxx − (1 + u2x)uyy√
1 + u2x

√
1 + u2y (1 + u2x + u2y)

. (44)

We finally recompute the invariant differential operators (27), where, in view of equa-
tions (33, 35, 43), formula (28) becomes

N∗ =

(
N1 N2

N3 N4

)
= QϕQψ N̂

=
1

2
√
1 + u2x + u2y

( √
1 + I

√
1− I

−
√
1− I

√
1 + I

)( √
1 + u2y

√
1 + P −

√
1 + u2x

√
1− P

−
√
1 + u2y

√
1− P

√
1 + u2x

√
1 + P

)
.

(45)
that, upon substituting the expressions (33, 44) for P, I, produces the explicit formulas for
the invariant differential operators (27) in an evidently symmetric form. Finally note that,
in view of (33),

detN∗ = n =
√
1 + u2x + u2y .

Recurrence Formulae and the Invariant Variational Quasi–Tricomplex

In more advanced applications, including Euclidean-invariant variational problem and
invariant flows, one requires the full algebra of invariant differential forms on jet space, or,
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more generally, the invariant variational quasi-tricomplex ; see [4] for the general results
and computational machinery underlying the remainder of this note.

To continue, we will return to our earlier moving frame calculations, but now retain
all contact form components. Thus, the transformed horizontal forms (5) are given by†

dX = (DxX) dx+ (DyX) dy +Xuθ = (r1 · t1) dx+ (r1 · t2) dy + r13 θ,

dY = (DxY ) dx+ (DyY ) dy + Yuθ = (r2 · t1) dx+ (r2 · t2) dy + r23 θ,

where

θ = du− ux dx− uy dy (46)

is the basic order 0 contact form. Thus, the fully invariant horizontal forms are

̟1 = ι(dx) =
N4 dx−N3 dy + (−uxN4 + uyN3)θ√

1 + u2x + u2y
,

̟2 = ι(dy) =
−N2 dx+N1 dy + (uxN2 − uyN1)θ√

1 + u2x + u2y
,

(47)

where N1, N2, N3, N4 are the entries of the matrix N∗ given in (45).

Next, under a general diffeomorphism, the basic order 0 contact form (46) is trans-
formed to

Θ = (Uu − UXXu − UY Yu) θ.

In particular, for a Euclidean transformation (1), Xu = r13 , Yu = r23 , Uu = r33. Under the
moving frame normalization, UX and UY both map to 0, cf. (15), while r33 7−→ 1/n, cf. (35,
37). Hence, the invariantized order 0 contact form is simply

ϑ = ι(θ) =
θ

n
=

θ√
1 + u2x + u2y

. (48)

The higher order invariant contact forms can be obtained by a similar invariantization
process; alternatively, as we now explain, they are obtained by invariant differentiation of
the order zero form (48) via the recurrence formulae.

With these in hand, there is a natural bigrading of the invariant differential forms on
jet space into the invariant horizontal forms, spanned by (47), and invariant vertical or
contact forms, spanned by (48) and its higher order counterparts. Under this bigrading,
the differential splits into three components, d = dH+dV+dW , in which the invariant hor-
izontal differential dH increases the invariant horizontal degree by 1, the invariant vertical
differential dV increases the invariant vertical degree by 1, and the anomalous invariant

differential dW , both decreases the invariant horizontal degree by −1 and increases the
invariant vertical degree by 2, thus endowing the algebra of invariant differential forms
with the structure known as the invariant variational quasi-tricomplex, [4]. In particular,

† Lower case subscripts on X,Y, U denote partial derivatives. Thus, DxX = Xx+ uxXu, etc.
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the invariant horizontal differential of an (invariant) differential function or form Ω is given
by the formula

dHΩ = ̟1 ∧ D1Ω+̟2 ∧ D2Ω, (49)

where D1,D2 are the invariant differential operators (27), acting on Ω by Lie differentiation.

The recurrence formula for invariantized differential functions and differential forms on
jet space is contained in the following theorem. In general, suppose G is an r-dimensional
Lie group that acts on locally effectively on a manifold M and hence, by prolongation,
on the jet bundles Jn = Jn(M, p) for p-dimensional submanifolds N ⊂ M . Let v1, . . . ,vr
denote the infinitesimal generators, which we identify with a basis of its Lie algebra g. We
will employ the same notation vi for their prolonged action on differential functions and
differential forms (by Lie differentiation) on the submanifold jet spaces Jn. As usual, we
identify, and use the same symbols for, differential functions and forms on any jet space
Jn with their pull-backs via the standard projections Jk → Jn for any k ≥ n.

Theorem 1. Let ι denote the invariantization map associated with a moving frame

ρ: Jn → G. If Ω is any differential function or differential form on the submanifold jet

space Jk, then

d ι(Ω) = ι(dΩ) +

r∑

κ=1

νκ ∧ ι[vκ(Ω)], (50)

where ν1, . . . , νr denote the pulled-back Maurer–Cartan forms dual to the infinitesimal

generators v1, . . . ,vr under the moving frame map ρ:V(2) → G.

Suppose that the cross-section defining the moving frame is specified by setting a
collection of r differential functions to suitably chosen constants: Fi(x, u

(n)) = ci for
i = 1, . . . , r. (Typically, the Fi are individual jet coordinates, meaning that, as here, we
choose a coordinate cross-section.) If we take Ω to be one of the Fi, then ι(Fi) = ci
and hence the left hand side of the corresponding recurrence formula (50) vanishes. The
result is a system of r linear equations that can always be uniquely solved for the pulled-
back Maurer–Cartan forms ν1, . . . , νr in terms of known invariant differential functions
and forms. Moreover, substituting these expressions into (50) produces a complete system
of explicit recurrence formulae relating the differentiated and invariantized differential
functions and forms, thereby completely specifying the structure of both the differential
invariant algebra and the entire invariant variational quasi-tricomplex. Note especially
that this calculation does not require explicit knowledge of the differential invariants, nor

the invariant differential forms, nor even the moving frame map! We only need to know
the formulae for the prolonged infinitesimal generators vκ, which can be easily found using
the well-known prolongation formula for vector fields on jet space, [5, 6].

For the action of E(3) under study here, a basis for the prolonged infinitesimal gener-
ators is provided by the following six vector fields:

v1 = ∂x, v2 = ∂y, v3 = ∂u, (51)
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representing infinitesimal translations, and

v4 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

+ 2uxy∂uyy
+ · · · ,

v5 = −u∂x + x∂u + (1 + u2x)∂ux
+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uy uxx + 2uxuxy)∂uxy

+ (2uy uxy + uxuyy)∂uyy
+ · · · ,

v6 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2y)∂uy

+ (uy uxx + 2uxuxy)∂uxx
+ (2uy uxy + uxuyy)∂uxy

+ 3uy uyy∂uyy
+ · · · ,

(52)

representing infinitesimal rotations, where we just display the terms up to second order,
although it is straightforward to prolong further, to any desired order.

Remark : The regular subset V(2) ⊂ J2 is where the second prolongation of E(3) acts
locally freely, and hence where the second order prolonged infinitesimal generators (51,

52) are linearly independent. Its complement, the singular subset S(2) = J2 \ V(2), is thus
defined by the (generalized) Lie determinant conditions

uxuyuxx = (1 + u2x)uxy, uxuyuyy = (1 + u2y)uxy, (1 + u2y)uxx = (1 + u2x)uyy, (53)

which imply that the infinitesimal generators v1, . . . ,v6 are linearly dependent at the given
2-jet. Note that the second condition in (53) is a consequence of the first and the third,
or, equivalently, the first is a consequence of the second and the third. Furthermore, (53)
are necessary and sufficient for the 2 jet to correspond to an umbilic point on the surface,
meaning that its principal curvatures (42) are equal: κ1 = κ2, or, equivalently, K = H2.
In particular, if the tangent plane is horizontal, then the point is umbilic if and only if

ux = uy = 0, uxx = uyy, uxy = 0. (54)

Thus, the regular subset V(2) consists of all non-umbilic surface 2-jets.

The basic invariantized differential functions and forms that prescribe the invariant
variational quasi-tricomplex will be denoted by†

IJ = ι(uJ ), ̟1 = ι(dx), ̟2 = ι(dy), ϑJ = ι(θJ). (55)

In particular, the cross-section variables (10) have trivial invariantizations

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = 0, (56)

and are known as the phantom invariants . The explicit formulas for the lowest order
nontrivial ones

κ1 = ι(uxx), κ2 = ι(uyy), ϑ = ι(θ), (57)

are given in (42, 48). All higher order differential invariants IJ for #J ≥ 3 and higher
order invariant contact forms ϑJ for #J ≥ 1 can be obtained therefrom by invariant

† Here, the subscripts on IJ and ϑJ are indices, not partial derivatives.
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(Lie) differentiation of (57) using the invariant differential operators (27). Fortunately the
recurrence formulae allow us to rather easily determine the relations without any need for
deriving the complicated explicit formulae for these fundamental quantities.

In our case, letting, in turn, Ω = x, y, u, ux, uy, uxy be the cross-section coordinates

produces zero on the left hand side of the recurrence formula (50), while using the prolonged
infinitesimal generators (51, 52) and the elementary formulae

du = ux dx+ uy dy + θ, dux = uxx dx+ uxy dy + θx, duy = uxy dx+ uyy dy + θy,

and so on, to write out the right hand side produces the phantom recurrence relations

0 = ι(dx) + ι(1)ν1 + ι(−y)ν4 + ι(−u)ν5 = ̟1 + ν1,

0 = ι(dy) + ι(1)ν2 + ι(x)ν4 + ι(−u)ν6 = ̟2 + ν2,

0 = ι(du) + ι(1)ν3 + ι(x)ν5 + ι(y)ν6 = ϑ+ ν3,

0 = ι(dux) + ι(−uy)ν4 + ι(1 + u2x)ν
5 + ι(uxuy)ν

6 = κ1̟
1 + ϑx + ν5,

0 = ι(duy) + ν4ι(ux) + ν5ι(uxuy) + ν6ι(1 + u2y) = κ2̟
2 + ϑy + ν6,

0 = ι(duxy) + ι(uxx − uyy)ν
4 + ι(uy uxx + 2uxuxy)ν

5 + ι(2uy uxy + uxuyy)ν
6

= Ixxy̟
1 + Ixyy̟

2 + ϑxy + (κ1 − κ2)ν
4.

(58)

This linear system can be easily solved for the pulled-back Maurer–Cartan forms:

ν1 = −̟1, ν2 = −̟2, ν3 = −ϑ,

ν4 =
Ixxy̟

1 + Ixyy̟
2 + ϑxy

κ2 − κ1
, ν5 = −κ1̟1 − ϑx, ν6 = −κ2̟2 − ϑy.

(59)

As with the translational coordinates, the first three of these — the translational forms —
play no role in the subsequent calculations.

Next, taking Ω = uxx and uyy in (50) and using (59) produces the second order

recurrence formulae

dκ1 = dι(uxx) = ι(duxx) + ι(−2uxy)ν
4 + ι(3uxuxx)ν

5 + ι(uy uxx + 2uxuxy)ν
6

= Ixxx̟
1 + Ixxy̟

2 + ϑxx,

dκ2 = dι(uyy) = ι(duyy) + ι(2uxy)ν
4 + ι(uy uxx + 2uxuxy)ν

5 + ι(3uy uyy)ν
6

= Ixxx̟
1 + Ixxy̟

2 + ϑyy.

(60)

Hence, by (49),

Ixxx = κ1,1, Ixxy = κ1,2, Ixyy = κ2,1, Iyyy = κ2,2, (61)

where we abbreviate κi,j = Djκi. We can thus re-express the rotational Maurer–Cartan
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forms (59) in the form

ν4 = Y1̟
1 + Y2̟

2 + ϑxy, ν5 = −κ1̟1 − ϑx, ν6 = −κ2̟2 − ϑy, (62)

where

Y1 =
κ1,2

κ2 − κ1
, Y2 =

κ2,1
κ2 − κ1

, (63)

are known as the commutator invariants for reasons that will soon become apparent†

The recurrence formulae for the invariant horizontal forms (47) are obtained by setting
Ω = dx and dy in the general recurrence formula (50) and using (62), producing

d̟1 = dι(dx) = ι(d2x)− ν4 ∧ ι(dy)− ν5 ∧ ι(du)

= −Y1̟1 ∧̟2 +
̟2 ∧ ϑxy
κ1 − κ2

+ κ1̟
1 ∧ ϑ+ ϑx ∧ ϑ,

d̟2 = dι(dy) = ι(d2y) + ν4 ∧ ι(dx)− ν6 ∧ ι(du)

= −Y2̟1 ∧̟2 +
̟1 ∧ ϑxy
κ2 − κ1

+ κ2̟
2 ∧ ϑ+ ϑy ∧ ϑ.

(64)

Each formula splits into three components, according to the bigrading induced by the
invariant variational quasi-tricomplex: the first summand is the invariant horizontal dif-
ferential dH̟

i; the middle two summands are the invariant vertical differential dV̟
i; the

final summand is the anomalous invariant differential dW̟
i that stems from the non-

projectability of the Euclidean action on M = R
3. In particular, if F is any differential

function, then, in view of (49),

0 = d2HF = dH
[
(D1F )̟

1 + (D2F )̟
2
]

=
[
D1D2F −D2D1F − Y1 D1F − Y2 D2F

]
̟1 ∧̟2,

which, since F is arbitrary, implies the commutation formula

[
D1,D2

]
= D1D2 −D2D1 = Y1 D1 + Y2 D2 (65)

for the invariant differential operators, whence our designation of Y1, Y2 as commutator
invariants.

† Comparing with Guggenheimer’s treatment, [3; eq. (10-53)], we have ρ1 = −Y1, ρ2 = −Y2,
where there is a misprint in his first formula that gives the wrong sign for ρ1; this can be seen by
substituting the equation before (10-15) and (10-50) back into (10-10), with the ω’s replaced by
the corresponding π’s.
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The third order recurrence relations are computed similarly; the final results are

dIxxx =

(
Ixxxx +

3I2xxy
κ1 − κ2

− 3κ31

)
̟1 +

(
Ixxxy +

3IxxyIxyy
κ1 − κ2

)
̟2

+ ϑxxx +
3Ixxy
κ1 − κ2

ϑxy − 3κ21ϑx,

dIxxy =

(
Ixxxy −

(Ixxx − 2Ixyy)Ixxy
κ1 − κ2

)
̟1 +

(
Ixxyy −

(Ixxx − 2Ixyy)Ixyy
κ1 − κ2

− κ1κ
2
2

)
̟2

+ ϑxxy −
Ixxx − 2Ixyy
κ1 − κ2

ϑxy − κ1κ2ϑy,

(66)

dIxyy =

(
Ixxyy −

(2Ixxy − Iyyy)Ixxy
κ1 − κ2

− κ21κ2

)
̟1 +

(
Ixyyy −

(2Ixxy − Iyyy)Ixyy
κ1 − κ2

)
̟2

+ ϑxyy −
2Ixxy − Iyyy
κ1 − κ2

ϑxy − κ1κ2ϑx,

dIyyy =

(
Ixyyy −

3Ixxy Ixyy
κ1 − κ2

)
̟1 +

(
Iyyyy −

3I2xyy
κ1 − κ2

− 3κ32

)
̟2

+ ϑyyy −
3Ixxy
κ1 − κ2

ϑxy − 3κ22ϑy.

In view of (49, 61), this implies

Ixxxx = κ1,1,1 −
3κ21,2
κ1 − κ2

+ 3κ31,

Ixxxy = κ1,1,2 −
3κ1,2κ2,1
κ1 − κ2

= κ1,2,1 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2
,

Ixxyy = κ1,2,2 +
κ1,1κ2,1 − 2κ22,1

κ1 − κ2
+ κ1κ

2
2 = κ2,1,1 +

2κ21,2 − κ1,2κ2,2
κ1 − κ2

+ κ21κ2,

Ixyyy = κ2,1,2 +
2κ1,2κ2,1 − κ2,1κ2,2

κ1 − κ2
= κ2,2,1 +

3κ1,2κ2,1
κ1 − κ2

,

Iyyyy = κ2,2,2 +
3κ22,1
κ1 − κ2

+ 3κ32.

(67)

where κ1,1,1 = D2
1κ1, κ1,1,2 = D2D1κ1, etc. There are two formulae for Ixxxy, Ixxyy, Ixyyy,

because they appear twice in (66). The two expressions for Ixxxy and Ixyyy agree due to

the commutator formula (65) for the invariant differential operators D1,D2, whereas the
two expressions for Ixxyy yield the celebrated Codazzi syzygy

κ1,2,2 − κ2,1,1 +
κ1,1κ2,1 − 2κ22,1 − 2κ21,2 + κ1,2κ2,2

κ1 − κ2
− κ1κ2 (κ1 − κ2) = 0, (68)
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which can be re-written compactly in terms of the commutator invariants (63) as

K = κ1κ2 = (D1 − Y2)Y2 − (D2 + Y1)Y1. (69)

The latter is the key identity employed by Guggenheimer, [3; (10-52)], for a short proof of
Gauss’ Theorema Egregium, that the Gauss curvature is intrinsic meaning that it depends
only on the surface’s metric (first fundamental form).

Remark : The argument presented in Guggenheimer, [3; p. 234] is slightly flawed. Us-
ing his notation, the one-forms π1, π2 are not uniquely prescribed by the first fundamental
form, but only up to a rotational parameter, which is subsequently fixed by diagonalizing
the second fundamental form. Thus, his invariants ρ1, ρ2, which are, up to sign, our com-
mutator invariants, also depend on this rotational parameter, and hence, in contrast to his
stated claim, do not depend only on the first fundamental form. Nevertheless, the combi-
nation represented by the right hand side of (69) or, equivalently, equation (10-52) in [3]
is independent of the rotational parameter; once this is verified, either by Guggenheimer’s
earlier argument, or directly, the identity (69) does provide a proof of Gauss’ Theorem.

Finally, the recurrence formulae for the lowest order invariant contact forms are

dϑ = dι(θ) = ι(dx ∧ θx + dy ∧ θy) + ν5 ∧ ι(uxθ) + ν6 ∧ ι(uyθ) = ̟1 ∧ ϑx +̟2 ∧ ϑy,

dϑx = dι(θx) = ι(dx ∧ θxx + dy ∧ θxy)− ν4 ∧ ι(θy) + ν5 ∧ ι(2uxθx + uxxθ)

+ ν6 ∧ ι(uyθx + uxθy + uxyθ)

= ̟1 ∧
(
ϑxx − Y1ϑy − κ21ϑ

)
+̟2 ∧

(
ϑxy − Y2ϑy

)
+
ϑxy ∧ ϑy
κ1 − κ2

− κ1ϑx ∧ ϑ,

dϑy = dι(θy) = ι(dx ∧ θxy + dy ∧ θyy) + ν4 ∧ ι(θx) + ν5 ∧ ι(uyθx + uxθy + uxyθ)

+ ν6 ∧ ι(2uyθy + uyyθ)

= ̟1 ∧
(
ϑxy + Y1ϑx

)
+̟2 ∧

(
ϑyy + Y2ϑx − κ22ϑ

)
+
ϑxy ∧ ϑy
κ1 − κ2

− κ2ϑy ∧ ϑ.

(70)

The first two summands correspond to the invariant horizontal differential of each invariant
contact form, and, again via (49), produce the formulas for the higher order invariant
contact forms in terms of the invariant Lie derivatives of the order zero invariant contact
form (48):

ϑx = D1ϑ,

ϑy = D2ϑ,

ϑxx = D2
1ϑ+ Y1D2ϑ+ κ21ϑ,

ϑxy = D2D1ϑ+ Y2D2ϑ = D1D2ϑ− Y1D1ϑ,

ϑyy = D2
2ϑ− Y2D1ϑ+ κ22ϑ.

(71)

The two expressions for ϑxy agree as a consequence of the commutation formula (65).

Higher order recurrence formulas can all be constructed algorithmically in a similar
fashion. We have, in this manner, produced the entire differential-algebraic structure of the
differential invariants and invariant variational quasi-tricomplex for Euclidean surfaces. See
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[4, 8] for applications to Euclidean-invariant variational problems, including the Willmore
problem, and surface flows, including mean and Gauss curvature flows.

A classical result, [3], that also follows immediately from the moving frame recurrence
relations, is that the algebra of Euclidean surface differential invariants is generated by the
principal curvatures or, equivalently, the mean and Gauss curvature invariants through
invariant differentiation. Surprisingly, I recently discovered, [9, 13], that, for generic sur-
faces, the mean curvature alone generates the differential invariant algebra, because the
Gauss curvature can in fact be expressed as an explicit rational function of the invariant
derivatives of order ≤ 4 of the mean curvature: K = Φ(D(4)H). Let us present a slight
refinement of this result.

Definition 2. A surface S ⊂ R
3 is mean curvature degenerate if, for any non-umbilic

point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (72)

at all points z ∈ S in a suitable neighborhood of z0.

Clearly any constant mean curvature surface is mean curvature degenerate, with
f1(t) ≡ f2(t) ≡ 0. Surfaces with non-constant mean curvature that admit a one-parameter
group of Euclidean symmetries, i.e., non-cylindrical or non-spherical surfaces of rotation,
non-planar surfaces of translation, or helicoid surfaces, obtained by, respectively, rotating,
translating, or screwing a plane curve, are also mean curvature degenerate since, by the
signature characterization of symmetry groups, [1], they have exactly one non-constant
functionally independent differential invariant, namely their mean curvature H and hence
any other differential invariant, including the invariant derivatives of H — as well as the
Gauss curvature K — must be functionally dependent upon H. There also exist sur-
faces without continuous symmetries that are, nevertheless, mean curvature degenerate
since it is entirely possible that (72) holds, but the Gauss curvature remains functionally
independent of H. However, I do not know whether there is a good intrinsic geometric
characterization of such surfaces. Indeed, their geometric properties have not, as far as I
know, been studied to date.

Theorem 3. If a surface is mean curvature nondegenerate then the algebra of dif-

ferential invariants is generated entirely by the mean curvature and its successive invariant

derivatives.

Proof : Following the arguments in [9], in view of the Codazzi formula (69), it suffices
to write the commutator invariants Y1, Y2 in terms of the mean curvature. To this end,
we note that the commutator identity (65) can be applied to any differential invariant. In
particular,

D1D2H −D2D1H = Y1 D1H + Y2 D2H, (73)

and, furthermore, for j = 1 or 2,

D1D2DjH −D2D1DjH = Y1 D1DjH + Y2 D2DjH. (74)
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Provided the nondegeneracy condition

(D1H) (D2DjH) 6= (D2H) (D1DjH), for j = 1 or 2, (75)

holds, we can solve (73–74) to write the commutator invariants Y1, Y2 as explicit rational
functions of invariant derivatives of H. Plugging these expressions into the right hand
side of the Codazzi identity (69) produces an explicit formula for the Gauss curvature as
a rational function of the invariant derivatives, of order ≤ 4, of the mean curvature, valid
for all surfaces satisfying the nondegeneracy condition (75).

Thus it remains to show that (75) is equivalent to mean curvature nondegeneracy of
the surface. First, if (72) holds, then

DiDjH = Difj(H) = f ′
j (H)DiH = f ′

j (H) fi(H), i, j = 1, 2.

This immediately implies

(D1H) (D2DjH) = (D2H) (D1DjH), j = 1, 2, (76)

proving mean curvature degeneracy. Vice versa, in view of formula (49), the degeneracy
condition (76) implies that, for each j = 1, 2, the differentials dHH, dH(DjH) are linearly

dependent everywhere on S, which, by the general characterization theorem for functional
dependency, [5; Theorem 2.16], implies that, locally, DjH can be written as a function of

H, thus establishing the condition (72). Q.E.D.
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