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Abstract. This paper surveys the new, algorithmic theory of moving frames devel-
oped by the author and M. Fels. Applications in geometry, computer vision, classical
invariant theory, and numerical analysis are indicated.

1. Introduction.

The method of moving frames (“repéres mobiles”) was forged by Elie Cartan, [13, 14],
into a powerful and algorithmic tool for studying the geometric properties of submanifolds
and their invariants under the action of a transformation group. However, Cartan’s meth-
ods remained incompletely understood and the applications were exclusively concentrated
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in classical differential geometry; see [22,23,26]. Three years ago, [20, 21], Mark Fels
and I formulated a new approach to the moving frame theory that can be systematically
applied to general transformation groups. The key idea is to formulate a moving frame
as an equivariant map to the transformation group. All classical moving frames can be
reinterpreted in this manner, but the new approach applies in far wider generality. Car-
tan’s construction of the moving frame through the normalization process is interpreted
with the choice of a cross-section to the group orbits. Building on these two simple ideas,
one may algorithmically construct moving frames and complete systems of invariants for
completely general group actions. The existence of a moving frame requires freeness of
the underlying group action. Classically, non-free actions are made free by prolonging to
jet space, leading to differential invariants and the solution to equivalence and symmetry
problems via the differential invariant signature. More recently, the moving frame method
was also applied to Cartesian product “prolongations” of group actions, leading to classi-
fication of joint invariants and joint differential invariants, [42]. The combination of jet
and Cartesian product actions known as multi-space was proposed in [43] as a framework
for the geometric analysis of numerical approximations, and, via the application of the
moving frame method, to the systematic construction of invariant numerical algorithms.

New and significant applications of these results have been developed in a wide variety
of directions. In [40, 1, 29], the theory was applied to produce new algorithms for solving
the basic symmetry and equivalence problems of polynomials that form the foundation
of classical invariant theory. In [32], the differential invariants of projective surfaces were
classified and applied to generate integrable Poisson flows arising in soliton theory. In [20],
the moving frame algorithm was extended to include infinite-dimensional pseudo-group ac-
tions. Faugeras, [19], initiated the applications of moving frames in computer vision, and
In [12], the characterization of submanifolds via their differential invariant signatures was
applied to the problem of object recognition and symmetry detection, [4,5,7,45]. The
moving frame method provides a direct route to the classification of joint invariants and
joint differential invariants, [21, 42], establishing a geometric counterpart of what Weyl,
[51], in the algebraic framework, calls the first main theorem for the transformation group.
In computer vision, joint differential invariants have been proposed as noise-resistant al-
ternatives to the standard differential invariant signatures, [6, 10,16, 36,49, 50]. The ap-
proximation of higher order differential invariants by joint differential invariants and, gen-
erally, ordinary joint invariants leads to fully invariant finite difference numerical schemes,
first proposed in [11,12, 3,43]. Finally, a complete solution to the calculus of variations
problem of directly constructing differential invariant Euler-Lagrange equations from their
differential invariant Lagrangians in the has been recently effected, [30].

2. Moving Frames.

We begin by outlining the basic moving frame construction in [21]. Let G be an
r-dimensional Lie group acting smoothly on an m-dimensional manifold M. Let G4 =
{g € G|g-S =S} denote the isotropy subgroup of a subset S C M, and G = N,es G,
its global isotropy subgroup, which consists of those group elements which fix all points in
S. We always assume, without any significant loss of generality, that G acts effectively on
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subsets, and so Gf; = {e} for any open U C M, i.e., there are no group elements other
than the identity which act completely trivially on an open subset of M.

The crucial idea is to decouple the moving frame theory from reliance on any form of
frame bundle. In other words,

Moving frames # Frames!

A careful study of Cartan’s analysis of the case of projective curves, [13], reveals that
Cartan was well aware of this fact. However, this important and instructive example did
not receive the attention it deserves.

Definition 2.1. A moving frame is a smooth, G-equivariant map p: M — G.

The group G acts on itself by left or right multiplication. If p(z) is any right-
equivariant moving frame then p(z) = p(z)~! is left-equivariant and conversely. All
classical moving frames are left equivariant, but, in many cases, the right versions are
easier to compute. In many geometrical situations, one can identify our left moving frames
with the usual frame-based versions, but these identifications break down for more general
transformation groups.

Theorem 2.2. A moving frame exists in a neighborhood of a point z € M if and
only if G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup of each point is trivial, G, = {e}
for all z € M. This implies that the orbits all have the same dimension as G itself.
Regularity requires that, in addition, each point x € M has a system of arbitrarily small
neighborhoods whose intersection with each orbit is connected, cf. [38].

The practical construction of a moving frame is based on Cartan’s method of normal-
ization, [28, 13], which requires the choice of a (local) cross-section to the group orbits.

Theorem 2.3. Let G act freely and regularly on M, and let K C M be a cross-
section. Given z € M, let g = p(z) be the unique group element that maps z to the
cross-section: g-z = p(z)-z € K. Then p: M — G is a right moving frame for the group
action.

Given local coordinates z = (zy,...,%,,) on M, let w(g,z) = g - z be the explicit
formulae for the group transformations. The right’ moving frame g = p(z) associated
with a coordinate cross-section K = { zy = ¢y,...,%, = ¢, } is obtained by solving the

normalization equations

wy (g, 2) = ¢4, .. w,(g,2) = c,, (2.1)

for the group parameters g = (gy,...,9,) in terms of the coordinates z = (zq,...,z,,).

Substituting the moving frame formulae into the remaining transformation rules leads to
a complete system of invariants for the group action.

T The left version can be obtained directly by replacing g by g_1 throughout the construction.



Theorem 2.4. If g = p(z) is the moving frame solution to the normalization equa-
tions (2.1), then the functions

]1(2) = wr+1(p(z)7 Z)a tee ]m—r(z) = wm(p(z)a Z), (22)
form a complete system of functionally independent invariants.

Definition 2.5. The invariantization of a scalar function F': M — R with respect to
a right moving frame p is the the invariant function I = ((F') defined by I(z) = F(p(2)- 2).

Invariantization amounts to restricting F' to the cross-section, I | K = F'| K, and then
requiring that I be constant along the orbits. In particular, if I(z) is an invariant, then
t(I) = I, so invariantization defines a projection, depending on the moving frame, from
functions to invariants. Thus, a moving frame provides a canonical method of associating
an invariant with an arbitrary function.

Of course, most interesting group actions are not free, and therefore do not admit
moving frames in the sense of Definition 2.1. There are two common methods for convert-
ing a non-free (but effective) action into a free action. In the traditional moving frame
theory, [13,23, 26], this is accomplished by prolonging the action to a jet space J™ of
suitably high order; the consequential invariants are the classical differential invariants for
the group, [21, 38]. Alternatively, one may consider the product action of G on a suffi-
ciently large Cartesian product M*(*1); here, the invariants are joint invariants, [42], of
particular interest in classical algebra, [40, 51]. In neither case is there a general theorem
guaranteeing the freeness and regularity of the prolonged or product actions, (indeed, there
are counterexamples in the product case), but such pathologies never occur in practical
examples. In our approach to invariant numerical approximations, we will amalgamate the
two methods by prolonging to an appropriate multi-space, as defined below.

3. Prolongation and Differential Invariants.

Traditional moving frames are obtained by prolonging the group action to the nth order
(extended) jet bundle J* = J™(M,p) consisting of equivalence classes of p-dimensional
submanifolds S C M modulo nt" order contact at a single point; see [38; Chapter 3] for
details. Since GG preserves the contact equivalence relation, it induces an action on the jet
space J™, known as its ntt order prolongation and denoted by G(™).

An nth order moving frame p(™:J* — G is an equivariant map defined on an open
subset of the jet space. In practical examples, for n sufficiently large, the prolonged action
G™) becomes regular and free on a dense open subset V™* C J*, the set of regular jets.
It has been rigorously proved that, for n > 0 sufficiently large, if G' acts effectively on
subsets, then G(™ acts locally freely on an open subset V" C J™, [41].

Theorem 3.1. An ntt order moving frame exists in a neighborhood of a point
2(") € J™ if and only if z(™) € V" is a regular jet.

Our normalization construction will produce a moving frame and a complete system of
differential invariants in the neighborhood of any regular jet. Local coordinates z = (z, u)
on M — considering the first p components x = (z!, ..., zP) as independent variables, and
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the latter ¢ = m — p components u = (ul,...,u?) as dependent variables — induce local
coordinates z(™ = (z, u(")) on J” with components u§ representing the partial derivatives
of the dependent variables with respect to the independent variables, [38, 39]. We compute
the prolonged transformation formulae

w™ (g, 2(M) = g™ . (") or (y, ™) = g™ . (2, u™),

by implicit differentiation of the v’s with respect to the y’s. For simplicity, we restrict
to a coordinate cross-section by choosing r = dim G' components of w(™ to normalize to
constants:

w,(g,2™) = ¢, . w,(g,2™) = c,. (3.1)
Solving the normalization equations (3.1) for the group transformations leads to the explicit
formulae g = p(™ (2(™) for the right moving frame. As in Theorem 2.4, substituting the
moving frame formulae into the unnormalized components of w(™ leads to the fundamental
nth order differential invariants

I (2(M)) = ™ (p(M) (2(M) 2y = p() (). 5 (7), (3.2)

Once the moving frame is established, the invariantization process will map general dif-
ferential functions F(z,u(™) to differential invariants I = o(F) = FoI(™. As before,
invariantization defines a projection, depending on the moving frame, from the space of
differential functions to the space of differential invariants. The fundamental differential
invariants 7(™) are obtained by invariantization of the coordinate functions

H' (z,u™) = u(a*) = y' ('™ (2, u™), 2, u),
12 (z,u®) = 1(u%) = v (™ (z,u™), z,u®).

In particular, those corresponding to the normalization components (3.1) of w(™ will be
constant, and are known as the phantom differential invariants.

(3.3)

Theorem 3.2. Let p("): J®" — G be a moving frame of order < n. Every nt" order
differential invariant can be locally written as a function J = ®(I(™)) of the fundamental
nth order differential invariants (3.3). The function ® is unique provided it does not depend
on the phantom invariants.

Example 3.3. Let us illustrate the theory with a very simple, well-known example:
curves in the Euclidean plane. The orientation-preserving Euclidean group SE(2) acts on
M = R?, mapping a point z = (z,u) to

y =xcosf —usinf + a, v =2xsinfd + ucosf + b. (3.4)
For a general parametrized’ curve z(t) = (2(t), u(t)), the prolonged group transformations
dv  #sinf+ 1cosb d?v Tl — U (3.5)
D, = — = v = — = .
Y dy zcosf—usinf’ Y dy?  (zcosf —usinf)3’

T While the local coordinates (z,u, Uz, Ugz, . ..) on the jet space assume that the curve is given
as the graph of a function u = f(z), the moving frame computations also apply, as indicated in
this example, to general parametrized curves. Two parametrized curves are equivalent if and only
if one can be mapped to the other under a suitable reparametrization.



and so on, are found by successively applying the implicit differentiation operator

a__ 1 4
dy dcosf—usinh dt

(3.6)

to v. The classical Euclidean moving frame for planar curves, [23], follows from the cross-
section normalizations

Yy = O’ v = 0, ’Uy =0. (37)
Solving for the group parameters g = (0, a,b) leads to the right-equivariant moving frame
0:—tan_lg, 0 TT + Ul zZ-z _ru—wur  zZAZ

. - == . ) b - ~ ~ - . .
& Viz+az || 2] ViZ ||Z||( )
3.8

The inverse group transformation g~ ! = (5, a, Z) is the classical left moving frame, [13, 23|:

one identifies the translation component (a,b) = (x,u) = z as the point on the curve,

while the columns of the rotation matrix R(f) = (t,n) are the unit tangent and unit

normal vectors. Substituting the moving frame normalizations (3.8) into the prolonged

transformation formulae (3.5), results in the fundamental differential invariants
Tl — Fu ZNZ dk d?k

Uyy 7 K= G2 a2)3z  |z|B°  Cww T g Vwwwy T g2

+ 3k3,

(3.9)
where d/ds = || z||"td/dt is the arc length derivative — which is itself found by substi-
tuting the moving frame formulae (3.8) into the implicit differentiation operator (3.6). A
complete system of differential invariants for the planar Fuclidean group is provided by
the curvature and its successive derivatives with respect to arc length: s,k , K, ... .

The one caveat is that the first prolongation of SE(2) is only locally free on J! since
a 180° rotation has trivial first prolongation. The even derivatives of x with respect to s
change sign under a 180° rotation, and so only their absolute values are fully invariant.
The ambiguity can be removed by including the second order constraint v,, > 0 in the
derivation of the moving frame. Extending the analysis to the full Euclidean group E(2)
adds in a second sign ambiguity which can only be resolved at third order. See [42] for
complete details.

Example 3.4. Let n # 0, 1. In classical invariant theory, the planar actions

_ar+f
v= yr+0’
of G = GL(2) play a key role in the equivalence and symmetry properties of binary forms,
when u = ¢(x) is a polynomial of degree < n, [24,40,1]. We identify the graph of the
function u = ¢(z) as a plane curve. The prolonged action on such graphs is found by
implicit differentiation:

U= (yz+6) "y, (3.10)

_ ouy, —nyu _ ou,, — 2(n — 1)you, + n(n — 1)y%u
Yy = Agn—1 Vyy = A25n—2 ’
Py, —3(n—2)yotu,, + 3(n — 1)(n — 2)y?ou, — n(n —1)(n — 2)73u
Yyyy = A3gn—3 ’
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and so on, where 0 = yp 49, A = ad — By # 0. On the regular subdomain

n—1 ,

Uy

V2 = {uH # 0} C J?, where  H =wuu,, —

n
is the classical Hessian covariant of u, we can choose the cross-section defined by the
normalizations

y:07 U:17 (Y :0, Uyy:]_.

Solving for the group parameters gives the right moving frame formulae’

a=ut="/"/H, f=—zul~/"V/H,

§=ul/m _ %xu(l_”)/"uw.

(3.11)

’)/ = % u(l_n)/nuw’

Substituting the normalizations (3.11) into the higher order transformation rules gives us
the differential invariants, the first two of which are

T |4
Vyyy F— J = 32 Vyyyy +— K= el (3.12)
where
-2 —1)(n—2
T= u2uw$w -3 ¢ Ul U gy +2 (n )(2n ) Ui,
n n
-3 —2)(n—3 - 1(n—-2)(n—-3
V= u3umm 4" u2uzum +6 (n )(2n ) U, zum - 3(n )(n 3 )(n = 3) ui,
n n n

and can be identified with classical covariants, which may be constructed using the basic
transvectant process of classical invariant theory, cf. [24,40]. Using J? = T?/H?3 as
the fundamental differential invariant will remove the ambiguity caused by the square
root. As in the Euclidean case, higher order differential invariants are found by successive
application of the normalized implicit differentiation operator D, = uH -1/ 2D$ to the
fundamental invariant J.

4. Equivalence and Signatures.

The moving frame method was developed by Cartan expressly for the solution to
problems of equivalence and symmetry of submanifolds under group actions. Two sub-
manifolds S, S C M are said to be equivalent if S = ¢g- S for some g € G. A symmetry of a
submanifold is a group transformation that maps S to itself, and so is an element g € Gg.
As emphasized by Cartan, [13], the solution to the equivalence and symmetry problems
for submanifolds is based on the functional interrelationships among the fundamental dif-
ferential invariants restricted to the submanifold.

Suppose we have constructed an nth order moving frame p(™:J* — G defined on
an open subset of jet space. A submanifold S is called regular if its n-jet j, .S lies in the

T See [1] for a detailed discussion of how to resolve the square root ambiguities.



domain of definition of the moving frame. For any k > n, we use J*) = 1(*¥) |S =1 (k) o] S
to denote the kth order restricted differential invariants. The kth order signature S®*) =
S()(8) is the set parametrized by the restricted differential invariants; S is called fully
reqular if J® has constant rank 0 < t, < p=dimS for all £ > n. In this case, S) forms
a submanifold of dimension ¢;, — perhaps with self-intersections. In the fully regular case,

t,n <tn+1 <tn+2 <"‘<tszts+1:“‘:tSp,
where t is the differential invariant rank and s the differential invariant order of S.

Theorem 4.1. Two fully regular p-dimensional submanifolds S, S C M are (locally)
equivalent, S = g - S, if and only if they have the same differential invariant order s and
their signature manifolds of order s + 1 are identical: SC*1(8) = SE+1(S),

Since symmetries are the same as self-equivalences, the signature also determines the
symmetry group of the submanifold.

Theorem 4.2. If S C M is a fully regular p-dimensional submanifold of differential
invariant rank t, then its symmetry group Gg is an (r —t)-dimensional subgroup of G that
acts locally freely on §S.

A submanifold with maximal differential invariant rank ¢ = p, and hence only a
discrete symmetry group, is called nonsingular. The number of symmetries is determined
by the index of the submanifold, defined as the number of points in S map to a single
generic point of its signature:

ind § = min { 4 (JEHD)1ee ‘ ¢ e St+Y } .

Theorem 4.3. If S is a nonsingular submanifold, then its symmetry group is a
discrete subgroup of cardinality # G4 =ind S.

At the other extreme, a rank 0 or mazrimally symmetric submanifold has all constant
differential invariants, and so its signature degenerates to a single point.

Theorem 4.4. A regular p-dimensional submanifold S has differential invariant
rank 0 if and only if its symmetry group is a p-dimensional subgroup H = G4 C G and an
H-orbit: S =H - z,.

Remark: “Totally singular” submanifolds may have even larger, non-free symmetry
groups, but these are not covered by the preceding results. See [41] for details and precise
characterization of such submanifolds.

Example 4.5. The FEuclidean signature for a curve in the Euclidean plane is the
planar curve S(C) = {(k,k,)} parametrized by the curvature invariant x and its first
derivative with respect to arc length. Two planar curves are equivalent under oriented
rigid motions if and only if they have the same signature curves. The maximally symmet-
ric curves have constant Euclidean curvature, and so their signature curve degenerates to a
single point. These are the circles and straight lines, and, in accordance with Theorem 4.4,
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Figure 1. The Curve x = cost + %cos2 t,y =sint + 1% sin’ t.

each is the orbit of its one-parameter symmetry subgroup of SE(2). The number of Eu-
clidean symmetries of a curve is equal to its index — the number of times the Euclidean
signature is retraced as we go around the curve.

An example of a Euclidean signature curve is displayed in Figure 1. The first figure
shows the curve, and the second its Euclidean signature; the axes are x and k, in the
signature plot. Note in particular the approximate three-fold symmetry of the curve is
reflected in the fact that its signature has winding number three. If the symmetries were
exact, the signature would be exactly retraced three times on top of itself. The final figure
gives a discrete approximation to the signature which is based on the invariant numerical
algorithms to be discussed below.

In Figure 2 we display some signature curves computed from an actual medical image
— a 70 x 70, 8-bit gray-scale image of a cross section of a canine heart, obtained from
an MRI scan. We then display an enlargement of the left ventricle. The boundary of the
ventricle has been automatically segmented through use of the conformally Riemannian
moving contour or snake flow that was proposed in [27] and sucessfully applied to a wide
variety of 2D and 3D medical imagery, including MRI, ultrasound and CT data, [52]. Un-
derneath these images, we display the ventricle boundary curve along with two successive
smoothed versions obtained application of the standard Euclidean-invariant curve short-
ening procedure. Below each curve is the associated spline-interpolated discrete signature
curves for the smoothed boundary, as computed using the invariant numerical approxi-
mations to £ and k, discussed below. As the evolving curves approach circularity the
signature curves exhibit less variation in curvature and appear to be winding more and
more tightly around a single point, which is the signature of a circle of area equal to the
area inside the evolving curve. Despite the rather extensive smoothing involved, except for
an overall shrinking as the contour approaches circularity, the basic qualitative features
of the different signature curves, and particularly their winding behavior, appear to be
remarkably robust.

Thus, the signature curve method has the potential to be of practical use in the general
problem of object recognition and symmetry classification. It offer several advantages over
more traditional approaches. First, it is purely local, and therefore immediately applicable
to occluded objects. Second, it provides a mechanism for recognizing symmetries and
approximate symmetries of the object. The design of a suitably robust “signature metric”
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Figure 2. Signature of a Canine Heart Image.

for practical comparison of signatures is the subject of ongoing research.

Example 4.6. Let us next consider the equivalence and symmetry problems for
binary forms. According to the general moving frame construction in Example 3.4, the
signature curve S = S(q) of a function (polynomial) u = ¢(z) is parametrized by the
covariants J2 and K, as given in (3.12). The following solution to the equivalence problem
for complex-valued binary forms, [1,37,40], is an immediate consequence of the general
equivalence Theorem 4.1.

Theorem 4.7. Two nondegenerate complex-valued forms q(x) and G(x) are equiva-
lent if and only if their signature curves are identical: S§(q) = S(7).

All equivalence maps T = ¢(z) solve the two rational equations
J(z)? = J(Z)?, K(z) = K(Z). (4.1)
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In particular, the theory guarantees ¢ is necessarily a linear fractional transformation!

Theorem 4.8. A nondegenerate binary form q(x) is maximally symmetric if and
only if it satisfies the following equivalent conditions:

a) q is complex-equivalent to a monomial z*, with k # 0, n.
b) The covariant T? is a constant multiple of H® # 0.
¢) The signature is just a single point.

(
(
(
(d) q admits a one-parameter symmetry group.

(e) The graph of q coincides with the orbit of a one-parameter subgroup of GL(2).

A binary form q(z) is nonsingular if and only if it is not complex-equivalent to a monomial
if and only if it has a finite symmetry group.

The symmetries of a nonsingular form can be explicitly determined by solving the
rational equations (4.1) with J = J, K = K. See [1] for a MAPLE implementation of this
method for computing discrete symmetries and classification of univariate polynomials. In
particular, we obtain the following useful bounds on the number of symmetries.

Theorem 4.9. If q(x) is a binary form of degree n which is not complex-equivalent
to a monomial, then its projective symmetry group has cardinality

j < { 6n — 12 if V = cH? for some constant ¢, or
N 4n — 8 in all other cases.

In her thesis, Kogan, [29] extends these results to forms in several variables. In par-
ticular, a complete signature for ternary forms leads to a practical algorithm for computing
discrete symmetries of, among other cases, elliptic curves.

5. Joint Invariants and Joint Differential Invariants.

One practical difficulty with the differential invariant signature is its dependence upon
high order derivatives, which makes it very sensitive to data noise. For this reason, a new
signature paradigm, based on joint invariants, was proposed in [42]. We consider now the
joint action

G- (20y---12,) = (G- 29,---,9"2,), g€qG, zy...,z, € M. (5.1)

2

of the group G on the (n-+1)-fold Cartesian product M*(+1) = M x-..x M. An invariant
I(zy,...,%,) of (5.1) is an (n + 1)-point joint invariant of the original transformation
group. In most cases of interest, although not in general, if G acts effectively on M, then,
for n > 0 sufficiently large, the product action is free and regular on an open subset of
M*(+1) " Consequently, the moving frame method outlined in Section 2 can be applied
to such joint actions, and thereby establish complete classifications of joint invariants and,
via prolongation to Cartesian products of jet spaces, joint differential invariants. We will
discuss two particular examples — planar curves in Euclidean geometry and projective
geometry, referring to [42] for details.
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Figure 3. First and Second Order Joint Euclidean Differential Invariants.

Example 5.1. FEuclidean joint differential invariants. Consider the proper Euclidean
group SE(2) acting on oriented curves in the plane M = R?. We begin with the Cartesian
product action on M*2 ~ R*. Taking the simplest cross-section o =uy=2; =0,u; >0
leads to the normalization equations

Yo = Tocosh —uysinf +a =0, vy = Zysinf + uycos +b =0, (5.2)
Yy, =T, 0860 —u;sinf +a = 0. '
Solving, we obtain a right moving frame
1 [Ty — Xy . .
f = tan (7> , a= —x,co0s 0+ uysinb, b= —xz,sinf —uycosf, (5.3)
along with the fundamental interpoint distance invariant

v, =z sinf+uycos0+b — I =]z —z]. (5.4)

Substituting (5.3) into the prolongation formulae (3.5) leads to the the normalized first
and second order joint differential invariants

dug J, = — (Zl_zo)‘%k ’ d*v, — K, = [ (Zk/\zgk)
dy (21 — 20) A %, dy? [ (71 — 29) A % |
(5.5)
for £k = 0,1. Note that
Jy = —cot ¢, J, = +cot ¢y, (5.6)

where ¢, = X(z; — 2y, ;) denotes the angle between the chord connecting z,, z; and the
tangent vector at z;, as illustrated in Figure 3. The modified second order joint differential
invariant c e

2o N\ 2y

[(21_20)/\20}3

KOZ_”zl_zO ||_3K0: (5.7)

12



equals the ratio of the area of triangle whose sides are the first and second derivative
vectors Z;, Z, at the point z, over the cube of the area of triangle whose sides are the chord
from 2, to z; and the tangent vector at z,; see Figure 3.

On the other hand, we can construct the joint differential invariants by invariant
differentiation of the basic distance invariant (5.4). The normalized invariant differential
operators are

21— 2 ||

D — D, =—
k (Zl_zo)/\ék

o D, . (5.8)
Proposition 5.2. Every two-point Euclidean joint differential invariant is a function
of the interpoint distance I = || 2z, — z, || and its invariant derivatives with respect to (5.8).

A generic product curve C = Cy x C; C M*? has joint differential invariant rank 2 =
dim C, and its joint signature S()(C) will be a two-dimensional submanifold parametrized
by the joint differential invariants I, J,, J;, K, K; of order < 2. There will exist a (local)
syzygy (1, J,, J;) = 0 among the three first order joint differential invariants.

Theorem 5.3. A curve C or, more generally, a pair of curves Cy,C; C R?, is
uniquely determined up to a Fuclidean transformation by its reduced joint signature,
which is parametrized by the first order joint differential invariants I, J,, J,. The curve(s)
have a one-dimensional symmetry group if and only if their signature is a one-dimensional
curve if and only if they are orbits of a common one-parameter subgroup (i.e., concentric
circles or parallel straight lines); otherwise the signature is a two-dimensional surface, and
the curve(s) have only discrete symmetries.

For n > 2 points, we can use the two-point moving frame (5.3) to construct the
additional joint invariants

Y — Hy = |z, — 2 || costy, v, = I = ||z, — 2o || siney,

where ¢, = (2, — 2, 21 — %p)- Therefore, a complete system of joint invariants for SE(2)
consists of the angles v, £ > 2, and distances || z;, — z,||, ¥ > 1. The other interpoint
distances can all be recovered from these angles; vice versa, given the distances, and the
sign of one angle, one can recover all other angles. In this manner, we establish a “First
Main Theorem” for joint Euclidean differential invariants.

Theorem 5.4. Ifn > 2, then every n-point joint E(2) differential invariant is a
function of the interpoint distances || z; — z; || and their invariant derivatives with respect
to (5.8). For the proper Euclidean group SE(2), one must also include the sign of one of
the angles, say 1, = J(z9 — 2, 21 — Zp)-

Generic three-pointed Euclidean curves still require first order signature invariants.
To create a Euclidean signature based entirely on joint invariants, we take four points
Zgs 21, %9, 23 on our curve C C R2. As illustrated in Figure 4, there are six different
interpoint distance invariants

a=|z -2zl b=z — 2z, c=|lzz— 2]l

(5.9)
d=1zy—2 |, e=lzm—2l, [f=lz—2]
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Figure 4. Four-Point Euclidean Curve Invariants.

which parametrize the joint signature S=38 (C) that uniquely characterizes the curve C
up to Euclidean motion. This signature has the advantage of requiring no differentiation,
and so is not sensitive to noisy image data. There are two local syzygies

®,(a,b,c,dye, f)=0, ®,(a,b,c,d,e, f) =0, (5.10)
among the the six interpoint distances. One of these is the universal Cayley—Menger syzygy
2q2 a’? +b2—d? a%+c?—ée?
det | a® + b% — d? 2b2 b2 +c?— f2| =0, (5.11)
a?+c?—e? b24c?— f? 2c?

which is valid for all possible configurations of the four points, and is a consequence of
their coplanarity, cf. [2,34]. The second syzygy in (5.10) is curve-dependent and serves to
effectively characterize the joint invariant signature. Euclidean symmetries of the curve,
both continuous and discrete, are characterized by this joint signature. For example, the
number of discrete symmetries equals the signature index — the number of points in the
original curve that map to a single, generic point in S.

A wide variety of additional cases, including curves and surfaces in two and three-
dimensional space under the Euclidean, equi-affine, affine and projective groups, are inves-
tigated in detail in [42].

6. Multi-Space for Curves.

In modern numerical analysis, the development of numerical schemes that incorpo-
rate additional structure enjoyed by the problem being approximated have become quite
popular in recent years. The first instances of such schemes are the symplectic integrators
arising in Hamiltonian mechanics, and the related energy conserving methods, [15, 31, 48].
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The design of symmetry-based numerical approximation schemes for differential equations
has been studied by various authors, including Shokin, [47], Dorodnitsyn, [17, 18], Ax-
ford and Jaegers, [25], and Budd and Collins, [8]. These methods are closely related to
the active area of geometric integration of ordinary differential equations on Lie groups,
[9,33]. In practical applications of invariant theory to computer vision, group-invariant
numerical schemes to approximate differential invariants have been applied to the problem
of symmetry-based object recognition, [3,12, 11].

In this section, we outline the basic construction of multi-space that forms the foun-
dation for the study of the geometric properties of discrete approximations to derivatives
and numerical solutions to differential equations. We will only discuss the case of curves,
which correspond to functions of a single independent variable, and hence satisfy ordinary
differential equations. The more difficult case of higher dimensional submanifolds, corre-
sponding to functions of several variables that satisfy partial differential equations, relies
on a new approach to multi-dimensional interpolation theory, and hence will be the subject
of a subsequent paper, [44].

Numerical finite difference approximations to the derivatives of a function v = f(x)
rely on its values uy, = f(z,),...,u, = f(z,) at several distinct points 2z, = (z;,u;) =
(z;, f(z;)) on the curve. Thus, discrete approximations to jet coordinates on J" are
functions F(zy,..-.,%,) defined on the (n + 1)-fold Cartesian product space M*(™+1) =
M x --- x M. In order to seamlessly connect the jet coordinates with their discrete ap-
proximations, then, we need to relate the jet space for curves, J* = J"(M,1), to the
Cartesian product space M*("*t1)  Now, as the points Zgy - -+, 2, coalesce, the approxi-
mation F(zy,...,z,) will not be well-defined unless we specify the “direction” of conver-
gence. Thus, strictly speaking, F is not defined on all of M*(™+1)  but, rather, on the
“off-diagonal” part, by which we mean the subset

Meo+1) — { (zgs---s2,) ‘ z; # z; for all i # j }c Mt

consisting of all distinct (n+ 1)-tuples of points. As two or more points come together, the
limiting value of F'(%, . . ., z,,) will be governed by the derivatives (or jet) of the appropriate
order governing the direction of convergence. This observation serves to motivate our
construction of the ntt order multi-space M (™), which shall contain both the jet space J”

and the off-diagonal Cartesian product space M°™+1) in a consistent manner.

Definition 6.1. An (n + 1)-pointed curve C = (,,..., 2,;C) consists of a smooth
curve C and n + 1 not necessarily distinct points z,,..., 2, € C thereon. Given C, we let

#i=4{j|z; = 2z} Two (n+ 1)-pointed curves C = (2, ..., 2,;C), C= (Zgy - 2 C),
have ntt order multi-contact if and only if

z; = 2,

and J#i1Cly, = j#i_15|zz,, for each 1=0,...,n.

Definition 6.2. The nth order multi-space, denoted M (™ is the set of equivalence
classes of (n + 1)-pointed curves in M under the equivalence relation of nth order multi-
contact. The equivalence class of an (n + 1)-pointed curves C is called its nth order
multi-jet, and denoted j,C € M (n)
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C) are all distinct, then j,C = j,C if
and only if z; = z; for all 4, which means that C and C have all n + 1 points in common.
Therefore, we can identify the subset of multi-jets of multi-pointed curves having distinct
points with the off-diagonal Cartesian product space M °(’1+1) C J"™. On the other hand,
if all » + 1 points coincide, z; = --+ = %,,, then j,,C = j,,C if and only if C and C have
nth order contact at their common point z, = z,. Therefore, the multi-space equivalence
relation reduces to the ordinary jet space equivalence relation on the set of coincident
multi-pointed curves, and in this way J* ¢ M. These two extremes do not exhaust
the possibilities, since one can have some but not all points coincide. Intermediate cases
correspond to “off-diagonal” Cartesian products of jet spaces

In particular, if the points on C = (z,..., 2

n?

JFo. . oJki = { (z[()kl), : ..,zgk")) e Jb x ... x JF | w(2%)) are distinct }, (6.1)

where Yk, =n and m: JE — M is the usual jet space projection. These multi-jet spaces
appear in the work of Dhooghe, [16], on the theory of “semi-differential invariants” in
computer vision.

Theorem 6.3. If M is a smooth m-dimensional manifold, then its nt® order multi-
space M™ is a smooth manifold of dimension (n + 1)m, which contains the off-diagonal
part M+ of the Cartesian product space as an open, dense submanifold, and the nth
order jet space J™ as a smooth submanifold.

The proof of Theorem 6.3 requires the introduction of coordinate charts on M (™).
Just as the local coordinates on J™ are provided by the coefficients of Taylor polynomials,
the local coordinates on M (™) are provided by the coefficients of interpolating polynomials,
which are the classical divided differences of numerical interpolation theory, [35, 46].

Definition 6.4. Given an (n + 1)-pointed graph C = (z,,...,%,;C), its divided

differences are defined by [z;|c = f(z;), and

n?

[ 202129 - - 292 ] — [ 202172 - - Z4_2%_1]C
= lim ;
[2021 -+ 2512, ] zi)Zk v — 2,

(6.2)

When taking the limit, the point z = (z, f(z)) must lie on the curve C, and take limiting
values x — z;, and f(z) — f(xy).

In the non-confluent case z; # z;,_,; we can replace z by z; directly in the difference
quotient (6.2) and so ignore the limit. On the other hand, when all k& + 1 points coincide,
the kth order confluent divided difference converges to

*) (5
[zO...ZO]C:fT(!O). (6.3)

Remark: Classically, one employs the simpler notation [uyu, ...u, | for the divided
difference [ zyz; .. .2, |- However, the classical notation is ambiguous since it assumes that
the mesh z,...,z, is fixed throughout. Because we are regarding the independent and
dependent variables on the same footing — and, indeed, are allowing changes of variables
that scramble the two — it is important to adopt an unambiguous divided difference
notation here.
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Theorem 6.5. Two (n+ 1)-pointed graphs C, C have n*® order multi-contact if and
only if they have the same divided differences:

[2021 -+ 2 ) = [ 2021 - - - 21 | 5 k=0,...,n.

The reauired local coordinates on multi-space M (™) consist of the independent vari-
ables along with all the divided differences

u® =y = [z]c, u = (292 ],
Tgyeeos T N (6.4)
u® =2[202,2 )0 u™ =n! {22, ... 2, ]
prescribed by (n+1)-pointed graphs C = (%, ..., 2,;C). The n! factor is included so that
u(™ agrees with the usual derivative coordinate when restricted to J?, cf. (6.3).

7. Invariant Numerical Methods.

To implement a numerical solution to a system of differential equations
A (z,u™) =... = A, (z,u™) = 0. (7.1)

by finite difference methods, one relies on suitable discrete approximations to each of its
defining differential functions A ,, and this requires extending the differential functions from
the jet space to the associated multi-space, in accordance with the following definition.

Definition 7.1. An (n+1)-point numerical approximation of order k to a differential
function A:J® — R is an function F: M(™) — R that, when restricted to the jet space,
agrees with A to order k.

The simplest illustration of Definition 7.1 is provided by the divided difference co-
ordinates (6.4). Each divided difference u(™ forms an (n + 1)-point numerical approx-
imation to the nth order derivative coordinate on J”. According to the usual Taylor
expansion, the order of the approximation is £ = 1. More generally, any differential
function A(z,u,u™, ... u(™) can immediately be assigned an (n + 1)-point numerical
approximation F' = A(zy, u®,u® ... u() by replacing each derivative by its divided
difference coordinate approximation. However, these are by no means the only numerical
approximations possible.

Now let us consider an r-dimensional Lie group G' which acts smoothly on M. Since
G evidently maps multi-pointed curves to multi-pointed curves while preserving the multi-
contact equivalence relation, it induces an action on the multi-space M () that will be
called the nt® multi-prolongation of G and denoted by G™. On the jet subset J* ¢ M ™)
the multi-prolonged action reduced to the usual jet space prolongation. On the other
hand, on the off-diagonal part M°™*+1) c M (™ the action coincides with the (n + 1)-fold
Cartesian product action of G on M *(n+1),

We define a multi-invariant to be a function K: M(™) — R on multi-space which is
invariant under the multi-prolonged action of G(™). The restriction of a multi-invariant K
to jet space will be a differential invariant, I = K | J™, while restriction to M o(n+1) will
define a joint invariant J = K | M°(®+1)_ Smoothness of K will imply that the joint in-
variant J is an invariant ntt order numerical approximation to the differential invariant I.
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Moreover, every invariant finite difference numerical approximation arises in this manner.
Thus, the theory of multi-invariants is the theory of invariant numerical approximations!

Furthermore, the restriction of a multi-invariant to an intermediate multi-jet subspace,
as in (6.1), will define a joint differential invariant, [42] — also known as a semi-differential
invariant in the computer vision literature, [16,36]. The approximation of differential
invariants by joint differential invariants is, therefore, based on the extension of the dif-
ferential invariant from the jet space to a suitable multi-jet subspace (6.1). The invariant
numerical approximations to joint differential invariants are, in turn, obtained by extend-
ing them from the multi-jet subspace to the entire multi-space. Thus, multi-invariants also
include invariant semi-differential approximations to differential invariants as well as joint
invariant numerical approximations to differential invariants and semi-differential invari-
ants — all in one seamless geometric framework.

Effectiveness of the group action on M implies, typically, freeness and regularity of the
multi-prolonged action on an open subset of M (™. Thus, we can apply the basic moving
frame construction. The resulting multi-frame p(™: M™ — G will lead us immediately
to the required multi-invariants and hence a general, systematic construction for invariant
numerical approximations to differential invariants. Any multi-frame will evidently restrict
to a classical moving frame p(™:J" — G on the jet space along with a suitably compatible
product frame po(tD: pro(ntl) 5 @G,

In local coordinates, we use w;, = (y;,v;) = ¢ - %, to denote the transformation
formulae for the individual points on a multi-pointed curve. The multi-prolonged action
on the divided difference coordinates gives

v @ = vy = [w,], v = [wyw, ], 7.2
yO""7yn7 (2) (n) ( . )

v\ = [wywyw, |, '™ =nl{wy,...,w, ],

where the formulae are most easily computed via the difference quotients
_ wowywy - wy_pywy | — [wowywy - wy_ywy_y ] _
[Wowy - .. Wwy_ Wy, | = — : [w;] = v,
Ye = Yr—1

(7.3)

and then taking appropriate limits to cover the case of coalescing points. Inspired by the
constructions in [21], we will refer to (7.2) as the lifted divided difference invariants.

To construct a multi-frame, we need to normalize by choosing a cross-section to the
group orbits in M (™), which amounts to setting r = dim G of the lifted divided difference
invariants (7.2) equal to suitably chosen constants. An important observation is that in
order to obtain the limiting differential invariants, we must require our local cross-section
to pass through the jet space, and define, by intersection, a cross-section for the prolonged
action on J". This compatibility constraint implies that we are only allowed to normalize
the first lifted independent variable y, = c,.

With the aid of the multi-frame, the most direct construction of the requisite multi-
invariants and associated invariant numerical differentiation formulae is through the in-
variantization of the original finite difference quotients (6.2). Substituting the multi-frame
formulae for the group parameters into the lifted coordinates (7.2) provides a complete sys-
tem of multi-invariants on M (™); this follows immediately from Theorem 2.4. We denote
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the fundamental multi-invariants by

y, +— H,=ux,), o™ K™ = (u™), (7.4)

where ¢ denotes the invariantization map associated with the multi-frame. The funda-
mental differential invariants for the prolonged action of G on J” can all be obtained by
restriction, so that 1™ = K () | J™. On the jet space, the points are coincident, and so
the multi-invariants H; will all restrict to the same differential invariant ¢y = H = H, | J"
— the normalization value of y,. On the other hand, the fundamental joint invariants on
M®+1) are obtained by restricting the multi-invariants H; = «(x;) and K; = t(u;). The
multi-invariants can computed by using a multi-invariant divided difference recursion

Mo Ty ol ] = [Ty Ty oy 4]
Hk - Hk—l ’
(7.5)
and then relying on continuity to extend the formulae to coincident points. The multi-
invariants

[1;] =K, = t(u) [Iy... I ] =u([2921---2,]) =

KM =nl[I,...1,] = u(u™) (7.6)

define the fundamental first order invariant numerical approximations to the differential
invariants ("), Higher order invariant approximations can be obtained by invariantization
of the higher order divided difference approximations. The moving frame construction has
a significant advantage over the infinitesimal approach used by Dorodnitsyn, [17, 18], in
that it does not require the solution of partial differential equations in order to construct
the multi-invariants.

Given a regular G-invariant differential equation

Az, u™) =0, (7.7)

we can invariantize the left hand side to rewrite the differential equation in terms of the
fundamental differential invariants:

(A, u™)) = AH, IO),..., 1) = 0.

The invariant finite difference approximation to the differential equation is then obtained
by replacing the differential invariants 7(®) by their multi-invariant counterparts K ()

Alcy, KO, ..., K™) =, (7.8)
Example 7.2. Consider the elementary action
(z,u) +— (A'z+a, u+bd)

of the three-parameter similarity group G = R2 x R on M = R2. To obtain the multi-
prolonged action, we compute the divided differences (7.2) of the basic lifted invariants

Yp = A '3y, + a, v = Auy +b.
We find o v
(1) _ U1 7% _ 2t Tt _ e — 224D
v Wow 2y% ut.
[wow, ] Y1 — Yo z, — 7, [20%1]
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More generally,
p(?) = Aty () n > 1. (7.9)

Note that we may compute the multi-space transformation formulae assuming initially
that the points are distinct, and then extending to coincident cases by continuity. (In fact,
this gives an alternative method for computing the standard jet space prolongations of
group actions!) In particular, when all the points coincide, each u(™ reduces to the nth
order derivative coordinate, and (7.9) reduces to the prolonged action of G on J". We
choose the normalization cross-section defined by

which, upon solving for the group parameters, leads to the basic moving frame

U, 1
a=—Vul) g, b=— —_ A= , 7.10
0 Vau® Vau® (7.10)
where, for simplicity, we restrict to the subset where u(!) = [29%, ] > 0. The fundamental
joint similarity invariants are obtained by substituting these formulae into

Uy — U
Yp > Hy, = (23, — ) Vul) = (2, — ) ! 2,
Ty — Ty
Uy, — U T, — I
v — K, = 0 — (y, —u L 9
k k \/m (k: 0) U1—Uo’

both of which reduce to the trivial zero differential invariant on J™. Higher order multi-
invariants are obtained by substituting (7.10) into the lifted invariants (7.9), leading to

KO _ u(™ _ n! 292y -2, |
(u(l))(n+1)/2 [z0z1z2 ]("+1)/2 )
In the limit, these reduce to the differential invariants I = (u(1))=(+1)/24()  and

so K™ give the desired similarity-invariant, first order numerical approximations. To
construct an invariant numerical scheme for any similarity-invariant ordinary differential
equation

A(z,u, S C N .u(”)) =0,

we merely invariantize the defining differential function, leading to the general similarity—
invariant numerical approximation

A(0,0,1, K@ . KMy =0,

Example 7.3. For the action (3.4) of the proper Euclidean group of SE(2) on M =
R?, the multi-prolonged action is free on M (™ for n > 1. We can thereby determine a first
order multi-frame and use it to completely classify Euclidean multi-invariants. The first
order transformation formulae are

Yo = Tycosf — uysinb + a, vy = Tosinf + ugcos + b,
o — sin@ + u(® cos 6 (7.11)

=1x,cosf) —u,sinf + a, —
1N ! cos 0 — u(1) sin §
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where u(!) = [ 2,2, ]. Normalization based on the cross-section y, = v, = v(!) = 0 results
in the right moving frame

T+ u g

a = _.Z'OCOSH + UOSine = _ﬁ y
(1—; () tanf = —u(Y) (7.12)
b= —z,sinf —u,cosf = Tot — Yo

1+ (u®)2’

Substituting the moving frame formulae (7.12) into the lifted divided differences results in
a complete system of (oriented) Euclidean multi-invariants. These are easily computed by
beginning with the fundamental joint invariants I}, = (Hy, K},) = t(xy, u,), where

(z, — %) +ull) (ur, — uo) = (2, — z,) 1+ [2921 | [20% ]
1+ (uM)2 B 1+ 22 ]

(ur, — up) —ul (z), — =) = (z, — z,) [ 202 ] — [20%1]
VTR ) it e P

The multi-invariants are obtained by forming divided difference quotients
_ Ky —K, K, _ (% —3)[%%%]

[Ioh) = =t = T = ,
H,—-H, H, 1+ [ 292, ][ 2971 ]

where, in particular, I(Y) = [I,I;] = 0. The second order multi-invariant

1@ —a[1,1,1,] = 2 Lol = LLO] 220012 V1 + 2051 ]
- 0+1+21 —

Yy — Hp =

v — K, =

H, - H, (1+[Zozl][2122])(1"‘[2021”2'022])
u® /TT @)
[+ @) + JuDu®(z, — 20)] [1+ (D) + JuuC)(a, — )]

provides a Euclidean—invariant numerical approximation to the Euclidean curvature:

(2)
i @) = k= Y
aim =R = Ay

Similarly, the third order multi-invariant

[Lod115] — [1y1y 1, ]

H; — H,
will form a Euclidean—invariant approximation for the normalized differential invariant
ke = t(u the derivative of curvature with respect to arc length, [12, 21].

To compare these with the invariant numerical approximations proposed in [11, 12, 3],
we reformulate the divided difference formulae in terms of the geometrical configurations
of the four distinct points zy, 2;, 29, 23 on our curve. We find

I® =6[I,1,1,I;]=6

$$$)7

H, = (21 = %) - (21, — %)

= T, COS ¢y,
||21 — 2y I i
[ 1], ] = tan ¢,
(21 — 29) N (21, — 2) .
K, = =7, sin¢
k ||21_Zo I k w
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where
e =z, — 2o I, b = L(2 — 20,21 — %),
denotes the distance and the angle between the indicated vectors. Therefore,
tan ¢,
T4 COS Py — T4
10 _g (rycos gy — 1) tan ¢y — (15 cos ¢y — 1) tan ¢, .
(rg cos ¢y — 1) (13 C08 p3 — 11)(r5€OS Pg — T3 COS By)

I® =2

Y

(7.13)

Interestingly, I® is not the same Euclidean approximation to the curvature that was used
in [12,11]. The latter was based on the Heron formula for the radius of a circle through

three points: .
. 4A 2 sin ¢,

= __—_ = _"-""72 (7.14)
abc | 21 — 2o ||

Here A denotes the area of the triangle connecting 2, 21, 2, and
a=ry =z -zl b=ry =2, =2l c= |z =2l

are its side lengths. The ratio tends to a limit I*/I(?) — 1 as the points coalesce. The geo-
metrical approximation (7.14) has the advantage that it is symmetric under permutations
of the points; one can achieve the same thing by symmetrizing the divided difference ver-
sion 7®). Furthermore, I® is an invariant approximation for the differential invariant & .
that, like the approximations constructed by Boutin, [3], converges properly for arbitrary
spacings of the points on the curve.

References

[1] Berchenko, I.A.; and Olver, P.J., Symmetries of polynomials, J. Symb. Comp., to
appear.

[2] Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford Univ.
Press, Oxford, 1953.

[3] Boutin, M., Numerically invariant signature curves, preprint, University of
Minnesota, 1999.

[4] Bruckstein, A.M., Holt, R.J., Netravali, A.N., and Richardson, T.J., Invariant
signatures for planar shape recognition under partial occlusion, CVGIP: Image
Understanding 58 (1993), 49-65.

[5] Bruckstein, A.M., and Netravali, A.N., On differential invariants of planar curves
and recognizing partially occluded planar shapes, Ann. Math. Artificial Intel.
13 (1995), 227-250.

[6] Bruckstein, A.M., Rivlin, E., and Weiss, 1., Scale space semi-local invariants, Image
Vision Comp. 15 (1997), 335-344.

22



[7] Bruckstein, A.M., and Shaked, D., Skew-symmetry detection via invariant
signatures, Pattern Recognition 31 (1998), 181-192.

[8] Budd, C.J., and Collins, C.B., Symmetry based numerical methods for partial
differential equations, in: Numerical analysis 1997, D.F. Griffiths, D.J. Higham
and G.A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow,
1998, pp. 16-36.

[9] Budd, C.J., and Iserles, A., Geometric integration: numerical solution of differential
equations on manifolds, Phil. Trans. Roy. Soc. London A 357 (1999), 945-956.

[10] Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Van Diest, M., Van
Gool, L., Veillon, F., and Zisserman, A., Semi-local projective invariants for the
recognition of smooth plane curves, Int. J. Comput. Vision 19 (1996), 211-236.

[11] Calabi, E., Olver, P.J., and Tannenbaum, A., Affine geometry, curve flows, and
invariant numerical approximations, Adv. in Math. 124 (1996), 154-196.

[12] Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential
and numerically invariant signature curves applied to object recognition, Int. J.
Computer Vision 26 (1998), 107-135.

[13] Cartan, E., La Méthode du Repére Mobile, la Théorie des Groupes Continus, et les
Espaces Généralisés, Exposés de Géométrie No. 5, Hermann, Paris, 1935.

[14] Cartan, E., La Théorie des Groupes Finis et Continus et la Géométrie Différentielle
Traitées par la Méthode du Repére Mobile, Cahiers Scientifiques, Vol. 18,
Gauthier—Villars, Paris, 1937.

[15] Channell, P.J., and Scovel, C., Symplectic integration of Hamiltonian systems,
Nonlinearity 3 (1990), 231-259.

[16] Dhooghe, P.F., Multilocal invariants, in: Geometry and Topology of Submanifolds,
VIII, F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne, and L.
Verstraelen, eds., World Sci. Publishing, Singapore, 1996, pp. 121-137.

[17] Dorodnitsyn, V.A., Transformation groups in net spaces, J. Sov. Math. 55 (1991),
1490-1517.

[18] Dorodnitsyn, V.A., Finite difference models entirely inheriting continuous symmetry
of original differential equations, Int. J. Mod. Phys. C'5 (1994), 723-734.

[19] Faugeras, O., Cartan’s moving frame method and its application to the geometry
and evolution of curves in the euclidean, affine and projective planes, in:
Applications of Invariance in Computer Vision, J.L.. Mundy, A. Zisserman, D.
Forsyth (eds.), Springer—Verlag Lecture Notes in Computer Science, Vol. 825,
1994, pp. 11-46.

[20] Fels, M., and Olver, P.J., Moving coframes. I. A practical algorithm, Acta Appl.
Math. 51 (1998), 161-213.

[21] Fels, M., and Olver, P.J., Moving coframes. II. Regularization and theoretical
foundations, Acta Appl. Math. 55 (1999), 127-208.

[22] Griffiths, P.A., On Cartan’s method of Lie groups and moving frames as applied to
uniqueness and existence questions in differential geometry, Duke Math. J. 41
(1974), 775-814.

(23] Guggenheimer, HW., Differential Geometry, McGraw—Hill, New York, 1963.

23



[24] Hilbert, D., Theory of Algebraic Invariants, Cambridge Univ. Press, New York,
1993.

[25] Jaegers, P.J., Lie group invariant finite difference schemes for the neutron diffusion
equation, Ph.D. Thesis, Los Alamos National Lab Report, LA-12791-T, 1994.

[26] Jensen, G.R., Higher order contact of submanifolds of homogeneous spaces, Lecture
Notes in Math., No. 610, Springer—Verlag, New York, 1977.

[27] Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A.,
Conformal curvature flows: from phase transitions to active vision, Arch.
Rat. Mech. Anal. 134 (1996), 275-301.

(28] Killing, W., Erweiterung der Begriffes der Invarianten von Transformationgruppen,
Math. Ann. 35 (1890), 423-432.

[29] Kogan, I.A., Inductive approach to moving frames and applications in classical
invariant theory, Ph.D. Thesis, University of Minnesota, 2000.

[30] Kogan, I.A.; and Olver, P.J., The invariant variational bicomplex, in preparation.

[31] Lewis, D., and Simo, J.C., Conserving algorithms for the dynamics of Hamiltonian
systems on Lie groups, J. Nonlin. Sci. 4 (1994), 253-299.

[32] Mari-Beffa, G., and Olver, P.J., Differential invariants for parametrized projective
surfaces, Commun. Anal. Geom. 7 (1999), 807-839.

[33] McLachlan, R.I., Quispel, G.R.W., and Robidoux, N., Geometric integration using
discrete gradients, Phil. Trans. Roy. Soc. London A 357 (1999), 1021-1045.

[34] Menger, K., Untersuchungen iiber allgemeine Metrik, Math. Ann. 100 (1928),
75-163.

[35] Milne-Thompson, L.M., The Calculus of Finite Differences, Macmilland and Co.,
Ltd., London, 1951.

[36] Moons, T., Pauwels, E., Van Gool, L., and Oosterlinck, A., Foundations of
semi-differential invariants, Int. J. Comput. Vision 14 (1995), 25-48.

[37] Olver, P.J., Classical invariant theory and the equivalence problem for particle
Lagrangians. 1. Binary Forms, Adv. in Math. 80 (1990), 39-77.

[38] Olver, P.J., Applications of Lie Groups to Differential Equations, Second Edition,
Graduate Texts in Mathematics, vol. 107, Springer—Verlag, New York, 1993.

[39] Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, 1995.

[40] Olver, P.J., Classical Invariant Theory, London Math. Soc. Student Texts, vol. 44,
Cambridge University Press, Cambridge, 1999.

[41] Olver, P.J., Moving frames and singularities of prolonged group actions, Selecta
Math., to appear.

[42] Olver, P.J., Joint invariant signatures, Found. Comp. Math., to appear.

[43] Olver, P.J., Geometric foundations of numerical algorithms and symmetry, Appl.
Alg. Engin. Comp. Commun., to appear.

[44] Olver, P.J., Multi-space, in preparation.

[45] Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., and Oosterlinck, A.,
Recognition of planar shapes under affine distortion, Int. J. Comput. Vision 14
(1995), 49-65.

24



[46] Powell, M.J.D., Approximation theory and Methods, Cambridge University Press,
Cambridge, 1981.

[47] Shokin, Y.I., The Method of Differential Approximation, Springer—Verlag, New York,
1983.

[48] van Beckum, F.P.H., and van Groesen, E.; Discretizations conserving energy and
other constants of the motion, in: Proc. ICIAM 87, Paris, 1987, pp. 17-35 .

[49] Van Gool, L., Brill, M.H., Barrett, E.B., Moons, T., and Pauwels, E.,
Semi-differential invariants for nonplanar curves, in: Geometric Invariance
in Computer Vision, J.L. Mundy and A. Zisserman, eds., The MIT Press,
Cambridge, Mass., 1992, pp. 293-309.

[560] Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A., Semi-differential
invariants, in: Geometric Invariance in Computer Vision, J.1.. Mundy and A.
Zisserman, eds., The MIT Press, Cambridge, Mass., 1992, pp. 157-192.

[61] Weyl, H., Classical Groups, Princeton Univ. Press, Princeton, N.J., 1946.

[52] Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., and Tannenbaum, A., A
geometric snake model for segmentation of medical imagery, IEEE Trans.
Medical Imaging 16 (1997), 199-209.

25



