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Abstract. Let G be a Lie group acting smoothly on a manifold M . A closed, nonsin-
gular submanifold S ⊂M is called maximally symmetric if its symmetry subgroup GS ⊂ G
has the maximal possible dimension, namely dimGS = dimS, and hence S = GS · z0 is an
orbit of GS . Maximally symmetric submanifolds are characterized by the property that
all their differential invariants are constant. In this paper, we explain how to directly
compute the numerical values of the differential invariants of a maximally symmetric sub-
manifold from the infinitesimal generators of its symmetry group. The equivariant method
of moving frames is applied to significantly simplify the resulting formulae. The method
is illustrated by examples of curves and surfaces in various classical geometries.
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1. Introduction.

Suppose G is a Lie group acting smoothly on a manifold M , and let g denote the
corresponding Lie algebra of infinitesimal generators. The symmetry group of a closed
submanifold S ⊂M is, by definition, the subgroup GS = { g ∈ G | g · S = S } consisting of
all group transformations that map S to itself. A submanifold S is called nonsingular if GS
acts locally freely on S, [17]. A nonsingular submanifold is called maximally symmetric if
dimGS = dimS, and hence coincides with an orbit of its symmetry group: S = GS · z0,

for some z0 ∈M . According to a theorem of É. Cartan, [3, 5], a nonsingular submanifold
is maximally symmetric if and only if all its differential invariants are constant. The goal
of this paper is to develop effective formulae for computing the values of the differential
invariants of such a maximally symmetric orbit GS · z0 directly from the infinitesimal
generators of its symmetry group, namely the symmetry subalgebra gS ⊂ g.

As a simple example illustrating our concern, suppose G = SE(3) is the special Eu-
clidean group consisting of the orientation-preserving rigid motions of M = R3. The
fundamental differential invariants of a space curve C ⊂ R3 are its curvature κ and torsion
τ . A (topologically closed) curve is maximally symmetric if and only if it is the orbit,
C =

{
exp(tv)z0

}
, of a one-parameter subgroup generated by a Euclidean vector field

v ∈ se(3). All such curves are circles or helices, and our task is to determine the curvature
and torsion of the orbit curve directly from the infinitesimal generator v.

Interestingly, the formulae that we derive for the differential invariants of maximally
symmetric submanifolds shed new light on the classical prolongation formula for vector
fields on jet bundles, [16]. However, they turn out to be quite intricate even for fairly
simple geometries. A significant simplification can be effected by normalizing some or all
of the parameters — base point and subgroup — by applying an adapted group element.
The most effective means of producing compact formulae is to appeal to the new equivariant
formulation, [5, 19], of the classical Cartan method of moving frames, which we review
in Section 4. Our methods and results will be illustrated by a number of examples from
classical geometries. This investigation was motivated by several applications arising in
geometry, [12, 21], differential equations, [16], and computer vision, [19].

2. Jets of Orbits.

Let M be a smooth m-dimensional manifold. For fixed 0 < p < m, let Jn = Jn(M,p)
denote the associated nth order (extended) jet space of p-dimensional submanifolds S ⊂M ;
see [16] for details. We use jnS|z to denote the jet of S at the point z ∈M .

Let z = (x, u) = (x1, . . . , xp, u1, . . . , uq) be local coordinates on M , where we view
the first p as independent variables, and the latter q = m− p as dependent variables. We
locally identify submanifolds with graphs of functions u = f(x). (This omits submanifolds
that are not transversal to the vertical fibers {x = c}, which can behandled by suitably
changing coordinates, e.g., switching the roles of the independent and dependent variables.)
The induced local coordinates on Jn are denoted z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . ),
with uαJ , for 0 ≤ #J ≤ n and 1 ≤ α ≤ q, representing the partial derivatives ∂Jfα/∂xJ of
the graphing function.
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Let H be a p-dimensional Lie group that acts† smoothly on M , and let h denote the
Lie algebra containing its infinitesimal generators, which are smooth vector fields on M .
As usual, the prolonged action of H on the jet space Jn will be denoted by H(n). If H acts
(locally) freely at z0 ∈ M (see below), the orbit S = H · z0 of H through z0 is a smooth
p-dimensional submanifold with tangent space TS|z0 = h|z0 . The aim of this section is
to write out formulas for the jets (derivatives) of the orbit in terms of the infinitesimal
generators of H.

Before dealing with the general situation, let us first look at the simplest case. Let M
be two-dimensional manifold with local coordinates (x, u). Restricting to curves given by
the graphs of functions u = f(x), the associated jet space Jn(M, 1) has local coordinates
(x, u(n)) = (x, u, ux, uxx, . . . , un) representing the derivatives of f at the point x.

Let

v = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u
(2.1)

be the infinitesimal generator of a one-parameter transformation group exp(tv) acting on
M . Let z0 = (x0, u0) ∈ M . We assume that ξ(x0, u0) 6= 0, as otherwise the curve has a
vertical tangent, or, if ϕ(x0, u0) = 0 also, degenerates to a point. Our goal is to compute
the derivatives

uk,0 =
dku

dxk
(x0), k = 1, 2, . . . ,

of the curve C = exp(tv) · z0 at the point z0. To this end, let

v(n) = ξ(x, u)
∂

∂x
+

n∑
k=0

ϕk(x, u(k))
∂

∂uk
(2.2)

denote the corresponding prolonged vector field, generating the prolonged action on Jn, so
that exp(tv(n)) = exp(tv)(n). The coefficients of v(n) are prescribed by the well-known
prolongation formula, [16; Theorem 4.16]:

ϕk = Dk
x

[
ϕ(x, u)− ux ξ(x, u)

]
+ uk+1 ξ(x, u), (2.3)

where

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · · (2.4)

is the total derivative with respect to the independent variable x.

Proposition 2.1. Under the above assumptions, the jet coordinates

u
(n)
0 = (u0, u1,0, . . . , un,0)

of the orbit curve C =
{

exp(tv) · (x0, u0)
}

at the base point x0 are given by the recursive
formula

uk,0 =
ϕk−1(x0, u

(k−1)
0 )

ξ(x0, u0)
, k = 1, . . . , n. (2.5)

† To simplify the exposition, we will assume that group actions are global. However, all results
and formulas apply equally well to local group actions.
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Furthermore, define the modified total derivative operator

D̂x =
∂

∂x
+

ϕ(x, u)

ξ(x, u)

∂

∂u
, (2.6)

obtained by replacing u1 by the right hand side of (2.5) with k = 1 and truncating. Set

ψk(x, u) = D̂k
xu. (2.7)

Then one has the alternative formula

uk,0 = ψk(x0, u0) =
ϕk−1(x0, u0, ψ1(x0, u0), . . . , ψk−1(x0, u0))

ξ(x0, u0)
. (2.8)

Thus, if F (x, u(n)) is any differential function, then its value on the orbit curve at the base
point can be computed as

F (x0, u
(n)
0 ) = F (x0, u0, ψ1(x0, u0), . . . , ψn(x0, u0)). (2.9)

Proof : The curve jet

jnC =
{

exp(tv(n)) · z(n)0

}
⊂ Jn(M, 1), where z

(n)
0 = (x0, u

(n)
0 ) = jnC|z0 ,

is obtained by integrating the ordinary differential equations

dx

dt
= ξ(x, u),

du

dt
= ϕ(x, u),

du1
dt

= ϕ1(x, u, u1), . . . ,
dun
dt

= ϕn(x, u(n)),

prescribing the prolonged flow of the vector field v(n) on Jn. Thus, by implicit differenti-
ation,

uk+1 =
duk
dx

=
duk/dt

dx/dt
=
ϕk
ξ
,

which immediately establishes the first formula.

Moreover, given any smooth function F (x, u), its total derivative, when restricted to
the first order curve jet j1C, is given by

DxF (x, u, u1) =
∂F

∂x
+ u1

∂F

∂u
=
∂F

∂x
+
ϕ

ξ

∂F

∂u
= D̂xF,

proving (2.8) when k = 1. A simple induction on k establishes the general formula. The
final formula (2.9) is an immediate corollary. Q.E.D.

Remark : The fact that (2.5) and (2.8) are equal provides us with an interesting new
perspective on the classical prolongation formula (2.3). For example, taking k = 2, we find

ϕ1

(
x, u,

ϕ

ξ

)
= ξ

(
∂

∂x
+
ϕ

ξ

∂

∂u

)2

u = ξ

(
∂

∂x
+
ϕ

ξ

∂

∂u

)(
ϕ

ξ

)
, (2.10)

which can be verified by direct computation.
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The preceding formulas can be straightforwardly adapted to curves in higher dimen-
sional manifolds. We merely replace u by the various dependent variables uα, and ϕ(x, u)
by the corresponding infinitesimal generator coefficients ϕα(x, u1, . . . uq). The second term
in the modified total derivative (2.6) becomes a summation over α = 1, . . . , q. Rather than
write out the resulting formulas in detail, let us turn to the general case.

Let H be a p-dimensional Lie group acting smoothly on M . Let

vκ =

p∑
i=1

ξiκ(x, u)
∂

∂xi
+

q∑
α=1

ϕακ(x, u)
∂

∂uα
, κ = 1, . . . , p, (2.11)

be a basis for its infinitesimal generators, spanning a p-dimensional Lie algebra h of vector
fields on M . Their prolongations to the submanifold jet space Jn(M,p) are given, in local
coordinates, by

v(n)
κ = vκ +

q∑
α=1

∑
1≤k=#J≤n

ϕαJ,κ(x, u(k))
∂

∂uαJ
, (2.12)

where, for each symmetric multi-index J = (j1, . . . , jk) with 1 ≤ jν ≤ p and k = #J ,

ϕαJ,κ = DJ

(
ϕακ −

p∑
i=1

ξiκ u
α
i

)
+

p∑
i=1

ξiκ u
α
J,i, (2.13)

with DJ = Dj1
· · ·Djk

denoting the corresponding iterated total derivative.

Let

Ξ(x, u) =
(
ξiκ(x, u)

)
=

 ξ11(x, u) . . . ξp1(x, u)
...

. . .
...

ξ1p(x, u) . . . ξpp(x, u)

 (2.14)

be the p×p matrix formed by the independent variable coefficients, whose κth row contains
the independent variable coefficients of the κth generator vκ. If

det Ξ(x0, u0) 6= 0 (2.15)

then the Implicit Function Theorem implies that the orbit S = H · z0 is a p-dimensional
submanifold N ⊂ M that is transverse to the vertical fibers at z0 = (x0, u0), and hence
can be locally represented as the graph of a function u = f(x). Under this assumption,
the following result generalizes Proposition 2.1:

Theorem 2.2. Under the above assumptions, at z0 the jet coordinates of the group
orbit S = H · z0 are provided by the recursive formula

uαK,0 = Ψα
K(x0, u

(k−1)
0 ), 1 ≤ k = #K ≤ n, α = 1, . . . , q, (2.16)

where the functions Ψα
K(x, u(k−1)) are given byΨα

J1(x, u(k−1))
...

Ψα
Jp(x, u

(k−1))

 = Ξ(x, u)−1

ϕαJ,1(x, u(k−1))
...

ϕαJ,p(x, u
(k−1))

, #J = k − 1,

α = 1, . . . , q.
(2.17)
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In particular, when k = 1, we use the quantitiesψα1 (x, u)
...

ψαp (x, u)

 =

Ψα
1 (x, u)

...
Ψα
p (x, u)

 = Ξ(x, u)−1

ϕα1 (x, u)
...

ϕαp (x, u)

, α = 1, . . . , q, (2.18)

to define the modified total derivatives

D̂i =
∂

∂xi
+

q∑
α=1

ψαi (x, u)
∂

∂uα
, i = 1, . . . , p. (2.19)

Let

ψαK(x, u) = D̂K(uα), 0 ≤ #K ≤ n, α = 1, . . . , q, (2.20)

which is consistent with (2.18). Then we have the alternative formula

uαK,0 = ψαK(x0, u0), (2.21)

which thus implies that

ψαK(x0, u0) = Ψα
K(x0, ψ

(k−1)(x0, u0)), (2.22)

where the notation means that we use (2.21) to replace all the derivatives uαJ,0 for #J ≤
k − 1 that appear on the right hand side of (2.16). Thus, the value of a differential
function F (x, u(n)) on the orbit at the base point is obtained by replacing each derivative
coordinates by the corresponding function (2.22):

F (x0, u
(n)
0 ) = F (x0, u0, . . . , ψ

α
K(x0, u0), . . . ). (2.23)

Theorem 2.2 is proved by a straightforward adaption of the two-dimensional argument,
and so, for brevity, will be omitted. Examples will appear below.

Remark : Transversality of the orbit implies that we can choose a basis v1, . . . ,vp of
the infinitesimal generators of H with the property that

vκ|(x0,u0)
=

∂

∂xκ

∣∣∣∣
(x0,u0)

+

q∑
α=1

ϕακ(x0, u0)
∂

∂uα

∣∣∣∣
(x0,u0)

, κ = 1, . . . , p. (2.24)

This choice of basis serves to trivialize the matrix Ξ(x0, u0) = I in (2.14), and hence allows

us to inductively determine the orbit jet coordinates u
(n)
0 directly from the infinitesimal

generator coefficients:

uαJi,0 = ψαJi(x0, u0) = Ψα
Ji(x0, u

(k−1)
0 ) = ϕαJ,i(x0, ψ

(k−1)(x0, u0)), (2.25)

which is valid for any multi-index J with #J = k − 1 and any i = 1, . . . , p.

Remark : It is easy to see that the modified total derivatives (2.19) mutually commute:

[ D̂i, D̂j ] = 0 for all i, j. Indeed, their construction coincides with the initial step in the
elementary proof of the Frobenius Theorem described in [16; p. 422].
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Remark : As above, the identification (2.22) provides a new interpretation of the stan-
dard prolongation formula (2.13). Furthermore, observe that, on the left hand side of
(2.25), J i = (j1, . . . , jk−1, i) denotes a symmetric multi-index, whereas on the right hand

side ϕαJ,i refers to the coefficient of ∂/∂uαJ in the prolonged vector field v
(n)
i , and thus is not

fully symmetric in J, i. It is striking that, provided the vector fields v1, . . . ,vr span a Lie
algebra, the formula yields the same result for all permutations of the indices in K = J i.

3. Maximally Symmetric Submanifolds.

Let G be a Lie group that acts (locally) on an m-dimensional manifold M . Let us
review some basic terminology.

Definition 3.1. The isotropy subgroup of a subset S ⊂M is

ĜS = { g ∈ G | g · S ⊂ S } . (3.1)

The global isotropy subgroup

G∗S =
⋂
z∈S

Ĝz = { g ∈ G | g · z = z for all z ∈ S } ⊂ ĜS

consists of those group elements which fix all points in S.

Definition 3.2. The group G acts

• freely if Ĝz = {e} for all z ∈M ,

• locally freely if Ĝz is a discrete subgroup for all z ∈M ,

• effectively if G∗M = {e},
• locally effectively if G∗M is a discrete subgroup,

• effectively on subsets if G∗U = {e} for every open U ⊂M ,

• locally effectively on subsets if G∗U is a discrete subgroup for every open U ⊂M .

If S ⊂ M is a closed submanifold, then its symmetry group GS , by definition, co-

incides with its isotropy subgroup: GS = ĜS . For non-closed submanifolds, there is a
distinction between them as we allow local invariance of the submanifold under its symme-
try group. For instance, if G = R2 acts by translations on M = R2, then any non-infinite
open horizontal line segment, e.g., S = { (x, 0) | − 1 < x < 1 }, has trivial isotropy sub-

group, ĜS = {e}, but is locally invariant under the one-parameter subgroup of horizontal
translations generated by ∂x, and we wish to encode this fact in the symmetry group. One
approach is to first define the symmetry subalgebra to consist of all infinitesimal generators
v ∈ g that are everywhere tangent to the submanifold:

gS = { v ∈ g | v|z ∈ TS|z for all z ∈ S } .

Then GS ⊂ G will be the connected subgroup having subalgebra gS ⊂ g. Of course,
this fails to address the question of discrete symmetries of non-closed submanifolds. An
alternative approach would be to recast the construction using the more general machinery
of groupoids, [25], but, for simplicity, we will not pursue this direction any further here.

The following theorem is due to Ovsiannikov, [23], and was slightly corrected in [17].
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Theorem 3.3. If G acts locally effectively on subsets of M , then, for n � 0 suffi-
ciently large, the prolonged action G(n) is locally free on a dense open subset Vn ⊂ Jn.

Remark : Any analytic action can be made effective by dividing by the global isotropy
normal subgroup G∗M . Although all known examples of prolonged effective group actions
are, in fact, free on an open subset of a sufficiently high order jet space, there is, frustrat-
ingly, as yet no general proof, nor known counterexample, to this more general result.

The open subset Vn ⊂ Jn described in Theorem 3.3, which consists of all prolonged
group orbits of dimension equal to r = dimG, is called the regular subset , and its elements
z(n) ∈ Vn are the regular jets. The singular subset Sn = Jn \ Vn is the remainder,
containing the singular jets.

Definition 3.4. A submanifold S ⊂M is order n regular if jnS ⊂ Vn. A submanifold
S ⊂M is totally singular if jnS ⊂ Sn for all n = 0, 1, . . . .

In [17; Theorem 7.6], the following geometric characterization of totally singular sub-
manifolds was established. Section 8 of [17] contains further Lie algebra-theoretic charac-
terizations of totally singular submanifolds of homogeneous spaces.

Theorem 3.5. A submanifold S ⊂M is totally singular if and only if its symmetry
subgroup GS does not act locally freely on S itself.

A real-valued function† I: Jn → R is known as a differential invariant if it is unaffected
by the prolonged group transformations, so I(g(n) · z(n)) = I(z(n)) for all z(n) ∈ Jn and all
g ∈ G such that both z(n) and g(n) · z(n) lie in the domain of I. Any finite-dimensional
group action admits an infinite number of functionally independent differential invariants
of progressively higher and higher order. The Basis Theorem, [16; Theorem 5.49], states
that they can all be generated by repeated invariant differentiation of a finite number of
low order invariants.

Theorem 3.6. Given a finite-dimensional Lie group G acting on p-dimensional sub-
manifolds S ⊂ M , then, locally, there exist a finite collection of generating differential
invariants I1, . . . , I`, along with exactly p invariant differential operators D1, . . . ,Dp, hav-
ing the property that every differential invariant can be locally expressed as a function of
the generating invariants and their invariant derivatives: DJIκ = Dj1Dj2 · · · DjkIκ.

When restricted to a given submanifold, the differential invariants will no longer be
functionally independent. As shown by Cartan, [3] — see also [5; Theorem 14.7] — the
dimension of the symmetry group of a regular submanifold S ⊂M is completely determined
by the number of functionally independent restricted differential invariants.

Theorem 3.7. Let S ⊂M be a regular p-dimensional submanifold. Then the num-
ber k of functionally independent differential invariants on S is equal to the codimension
of its symmetry group: k = p− dimGS .

† Throughout, functions, maps, etc., may only be defined on an open subset of their indicated
domain.
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Thus, the maximally symmetric regular p-dimensional submanifolds are those possess-
ing a p-dimensional symmetry group. As an immediate corollary of the preceding Theorem,
we deduce Cartan’s characterization of maximally symmetric submanifolds, [3].

Theorem 3.8. A closed, regular p-dimensional submanifold S ⊂ M is maximally
symmetric, with p-dimensional symmetry group H = GS ⊂ G, if and only if all its differ-
ential invariants are constant if and only if S ⊂ H · z0 is an open submanifold of an H
orbit.

In Section 5, we will apply the results of Section 2 to compute the values of the constant
differential invariants of maximally symmetric submanifolds. The resulting expressions will
typically turn out to be quite complicated.

4. Moving Frames.

In order to make additional progress, we will appeal to the equivariant method of mov-
ing frames initiated in [5, 19]. We restrict our attention to the case of finite-dimensional
Lie group actions; recent extensions of the moving frame approach to infinite-dimensional
pseudo-groups can be found in [22].

Definition 4.1. An nth order moving frame is a smooth, G-equivariant map†

ρ(n) : Jn −→ G.

The group G acts on itself by left or right multiplication; thus a right moving frame
satisfies

ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · g−1. (4.1)

Local equivariance allows one to restrict this condition to group elements g near the iden-
tity. All classical moving frames, e.g., those appearing in [3, 7, 8, 9, 11], can be regarded as
left equivariant maps, although the right equivariant versions are often easier to compute,
[5]. If ρ(z) is any left-equivariant moving frame then ρ̃(z) = ρ(z)−1 is right-equivariant
and conversely.

The existence of a moving frame imposes certain constraints on the group action:

Theorem 4.2. A moving frame exists in a neighborhood of a point z(n) ∈ Jn if and
only if G acts freely and regularly near z(n).

Therefore, a (locally equivariant) moving frame exists in a neighborhood of any regular
jet z(n) ∈ Vn. In practice, one constructs a moving frame by the process of normalization,
relying on the choice of a local cross-section Kn ⊂ Jn to the prolonged group orbits. The
corresponding value of the right moving frame at a jet z(n) ∈ Jn is the unique group
element g = ρ(n)(z(n)) ∈ G that maps it to the cross-section:

ρ(n)(z(n)) · z(n) = g(n) · z(n) ∈ Kn. (4.2)

† As noted earlier, the notation allows ρ(n) to be only defined on an open subset of Jn.
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The moving frame ρ(n) clearly depends on the choice of cross-section, which is usually
designed so as to simplify the required computations as much as possible. In most situa-
tions, one selects a coordinate cross-section defined by setting a number of the coordinate
functions to specified constant values:

zκ = cκ, κ = 1, . . . , r, (4.3)

where z1, . . . , zr are r coordinates selected from among the jet variables xi, uαJ , and the
constants c1, . . . , cr chosen so that (4.3) defines a bona fide cross-section. Extending the
constructions to non-coordinate cross-sections is straightforward, [10, 15, 21].

The moving frame engenders an invariantization process ι that maps each differential
function F : Jn → R to a differential invariant I = ι(F ), defined as the unique differential
invariant that coincides with F on the cross-section. Thus, invariantization does not affect
invariants, ι(I) = I, and, moreover, defines a morphism projecting the algebra of differ-
ential functions onto the algebra of differential invariants. In particular, the normalized
differential invariants induced by the moving frame are obtained by invariantization of the
basic jet coordinates:

Hi = ι(xi), IαJ = ι(uαJ ). (4.4)

These naturally split into two classes: Those coming from the coordinates used to define
the cross-section (4.3) will be constant, and are known as the phantom differential invari-
ants. The remainder, known as the basic differential invariants, form a complete system
of functionally independent differential invariants. Once the normalized differential invari-
ants are known, the invariantization process is implemented by simply replacing each jet
coordinate by the corresponding normalized differential invariant (4.4), so that

ι
[
F (x, u(n))

]
= ι
[
F ( . . . xi . . . uαJ . . . )

]
= F ( . . . Hi . . . IαJ . . . ) = F (H, I(n)). (4.5)

Since differential invariants are not affected by invariantization, this implies the powerful
(albeit trivial) Replacement Theorem:

J(x, u(n)) = J(H, I(n)) whenever J is a differential invariant. (4.6)

5. Computing Differential Invariants.

We now turn to the main task at hand — determining the values of the differential
invariants of maximally symmetric submanifolds. Let’s begin with the case of curves, so
p = 1, lying in a manifold M of dimension m = 1 + q. For simplicity, let us assume G acts
transitively on M , i.e., we are looking at curves in a (locally) homogeneous space. It is
known†, that, except for a handful of group actions that pseudostabilize under prolonga-
tion, there are precisely q = m−1 generating differential invariants with the property that
all others are found by differentiation with respect to a group-invariant arc length element.
For a maximally symmetric curve, the q generating differential invariants are constant,
and so all the higher order differentiated invariants are automatically zero.

The first main result follows as a direct corollary of Proposition 2.1.

† This follows from the solution to [16; Exercise 5.35], which can be effected by using the
moving frame recurrence formulae, [5]; see also [20; Theorem 7.2].
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Theorem 5.1. Let C =
{

exp(tv) · z0
}

be the maximally symmetric curve through
the point z0 ∈M generated by v ∈ g. Then we can evaluate the value of any (necessarily
constant) differential invariant I = F (x, u(n)) by replacing each derivative coordinate uαk
by the corresponding function (2.8):

I = F (x0, u0, . . . ψ
α
k (x0, u0) . . . ). (5.1)

Example 5.2. Consider the equi-affine group SA(2) = SL(2) n R2 acting on plane
curves C ⊂M = R2 via

g · (x, u) = (αx+ βu+ a, γ x+ δu+ b), αδ − β γ = 1. (5.2)

The fundamental differential invariant is the equi-affine curvature

κ = ι(uxxxx) =
uxxuxxxx − 5

3u
2
xxx

u8/3xx

. (5.3)

All other differential invariants are (locally) expressible as functions of the curvature and
its derivatives with respect to the equi-affine arc length

ω = ds = u1/3xx dx. (5.4)

The totally singular curves are the straight lines, which admit a three-dimensional symme-
try group. The maximally symmetric curves are the conic sections, [2, 17], and our task
is to determine their equi-affine curvature.

A basis for the infinitesimal generators of the action is provided by the vector fields

v1 = ∂x, v2 = ∂u, v3 = x ∂u, v4 = −x ∂x + u ∂u, v5 = u ∂x, (5.5)

and so the general infinitesimal generator is

v =
5∑

κ=1

aκvκ = (a1 − a4x+ a5u)
∂

∂x
+ (a2 + a3x+ a4u)

∂

∂u
. (5.6)

To compute the equi-affine curvature of the corresponding nondegenerate conic section
C =

{
exp(tv) · (x, u)

}
, we first introduce the modified total derivative operator (2.6)

D̂x =
∂

∂x
+

a2 + a3x+ a4u

a1 − a4x+ a5u

∂

∂u
.

Thus, according to (2.7–8), the curve’s jet coordinates are given by

ux = ψ1(x, u) = D̂xu =
a2 + a3x+ a4u

a1 − a4x+ a5u
,

uxx = ψ2(x, u) = D̂xψ1(x, u)

= (a1 − a4x+ a5u)−3
[
a21 a3 + 2a1 a2 a4 − a22 a5
+ (a3 a5 + a24)

(
−2a2x+ 2a1u− a3x2 − 2a4xu+ a5u

2
)]
,
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and, in general,

uk = ψk(x, u) = D̂xψk−1(x, u),

where the higher order expressions are too unwieldy to reproduce in print. Then, specializ-
ing (5.1), the equi-affine curvature (5.3) of the orbit

{
exp(tv) · (x, u)

}
generated by (5.6)

equals

κ =
ψ2(x, u)ψ4(x, u)− 5

3 ψ3(x, u)2

ψ2(x, u)8/3
, (5.7)

which is a rather long explicit formula, but eminently computable.

One of the immediate lessons from such examples is that the expressions following from
Theorem 5.1 tend to be rather complicated. A significant simplification can be effected
by applying a preliminary group transformation. Observe that a group element g ∈ G
will map the maximally symmetric curve C =

{
exp(tv) · z0

}
generated by v ∈ g and

based at z0 ∈ M to another maximally symmetric curve Ĉ = g · C =
{

exp(t v̂) · ẑ0
}

generated by† v̂ = Ad g(v), and based at the image point ẑ0 = g · z0. Moreover, C and Ĉ
have the same differential invariants. For example, if g represents a translation that maps
(x0, u0) to 0, then its adjoint effect on other infinitesimal generators is to replace (x, u) by
(x− x0, u− u0).

An alternative approach is to use the moving frame cross-section to place the curve in a
normal form. With this restriction, the differential invariants are found to have particularly
simple expressions in terms of the corresponding “compatible” infinitesimal generators. To
this end, let Kn ⊂ Jn|z0 be a cross-section to the prolonged group orbits, which we assume
to be entirely based at the point z0 = (x0, u0) ∈ M , i.e., its first m = p + q defining
equations are given by xi = xi0, u

α = uα0 for i = 1, . . . , p, α = 1, . . . , q.

Definition 5.3. The maximally symmetric orbit curve C =
{

exp(tv) · z0
}

through
z0 is compatible with the moving frame cross-section provided its jet at z0 lies in the
cross-section: jnC|z0 ∈ K

n.

The next result is stated for coordinate cross-sections, with an evident modification
in the non-coordinate version.

Proposition 5.4. Let v = ξ(x, u)∂x +
∑
α ϕ

α(x, u)∂uα ∈ g. Then the induced orbit
curve C =

{
exp(tv) · (x0, u0)

}
is compatible with the moving frame cross-section if and

only if ξ(x0, u0) 6= 0, and, for each cross-section equation uακkκ = cκ, the corresponding
function (2.7) satisfies

ψακkκ (x0, u0) = cκ. (5.8)

Thus, applying Proposition 2.1, we deduce a simpler formula for the differential in-
variants of a compatible maximally symmetric curve.

† Here, Ad g denotes the adjoint action of the group element g on the Lie algebra g.
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Theorem 5.5. If the maximally symmetric curve C =
{

exp(tv) · (x0, u0)
}

is com-

patible with the moving frame cross-section, then its basic differential invariants (H, I(n)) =
(x0, . . . , u

α
0 , . . . , I

α
k , . . .), as in (4.4), are given by

Iαk = ψαk (x0, u0) =
ϕαk−1(x0, I

(k−1))

ξ(x0, u0)
. (5.9)

We remark that the second formula gives a simple recursive rule for generating the
differential invariants directly from the prolonged infinitesimal generator coefficients. In
particular, all the cross-section variables appearing in I(k−1) are equal to the constant
values prescribed by the cross-section equations (4.3).

We emphasize that, by the cross-section construction of the moving frame, any max-
imally symmetric curve can be made compatible by applying the corresponding right
moving frame element to it. Namely, given any regular orbit curve C =

{
exp(tv) · z

}
,

the transformed curve Ĉ = ρ(n)(jnC|z) · C will be compatible, and generated by v̂ =
Ad ρ(n)(jnC|z) v. Thus, having a moving frame already in hand leads to a significant
simplification of the formulae. While the algebraic manipulations required to compute
a moving frame ab initio might offset any computational advantages offered by this ap-
proach, there are many other compelling reasons for finding the moving frame, [19], that
could motivate its adoption.

Example 5.6. Let us return to the equi-affine group SA(2) acting on plane curves,
as treated in Example 5.2. To define the classical equi-affine moving frame, [9, 14], we
select the coordinate cross-section

x = u = ux = 0, uxx = 1, uxxx = 0. (5.10)

The fourth order prolongation of the general infinitesimal generator (5.6) is

v(4) = (a1 − a4x+ a5u)
∂

∂x
+ (a2 + a3x+ a4u)

∂

∂u
+ (a3 + 2a4ux − a5u2x)

∂

∂ux
+

+ (3a4uxx − 3a5uxuxx)
∂

∂uxx
+
(

4a4uxxx − a5(4uxuxxx + 3u2xx)
) ∂

∂uxxx
+

+
(

5a4uxxxx − a5(5uxuxxxx + 10uxxuxxx)
) ∂

∂uxxxx
. (5.11)

Thus, according to (5.9), at the base point (x0, u0) = (0, 0) = 0, the relevant functions
(2.8) are given by

ψ1(0, 0) =
ϕ(0, 0)

ξ(0, 0)
=
a2
a1
, ψ2(0, 0) =

ϕ1(0, 0, ψ1(0, 0))

ξ(0, 0)
=
a21a3 + 2a1a2a4 − a22a5

a31
,

ψ3(0, 0) =
ϕ2(0, 0, ψ1(0, 0), ψ2(0, 0))

ξ(0, 0)
=

3(a1a4 − a2a5)(a21a3 + 2a1a2a4 − a22a5)

a51
,

13



and so on. Thus, for the orbit generated by v through the base point to be compatible
with the cross-section (5.10), we require†

0 = ψ1(0, 0) =
ϕ(0, 0)

ξ(0, 0)
=
a2
a1
, 1 = ψ2(0, 0) =

ϕ1(0, 0, 0)

ξ(0, 0)
=
a3
a1
,

0 = ψ3(0, 0) =
ϕ2(0, 0, 0, 1)

ξ(0, 0)
=

3a4
a1

,

and so compatibility requires that

a2 = 0, a3 = a1, a4 = 0.

For such infinitesimal generators v ∈ sa(2), the equi-affine curvature of the conic section
C =

{
exp(tv) · 0

}
is given by

κ = ψ4(0, 0) =
ϕ3(0, 0, 0, 1, 0)

ξ(0, 0)
= − 3a5

a1
. (5.12)

Incidentally, the higher order differential invariants κs, κss, . . . , are clearly all zero. This
can be reconfirmed using the general formula (5.9) and the recurrence formulas relating
the normalized and differentiated invariants [5]; for example,

0 = κs = ι(uxxxxx) = ψ5(0, 0) =
ϕ4(0, 0, 0, 1, 0, κ)

ξ(0, 0)
.

Example 5.7. Consider the projective group PSL(3) acting on curves C ⊂M = RP2

via

(x, u) 7−→
(
αx+ βu+ γ

ρx+ σu+ τ
,
λx+ µu+ ν

ρx+ σu+ τ

)
, det

∣∣∣∣∣∣
α β γ
λ µ ν
ρ σ τ

∣∣∣∣∣∣ = 1. (5.13)

The classical moving frame, [3], relies on the following cross-section equations:

x = u = ux = 0, uxx = 1, uxxx = u4x = 0, u5x = 1, u6x = 0. (5.14)

The fundamental differential invariant is the projective curvature κ = ι(u7x), which is a
rather complicated seventh order differential function, [4, 16].

The maximally symmetric curves, i.e., those with constant projective curvature, are
the W curves studied by Lie and Klein, [13]. We can then use formula (5.1) to compute
their projective curvatures. However, since the resulting formula is much too complicated
to display, we will only compute the value for compatible nondegenerate W curves. Adopt-
ing the following basis

v1 = ∂x, v2 = ∂u, v3 = x ∂x, v4 = u ∂x, v5 = x ∂u, v6 = u ∂u,

v7 = x2 ∂x + xu ∂u, v8 = xu∂x + u2 ∂u,
(5.15)

† Note that these expressions can simply be computed directly from the infinitesimal generator
formula (5.11), and do not require the more complicated expressions listed just above.
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of sl(3), and applying prolongation as before, we find that the general infinitesimal gener-
ator v = a1v1 + · · · + a8v8 generates a compatible W curve C =

{
exp(tv) · 0

}
passing

through the origin if and only if

a2 = a3 = a6 = 0, a1 = a5 = −6a8, a4 = −a7.

The projective curvature of such a curve is equal to

κ =
a7

2a8
. (5.16)

Example 5.8. Consider the Euclidean group SE(3) = SO(3) n R3 acting by rigid
motions on space curves C ⊂ M = R3. We use coordinates z = (x, u, v) on M and,
for simplicity, assume that the curve is realized as the graph of the functions u = u(x),
v = v(x). The classical moving frame, [9], relies on the equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0, (5.17)

which serve to define a coordinate cross-section provided uxx 6= 0. (Indeed, the classical
moving frame is not defined at inflection points of the space curve, [6, 9].) The generating
differential invariants are the curvature and torsion, which are obtained by invariantizing

κ = ι(uxx) =
| (1 + v2x)u2xx − 2uxvxuxxvxx + (1 + u2x)v2xx |

(1 + u2x + v2x)3/2
,

τ =
ι(vxxx)

ι(uxx)
=
uxxvxxx − vxxuxxx

1 + u2x + v2x
,

(5.18)

cf. [18]. All other differential invariants are (locally) expressible as functions of the curva-
ture, torsion, and their derivatives with respect to the Euclidean arc length

ω = ds =
√

1 + u2x + v2x dx. (5.19)

The totally singular curves are the straight lines, which have a two-dimensional Euclidean
symmetry group. The maximally symmetric curves are the circles and circular helices.

Introducing the basis vector fields

v1 = ∂x, v2 = ∂u, v3 = ∂v,

v4 = v ∂u − u ∂v, v5 = −u ∂x + x ∂u, v6 = −v ∂x + x ∂v,
(5.20)

the general infinitesimal generator v = a1v1 + · · · + a6v6 has second order prolongation

v(2) = (a1 − a5u− a6v)
∂

∂x
+ (a2 + a4v + a5x)

∂

∂u
+ (a3 − a4u+ a6x)

∂

∂u
+

+
(
a4vx + a5(1 + u2x) + a6uxvx

) ∂

∂ux
+
(
−a4ux + a5uxvx + a6(1 + v2x)

) ∂

∂vx
+

+
(
a4vxx + 3a5uxuxx + a6(2uxxvx + uxvxx)

) ∂

∂uxx
+

+
(
−a4uxx + a5(uxxvx + 2uxvxx) + 3a6vxvxx

) ∂

∂vxx
.
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Thus, taking into account (5.9), the circular or helical orbit C =
{

exp(tv) · 0
}

will be
compatible with the cross-section (5.10) provided

a2 = 0, a3 = 0, a6 = 0.

Using formula (5.9) and replacing the lower order derivatives appearing in the infinitesimal
generator coefficients by their cross-section values (5.17), (5.18), we find that its curvature
and torsion are given by

κ =
a5
a1
, τ =

−a4κ
a1κ

= − a4
a1
.

In particular, the curve is a circle if and only if a4 = 0; otherwise, it is a helix.

To compute the curvature and torsion of a general orbit, we set

D̂x =
∂

∂x
+

a2 + a4v + a5x

a1 − a5u− a6v
∂

∂u
+

a3 − a4u+ a6x

a1 − a5u− a6v
∂

∂v
,

in accordance with (2.6). Thus, in view of (2.7–8), the orbit jet coordinates are

ux = ψu1 (x, u, v) = D̂xu =
a2 + a4v + a5x

a1 − a5u− a6v
, vx = ψv1(x, u, v) = D̂xv =

a3 − a4u+ a6x

a1 − a5u− a6v
,

and, in general,

uk = ψuk (x, u, v) = D̂xψ
u
k−1(x, u, v), uk = ψuk (x, u, v) = D̂xψ

u
k−1(x, u, v).

Then, specializing (5.9) to the expressions (5.18), the curvature and torsion of the maxi-
mally symmetric curve (helix or circle) exp(tv)(x, u, v) are equal to

κ =

∣∣∣∣ (1 + ψv1(x, u, v)2)ψu2 (x, u, v)2 − 2ψu1 (x, u, v)vxψ
u
2 (x, u, v)ψv2(x, u, v) +

+ (1 + ψu1 (x, u, v)2)ψv2(x, u, v)2

∣∣∣∣
(1 + ψu1 (x, u, v)2 + ψv1(x, u, v)2)3/2

,

τ =
ψu2 (x, u, v)ψv3(x, u, v)− ψv2(x, u, v)ψu3 (x, u, v)

1 + ψu1 (x, u, v)2 + ψv1(x, u, v)2
.

(5.21)

Finally, let us extend our method to maximally symmetric submanifolds of higher
dimension p ≥ 2. Let z0 ∈M , and let h ⊂ g be a p-dimensional Lie subalgebra whose orbit
S = exp(h) · z0 is a regular p-dimensional submanifold; this requires that dim h|z0 = p =
dim h. The orbit is compatible with the moving frame cross-section provided jnS|z0 ∈ K

n.

Theorem 5.9. Let h ⊂ g be a p-dimensional Lie subalgebra. If the orbit S =
exp(h) · z0 is compatible with the moving frame cross-section, then its constant differential
invariants are prescribed by the values of the functions defined in (2.22):

IαJi = ψαJi(x0, u0) = φαJ,i(x0, I
(k−1)) . (5.22)

Again, the values of the cross-section variables appearing in (5.22) can be replaced by
the corresponding constants, (4.3). The resulting formulas (5.22) can be used recursively
to determine the constant values of the generating differential invariants. As before, the
higher order differentiated invariants all vanish.
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Example 5.10. Consider the Euclidean group SE(3) = SO(3)nR3 acting on surfaces
S ⊂M = R3. We use coordinates z = (x, y, u), and assume that the surface is given by the
graph of a function u = f(x, y). The classical moving frame, [9], relies on the equations

x = 0, y = 0, u = 0, ux = 0, uy = 0, uxy = 0, (5.23)

which serve to define a coordinate cross-section provided uxx 6= uyy, i.e., we are not at
an umbilic point on the surface. The fundamental differential invariants are the principle
curvatures κ1 = ι(uxx), κ2 = ι(uyy), or, equivalently the mean curvature H = 1

2 (κ1 + κ2)

and the Gauss curvature K = κ1κ2. As is well known, the Gauss and mean curvature
generate the algebra of Euclidean surface differential invariants via invariant differentiation
with respect to the induced Frenet frame. Less well known is the recent observation, [21],
that, for suitably non-degenerate surfaces, the differential invariant algebra can, in fact,
be generated by the mean curvature alone via invariant differentiation.

The totally singular surfaces are the planes and spheres; each is totally umbilic and,
moreover, has a non-freely acting three-dimensional Euclidean symmetry group. The max-
imally symmetric surfaces are the cylinders, with isotropy subgroup consisting of a trans-
lation along the cylinder’s axis and a rotation around it.

Introducing the basis vector fields

v1 = ∂x, v2 = ∂y, v3 = ∂u,

v4 = y ∂x − x ∂y, v5 = −u ∂x + x ∂u, v6 = −u ∂y + y ∂u,
(5.24)

the general infinitesimal generator v = a1v1 + · · · + a6v6 ∈ se(3) has second order
prolongation

v(2)
a = (a1 + a4y − a5u)

∂

∂x
+ (a2 − a4x− a6u)

∂

∂y
+ (a3 + a5x+ a6y)

∂

∂u
+

+
(
a4uy + a5(1 + u2x) + a6uxuy

) ∂

∂ux
+
(
−a4ux + a5uxuy + a6(1 + u2y)

) ∂

∂uy
+

+
(

2a4uxy + 3a5uxuxx + a6(uyuxx + 2uxuxy)
) ∂

∂uxx
+ (5.25)

+
(
a4(uyy − uxx) + a5(uyuxx + 2uxuxy) + a6(2uyuxy + uxuyy)

) ∂

∂uxy
+

+
(
−2a4uxy + a5(2uyuxy + uxuyy) + 3a6uyuyy

) ∂

∂uyy
.

Let h ⊂ se(3) be a two-dimensional subalgebra with basis va,vb for a, b ∈ R6. This
requires that [ va,vb ] = cava + cbvb for some ca, cb ∈ R, which imposes certain quadratic
constraints on the coefficients a, b. Indeed, by the classification of subalgebras of se(3), [1],
we can, in fact, assume that va = a1∂x+a2∂y+a3∂u generates a one-parameter translation
subgroup in a direction â = (a1, a2, a3) 6= 0, while either h is abelian, and so vb generates
a translation subgroup in a second, independent direction, or h is non-abelian, and vb
generates a one-parameter subgroup consisting of rotations around a line { z0 + t â | t ∈ R }
parallel to the translation direction â. The abelian case leads to a totally singular orbit —
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a plane — and so we assume from here on that h ⊂ se(3) is a two-dimensional non-abelian
subalgebra.

With this proviso, we consider the orbit S = exp(h) · 0 through the origin. (We can
employ translations to place any other orbit there, invoking the adjoint action discussed
above to adapt the final formulas.) As in (2.24), we can take our basis va,vb such that
a1 = b2 = 1 while a2 = b1 = 0. In view of (2.25), (5.25), we find that the orbit will be
compatible with the cross-section (5.23) provided

a1 = b2 = 1, a2 = a3 = a4 = a6 = b1 = b3 = b4 = b5 = 0.

Then formula (5.22) implies that the principle curvatures of the compatible cylindrical
orbit are given, respectively, by the coefficients of ∂ux in va and of ∂uy in vb, namely,

κ1 = ϕx,a(0, 0, 0, 0, 0) = a5, κ2 = ϕy,b(0, 0, 0, 0, 0) = b6.

One of these is necessarily zero (this follows from the Lie algebra condition), while the
other is the reciprocal of the radius of the cylindrical cross-section. For more general
orbits, one can either employ the adjoint action induced by the moving frame to make
them compatible, or resort to substituting the induced functions (2.22) into the formulas
for the principal curvatures.

Example 5.11. Consider the equi-affine group SA(3) = SL(3)nR3 acting on surfaces
S ⊂ M = R3. As in the preceding example, we use coordinates z = (x, y, u), and assume
that the surface is given by the graph of a function u = f(x, y). There are two non-
degenerate cases, depending on the sign of the Hessian determinant H = uxxuyy − u2xy.
We concentrate on the hyperbolic case, where H < 0, here; the elliptic case H > 0 follows
from a simple change of some signs, while parabolic points, with H = 0 are degenerate,
and require a higher order moving frame. For a hyperbolic surface, the classical moving
frame, [9, 21], relies on the (non-coordinate) cross-section K3 defined by the equations

x = y = u = 0, ux = 0, uy = 0, uxy = 0, uxx = 1, uyy = −1,

uxxy = 0, uyyy = 0, uxxx = uxyy.
(5.26)

There is a single independent third order differential invariant

P = ι(uxxx) = ι(uxyy), (5.27)

whose square, P 2, is traditionally known as the Pick invariant , [24]. In [21], it was
proved that, for suitably non-degenerate surfaces, the algebra of differential invariants can
be generated by invariant differentiation of the Pick invariant alone.

Omitting the details of the computation, which follow the same lines as in the pre-
ceding example, we introduce the following basis for the infinitesimal generators in sa(3):

v1 = ∂x, v2 = ∂y, v3 = ∂u. v4 = x∂x − u∂u, v5 = y∂y − u∂u,
v6 = y∂x, v7 = u∂x, v8 = x∂y, v9 = u∂y, v10 = x∂u, v11 = y∂u.
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When restricted to the cross-section (5.26), the prolongation of the general infinitesimal
generator va = a1v1 + · · · + a11v11 to second order is given by

v(2)|K3 = a1∂x + a2∂y + a3∂u + a10∂ux + a11∂uy −
− (3a4 + a5)∂uxx + (a8 − a6)∂uxy + (a4 + 3a5)∂uyy .

(5.28)

We assume that two such generators va,vb ∈ sa(3) span a two-dimensional subalgebra
h ⊂ sa(3). We further assume, as in (2.24), without loss of generality, that a1 = b2 = 1,
a2 = b1 = 0. With this fixed, we can use (2.25) and (5.28) to find the compatibility
conditions and determine the value of the Pick invariant P . The compatibility equations
are listed in the same order as the cross-section equations (5.26–27) (omitting the first set
x = y = u = 0):

a3 = b3 = a11 = b10 = 0, a10 = 1, b11 = −1,

−3b4 − b5 = a8 − a6 = 0, b4 + 3b5 = 0,

P = −3a4 − a5 = b8 − b6 = a4 + 3a5.

(5.29)

Note that, in some cases, there are multiple expressions for the derivatives, which is the
result of the non-symmetry of the indices on the ϕ’s in (5.22). It is worth emphasizing
that the requirement that va,vb span a Lie subalgebra ensures that the various expressions
agree.
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