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First introduced by Gaston Darboux, and then brought to maturity by Elie Cartan,
[4], [5], the theory of moving frames (“reperes mobiles”) is widely acknowledged to be a
powerful tool for studying the geometric properties of submanifolds under the action of a
transformation group. While the basic ideas of moving frames for classical group actions
are now ubiquitous in differential geometry, the theory and practice of the moving frame
method for more general transformation group actions has remained relatively undevel-
oped. The famous critical assessment by Weyl in his review, [27], of Cartan’s seminal
book, [5], retains its perspicuity to this day:

“I did not quite understand how he [Cartan] does this in general, though in the
examples he gives the procedure is clear. ... Nevertheless, I must admit I found the book,
like most of Cartan’s papers, hard reading.”

Implementations of the method of moving frames for certain groups having direct
geometrical significance — including the Euclidean, affine, and projective groups — can
be found in both Cartan’s original treatise, [5], as well as many standard texts in differ-
ential geometry, e.g., [13], [24], [28]. The method continues to attract the attention of
modern day researchers and has been successfully extended to a few additional examples,
including, for instance, holomorphic curves in projective spaces and Grassmannians. The
papers of Griffiths, [12], Green, [11], Chern, [7], and the lecture notes of Jensen, [14],
are particularly noteworthy attempts to place Cartan’s intuitive constructions on a firm
theoretical and differential geometric foundation.
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Recently, [9], [10], the authors introduced two new methods that enable one to algo-
rithmically implement both the practical and theoretical construction of moving frames for
general transformation groups. The first algorithm, which we call the method of “moving
coframes”, not only reproduces all of the classical moving frame constructions, often in a
simpler and more direct fashion, but can be readily applied to a wide variety of new situ-
ations, including infinite-dimensional pseudo-groups, intransitive group actions, restricted
reparametrization problems, joint group actions, to name a few. The second “regular-
ized” method is applicable to general finite-dimensional transformation group actions, and
provides a completely rigorous justification of the general theory. The regularized method
bypasses many of the complications inherent in traditional approaches by completely avoid-
ing the usual process of normalization during the general computation. Once a moving
frame and coframe, along with the complete system of invariants, are constructed in the
regularized framework, one can easily restrict these invariants to particular classes of sub-
manifolds, producing (in nonsingular cases) the standard moving frame. Perhaps Griffiths
is the closest in spirit to our guiding philosophy; we fully agree with his statement, [12;
p. 777], that “The effective use of frames ...goes far beyond the notion that ‘frames are
essentially the same as studying connections in the principal bundle of the tangent bun-
dle’.” Indeed, by de-emphasizing the group theoretical basis for normalization, which, in
the past, has hindered the theoretical foundations from covering all the situations to which
the practical algorithm could be applied, our formulation of the framework goes beyond
what Griffiths envisioned, and successfully realizes Cartan’s original vision, [4], [5]. Sig-
nificant applications include a new and more general proof of the fundamental theorem
on classification of differential invariants, a general classification theorem for syzygies of
differential invariants, as well as new explicit commutation formulae for the associated
invariant differential operators. We demonstrate a simple but striking generalization of
a “replacement theorem” due to T.Y. Thomas, [25]. Refined versions of known general
theorems on the equivalence, symmetry and rigidity of submanifolds are further direct
consequences of our approach.

In this paper, we shall review the results of our investigations, referring the reader to
[9], [10] for proofs, further details, as well as numerous examples and applications. We
begin by presenting the basics of the regularized theory and its applications to differential
invariants, which is then illustrated by an example arising in classical invariant theory.
The moving coframe method is then briefly discussed, and applied to two examples —
first, the classical case of equi-affine geometry of curves in the plane, and second, an
infinite-dimensional pseudo-group originally studied by Lie.

Throughout this paper, G will denote an r-dimensional Lie group acting smoothly on
an m-dimensional manifold M. Let Gg = {g € G|g-S = S } denote the isotropy subgroup
of a subset S C M, and G§ = Nyeg G, its global isotropy subgroup, which consists of
those group elements which fix all points in S. The group G acts freely if G, = {e} for
all z € M, effectively if G, = {e}, and effectively on subsets if Gf; = {e} for every open
U C M. We further incorporate the adjective “locally” in these concepts by replacing {e}
by a general discrete subgroup of G. If G does not act effectively, one can, without any
loss of generality, replace G by the effectively acting quotient group G/G%,, which acts in
essentially the same manner as G does, cf. [21]. Clearly, if G acts effectively on subsets,
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then G acts effectively. Analytic continuation demonstrates that the converse is true in the
analytic category, although not for general smooth actions. To avoid pathology, we shall
always assume that G acts locally effectively on subsets. A group acts semi-regularly if all
its orbits have the same dimension. The action is regular if, in addition, each point x € M
has arbitrarily small neighborhoods whose intersection with each orbit is connected.

Let J* = J"(M,p) denote the ntt order (extended) jet bundle consisting of equiv-
alence classes of p-dimensional submanifolds S C M under the equivalence relation of
nth order contact, cf. [20; Chapter 3]. We let j, S C J" denote the n-jet of the subman-
ifold S. We introduce local coordinates z = (x,u) on M, considering the first p compo-
nents v = (x!,...,2P) as independent variables, and the latter ¢ = m — p components
w= (ul,...,u?) as dependent variables. The induced local coordinates on J" are denoted
by 2" = (z,u(™), with components ug, where J = (j,...,J), 1 <j, < p, representing
the partial derivatives of the dependent variables with respect to the independent variables.

Since G preserves the order of contact between submanifolds, there is an induced
action of G on the jet bundle J* known as its nth prolongation, and denoted by G(™.
We choose a basis {v,,...,v,} for the Lie algebra g of infinitesimal generators on M,
and let {pr™ v ,...,pr(™ v } denote the corresponding basis for the Lie algebra g(™) of
infinitesimal generators of the prolonged group action G(™). The prolonged generators are
obtained by truncating, at order n, the infinitely prolonged vector fields

P q
: 0 0
prv, = Zg;(:v, w) I + Z Z 05 x (7, u(k)) G_u?; , where
i=1 a=1 k=#J>0

(1.1)
P P

PG =DQ0 ) &Gy Qule,uV) = e(z,u) =Y E(ru)uf.

i=1

=1

Here Q,. = (Q},...,Q%) is the usual characteristic of v
total differentiation of order k = #.J.

Let s, = max{dimg™|, . } denote the maximal orbit dimension of the prolonged
action G on J". The stable orbit dimension is s = max s,,- The stabilization order of G
is the minimal n such that s,, = s. The regular subset V™ C J" is the open subset consisting
of all prolonged group orbits of dimension equal to the stable orbit dimension, while the
singular subset is 8™ = J" \ V™. Note that, by this definition, V" = @ and §" = J" if
n is less than the stabilization order of G(™. Ovsiannikov’s stabilization theorem, [23],
[21], completely characterizes the stable orbit dimension. A correct version can be stated
as follows; see [22] for details.

and D; = Dj1 ”'Djk denotes

K

Theorem 1.1. A Lie group G acts locally effectively on subsets of M if and only if
its stable orbit dimension equals its dimension, s = r = dim (G, which means that G acts
locally freely on the regular subset V™ C J".

A submanifold S C M is called totally singular if all its jets never intersect the regular
subset. Such submanifolds can be geometrically characterized as follows.

Theorem 1.2. A submanifold S C M is totally singular, meaning that j,S C S"
for allm = 0,1, ..., if and only if its isotropy subgroup G ¢ does not act locally freely on S.
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Our approach to the theory of moving frames is based on the following simple but
remarkably powerful device. In general, any complicated transformation group action can
be “regularized” by lifting it to a suitable bundle sitting over the original manifold. Let
B™ = G x J™ denote the trivial (left) principal G-bundle over the jet space. The nth order
reqularization of the prolonged action G(™) is the action of G on B" given by

g (h,z™) = (g-h,g™ ™). (1.2)

The key, elementary result is that regularizing any group action immediately eliminates all
singularities and irregularities, e.g., lower dimensional orbits, non-embedded orbits, etc.

Theorem 1.3. For any n > 0, the regularized action (1.2) defines a regular, free
action of G on the bundle B" = G x J™.

Recall that a differential invariant is a function I: J” — R which is invariant under the
action of G . Similarly, a lifted differential invariant is defined as a function L: B" — R
which is invariant under the regularized action (1.2). Remarkably, all the lifted differential
invariants are trivial to construct; they are the components of the order n evaluation map
w™: B" — J* which is given by w(™ (g, 2(™) = (g(™)~1. 2("),

Proposition 1.4. Every lifted differential invariant can be locally written as a func-
tion of the fundamental lifted differential invariants w(™ (g, z(™).

In particular, an ordinary differential invariant I: J® — R also defines a lifted differ-
ential invariant L = T o, : B” — R. Conversely, any lifted invariant L(g, 2, u™) that does
not depend on the g coordinates automatically defines an ordinary differential invariant.

Theorem 1.5. Let I(2(™) be an ordinary differential invariant. Then we can write
I(2() = I(w™) as the same function of the lifted differential invariants.

In Riemannian geometry, Theorem 1.5 reduces to the striking Thomas Replacement
Theorem, [25; p. 109]. See [2] for recent applications of Thomas’ result.

The introduction of local coordinates z = (x,u) on M also partitions the fundamental
zeroth order lifted invariants w = (w!,...,w™) = ¢g~! . 2z into two components, w =
(y,v), where y = (y!,...,yP) will be considered as “lifted independent variables”, and
v = (vl,...,v%) as “lifted dependent variables”. The lifted differential invariants can be
found via a process of invariant differentiation, which we now describe.

The identification of independent variables on M induces a splitting of the differential
forms on J" into horizontal and contact components, cf. [1], [21]. Given a differential
function F(z,u(™), let

P
dyF = (D,F)dz' (1.3)
i=1
denote the horizontal component of its exterior derivative, known as the total differential
of F. Formula (1.3) extends without change to lifted functions F(g,z,u(™). Let

P
nZ:dHyZ:Z(DJyZ)dw‘]7 7::17"'7p7
j=1
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denote the horizontal differentials of the lifted independent variables. We then rewrite
(1.3) in invariant form

P 1 j—1 j+1
] Dyw"vyj 7F7yj 7"'yp
dyF = E (&), where & F = ( D7) )

=1

We can identity the lifted invariant differential operator £€; = D, ; with total differentiation

with respect to the lifted invariant y/. In column vector notation, £ = (Dy)~T - D,
where Dy is the total Jacobian matrix of y and D = (D, ... ,Dp)T is the “total gradient
operator”. A very important point is that, unlike the usual invariant differential operators,

the lifted invariant differential operators always mutually commute, [€;, ;] = 0.

Proposition 1.6. The components w™ = (y,v(™)) of the fundamental lifted in-
variants are found by successively applying the invariant differential operators £; = D,;

associated with the first p lifted invariants y = (y',...,yP) to the remaining zeroth order
invariants v = (v!,...,v?), so that v§ = £,v*, where £; = Ejpreen &y

The primary use of a moving frame is that it enables one to pass from lifted invariant
objects, which are trivial, to their ordinary invariant counterparts back on the original
manifold and its jet spaces. This allows us to systematically analyze the invariants via the
particularities of the moving frame. We first discuss the theory of completely determined
moving frames, meaning ones that do not depend on any group parameters.

Definition 1.7. An nth order (left) moving frame is a map p(™:J* — G which is
(locally) G-equivariant with respect to the prolonged action G on J”, and the left action
h +— g - h of G on itself.

We can identify a moving frame with an equivariant section ¢(™:J* — B" = G x J"
given by o™ (z,u(™) = (p™ (x,u™), z,u(™). Note that any nth order moving frame also
defines a moving frame on all higher order jet bundles by composition with the standard
projections 7%: J¥ — J7 k > n.

Theorem 1.8. IfG acts effectively on subsets, then an ntt order moving frame exists
in a neighborhood of a point z(™ € J" if and only if z(™ € V™ is a regular jet.

In particular, the minimal order at which any moving frame exists is the stabilization
order of the group. In practical implementations, Cartan’s normalization procedure for
constructing moving frames amounts to choosing a (local) cross-section K™ C V" to the
regular prolonged group orbits. Let O™ denote the G(™) orbit passing through the regular
jet 2™ € O™ c V", and suppose that O" intersects the cross-section at the unique point
k™ e O™ N K™; we can view k(™ as the “canonical form” of the jet z(™. Finally, let
g = p(”)(z(”)) denote the group element which maps k(™ to z(™ = ¢ . k(") The
resulting map p(:J" — G from the jet space to the group is the moving frame defined
by the chosen cross-section.

Assuming G acts locally freely, the simplest local cross-sections are obtained by
setting 7 = dim G of the jet coordinates z("™ = (:E,u(”)) to be constant. Let z,,...,z

»~r
denote the chosen coordinates, so that each z, is either one of the z*’s or one of the u§’s.
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Let wy, ..., w, be the corresponding lifted invariants, so that w,, is the corresponding y* or
v5. The normalization constants c,,...,c, are chosen so that the normalization equations

w,(g,z,u™) = ¢, w, (g, z,u™) =¢,, (1.4)

can be (locally) uniquely solved for g = p(™ (z,u(™) in terms of the jet coordinates; the
resulting map defines the moving frame associated with the chosen cross-section.

Definition 1.9. The fundamental nt® order normalized differential invariants asso-
ciated with a moving frame p(™) of order n (or less) are given by

I (2 = (™) 0 (M) (7)) = p(r) () =1. 5 ()

Note that I (z(") = k(™ € K™ can be identified with the canonical form of the jet
2(")_ In terms of the invariant local coordinates w™ = (y,v(™) on B", the fundamental
normalized differential invariants are

THa,u™) = ' (0" (2, ut™), 2, ), i=1...,p

1.5
Ij’é(x,u(k)) :v?((p(")(a:,u(")),x,u(k)), a=1,...,q, k=#K >0. (1:5)

In particular, the normalized differential invariants corresponding to the components w,
being normalized via (1.4) will be constant. We shall call these the phantom differential
invariants. The other components of w(™ will define a complete system of functionally
independent differential invariants defined on the domain of definition of the moving frame
map.

Theorem 1.10. Let n be greater than or equal to the order of the moving frame.
Every n*t order differential invariant can be locally written as a function of the normalized
ntt order differential invariants I™. The function is unique provided it does not depend
on the phantom invariants.

Given an arbitrary differential function F:J® — R, then L = Fow™:B" — R
defines a lifted differential invariant, and hence J = Loc(™ = F oI defines a differential
invariant, called the invariantization of F with respect to the given moving frame. Thus,
a moving frame provides a natural way to construct a differential invariant from any
differential function! Theorem 1.5 just says that if F' itself is a differential invariant,
then Fow( is independent of the group parameters, and hence J = F. In other words,
invariantization defines a projection, depending on the moving frame, from the space of
differential functions to the space of differential invariants.

The higher order differential invariants can also be obtained by invariant differenti-
ation. The normalized contact-invariant coframe is the pull-back of the lifted contact-
invariant coframe: w = (¢(™)*n = (Dyoo(™)dx. The associated invariant differential
operators D = (Dyoo(™)~7.D are obtained by normalizing the lifted invariant differential
operators £. The invariant differential operators D; do not necessarily commute; explicit
commutation formulae are presented below.

The invariant differential operators will map differential invariants to higher order
differential invariants. However, unlike their lifted counterparts, they do not directly pro-
duce the normalized differential invariants; in other words, D I® is not, in general, equal
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to I%. The moving frame method will effectively resolve the computational difficulties
in the usual (unlifted) theory. The fundamental recurrence formulae for the differential
invariants (1.5) are

DJi =6+ ML, DI = I+ Mg (1.6)

The “correction terms” M ;, M ; can be effectively computed using the following algo-

rithm. For any n greater than or equal to the order of the moving frame, let ¢() =
p+ q(pj;n) = dim J". Let V = V(" denote the  x ¢™ matrix whose entries are the coeffi-
cients £, 5 of the n*® order prolonged infinitesimal generators (1.1). Let W = V o (™) be
its invariantized version, obtained by replacing the jet coordinates z(™ by the associated
differential invariants ™. We perform a Gauss-Jordan row reduction on the matrix W
so as to reduce the r x r minor whose columns correspond to the chosen normalization
variables z;,...,z, to be the identity matrix; let P be the resulting r X ¢™ matrix of
invariants. Let S = (SF) denote the p x r matrix whose entries are the total derivatives
SI = D,z, of the normalization coordinates. Let T'= S o] (") be its invariantization. Then
the correction terms in (1.6) are the entries of the p x ¢(™ matrix product M = —T - P.

A syzygy is a functional dependency H(...D,;I,...) = 0 among the fundamental
differentiated invariants. The normalization procedure not only gives us a generating
system of fundamental differential invariants, but also classifies all syzygies among the
normalized differential invariants.

Theorem 1.11. A generating system of differential invariants consists of a) all non-
phantom differential invariants J* and I® coming from the un-normalized zeroth order
lifted invariants y*, v®, and b) all non-phantom differential invariants of the form I T
where 1§ is a phantom differential invariant. In other words, every other differential in-
variant can, locally, be written as a function of the generating invariants and their invariant
derivatives, Dy-J*, Dy 1 .- All syzygies among the differentiated invariants are differential
consequences of the following three fundamental types:

(i) D;J" = 0!+ M}, when J* is non-phantom,
(ii) DI = c+ Mg ;, when If is a generating differential invariant, while I§ ;- = c is a
phantom differential invariant, and
(1ii) Dylf —Drlf; = My ; — Mp; i, where If and I ; are generating differential
invariants the multi-indices K N J = & are disjoint and non-zero, while L is an
arbitrary multi-index.

A similar algorithm produces the commutation formulae
P
D, D;]=> ALD,,  ij=1....p, (1.7)
i=1

among the normalized invariant differential operators. Let X* denote the r x p matrix
whose entries are the total derivatives X*, = D,£F of the kth independent variable coef-
ficients. Let Y* = X¥oI() denote its invariantization. Let B* the result of performing
the same Gauss-Jordan reduction on Y* as was done on W; in other words, if P = E - W,
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then B¥ = E - Y*. Then the coefficient matrix A% = (Afj) in (1.7) is the skew-symmetric
part of the matrix product C* =T - B* ie., A¥ = C*F — (C¥)T.

Example 1.12. Let M = R3  with coordinates z',2%,u. Let G = GL(2), and
consider the action (z',22%,u) — (az! + B2?,va! + 622, \u), where A = ad — $vy. This
action plays a key role in the classical invariant theory of binary forms, when wu is a
homogeneous polynomial, cf. [21]. The order zero invariants are obtained by inverting the
group transformations:

y' = A" 0zt — pa?), y? = A=z + ax?), v=A"tu.
The lifted contact-invariant coframe and associated invariant differential operators are
771 :dHyl :)\_1(5d$1 _ﬁd$2>7 & = oDy +7D,,
nt =dyy? = AN (—ydet + ads?), &, =D, +D,.

The higher order lifted differential invariants are then v, = (€,)7 (&,)*v; in particular

Quy + YUy Buy + duy a®uyy + 209U, + 72Uy,
W= =y s 5 ’

afduy; + (ad + By)uy + Youg, B2y + 280Uy + 0%y,
Vg = b\ ) Voo = b\ .

Let us choose the cross-section K! = {z! = 1,22 = 0,u; = 1,u, = 0}. The normalization
equations
ylzl, yQZO, vy =1, v, = 0,

are then solved for the group parameters, leading to a first order moving frame

a B\ _ [(x' —u,
vy o §)  \2? wuy )’

which is well-defined on surfaces u = u(z,y) provided zlu; + x%u, # 0. The resulting
normalized differential invariants are

U
Ji=1, =0, I=—2" =1 I,=0,
zltuy + z2u, 1 2

1\2 1,.2 2\2
I (@) ugy 202Uy, + (27) ugy I —
11 — 1 2 ’ 12 —
T U + TUy

1 1 2 2
—T Uyt + (T Uy — Uy ) Uy + THU U

1 2 ’
T U + Uy

(U2)2U11 — 2uy Uy + (u1)2u22
zluy + x?uqy '

122 =

The Replacement Theorem 1.5 shows that each of these can be rewritten as the identical
function of the lifted invariants; e.g., I = (z1u; +22%uy) " tu = (y'v, +y%v,)"1v. According
to Theorem 1.11, we can take I,I,,,1,, 5, as our generating system, meaning that all
higher order differential invariants can be obtained by successively applying the invariant
differential operators to them. The normalized coframe is

L uydzt 4 u, da? dyu 5  —x?dxt + 't da?

w = = w =
1 2 1 240
T U+ LUy T Uy + ToU,

1 2 '
T U+ T7Uy
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The associated invariant differential operators are well-known in classical invariant theory:
D, = x' D, + 22D, is the scaling process and Dy = —u,D; +u, D, is the Jacobian process.

Let us now illustrate the algorithm for determining recurrence formulae, syzygies and
commutation formulae. The prolonged infinitesimal generator coefficient matrix and its
invariantized counterpart are, up to second order,

0 u 0 Uy Uqq 0 Ugg
V- 2 0 0 0 —u 0 —Uy;  —2Uqp,
1o 2t 0wy, 0 —2uy,  —Ug 0 ’
0 22 u wu 0 Uqq 0 —lUgg
101 0 0 -1 0 Iy,
W— 000 0 -1 0 -1, —2I,
010 0 0 =21, -1 0
007 1 0 I, 0 —1Iy9

Since we are normalizing z', 2, u, uy, we also need the matrices

We use Gauss—Jordan reduction on the invariantized coefficient matrix W making the cho-
sen normalization columns — in the present case columns 1, 2, 4 and 5 — into an identity

matrix, and then premultiply the resulting matrix by 7'. The entries of the resulting matrix
product

1071 00 —I;, 0 I,
10 I, I,\[(0 1000 —2I,, —I,, 0 |
(o 1 I, 122) 0011 10 I, 0 —Iy]|
00001 0 I, 2,
— (1 0 I(l +Ill) Ill [12 (Ill - 1)Ill 111[12 21122 - (Ill - 1)122)
0 1 IIl2 112 122 (Ill - 2)112 (Ill - 1)122 112122

are minus the required correction terms:

D, J' =6 —1=0,
D,J? =67 —0=0,

D=1 —-I1+1,)=1-1(1+1,),
DI, =1, — I; =0,

DIy =15, — 1, =0,

DLy = Iy + (1 = L)y,

DI,y = 1119 — 11114,

Dylyy = I199 + (I

— 1)1y, — 217,

D,J' =6, —0=0,
D,J? =85 —1=0,

Dyl =1, —11,=—11,,
Dyl =1, — 15, =0,

Dyly = Iyy — Iy, =0,
Dylyy = Ii1p + (2 — I11) 1o,
Dylig = Iigp + (1 — I11) 15,
Dylyy = Iypy — I1o15.

The formulae for D;I and D,I provide the syzygies of the second type, and show that
we can use I to generate I;; and I;,. (There are no syzygies of the first type since we
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normalized all the lifted independent variables.) There are three fundamental syzygies of
the third type:

DIy, = Dylyy = =215,
DIy = Dylyy = 2(111 - 1)122 - 211227
(D1)2I22 - (D2)2I11 = 21,,D 11y + (5115 — 2)Dy 1y + (31 — 5)Dy Loy —
— (2L = 5)(Iyy — DIy +4(14, — 1)1122-

Finally, the commutation formulae can be determined directly:

[Dppz] = _1121)1 + (In - 1)D2- (1-8)
The alternative method is to first construct the matrices
1 0 1 0 0 0 0 0
1_v1_ 101 1[0 0 s w2 [0 0 > |10
0 0 0 -1 0 1 0 0

where X' are obtained by differentiating the coefficients £ of 9, in the infinitesimal
generators; Y are their invariantizations, which are the same because the X’ happen
to be constant, and B’ is obtained from Y* by applying the same Gauss-Jordan row
operations as were done to W above. Multiplying B* by T to obtain C?, and then skew
symmetrizing to obtain A’ yields

01:T~B1:(1 _112>7 AIZCI—(OI)T:<O _112>,

0 I, I, 0
2 . op2 0 I, 2 _ 2 2T _ 0 I, -1
cC-=T-B —(1 I,) A =C (C*)" = 11, 0 .

The (1,2) entry of A? provides the coefficient of D, in (1.8).

In applications to equivalence problems and geometry, we restrict the moving frame
and associated invariants to a submanifold of the appropriate dimension.

Definition 1.13. A p-dimensional submanifold parametrized by t: X — S C M is
called reqular with respect to a moving frame p(™:J" — G if its n-jet jnS lies in the
domain of definition of p™. In this case, the restricted moving frame on the submanifold
is defined as the composition (™ = p(") oj,t: X — G.

Theorem 1.14. A submanifold S C M admits an nt® order moving frame if and only
if S is regular of order n, i.e., j, S C V". Thus, in the analytic category, a submanifold S
admits a moving frame (of some sufficiently high order) if and only if its isotropy subgroup
G4 acts freely on S itself.

Let S be a regular submanifold for a moving frame p(™. For any k > n, the kt® order
differential invariant classifying manifold C*)(S) associated with a submanifold t: X — M
is the manifold parametrized by the normalized differential invariants of order k, namely
JE) = 1) o it For simplicity, let us assume that C (k)(S) is an embedded submanifold
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of its classifying space Z(®¥) ~ J* of dimension t, for k > n. Note that ¢, equals the
number of functionally independent invariants obtained by restricting the normalized kth
order differential invariants to S. In the fully regular case, then, we have

by <tlpyq <tpio< - <ty=t = =t<p,

where t is the differential invariant rank and s is the differential invariant order of S. We
can now state the fundamental equivalence and symmetry theorems.

Theorem 1.15. Let S,S C M be regular p-dimensional submanifolds with respect
to a moving frame map p\™). Then S and S are (locally) congruent, S = g - S, if and only
if they have the same differential invariant order s and their classifying manifolds of order
s + 1 are identical: CtD(S) = c(s+1)(9).

Theorem 1.16. Let S C M be a regular p-dimensional submanifold of differential
invariant rank t with respect to a moving frame p\™. Then its isotropy group G g is an
(r — t)-dimensional subgroup of G acting locally freely on S.

A submanifold S is order k congruent to a submanifold S at z € S if there is a group
transformation g € G such that S and g- S have order k contact at z. Note that the group
transformation g = ¢g(z) may vary from point to point. The rigidity order of S is the
minimal k& for which order k congruence implies congruence, so S = g - S for fixed g € G.
It turns out that this also means that the only congruent submanifold S = g-S which has
kth order contact with S at a point is S itself.

Theorem 1.17. If S C M is a regular submanifold of differential invariant order s
with respect to a moving frame, then S has rigidity order at most s + 1.

We now describe the method of moving coframes, which provides an alternative ap-
proach, based on invariant differential forms, that also extends to pseudo-group actions.
For simplicity, let us assume that G acts transitively on M. Choose a base point z, € M.
A smooth map p(9: M — G is called a compatible lift with base point 2, if it satisfies

PO (2) -z, = 2. (1.9)

We will call the general compatible lift p(°)(z, h) the moving frame of order zero. It is
computed by solving the system of m equations (1.9) for m of the group parameters in terms
of the coordinates z on M and the remaining » — m = dim G — dim M group parameters,
which we denote by h. Unlike the preceding moving frames, unless G acts locally freely
on M, the order zero moving frame will depend on some of the group parameters. We
can use p(® to pull-back the left-invariant Maurer-Cartan forms on G, leading to the
moving coframe of order zero. We can determine lifted invariants by analyzing the linear
dependencies among the horizontal components of the moving coframe forms. Group-
dependent invariants can be normalized to convenient constant values by solving for some
of the unnormalized parameters. We successively eliminate parameters by substituting the
normalization formulae into the moving coframe and recomputing dependencies. After the
parameters have all been normalized, the differential invariants will appear through any
remaining dependencies among the final moving coframe elements. Let us illustrate the
basic method by a classical example; see [9] for more details and applications.
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Example 1.18. The equiaffine geometry of curves in the plane is governed by the
special affine group SA(2) = SL(2) x R?, acting on M = R? according to

g: x+— Ax+a, x €M, AcSL(2), acR?

We adopt a vector notation for the matrix A = (a8) € SL(2), where det A = a A3 = 1.
The Maurer—Cartan forms on SA(2) are

p =alNdo, py,=pBANda=aNdB, ps=pBANd3, v,=aAda, v,=pAda.

Choose the base point to be x, = 0. Solving the compatible lift equations x = g-x, = a
yields the zerot! order moving frame a = x. Substituting into the Maurer—Cartan forms,
we find that, for a parametrized curve x(t), the forms vy, v, restrict to the following two
horizontal forms:

v, = (a Ax,)dt, vy = (B AX,)dt.

Their ratio produces the lifted invariant (a A x,)/(8 A x,), which is normalized to 0 by
setting o = Ax, for some scalar parameter A\. This implies that u; = A*(x, A x,,) dt.
Assuming x, A x,, # 0, the latter form can be normalized to equal —v, by setting

—BAX, = N (x, AX,,), or B =A\x, +pux,,

for some scalar p. Unimodularity implies A = (x, A x,,)~ /3. Therefore

—Vy =ds = /x, NX;, dt

reproduces the equi-affine arc length element. Furthermore, 1, = B8 A dov = J ds, where

the lifted invariant
Xy N\ Xy

J = p(x, A Xtt)1/3 + m
t N Xt

is normalized to zero in the obvious manner. Therefore, the final moving frame is given by

2
a:d_X:L ﬁ:dX: Xt — Xt a=x
ds /%, A%y ds®  (x, Axy)?3 0 3(x, Axy)P3

Finally, p3 = Kk ds, where

(Xp A Xyppe) + 4(Xpe A Xyyy) _ 5(xp A Xyyy)?
3(x, Axy)?/3 9(x, A x,)8/3

k= XSS /\XSSS -

defines the equi-affine curvature. All higher order differential invariants are obtained by
differentiating x with respect to the equi-affine arc length ds. This reproduces the basic
invariants of the equi-affine geometry of curves, [13]; see also [3], [8], for applications in
computer vision. The classical Frenet equations are a simple reformulation of the final
moving frame formulae. We identify the linear part A = (e;,e,) = (x,,x,,) of the final
moving frame with the equi-affine frame at a point x(¢) on the curve, so that e; = x, is
the unit affine tangent vector, whereas e, = x_, is the unit equi-affine normal. Combining

12
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this with the SL(2) Maurer-Cartan matrix A~! dA = (,€ O> ds leads to the complete

Frenet equations of planar equi-affine geometry:

dx de, de,
ds b ds 2 ds

Note that the chosen normalizations are governed by the cross-section

= Ke.

K}P={z=u=u, =0,u,, =1,u,,, =0}

to the group orbits on J3. In fact, it is not hard to apply the regularized method directly
in this example. In general, the more complicated the group action, the more efficient the
moving coframe approach becomes. Curves whose 2-jets pass through the singular locus
x, N x,, = 0 can be covered by higher order moving frames, except for the straight lines,
which are the totally singular curves in equi-affine geometry.

Finally, we demonstrate how the moving coframe method can be adapted to the case
of infinite Lie pseudo-groups. By definition, a Lie pseudo-group consists of an infinite-
dimensional family of invertible (local) transformations that form the general solution
to an involutive system of partial differential equations, cf. [17], [6]. We can always
characterize the pseudo-group transformations v: M — M as the projections of bundle
maps V: B — B, defined on a principal fiber bundle B — M, that preserve a system of
one-forms ¢ = {¢;, ..., (.}, so that ¥*¢ = ¢. The forms ¢ will play the role of the moving
coframe forms for the pseudo-group, and the fiber coordinates of the bundle B will play
the role of the undetermined group parameters. Of course, in this case ¢ does not form a
full coframe on B. A compatible lift, or moving frame of order zero, is just an arbitrary
section ¢(): M — B. With these provisos, the normalization and reduction procedure is
implemented as in the finite-dimensional situation.

Example 1.19. Consider the intransitive pseudo-group consisting of (local) diffeo-
morphisms on M = R3 of the form

u
f'(x)
This pseudo-group was introduced by Lie, [18; p. 373], in his study of second order partial
differential equations integrable by the method of Darboux, and was further investigated

by Medolaghi, [19], Vessiot, [26], and Kumpera, [16]. Following a general procedure
presented in [15], a zerot? order moving coframe consists of the one-forms

T=f(z), Y=y, u= (1.10)

¢, = udz, C2:ozdac—|—dzu, (3 = dy,

which are defined on a rank one bundle B — M with fiber coordinate «. Indeed, any trans-
formation that satisfies ¥*(, = ¢,, i = 1,2, 3, projects to a pseudo-group transformation
(1.10). For surfaces u = u(z,y), the linear dependency ¢, = —(ua+u,) ¢; — (u, /u) dy pro-
duces the normalization o = —u, /u, along with the basic first order differential invariant
I =w, /u. The final invariant moving coframe is

¢ —uds, (= TwWdT g

u
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The invariant total differential operators are thus D; = v~ 'D_, D, = D,. A complete

system of differential invariants consists of y, I, and the higher order invariant derivatives
' k
(D) (Dy)"1.
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