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Abstract. We describe computational algorithms for constructing the explicit power
series expansions for normal forms of submanifolds under transformation groups. The
procedure used to derive the coefficients relies on the recurrence formulae for differential
invariants provided by the method of equivariant moving frames.

1. Introduction.

The equivariant method of moving frames, introduced in [4], provides a powerful
computational tool for investigating the equivalence and symmetry properties of sub-
manifolds under general Lie group actions (and, more generally, infinite-dimensional Lie
pseudo-groups, [23, 24]), and determining the required differential invariants. The main
new tool is the recurrence relations, which completely prescribe the structure of the non-
commutative differential algebra they generate through the process of invariant differen-
tiation. Remarkably, these relations and the consequent differential algebraic structure
can be completely and straightforwardly constructed, requiring only basic linear algebra,
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and can thus be readily implemented in any modern computer algebra system, including
Mathematica, Maple, and Sage.

A simple example is provided by the Euclidean geometry of space curves C ⊂ R
3, un-

der the action of the group of rigid motions — translations and rotations. The fundamental
differential invariants are the curvature and torsion of the space curve, and the invariant
differential operator is differentiation with respect to arc length. As a consequence, every
Euclidean differential invariant can be expressed as a function of curvature, torsion, and
their successive arc-length derivatives.

The normalization procedure underlying the construction of a moving frame is equiv-
alent to the specification of a “normal form” for submanifolds under the group action.
Roughly, to construct a normal form, one uses the group transformations to simplify, as
much as possible, the Taylor expansion of the submanifold at a given point. The result
will be called a normal form for the submanifold at the point, also known as the Monge

or Monge–Taylor form, [1, 3]. As we note below, this simplification is exactly the same
as the choice of cross-section to the prolonged group orbits, which is the first step in the
equivariant moving frame construction. Once a normal form has been specified, the non-
constant coefficients in the resulting Taylor series expansion form a complete system of
differential invariants, known, in the equivariant approach, as the fundamental normalized
differential invariants.

The purpose of the present note is to explain, in simplified form, the moving frame
algorithms and recurrence formulae, and how they can be used to construct the normal
form expansion of a submanifold in terms of the fundamental differential invariants and
their invariant derivatives. While direct calculations can be very tedious, if not impossible
due to the limitations of current computer algebra software and hardware, the recurrence
formulae provide a simple, straightforward route to the desired formulae. In this paper,
we describe this calculus, first in the simplest context of plane curves, and then for general
submanifolds under Lie group actions. The results are illustrated by a few basic examples
of geometric and imaging importance.

2. Plane Curves.

For simplicity, we first describe the normal form construction in the its most basic
manifestation: plane curves under “ordinary” group actions. The general version can be
found below in Section 3.

Throughout this section, C ⊂ M = R
2 will denote a regular, smooth† (C∞) plane

curve. We use z = (x, u) as local coordinates on M , and t ∈ I ⊂ R as a curve parameter,
so that C is the image of the function z(t) = (x(t), u(t)) for t in the interval I. Regularity
requires that the curve’s tangent vector is nowhere vanishing‡: dz/dt = (xt, ut) 6= 0. We
will identify parametrizations that have identical image curves, meaning that we allow
reparametrization, including those that reverse orientation. In particular, the curve is a

† One can apply the construction to curves of class Cn provided n is sufficiently large that all
derivatives indicated are continuous.

‡ Subscripts on dependent variables indicate derivatives.
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graph if it is parametrized by the horizontal coordinate x, so that z(x) = (x, u(x)) for
x ∈ I ⊂ R. Locally, in a neighborhood of z0 = (x0, u0) ∈ C, a curve can be parametrized
uniquely as a graph if and only if it intersects the vertical fiber {x = x0 } transversally,
meaning that its tangent vector at z0 is not vertical, i.e., xt 6= 0 there.

Given a graph defined by the function u(x), we will identify its Taylor polynomial of
order n at a point z0 = (x0, u0) = (x0, u(x0)) ∈ C, namely†,

u(x0) + ux(x0) (x− x0) +
1

2
uxx(x0) (x− x0)

2 + · · · +
1

n !
un(x0) (x− x0)

n,

with the nth order jet of the curve at the point z0. Note that the n jet is uniquely
prescribed by the derivatives of order ≤ n at the point in question. Thus, the space of nth

order transverse‡ curve jets, denoted Jn, can be identified with R
n+2, with coordinates

z(n) = (x, u, ux, uxx, . . . , un). (2.1)

The n-jet of the graph C =
{
(x, u(x))

}
at the point z0 = (x0, u(x0)) ∈ C is thereby

identified with the (n+ 2)–tuple

jnC|z0 =
(
x0, u(x0), ux(x0), uxx(x0), . . . , un(x0)

)
∈ Jn. (2.2)

One can straightforwardly derive, via implicit differentiation, expressions for the curve jet
components (2.2) in terms of a general parametrization z(t) = (x(t), u(t)), writing the nth

order jet coordinate un as an explicit rational function of the derivatives, of order ≤ n, of
x(t), u(t). For example,

ux = Dxu =
ut

xt

, uxx = Dxux =
1

xt

Dt

(
ut

xt

)
=

xtutt − utxtt

x3
t

, · · · , (2.3)

with the higher order expressions obtained by iteratively applying the implicit total deriva-
tive operator

Dx =
1

xt

Dt. (2.4)

By a differential function, we mean a (locally defined) real-valued function on the jet
space, F : Jn → R, and so, in coordinates, taking form

F (z(n)) = F (x, u, ux, uxx, . . . , un).

To us, the most important differential functions are the differential invariants, e.g., curva-
ture, torsion, and the like. Note that one can use the parametric differentiation formulae
(2.3) to re-express any differential function in terms of a general curve parametrization.

Let G be an r-dimensional Lie group acting on M = R
2. There is an induced action

of G on curves, with g ∈ G mapping the curve C parametrized by z(t) to the image curve

C̃ = g ·C parametrized by z̃(t) = g ·z(t). Two curves C, C̃ ⊂ M are said to be equivalent if

† In this section, un represents the nth order derivative of u with respect to x.

‡ See [17] for the extended jet bundle construction, that includes non-transverse curves.
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there exists a group element g ∈ G such that C̃ = g ·C. Again, we allow reparametrization
in our identification of curves. In practice, we are primarily interested in local equivalence,
in the neighborhood of corresponding points on the two curves.

The action of G on curves induces an action on their jets. In other words, given a jet

z
(n)
0 ∈ Jn|z0 , let C be any transverse curve whose jet at z0 ∈ C coincides with z

(n)
0 at the

point z0 ∈ C. Then g · z
(n)
0 is equal to the n-jet of the image curve C̃ = g ·C at the image

point z̃0 = g · z0. If the image curve is not transverse, the action is not defined in the
ordinary jet space (although it is defined on the extended jet bundle, cf. [17]), meaning
that the prolonged group action on Jn is, in general, only a local action even if the action
on M is global. The explicit formulae for the prolonged action of a transformation group
are obtained by implicit differentiation, [4, 17].

A differential invariant of order n is a differential function I(z(n)) that is unaffected
by the prolonged group action, i.e., I(g · z(n)) = I(z(n)) for all g ∈ G and all z(n) ∈ Jn,
where defined. Clearly, equivalent curves have identical differential invariants, although,
of course, their explicit formulae in terms of the curves’ individual parametrizations may
vary. The Cartan solution to the equivalence problem, [18], is based on the functional
identities, or syzygies , among the differential invariants which are used to parametrize
the associated signature. (In the case of curves in Euclidean space, the signature curve
was introduced earlier by Bruce and Giblin, [1], under the name “Monge-Taylor map”.)
See, for example, [2, 7, 8, 10, 16, 25] for various applications of the differential invariant
signature to object recognition in digital images.

In its simplest incarnation, a cross-section to the prolonged group action is a fixed

jet z
(n)
0 ∈ Jn with the property that for any (nearby) curve C and point z ∈ C there is a

unique group element g ∈ G such that

g ·
(
jnC|z

)
= jn(g · C)|z0 = z

(n)
0 , (2.5)

meaning that the group element maps the curve jet at z to the fixed cross-section jet. In
particular g · z = z0. A straightforward chain rule argument demonstrates that the group
element satisfying (2.5) depends only of the n-jet z(n) = jnC|z of the curve at the point z.
In view of uniqueness, we write g = ρ(z(n)), whereby (2.5) is equivalent to the equation

ρ(z(n)) · z(n) = z
(n)
0 . (2.6)

In the language of [4], the map† ρ: Jn → G defines a (right) moving frame of order n, and,
as can be easily proved, satisfies the right equivariance rule

ρ(g · z(n)) = ρ(z(n)) · g−1, (2.7)

where the dot on the left hand side indicates the prolonged group action on Jn, while
the dot on the right hand side represents group multiplication. Occasionally, formulae are

† Typically ρ is only defined on an open subset of the jet space.
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more simply written in terms of the corresponding left equivariant moving frame, which is
merely the group inverse of the right moving frame:

ρ̃(z(n)) = ρ(z(n))−1, satisfying the left equivariance rule ρ̃(g · z(n)) = g · ρ̃(z(n)), (2.8)

and mapping the normal form jet to the curve jet: ρ̃(z(n)) · z
(n)
0 = z(n).

Given a choice of cross-section, a curve C0 is said to be in normal form if z0 ∈ C0 and

its n-jet at z0 coincides with the fixed cross-section jet: jnC0|z0 = z
(n)
0 . Thus, given

z
(n)
0 = (x0, u0 = c0, c1, . . . , cn),

any normal form curve, parametrized as the graph of the function u0(x), has Taylor
expansion

u0(x) = c0 + c1 (x− x0) +
1

2
c2 (x− x0)

2 + · · · +
1

n !
cn (x− x0)

n (2.9)

+
1

(n+ 1)!
un+1(x0) (x− x0)

n+1 +
1

(n+ 2)!
un+2(x0) (x− x0)

n+2 + · · · ,

at x = x0, whose first n+1 coefficients are fixed by the choice of cross-section jet, whereas
the values of those of order ≥ n+ 1 depend upon the particularities of the curve C0.

Remark : Existence of a cross-section of the above type is equivalent to the transitivity
and freeness† of the prolonged group action on an open subset of Jn. If the Lie group G
has dimension r, then this requires n = r − 2. A planar group action that admits a cross-
section in the above sense is known as ordinary , [18]. The only non-ordinary group actions
on R

2 are intransitive actions and those whose prolongations exhibit pseudo-stabilization,
meaning that they act intransitively but not freely on some jet space. All “standard”
transitive group actions arising in geometry and image processing are ordinary. Moreover,
non-ordinary actions can be readily handled by the general moving frame construction
described in the following section.

Applying the moving frame group element g = ρ(z(n)) to the curve C produces the
normal form curve C0 = g ·C = ρ(z(n)) ·C associated with the point z ∈ C, that satisfies

the normal form constraint jnC0 = z
(n)
0 . Clearly, two curves are locally equivalent if and

only if they have identical normal forms at the matching points. Consequently, each Taylor
coefficient of the normal form curve at the point z0, when expressed as a function of the
original curve jet, defines a differential invariant. In other words, for any k,

z
(k)
0 = jkC0|z0 = jk

(
ρ(z(n)) · C

)
|z0 = ρ(z(n)) ·

(
jkC|z

)
= ρ(z(n)) · z(k) = I(k)(z(k)),

(2.10)

† The action of G is free at z(n) ∈ Jn if the only group element that fixes z(n) is the identity,

i.e., g · z(n) = z(n) if and only if g = e.
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defines a vector-valued differential invariant: I(k)(g · z(k)) = I(k)(z(k)) for all g ∈ G where
defined, whose individual components provide k + 2 scalar-valued differential invariants‡:

I(k)(z(k)) =
(
H(z(k)), I0(z

(k)), I1(z
(k)), . . . , Ik(z

(k))
)

=
(
x0, c0, c1, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
.

(2.11)

As a result, the normal form Taylor expansion (2.9) is

u0(x) = c0 + c1 (x− x0) +
1

2
c2 (x− x0)

2 + · · · +
1

n !
cn (x− x0)

n + (2.12)

+
1

(n+ 1)!
In+1(z

(n+1)) (x− x0)
n+1 + · · · +

1

k !
Ik(z

(k)) (x− x0)
k + · · · ,

We will call Ij(z
(j)) the jth order normalized differential invariant ; note that its value is

independent of the choice of k ≥ j in (2.11); indeed, it would be convenient to set k = ∞
and work with Taylor series (infinite jets) throughout. Of course, the first n + 2 of these,
H, I0, . . . , In, are constant, and are known as the phantom invariants , since they equal the
corresponding Taylor coefficient (2.11) of the cross-section jet: Ij(z

(n)) = cj .

According to [4], the non-phantom or fundamental normalized differential invariants

of order > n, namely In+1(z
(n+1)), In+2(z

(n+2)), . . . , form a complete system of differen-
tial invariants for the action of G on curves, meaning that, locally, any other differential
invariant can be written, uniquely, as a function thereof. Indeed, the Replacement Rule

states that if J(z(k)) = J(x, u, ux, . . . , uk) is any differential invariant of order† k > n,
then, replacing each of its arguments by the corresponding normalized invariant,

J(z(k)) = J
(
x0, c0, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
(2.13)

gives an explicit formula for J in terms of the fundamental normalized invariants. In
symbolic computation terminology, [11], (2.13) is a rewrite rule expressing any differential
invariant in terms of the fundamental generators.

Further, the moving frame map induces a process of invariantization, denote by ι,
that associates a differential invariant with any differential function. Namely, if F (z(k))
is any function of the curve jets, then its invariantization J(z(k)) = ι

[
F (z(k))

]
is the

unique differential invariant that agrees with the value of F on the normal form prescribed

by the cross-section: J(z
(k)
0 ) = F (z

(k)
0 ). Note that invariantization respects all algebraic

operations — but not differentiation, which is the point of the recurrence formulae derived
below. It is not hard to see that the invariantization process is readily implemented by
substituting each jet coordinate appearing in the argument of F by the corresponding
normalized differential invariant:

ι
[
F (z(k))

]
= F

(
x0, c0, . . . , cn, In+1(z

(n+1)), . . . , Ik(z
(k))

)
. (2.14)

‡ When k ≤ n, then I(k) =
(

x0, c0, c1, . . . , ck
)

is constant.

† Since G acts transitively on Jn, any differential invariant of order ≤ n is necessarily constant,
and still satisfies the Replacement Rule.

6



Furthermore, invariantization does not affect differential invariants: ι
[
J(z(k))

]
= J(z(k))

and hence, comparison with (2.14) immediately establishes the Replacement Rule (2.13).

Example 2.1. Plane curves under orientation-preserving rigid motions : In this
example, G = SE(2) is the special Euclidean group, consisting of translations and rotations
of R2:

x 7→ x cosφ− u sinφ+ a, u 7→ x cosφ+ u sinφ+ b, a, b ∈ R, −π < φ ≤ π. (2.15)

To place a plane curve in Euclidean normal form at a point z ∈ C, we first use the trans-
lations to move the base point to the origin, x0 = u0 = 0, and then rotate the translated
curve so that its tangent is horizontal, whereby ux,0 = 0. The resulting Euclidean normal

form for a plane curve has Taylor expansion

u0(x) =
1
2 I2 x

2 + 1
6 I3 x

3 + 1
24 I4 x

4 + · · · +
1

k !
Ik x

k + · · · (2.16)

at the origin. Its Taylor coefficients

Ik = ι(uk), k ≥ 2, (2.17)

when expressed in terms of the original curve parametrization, are the fundamental nor-
malized differential invariants.

The preceding choice of normal form corresponds to the cross-section

x = u = ux = 0, (2.18)

whence the three associated phantom invariants are

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux) = I1 = 0. (2.19)

The resulting left moving frame† ρ̃ : J1 → SE(2) can be identified with the classical moving
frame, [9], namely, its translation component is the point z ∈ C, while the columns of the
rotation matrix, R = [ t,n ], are the orthonormal frame vectors based at z, that is, the
unit tangent t and normal n. Furthermore, by direct computation or, alternatively, by
applying the moving frame construction, the lowest order normalized differential invariant

I2 = ι(uxx) = κ =
uxx

(1 + u2
x)

3/2
(2.20)

turns out to be the Euclidean curvature of the curve. We defer the identification of the
higher order normalized invariants I3, I4, . . . , until we have constructed the associated
recurrence formulae.

† Typically, while the right moving frame (2.7) plays a more fundamental role and is easier
to compute, in classical geometries, the corresponding left moving frame (2.8) includes the usual
frame vectors on the submanifold, cf. [4].
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Remark : In the preceding example, there remains an unresolved discrete ambiguity
since we can rotate by π radians without affecting the cross-section (2.18). The effect is to
map u0(x) to −u0(−x), and hence change the sign of the even order normalized invariants,
I2j 7→ −I2j , so that, in particular, the curvature invariant changes sign: κ 7→ −κ. This can
be avoided by either working with its absolute value or, if one restricts attention to closed
curves, by fixing the orientation. Here, to avoid technicalities, we will ignore this final
ambiguity (as is done in most treatments), referring to [20] for the full details, including
the additional effects of reflections on the moving frame and differential invariants.

An alternative method of generating differential invariants is through invariant differ-
entiation. Given a transformation group acting on plane curves, we use ds to denote the
G-invariant arc-length element, or, equivalently, the invariant† one-form of lowest order.
We remark that the invariant one-forms can also be systematically constructed through
a reasonably straightforward extension of the invariantization process associated with the
moving frame, and refer the reader to [4, 22] for details.

Let D = d/ds be the dual invariant differential operator, i.e., the arc length derivative.
Invariance of the arc-length form ds implies that D maps a differential invariant of order
k to a differential invariant of order k + 1. In particular, starting with the (non-constant)
normalized differential invariant κ = In+1 of lowest order, namely n+1, which we identify‡

as the G-invariant curvature function, its successive arc-length derivatives κs = Dκ, κss =
D2κ, . . . , are differential invariants of respective orders n+ 2, n+ 3, . . . . It is known that
they also generate the algebra of differential invariants; one way of proving this assertion
is by inspection of the recurrence formulae. The Replacement Rule (2.13) tells us that
these are all functions of the normalized differential invariants; vice versa, it can be shown
that the normalized differential invariants are themselves certain functions of the curvature
invariant and its successive arc length derivatives. The resulting formulae

Ik = Fk(κ, κs, . . . , κk−n−1), k ≥ n+ 1, (2.21)

enable one to express the coefficients of the normal form Taylor expansion (2.12) of a curve
in terms of the curvature invariant and its arc-length derivatives. Our goal is to develop
the machinery that enables one to straightforwardly compute these formulas, and hence
the explicit Taylor expansion for the normal form of a curve under a group action.

While, in principle, knowing the explicit coordinate formulae for the curvature invari-
ants enables one, e.g. via the Replacement Rule (2.13), to express them in terms of the
normalized invariants, and hence, by inversion, determine the desired formulae (2.21), in

† Strictly speaking, ds is only “contact-invariant”, meaning that it is not an invariant form
on jet space but, rather, is invariant when restricted to curve jets, or, equivalently, is invariant
modulo contact forms, [18].

‡ Identification of κ with a classical geometric quantity (Euclidean curvature, equi-affine
curvature, projective curvature, etc.) requires an appropriate choice of normal form. Other
choices may result in some function, e.g., a constant multiple, of the classical curvature invariant.
Incidentally, the function in question can be straightforwardly found by applying the Replacement
Rule (2.13) to the classical formula.
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practice, for complicated group actions and higher order invariants, this can be a very cum-
bersome and complicated procedure that can overwhelm the abilities of even sophisticated
computer algebra systems such as Mathematica, Maple, Sage, etc. The power of the
equivariant moving frame method is that it enables one to systematically and straightfor-
wardly derive these formulae without a priori knowledge of the explicit formulae for any of
the differential invariants, or the invariant arc length derivative, or even the moving frame
itself. All that is required is the formulae for the prolonged infinitesimal generators of the
group action, coupled with some simple (symbolic) linear algebra!

To explain the computational algorithm, let

vσ = ξσ(x, u)
∂

∂x
+ ϕσ(x, u)

∂

∂u
, σ = 1, . . . , r, (2.22)

be a basis for the Lie algebra of infinitesimal generators of the action of G, which are vector
fields on M , [17]. Let

pr vσ = ξσ(x, u)
∂

∂x
+

∑

k≥0

ϕk
σ(x, u

(k))
∂

∂uk

, σ = 1, . . . , r, (2.23)

be the corresponding infinitesimal generators of the prolonged action of G on the jet spaces,
whose coefficients are explicitly determined by the well-known prolongation formula, [17]:

ϕk
σ(z

(k)) = Dk
x

[
ϕσ(x, u)− ξσ(x, u) ux

]
+ ξσ(x, u) uk+1. (2.24)

Here

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux

+ uxxx

∂

∂uxx

+ · · · (2.25)

is the total derivative operator, which effectively differentiates differential functions by
treating u as a function of x.

The recurrence formulae for the differentiated invariants, [4], are

Ik+1 = DIk −

r∑

σ=1

Kσ ι
[
ϕk
σ(x, u

(k))
]
, k = 0, 1, 2, . . . , (2.26)

where ι is the invariantization map (2.14) and K1, . . . , Kr are certain as yet unspecified
differential invariants known as the Maurer–Cartan invariants†. In particular, if one takes
0 ≤ k ≤ n = r − 2 in (2.26), then Ik = ck is a constant phantom invariant, and hence
the first term on the right hand side of the recurrence formula is zero. Thus, the result
is a system of r − 1 linear equations for the r Maurer–Cartan invariants in terms of the
normalized differential invariants of order ≤ r−1 = n+1. These are supplemented by the

† This is because they are, in fact, the coefficients of the pull-backs of the Maurer–Cartan
forms via the moving frame map ρ : Jn → G, [4]. However, while this is essential to proving the
validity of (2.26), from a purely practical standpoint there is no need to know this theoretical fact,
or even understand what a “Maurer–Cartan form” is, since, as we will soon see, we can readily
determine their explicit formulae directly from the recurrence formulae themselves.
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recurrence formula for the remaining phantom invariant H = ι(x) = x0, which takes the
form

1 = DH −

r∑

σ=1

Kσ ι
[
ξσ(x, u)

]
= −

r∑

σ=1

Kσ ι
[
ξσ(x, u)

]
. (2.27)

It can be shown that the resulting system of r linear equations can be uniquely solved
for the Maurer–Cartan invariants K1, . . . , Kr, which can thus all be expressed as certain
rational functions of the curvature invariant κ = In+1. With these expressions in hand, the
resulting higher order recurrence formulae (2.26), for k > n, will then iteratively provide
the required formulae (2.21) for each Ik+1 in terms of the arc length derivatives of κ. Let
us see how this works in the context of a couple of examples.

Example 2.2. Return to the action of the Euclidean group on plane curves intro-
duced in Example 2.1. We use

D = Ds =
1√

1 + u2
x

Dx (2.28)

to denote the invariant arc length total derivative operator.

The infinitesimal generators of the action (2.15) are

v1 = ∂x, v2 = ∂u, v3 = −u∂x + x∂u. (2.29)

Applying the prolongation formula (2.24), the infinitesimal generators of the prolonged
action of SE(2) on plane curves are

pr v1 = ∂x, pr v2 = ∂u,

pr v3 = −u∂x + x∂u + (1 + u2
x)∂ux

+ 3uxuxx ∂uxx
+ (4uxuxxx + 3u2

xx)∂uxxx
+

+ (5uxuxxxx + 10uxxuxxx)∂uxxxx
+

+ (6uxuxxxxx + 15uxxuxxxx + 10u2
xxx)∂uxxxxx

+ · · · .

(2.30)

Thus, the recurrence formulae (2.26, 27) for the three phantom invariants (2.19) are

1 = DH −K1 ι(1)−K2 ι(0)−K3 ι(−u) = −K1,

0 = I1 = DI0 −K1 ι(0)−K2 ι(1)−K3 ι(x) = −K2,

κ = I2 = DI1 −K1 ι(0)−K2 ι(0)−K3 ι(1 + u2
x) = −K3,

and hence the Maurer–Cartan invariants are

K1 = −1, K2 = 0, K3 = −κ. (2.31)

Using (2.17, 19), these values are then substituted into the higher order recurrence formulae
(2.26) to produce

I3 = DI2 −K3 ι(3uxuxx) = κs,

I4 = DI3 −K3 ι(4uxuxxx + 3u2
xx) = κss + 3κ3,

I5 = DI4 −K3 ι(5uxuxxxx + 10uxxuxxx) = κsss + 19κ2κs,

I6 = DI5 −K3 ι(6uxuxxxxx + 15uxxuxxxx + 10u2
xxx)=κssss + 34κ2κss + 48κκ2

s + 45κ5,

(2.32)
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and so on. We conclude that the explicit Taylor expansion of a curve placed in Euclidean
normal form (2.16) is

u0(x) =
1
2 κx

2 + 1
6 κsx

3 + 1
24(κss + 3κ3)x4 + 1

5!(κssss + 19κ2κs)x
5 +

+ 1
6!
(κssss + 34κ2κss + 48κκ2

s + 45κ5)x6 + · · · .
(2.33)

Higher order terms can be systematically constructed by continuing the above procedure.
However, I do not know a general formula for the differential polynomials in κ that appear
as coefficients.

Example 2.3. A more substantial example is provided by the geometry of equi-
affine planar curves, [9], also of importance for image processing, [2]. The equi-affine

group SA(2) acts on M = R
2 via area-preserving affine transformations

g · (x, u) = (αx+ βu+ a, γx+ δu+ b), αδ − βγ = 1. (2.34)

The normalization equations

x = u = ux = 0, uxx = 1, uxxx = 0, (2.35)

define a cross-section to the prolonged action, which leads to the classical equi-affine moving
frame. This normalization can be applied except at inflection points, i.e., provided the
nondegeneracy condition uxx 6= 0 holds. (Similar nondegeneracy conditions appear in
most examples, the preceding case of Euclidean plane curves being a notable exception.
At isolated inflection points one can, in principle, use the general moving frame procedure,
to be presented in Section 3, to construct a higher order moving frame.) The cross-section
(2.35) corresponds to the following equi-affine normal form for a non-degenerate plane
curve:

u0(x) =
1
2 x

2 + 1
4! I4x

4 + 1
5! I5x

5 + 1
6!I6x

6 + · · · . (2.36)

The fundamental differential invariant is the equi-affine curvature

κ = I4 = ι(uxxxx) =
uxxuxxxx − 5

3 u
2
xxx

u8/3
xx

, (2.37)

while

D = ι(Dx) = u−1/3
xx Dx (2.38)

is the invariant differentiation operator with respect to equi-affine arc-length. Both formu-
las (2.37, 38) can be straightforwardly found by a complete implementation of the moving
frame construction, but are not required to perform the ensuing computations.

Our goal is to write the higher order differential invariants

Ik = ι(uk), k ≥ 4, (2.39)

and hence the equi-affine normal form (2.36), in terms of the equi-affine curvature and its
arc-length derivatives. Applying (2.23, 24), the prolonged infinitesimal generators for the
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equi-affine group action (2.34) are

v1 = ∂x,

v2 = ∂u,

v3 = −x ∂x + u ∂u + 2ux ∂ux
+ 3uxx ∂uxx

+ 4uxxx ∂uxxx
+ 5uxxxx ∂uxxxx

+ · · · ,

v4 = u ∂x − u2
x ∂ux

− 3uxuxx ∂uxx
− (4uxuxxx + 3u2

xx) ∂uxxx
−

− (5uxuxxxx + 10uxxuxxx) ∂uxxxx
+ · · · ,

v5 = x ∂u + ∂ux
.

(2.40)

Thus, the recurrence formulae (2.26, 27) for the phantom invariants coming from invari-
antizing the cross-section coordinates (2.37) are

1 = DH −K1 = −K1, 0 = I1 = DI0 −K2 = −K2, 1 = I2 = DI1 −K5 = −K5,

0 = I3 = DI2 − 3K3 = −3K3, κ = I4 = DI3 + 3K4 = 3K4,

and hence the Maurer–Cartan invariants are

K1 = −1, K2 = 0, K3 = 0, K4 = 1
3 I4 = 1

3 κ, K5 = −1. (2.41)

These values are then substituted into the higher order recurrence formulae (2.26) to
iteratively produce the desired formulae:

I5 = DI4 = κs,

I6 = DI5 + 5I24 = κss + 5κ2,

I7 = DI6 + 7I4I5 = κsss + 17κκs,

I8 = DI7 +
28
3 I4I6 +

35
3 I34 = κssss +

79
3 κκss + 17κ2

s +
175
3 κ3,

(2.42)

and so on. We conclude that the equi-affine normal form for a plane curve at a non-
inflection point is given by

u0(x) =
1
2
x2 + 1

4!
κx4 + 1

5!
κsx

5 + 1
6!
(κss + 5κ2)x6 + 1

7!
(κsss + 17κκs)x

7 +

+ 1
8!

(
κssss +

79
3
κκss + 17κ2

s +
175
3

κ3
)
x8 + · · · .

(2.43)

Again, while they are easily found by iterating the preceding algorithm, I do not know
a general explicit formula for the differential polynomials appearing in the normal form
expansion (2.43).

3. Normal Forms for Submanifolds.

We now turn to the equivariant moving frame construction, [4], that applies to
completely general Lie group actions and, when suitably adapted, [23], also to infinite-
dimensional Lie pseudo-group actions. Let M be an m-dimensional manifold which, since
we are working locally, we identify as (an open subset of) Rm. Given 1 ≤ p < m, there is
an induced action of G on p-dimensional submanifolds S ⊂ M , and we are interested in
determining when two such submanifolds are equivalent , meaning that there exists g ∈ G
mapping one (locally) to the other: S̃ = g · S. As before, we are interested in the sub-
manifold purely as a subset of M , and thus allow arbitrary reparametrizations thereof.

12



(Although one can readily adapt the procedure to avoid or restrict allowable reparamet-
rizations.) The solution to the equivalence problem is based on the differential invariant
signature, and the moving frame method allows one to explicitly determine the fundamen-
tal differential invariants used to construct the required signature, [2, 4].

We employ coordinates (x, u) = (x1, . . . , xp, u1, . . . , uq) on R
m, with p + q = m,

treating the x’s as independent variables and the u’s as dependent variables, whereby
any p-dimensional submanifold S that is transverse to the vertical fibers {x = x0 } can
be locally identified with the graph, S =

{
(x, u(x))

}
, of a smooth vector-valued function

x 7→ u(x) with components uα(x1, . . . , xp), α = 1, . . . , q. We identify the nth order Taylor
expansion of u(x) at a point x0 in its domain as the n jet of the submanifold at the
base point z0 = (x0, u0) = (x0, u(x0)) ∈ S. The resulting nth order jet space Jn, for
p-dimensional submanifolds, is coordinatized by the independent variables x1, . . . , xp, the
dependent variables u1, . . . , uq, and their derivatives up to order n, which we denote by
uα
J , with α = 1, . . . , q, and J = (j1, . . . , jk) a symmetric multi-index, with 1 ≤ jk ≤ p, of

order 1 ≤ k = #J ≤ n, whose entries indicate partial derivatives of uα with respect to the
x’s. Thus, a point in Jn is specified by the coordinates

z(n) = ( . . . xi . . . uα . . . uα
J . . . ), where i = 1, . . . , p, α = 1, . . . , q, #J ≤ n. (3.1)

See [4, 17, 18] for details.

The action of G on submanifolds induces an action on their jets, leading to the pro-
longed group action on jet space. Explicit formulas are obtained by implicit differentiation.
In general, a cross-section is a submanifold of the jet space, K ⊂ Jn that has complemen-
tary dimension and is transverse to the prolonged group orbits. Moreover, we assume that,
for each jet z(n) ∈ Jn sufficiently close to K, there is a unique group element g = ρ(z(n))
that maps z(n) to the cross-section, which, as before, specifies the moving frame map†

ρ : Jn → G, satisfying the right equivariance condition (2.7). Transversality means that
no (non-zero) prolonged infinitesimal generator is tangent to the cross-section, which can
be straightforwardly verified using their explicit formulas, cf. (3.7) below, and involves
computing the rank of a certain matrix. Existence of a cross-section, and hence a moving
frame, requires that the prolonged action be (locally) free and regular on an open subset
of Jn, and it can be proved that, assuming the action on M is locally effective on subsets,
local freeness holds at a sufficiently high order n, [19]. Usually — although not always,
[13, 15] — one chooses a coordinate cross-section obtained by setting (or normalizing)
r = dimG of the jet coordinates equal to suitable constants. Almost always, one chooses a
minimal order cross-section, meaning that the normalized jet coordinates have as low an
order as possible. For example, the cross-section for an ordinary planar group action used
in Section 2 is minimal. From here on we implicitly assume that we have chosen a coordi-
nate cross-section of minimal order, although the general moving frame constructions can
be readily adapted to more exotic choices.

If the group acts transitively on M , a minimal order coordinate cross-section is con-
tained in the jet space over a single point K ⊂ Jn|z0 . One can interpret such a coordi-
nate cross-section as normalizing particular Taylor coefficients of the submanifolds passing

† As before, the notation allows ρ to be only defined on an open subset of Jn.
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through the base point z0 — which is almost always taken to be at the origin. Once the
moving frame map is specified, the normal form for a submanifold S ⊂ M at a point z ∈ S
is obtained by applying the moving frame map corresponding to the submanifold’s n-jet
at the point in question, z(n) = jnS|z, so that S0 = ρ(z(n)) · S is a submanifold passing
through z0 ∈ S0 and whose jet belongs to the cross-section, i.e., whose Taylor coefficients
corresponding to the normalized cross-section jet coordinates have been normalized to the
specified values. The remaining jet coordinates (Taylor coefficients), when expressed in
terms of the originating submanifold jets z(k), provide a complete system of differential
invariants, known as the normalized differential invariants

With the moving frame in hand, we define the invariantization of a differential function
F (z(n)) to be the unique differential invariant J(z(n)) = ι

[
F (z(n))

]
that agrees with F

on the cross-section: F | K = J | K. In particular, invariantization of the jet coordinate
functions leads to the normalized differential invariants:

Hi = ι(xi), IαJ = ι(uα
J ). (3.2)

The r jet coordinates that are used to define the cross-section produce the constant, phan-
tom differential invariants, and the remaining, non-phantom fundamental normalized in-
variants provide a complete system of functionally independent differential invariants. The
invariantization map has the explicit formula

ι
[
F (. . . xi . . . uα

J . . .)
]
= F (. . .Hi . . . IαJ . . .), (3.3)

in which one replaces all jet coordinates by the corresponding normalized differential in-
variants. Moreover, invariantization clearly preserves differential invariants, ι(J) = J , and
hence any differential invariant can be expressed in terms of the normalized differential
invariants via the Replacement Rule:

J(. . . xi . . . uα
J . . .) = J(. . .Hi . . . IαJ . . .). (3.4)

Furthermore, for p-dimensional submanifolds there are p invariant differential opera-
tors D1, . . . ,Dp that map differential invariants to differential invariants, and obtained by

invariantizing† the corresponding total derivative operators

Di =
∂

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂

∂uα
J

, i = 1, . . . , p, (3.5)

where uα
J,i = Di(u

α
J ) = uα

j1...jki
. The Basis Theorem, [4, 24], states that there exist a finite

number of generating differential invariants J1, . . . , Jl with the property that any other
differential invariant can be written as a (not necessarily uniquely specified) function of
the generating invariants and their successive invariant derivatives,

Jk,I = Di1
· · ·Din

Jk, k = 1, . . . , l, 1 ≤ iν ≤ p, n ≥ 0.

† More correctly, one invariantizes the basic horizontal one-forms, ̟i = ι(dxi), producing a
invariant horizontal coframe, and the invariant differential operators are the dual total differenti-
ation operators.
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In particular, one can express all the normalized differential invariants in terms of them,
and the explicit formulae can be found by iteratively applying the recurrence formulae, to
be described next. It is known that, given a moving frame ρ : Jn → G of order n, the non-
constant normalized differential invariants of order ≤ n+1 form a generating set, although
it typically contains redundancies and one can, by inspection of the recurrence relations
and the commutation formulae (see Example 3.2 below) among the invariant differential
operators, produce a smaller generating set. Determining the minimal number l = lmin

of generating differential invariants is a very challenging problem, with surprises even in
seemingly well-studied situations, [21, 12]. The case of curves is, however, known, where
the answer (for ordinary group actions) is precisely l = m − 1; see [6] for intriguing Lie
theoretic tools for determining their orders.

To write out the recurrence formulae, let

vσ =

p∑

i=1

ξiσ(x, u)
∂

∂xi
+

q∑

α=1

ϕα
σ(x, u)

∂

∂uα
, σ = 1, . . . , r, (3.6)

be a basis for the infinitesimal generators of the action of G on M . The corresponding
prolonged infinitesimal generators for the action on the jet spaces are given by the well-
known prolongation formula

pr vσ =

p∑

i=1

ξiσ(x, u)
∂

∂xi
+

q∑

α=1

∑

#J≥0

ϕα
J,σ(x, u

(n))
∂

∂uα
J

, (3.7)

whose coefficients are readily calculated:

ϕα
J = DJ

[
ϕα −

p∑

i=1

ξi uα
i

]
+

p∑

i=1

ξi uα
J,i, (3.8)

where DJ = Dj1
· . . . ·Djk

, with J = (j1, . . . , jk), 1 ≤ jν ≤ p, denotes the corresponding
higher order total derivative.

The general recurrence formula for differential invariants† can be then formulated as
follows. Let F (z(n)) be any differential function. Then

ι(DiF ) = Diι(F )−
r∑

σ=1

Kσ
i ι

[
pr vσ(F )

]
, i = 1, . . . , p, (3.9)

where‡ Kσ
i are certain differential invariants known as the Maurer–Cartan invariants .

(Our earlier equations (2.26, 27) are both special cases of (3.9), in which F = uk and
x, respectively.) In particular, if we take F to be one of the cross-section coordinates,
then its invariantization is a constant phantom invariant, and hence the first term on the
hand side of (3.9) is zero. Thus, fixing 1 ≤ i ≤ p, and then successively substituting the r

† This is a special case of the more general recurrence formula for differential forms, [4, 14].

‡ Now we have made the group index σ on the Maurer–Cartan invariants a superscript.
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cross-section coordinates into (3.9) produces a system of r = dimG linear equations which,
according to [4], can be uniquely solved for the Maurer–Cartan invariants K1

i , . . . , K
r
i as

rational functions of the normalized differential invariants. Substituting these expressions,
for all i = 1, . . . , p, into (3.9), where now F is taken to be successive non-normalized jet
coordinates, produces the full system of recurrence relations that completely specifies the
structure of the rational, non-commutative differential invariant algebra and, in particular,
leads to the desired formulae for the Taylor coefficients as invariant derivatives of the
generating differential invariants.

Let us illustrate the procedure with two further examples.

Example 3.1. Consider the r = 6 – dimensional Euclidean group SE(3) acting by
rigid motions on space curves C ⊂ M = R

3. Here the submanifolds have dimension p = 1,
and we use coordinates z = (x, u, v) on M . As usual, we concentrate on curves given
by the graphs of functions: u = u(x), v = v(x), although all our results can be readily

adapted to general parametrized curves z(t) = ( x(t), u(t), v(t) )
T
. Indeed, the recurrence

formulae and consequent relations among differential invariants make no reference as to
how the curve is parametrized. On the other hand, when writing out explicit formulas for
the differential invariants, we use

zt =




xt

ut

vt



 =




1
ux

vx



 , ztt =




xtt

utt

vtt



 =




0

uxx

vxx



 , zttt =




xttt

uttt

vttt



 =




0

uxxx

vxxx



 , (3.10)

and so on, to denote the derivative vectors along the curve, where the second expression
can be used in the special case of a graph, parametrized by t = x.

A basis for the infinitesimal generators is provided by the vector fields

v1 = ∂x, v2 = ∂u, v3 = ∂v,

v4 = v∂u − u∂v, v5 = −u∂x + x∂u, v6 = −v∂x + x∂v.
(3.11)

Applying the prolongation formula (3.7, 24) leads to the corresponding prolonged infinites-
imal generators on the curve jet spaces, parametrized by x, u, v, ux, vx, uxx, vxx, uxxx, . . . .
To order 3, we find

pr v1 = ∂x,

pr v2 = ∂u,

pr v3 = ∂v, (3.12)

pr v4 = v∂u − u∂v + vx∂ux
− ux∂vx

+ vxx∂uxx
− uxx∂vxx

+ vxxx∂uxxx
− uxxx∂vxxx

+ · · · ,

pr v5 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxvx∂vx
+ 3uxuxx∂uxx

+ (uxxvx + 2uxvxx)∂vxx
+

+ (4uxuxxx + 3u2
xx)∂uxxx

+ (uxxxvx + 3uxxvxx + 3uxvxxx)∂vxxx
+ · · · ,

pr v6 = −v∂x + x∂v + uxvx∂ux
+ (1 + v2x)∂vx

+ (2uxxvx + uxvxx)∂uxx
+ 3vxvxx∂vxx

+

+ (3uxxxvx + 3uxxvxx + uxvxxx)∂uxxx
+ (4vxvxxx + 3v2xx)∂vxxx

+ · · · .

The classical moving frame, [9], relies on the normalization equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0, (3.13)

16



which serve to define a coordinate cross-section provided uxx 6= 0. (Indeed, the classical
moving frame is not defined at inflection points of the space curve.) This corresponds to
translating and rotating the curve into the Euclidean normal form so that it goes through
the origin, has tangent in the direction of the x-axis, and second order contact with the
x, u plane. For this particular cross-section, the translational component of the left moving
frame is the point on the curve, z = (x, u, v) ∈ C, while the columns of the rotational
component R = [ t,n,b ] ∈ SO(3) are the usual orthonormal tangent, normal, and binormal
frame vectors based at z. However, keep in mind that these explicit identifications are not
required to generate the recurrence formulae for the differential invariants.

We let
H = ι(x), Ik = ι(uk), Jk = ι(vk), (3.14)

be the normalized differential invariants resulting from invariantization, so that, in view
of (3.13), the phantom invariants are

H = ι(x) = 0, I0 = ι(u) = 0, J0 = ι(v) = 0,

I1 = ι(ux) = 0, J1 = ι(vx) = 0, J2 = ι(vxx) = 0.
(3.15)

One can further identify

I2 = ι(uxx) = κ, J3 = ι(vxxx) = κ τ (3.16)

with, respectively, the classical curvature invariant†, and the product of curvature and
torsion. These two invariants generate the differential invariant algebra through invariant
differentiation with respect to arc length, and the recurrence formulae allow one to express
the normalized invariants Ik, Jk in terms of curvature, torsion, and their successive arc-
length derivatives: κ, τ, κs, τs, . . . . We note the classical formulas

κ =
‖ zt × ztt ‖

‖ zt ‖
3

=

√
(uxvxx − uxxvx)

2 + u2
xx + v2xx

(1 + u2
x + v2x)

3/2
,

τ =
zt × ztt · zttt
‖ zt × ztt ‖

2
=

uxxvxxx − uxxxvxx
(uxvxx − uxxvx)

2 + u2
xx + v2xx

,

ds = ‖ zt ‖ dt =
√
1 + u2

x + v2x dx,

(3.17)

which can be obtained by fully implementing the moving frame construction, [5]. The
first expression is valid for arbitrary parametrized curves, and the second is for graphs.
However, we emphasize that these explicit formulas are not required for us to determine
the recurrence formulas, and hence the Taylor coefficients of the Euclidean normal form of
a space curve.

In this example, the recurrence formulae (3.9) have the form

ι(DxF ) = D ι(F )−
6∑

σ=1

Kσ ι(pr vσ(F )), (3.18)

† As in the planar version, there is an ambiguous sign resulting from a 180◦ rotation, and one
usually sets κ = | I2 | to ensure full invariance. To avoid minor technicalities, we shall ignore this
extra complication here, and refer the reader to [20] for further details.
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for any differential function F (x, u, v, ux, vx, uxx, . . . ), where K1, . . . , K6 are the Maurer–
Cartan invariants. Taking F in (3.18) to be, in turn, each of the cross-section jet coordi-
nates x, u, v, ux, vx, vxx that define the phantom invariants (3.15) leads, via (3.12), to the
linear system

1 = DH −K1 = −K1, 0 = I1 = DI0 −K2 = −K2,

I2 = DI1 −K5 = −K5, 0 = J1 = DJ0 −K3 = −K3,

0 = J2 = DJ1 −K6 = −K6, J3 = DJ2 − I2K4 = −I2K4,

which can be immediately solved for the Maurer–Cartan invariants:

K1 = −1, K2 = 0, K3 = 0, K4 = −J3/I2 = −τ, K5 = −I2 = −κ, K6 = 0.

Substituting these expressions into (3.18) and letting F range over the other jet coordinates
produces the non-phantom recurrence formulae

I3 = DI2,

I4 = DI3 + 3I32 − J2
3/I2, J4 = DJ3 + I3J3/I2,

I5 = DI4 + 10I22I3 − J3J4/I2, J5 = DJ4 + 6I22J3 − J3I4/I2,

(3.19)

and so on. Starting with (3.16), and successively substituting into (3.19), we find

I2 = κ,

I3 = κs, J3 = κτ,

I4 = κss + 3κ3 − κτ2, J4 = κτs + 2κs τ,

I5 = κssss − 3κτ τs − 3κs τ
2 + 19κ2κs, J5 = κτss + 3κs τs + 3κss τ − κτ3 + 9κ3τ.

(3.20)

This implies that the Euclidean normal form of a space curve has Taylor expansion

u0(x) =
1
2
κx2 + 1

6
κsx

3 + 1
24
(κss + 3κ3 − κτ2)x4 +

+ 1
120(κssss − 3κτ τs − 3κs τ

2 + 19κ2κs)x
5 + · · · ,

v0(x) =
1
6 κτ x

3 + 1
24(2τκs + κτs)x

4 +

+ 1
120

(κτss + 3κs τs + 3κss τ − κτ3 + 9κ3τ)x5 + · · · .

(3.21)

Observe that if τ ≡ 0, so that the curve is planar, then the first equation in (3.21) reduces
to the planar normal form (2.33).

Example 3.2. Finally, we treat the action of the Euclidean group SE(3) on two-
dimensional surfaces S ⊂ M = R

3. Now p = 2, and we use coordinates z = (x, y, u) on M .
As usual, we focus our attention to surfaces given by the graphs of functions: u = u(x, y).
All our results can be readily adapted to general parametrized surfaces, and, as always,
the final recurrence formulae make no reference to the underlying parametrization. We
refer to [14, 21] for additional details. The surface jet space has coordinates

(x, y, u, ux, uy, uxx, uxy, uyy, uxxx, uxxy, uxyy, uyyy, . . . ),

and, in general, we use ujk to denote the jet coordinate corresponding to the partial

derivative ∂j+ku/∂xj∂yk.
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The classical moving frame construction, [9], relies on the coordinate cross-section

x = y = u = ux = uy = uxy = 0. (3.22)

The corresponding phantom invariants are

ι(x) = 0, ι(y) = 0, I00 = ι(u) = 0,

I10 = ι(ux) = 0, I01 = ι(uy) = 0, I11 = ι(uxy) = 0,
(3.23)

where, in general, we denote the normalized differential invariants by

Ijk = ι(ujk), j, k ≥ 0.

The fundamental differential invariants of lowest order are the principal curvatures

κ1 = I20 = ι(uxx), κ2 = I02 = ι(uyy), (3.24)

and it can be shown — through inspection of the recurrence formulae — that they generate
the algebra of differential invariants via invariant differentiation. Surprisingly, as explained
below, they do not form a minimal generating set.

The selected cross-section (3.22) corresponds to translating and rotating the surface so
that it acquires the Euclidean normal form by passing through the origin, having horizontal
tangent plane, and so that the directions of principal curvature line up with the coordinate
axes. This requires that the point z ∈ S be non-umbilic, meaning that the two principal
curvatures are unequal, κ1 6= κ2, which is the standard non-degeneracy condition required
for the existence of a well-defined Euclidean moving frame, [9]. (At a non-degenerate
umbilic, one could, in principle, employ a higher order moving frame.) The mean and
Gaussian curvature invariants

H = 1
2(κ1 + κ2), K = κ1κ2, (3.25)

are often used as convenient alternatives to the principal curvature invariants, since they
eliminate some of the residual discrete ambiguities in the moving frame. The resulting
left moving frame consists of the point on the curve defining the translation component
a = z ∈ R

3, while the columns of the rotation matrix R = [ t1, t2,n ] ∈ SO(3) contain the
unit tangent vectors t1, t2 forming the Darboux frame on the surface, [9], along with the
unit normal n.

Higher order differential invariants are obtained by differentiation with respect to
the diagonalizing dual Darboux coframe ̟1 = ι(dx), ̟2 = ι(dy). We let D1,D2 denote
the dual invariant differential operators, which differentiate in the principal curvature
directions, and defined so that the differential of any differential function F can be written
in invariant form

dF = (D1F )̟1 + (D2F )̟2. (3.26)

The invariant differential operators do not commute, but, rather satisfy the commutation

relation [
D1,D2

]
= D1 D2 −D2 D1 = Y2 D1 − Y1 D2, (3.27)
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where

Y1 =
κ2,1

κ1 − κ2

, Y2 =
κ1,2

κ2 − κ1

, (3.28)

are known as the commutator invariants , whose expressions can also be established using
the full moving frame calculus, [14]. Note that the denominator in (3.28) vanishes at
umbilic points on the surface, where the principal curvatures coincide κ1 = κ2, and the
moving frame is not valid.

Setting F to be, successively, x, y, ujk in the general formulae (3.9) produces the
recurrence relations

1 = −
6∑

σ=1

Kσ
1 ι(ξσ), 0 = −

6∑

σ=1

Kσ
1 ι(ησ), Ij+1,k = D1Ijk −

6∑

σ=1

Kσ
1 ι(ϕjk

σ ),

0 = −

6∑

σ=1

Kσ
2 ι(ξσ), 1 = −

6∑

σ=1

Kσ
2 ι(ησ), Ij,k+1 = D2Ijk −

6∑

σ=1

Kσ
2 ι(ϕjk

σ ),

j, k ≥ 0,

(3.29)
where Kσ

1 , K
σ
2 are the Maurer–Cartan invariants, while ξσ, ησ, ϕ

jk
σ are, respectively, the

coefficients of ∂x, ∂y, ∂ujk
in the prolonged infinitesimal generators, which are calculated

via (3.8):

pr v1 = ∂x, pr v2 = ∂y, pr v3 = ∂u,

pr v4 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

− 2uxy∂uyy
+ · · · ,

pr v5 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uy uxx + 2uxuxy)∂uxy

+ (2uy uxy + uxuyy)∂uyy
+ · · · ,

pr v6 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy

+ (uy uxx + 2uxuxy)∂uxx
+ (2uy uxy + uxuyy)∂uxy

+ 3uy uyy∂uyy
+ · · · .

(3.30)

Substituting (3.30) into the recurrence formulae (3.29) corresponding to the phantom in-
variants (3.15), and solving the resulting linear systems produces the formulae for the
Maurer–Cartan invariants

K1
1 = −1, K2

1 = 0, K3
1 = 0, K4

1 = −Y1, K5
1 = −κ1, K6

1 = 0,

K1
2 = 0, K2

2 = −1, K3
2 = 0, K4

2 = −Y2, K5
2 = 0, K6

2 = −κ2.
(3.31)

Substituting these expressions back into (3.29), we successively obtain the desired formulae
for the higher order normalized differential invariants in terms of the principal curvatures,
of which the third order ones are

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2, (3.32)
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while, taking these into account, the fourth order recurrence relations yield

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2
+ 3κ3

1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2
= κ1,21 +

κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2
,

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2
+ κ1κ

2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2
+ κ2

1κ2,

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2
= κ2,12 −

κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2
,

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2
+ 3κ3

2.

(3.33)

There are two distinct formulae for I31, I22, I13 because they appear in both the first and
second set of recurrence formulae in (3.29). The two expressions for I31 and I13 agree
owing to the non-commutativity, (3.27), of D1,D2, while the two expressions for I22 imply
the celebrated Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ2

2,1 − 2κ2
1,2

κ1 − κ2

− κ1κ2 (κ1 − κ2) = 0, (3.34)

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (3.35)

The latter is the key identity employed by Guggenheimer, [9], for a short proof of Gauss’
Theorema Egregium. We conclude that the Euclidean normal form of a surface z = u(x, y)
at a non-umbilic point is

u(x, y) = 1
2
κ1x

2 + 1
2
κ2 y

2 + 1
6
κ1,1x

3 + 1
2
κ1,2x

2y + 1
2
κ2,1xy

2 + 1
6
κ2,2 y

3 +

+ 1
24 I40x

4 + 1
6 I31x

3y + 1
4 I22x

2y2 + 1
6 I13xy

3 + 1
24 I04 y

4 + · · · ,
(3.36)

where the fourth order coefficients appear in (3.33). Higher order terms can easily and
automatically be determined using the recurrence formulae.

It is a classical result that the algebra of Euclidean differential invariants of a non-
umbilic surface S ⊂ R

3 is generated, through invariant differentiation, by the principal
curvatures or, equivalently, the Gauss and mean curvatures; see [9] and, for a direct proof
based on the moving frame recurrence relations, [14]. Surprisingly, as noted in [21], for
suitably nondegenerate surfaces, the mean curvature by itself suffices to generate all the
differential invariants. In particular, the Gauss curvature K can be written as an explicit
universal rational combination of the invariant derivatives of the mean curvature H of
order ≤ 4. Here we go slightly further by completely characterizing the nondegeneracy
condition found in [21].

Definition 3.3. A surface S ⊂ R
3 is mean curvature degenerate if, for any non-

umbilic point z0 ∈ S, there exist scalar functions f1(t), f2(t), such that

D1H = f1(H), D2H = f2(H), (3.37)
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at all points z ∈ S in a suitable neighborhood of z0.

Clearly any constant mean curvature surface is mean curvature degenerate, with
f1(t) ≡ f2(t) ≡ 0. Surfaces with non-constant mean curvature that admit a one-parameter
group of Euclidean symmetries, i.e., non-cylindrical or non-spherical surfaces of rotation,
non-planar surfaces of translation, or helicoid surfaces, obtained by, respectively, rotating,
translating, or screwing a plane curve, are also mean curvature degenerate since, by the
signature characterization of symmetry groups, [4], they have exactly one non-constant
functionally independent differential invariant, namely their mean curvature H and hence
any other differential invariant, including the invariant derivatives of H — as well as the
Gauss curvature K — must be functionally dependent upon H. There also exist surfaces
without continuous symmetries that are, nevertheless, mean curvature degenerate since
it is entirely possible that (3.37) holds, but the Gauss curvature remains functionally in-
dependent of H. However, I do not know whether there is a good intrinsic geometric
characterization of such surfaces.

Theorem 3.4. If a surface is mean curvature nondegenerate then the algebra of dif-

ferential invariants is generated entirely by the mean curvature and its successive invariant

derivatives.

Proof : Following the arguments in [21], in view of the Codazzi formula (3.35), it
suffices to write the commutator invariants Y1, Y2 in terms of the mean curvature. To
this end, we note that the commutator identity (3.27) can be applied to any differential
invariant. In particular,

D1D2H −D2D1H = Y2 D1H − Y1 D2H, (3.38)

and, furthermore, for j = 1 or 2,

D1D2DjH −D2D1DjH = Y2 D1DjH − Y1 D2DjH. (3.39)

Provided the nondegeneracy condition

(D1H)(D2DjH) 6= (D2H)(D1DjH), for j = 1 or 2, (3.40)

holds, we can solve (3.38–39) to write the commutator invariants Y1, Y2 as explicit rational
functions of invariant derivatives of H. Plugging these expressions into the right hand side
of the Codazzi identity (3.35) produces an explicit formula for the Gauss curvature as a
rational function of the invariant derivatives, of order ≤ 4, of the mean curvature, which
is valid for all surfaces satisfying the nondegeneracy condition (3.40).

Thus it remains to show that (3.40) is equivalent to mean curvature nondegeneracy
of the surface. First, if (3.37) holds, then

DiDjH = Difj(H) = f ′
j(H)DiH = f ′

j(H)fi(H), i, j = 1, 2.

This immediately implies

(D1H)(D2DjH) = (D2H)(D1DjH), j = 1, 2, (3.41)
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proving mean curvature degeneracy. Vice versa, in view of formula (3.26), the degeneracy
condition (3.41) implies that, for each j = 1, 2, the differentials dH, d(DjH) are linearly
dependent everywhere on S, which, by a general theorem characterizing functional depen-
dency, [17; Theorem 2.16], implies that, locally, DjH can be written as a function of H,
thus establishing the degeneracy condition (3.37). Q.E.D.
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