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1. Introduction.

Local Lie groups of transformations and their infinite-dimensional counterparts are
collectively known as Lie pseudo-groups, [18, 19, 33, 34, 53, 56]. Lie pseudo-groups arise
in a wide range of applications, including gauge theories, [5], conformal geometry and
field theory, [17, 20], fluid mechanics, [7, 47], and geometric numerical integration, [43].
However, development of suitable mathematical theory and computational algorithms has
lagged far behind the well-studied and well-understood situation of finite-dimensional Lie
group actions.

Given a Lie pseudo-group G acting on an m-dimensional manifold M , we will study
the induced action of G on submanifolds S ⊂M . A particularly important case is when the
pseudo-group represents the symmetry group of a system of differential equations, and the
submanifolds are the graphs of candidate solutions, cf. [7, 47]. As in the classical theory
of moving frames, [8, 24], we will concentrate on the induced action of G on jets of sub-
manifolds. Equivalence and symmetry properties of submanifolds are then, in accordance
with Cartan’s general philosophy, completely prescribed by the differential invariants, [48].
For these and a host of other applications, the key foundational issue is to understand, in
as much detail as possible, the structure of the algebra of differential invariants. In this
paper, we develop a theory of moving frames for Lie pseudo-group actions on submanifold
jets that algorithmically reveals this structure.

In the finite-dimensional theory, [21], a moving frame is defined as an equivariant
map ρ(n): Jn → G from an open subset of the submanifold jet bundle to the Lie group.
For Lie pseudo-groups, we still lack a suitable abstract object that can play the role
of the group, and instead we define a moving frame to be an equivariant section of a
suitable bundle (or, more accurately, groupoid) H(n) → Jn constructed from the jets of
pseudo-group transformations. For finite-dimensional Lie group actions, the existence of
a moving frame requires that the action be free, i.e., have trivial isotropy. Clearly, an
infinite-dimensional pseudo-group action never has trivial isotropy, and so we must modify
the definition of freeness to require that all elements of the isotropy sub-pseudo-group of
a point in Jn have the same nth order jet as the identity diffeomorphism. Our freeness
condition constrains the dimensions of the groupoids H(n), and thereby assumes the role of
the Spencer cohomological growth conditions imposed by Kumpera, [32], in his analysis of
differential invariants. A word of caution: Freeness of a prolonged pseudo-group action does

not reduce to the usual freeness condition when the pseudo-group is a finite-dimensional
Lie group! Indeed, an interesting future direction of research would be to investigate
the repercussions of this more general notion of freeness for finite-dimensional Lie group
actions.

Assuming freeness, the explicit construction of the moving frame is founded on the
Cartan normalization procedure associated with a choice of local cross-section to the group
orbits in Jn, cf. [21]. The moving frame induces an invariantization process that canon-
ically maps general differential functions and differential forms on J∞ to their invariant
counterparts. In particular, invariantization of the standard jet coordinates results in a
complete system of functionally independent normalized differential invariants, while in-
variantization of the horizontal and contact one-forms yields an invariant coframe. The
corresponding dual invariant total differential operators will map invariants to invariants
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of higher order. The structure of the algebra of differential invariants, including the spec-
ification of a finite generating set of differential invariants and the syzygies or differential
relations among the generators, will then follow from the recurrence relations that relate
the differentiated and normalized differential invariants. Remarkably, this final step re-
quires only linear algebra and differentiation based on the infinitesimal generators of the
pseudo-group action, and not the explicit formulae for either the differential invariants,
the invariant differential operators, or even the moving frame. In the final section of the
paper, we develop an alternative computational technique based on formal power series
expansions, that can be effectively used to compactly specify complete systems of moving
frame normalizations and recurrence relations.

We shall illustrate all our constructions with two elementary examples, which, never-
theless, already underscore many of the underlying features of the theory. More substan-
tial applications, in geometry, physics, symmetries of differential equations, and so on will
appear elsewhere, [12, 13, 14]. Extensions of these methods to Cartesian product pseudo-
group actions, leading to joint invariants and joint differential invariants, as in [50], and
multi-invariants and invariant numerical approximations, [51], are readily incorporated
into our general “moving framework”.

2. Prolongation of Diffeomorphisms.

Throughout this paper, M will be a smooth m-dimensional manifold, and we study
its regular, smooth submanifolds S ⊂ M of a fixed dimension 0 < p < n. We will assume
the reader is familiar with basic jet bundle constructions as presented, for example, in
[1, 47, 48]. Our first task is to analyze the prolonged action of the diffeomorphism pseudo-
group on jets of submanifolds, with the aim of placing the implicit differentiation formulae
of multivariable calculus in a conducive geometric setting. To ease the reader into the
formalism, let us look at the simplest situation: regular plane curves.

Remark : As in [53], we will consistently follow Cartan’s notational convention that
lower case letters z, x, u, etc., refer to source coordinates, while their capitalized counter-
parts Z,X, U , refer to the target coordinates of local diffeomorphisms Z = ϕ(z).

Example 2.1. Let M = R
2 have coordinates z = (x, u). For 0 ≤ n ≤ ∞, the n-jet

of a local diffeomorphism X = χ(x, u), U = ψ(x, u), at a source point in R
2, is prescribed

by its derivatives (Taylor coefficients) up to order n, which we denote by

Xx =
∂χ

∂x
, Xu =

∂χ

∂u
, Ux =

∂ψ

∂x
, Uu =

∂ψ

∂u
, Xxx =

∂2χ

∂x2
, Xxu =

∂2χ

∂x ∂u
, . . . .

We use

(z, Z(n)) = (x, u,X(n), U (n)) = (x, u,X, U,Xx, Xu, Ux, Uu, Xxx, Xxu, Xuu, Uxx, . . . ), (2.1)

to denote the induced local coordinates on the diffeomorphism jet bundle D(n) = D(n)(R2),
which is the subbundle of Jn(R2,R2) that is specified by the local invertibility constraint
XxUu−XuUx 6= 0. In view of the chain rule, composition and inversion of diffeomorphisms
induce composition and inversion operations on their jets, endowing D(n) with the structure
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of a groupoid , cf. [18, 40, 53]. The term “groupoid” refers to the fact that composition
of jets (Taylor polynomials/series) is only well defined when the target of the initial jet
matches the source of its successor.

Consider the action of local diffeomorphisms on curves C ⊂ R
2, that is, p = 1−dimen-

sional regular smooth submanifolds. Since our viewpoint is local, we can focus our attention
on curves which are the graphs of smooth functions u = f(x). (Curves with vertical
tangents are handled by a different choice of local coordinates, e.g., interchanging the roles
of independent and dependent variables. Extensions to general parametrized curves are
straightforward.) The n-jet of such a curve is prescribed by its derivatives, denoted

ux = f ′(x), uxx = f ′′(x), . . . un = f (n)(x),

and so
z(n) = (x, u(n)) = (x, u, ux, uxx, . . . , un) (2.2)

are the induced local coordinates on the curve jet space Jn = Jn(R2, 1). The action of
local diffeomorphisms on curves induces an action on their jets, known as the prolonged

action of the diffeomorphism pseudo-group. Moreover, as a consequence of the chain rule,
the n-jet of the transformed curve only depends on the n-jet of the diffeomorphism, and
so there is an induced action of the diffeomorphism groupoid D(n) on Jn.

The explicit formulae for the prolonged action are, as usual, obtained by implicit
differentiation. We will use

Ẑ(n) = (X, Û (n)) = (X,U, ÛX , ÛXX , . . . , Ûn)

to denote the jet coordinates of the transformed curve:

Û = U = F (X), ÛX = F ′(X), ÛXX = F ′′(X), . . . Ûn = F (n)(X).

(The hats are added to avoid confusion with the diffeomorphism jet coordinates Ux, Uu,
Uxx, Uxu, . . . .) Let

Dx =
∂

∂x
+Xx

∂

∂X
+ Ux

∂

∂U
+Xxx

∂

∂Xx

+Xxu

∂

∂Xu

+ Uxx

∂

∂Ux

+ Uxu

∂

∂Uu

+ · · · ,

Du =
∂

∂u
+Xu

∂

∂X
+ Uu

∂

∂U
+Xxu

∂

∂Xx

+Xuu

∂

∂Xu

+ Uxu

∂

∂Ux

+ Uuu

∂

∂Uu

+ · · · ,

(2.3)

be the total derivative operators on the diffeomorphism jet bundle D(n), cf. [53; (2.12)].
Further, let

Dx = Dx + ux Du + uxx

∂

∂ux

+ uxxx

∂

∂uxx

+ · · · (2.4)

be the total derivative operator with respect to all variables — both diffeomorphism jets
(2.1) and curve jets (2.2). (For the moment, we defer the discussion of precisely which
bundle this operator lives on.) The required implicit differentiation operator is then given
by

DX =
1

DxX
Dx =

1

Xx + uxXu

Dx. (2.5)
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Indeed, the local coordinate formulae for the prolonged action of a diffeomorphism jet on
a curve jet are found by recursively applying DX to the dependent variable U :

ÛX = DXU =
DxU

DxX
=

Ux + ux Uu

Xx + uxXu

,

ÛXX = D2
XU =

D2
xU DxX − DxU D2

xX

(DxX)3

= (Xx + uxXu)−3
[
(Uxx + 2 ux Uxu + u2

x Uuu + uxx Uu)(Xx + uxXu)

− (Ux + ux Uu)(Xxx + 2 uxXxu + u2
xXuu + uxxXu)

]
,

(2.6)

and so on, reproducing the well-known implicit differentiation formulae of elementary
calculus.

Let us now discuss how to properly formalize this basic example in a general frame-
work. For 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the nth order extended1 jet bundle
consisting of equivalence classes of p-dimensional submanifolds S ⊂ M under the equiva-
lence relation of nth order contact, cf. [48]. We use the standard local coordinates

z(n) = (x, u(n)) = ( . . . xi . . . uα
J . . . ) (2.7)

on Jn induced by a splitting of the local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq)
on M into p independent and q = m − p dependent variables, [47, 48]. When k > n, we
let π̃k

n: Jk → Jn denote the usual projection, so π̃k
n(z(k)) = z(n).

The choice of independent variables induces a decomposition of the differential one-
forms on J∞. The basis horizontal forms are the differentials dx1, . . . , dxp of the indepen-
dent variables, while the basis contact forms are denoted by

θα
J = duα

J −

p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, #J ≥ 0. (2.8)

This decomposition2 splits the differential d = dH + dV on J∞ into horizontal and vertical
(or contact) components, and endows the space of differential forms with the structure of a
variational bicomplex3, [1, 31, 61]. In particular, given a differential function F : Jn → R,

1 In other words, we are not assuming that M has any preassigned bundle structure, so as to
allow jets of arbitrary embedded p-dimensional submanifolds S ⊂ M . Since all our constructions
are local, they are equally valid when M → N is a fiber bundle with p-dimensional base N , and
JnM ⊂ Jn(M,p) is the dense open subbundle prescribed by jets of sections.

2 The decomposition only works at infinite order, which is one of the main reasons for passing
to the infinite jet bundle.

3 We re-emphasize that this construction is only valid in a local coordinate chart, relying,
further, on the selection of independent and dependent variables. See Itskov’s thesis, [26, 27],
for an intrinsic reformulation based on the C–spectral sequence induced by the contact filtration
of differential forms on J∞.
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its horizontal differential is

dH F =

p∑

j=1

(DxjF ) dxj, where Dxj =
∂

∂xj
+

q∑

α=1

∑

#J ≥ 0

uα
J,j

∂

∂uα
J

, (2.9)

are the usual total derivative operators, while its vertical differential

dV F =

q∑

α=1

∑

#J ≥ 0

∂F

∂uα
J

θα
J (2.10)

can be interpreted as its “first variation”, [48].

For example, in the planar situation of Example 2.1, the basis contact forms are

θ = du− ux dx, θx = dux − uxx dx, θxx = duxx − uxxx dx, . . . . (2.11)

The exterior derivative of a differential function F (x, u(n)) accordingly splits into horizontal
and contact constituents:

dF =
∂F

∂x
dx+

∂F

∂u
du+

∂F

∂ux

dux +
∂F

∂uxx

duxx + · · ·

= (DxF ) dx+

(
∂F

∂u
θ +

∂F

∂ux

θx +
∂F

∂uxx

θxx + · · ·

)
= dH F + dV F.

Let D = D(M) be the pseudo-group of all local diffeomorphisms4 ϕ:M → M . For
each n ≥ 0, let D(n) = D(n)(M) ⊂ Jn(M,M) denote the subbundle formed by their nth

order jets. Composition and inversion of local diffeomorphisms induces the composition
and inversion of their jets, so

jnψ|ϕ(z) · jnϕ|z = jn(ψ ◦ϕ)|z,
(
jnϕ|z

)−1
= jn

(
ϕ−1

)
|ϕ(z), (2.12)

whenever z ∈ domϕ and ϕ(z) ∈ domψ. In particular, the product of jets is only de-
fined when the target of the initial jet matches the source of its successor. The resulting
operations endow each D(n) with the structure of a groupoid.

Local coordinates of a diffeomorphism jet in D(n) are indicated by (z, Z(n)), where
z = (x, u) = σ

(n)(z, Z(n)) are the source coordinates on M , while the fiber jet coordinates

Z(n) = ( . . . Zb
A . . . ) = (X(n), U (n)) = ( . . . Xi

A . . . Uα
A . . . ), where

b = 1, . . . , m, i = 1, . . . , p, α = 1, . . . , q,

A = (a1, . . . , ak), with 1 ≤ aν ≤ m and 0 ≤ k = #A ≤ n,

(2.13)

indicate partial derivatives of the target coordinates Z = (X,U) = τ
(n)(z, Z(n)) with

respect to all source variables z = (x, u). The source map σ
(n) and target map τ

(n) serve

4 Our notational conventions allow the domain of such a map to be a proper open subset:
dom ϕ ⊂ M . Also, when we write ϕ(z) we implicitly assume z ∈ dom ϕ.
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to define the double fibration

D(n)

�
�

	
σ

(n) @
@R
τ

(n)

M M

(2.14)

A local diffeomorphism ϕ ∈ D preserves the contact equivalence relation between
p-dimensional submanifolds S ⊂ M , and thus induces an action on the jet bundle Jn =
Jn(M, p), known as the nth prolonged action. As in (2.6), the chain rule implies that the
n–jet of the transformed submanifold depends only on the n–jet of the diffeomorphism,
and hence there is a corresponding action of the diffeomorphism jet groupoid D(n) on Jn,
given by

jnϕ|z · jnN |z = jnϕ(N)|ϕ(z). (2.15)

As we saw in (2.6), the local coordinate formulae for the prolonged action of D(n)

on Jn involve both sets of jet coordinates. Together, they naturally coordinatize the pull-
back bundle E (n) → Jn of the diffeomorphism jet bundle D(n) → M via the standard
projection π̃n

0 : Jn → M . For k > n we let π̂k
n: E (k) → E (n) denote the projection induced

by π̃k
n: Jk → Jn and πk

n:D(k) → D(n). Points in E (n) are characterized by two quantities:

• a jet z(n) ∈ Jn of a p-dimensional submanifold passing through z = π̃n
0 (z(n)) ∈M , and,

• a jet (z, Z(n)) ∈ D(n) of a local diffeomorphism based at the same point z = σ
(n)(z, Z(n)).

The combined actions of local diffeomorphisms on submanifold jets, (2.15), and on dif-
feomorphism jets, (2.12), induces an action of D, and hence also the diffeomorphism jet
groupoid D(n), on the bundle E (n).

Local coordinates on E (n) are indicated by Z(n) = (z(n), Z(n)), where z(n) = (x, u(n))
are identified with the usual coordinates (2.7) on Jn, while Z(n) = (X(n), U (n)) are iden-
tified with the fiber coordinates (2.13) of the diffeomorphism jet bundle. For instance, in
the plane curve case of Example 2.1, the coordinates on E (n) are

Z(n) = (z(n), Z(n)) = (x, u(n), X(n), U (n))

= (x, u, ux, uxx, . . . , X, U,Xx, Xu, Ux, Uu, Xxx, Xxu, Xuu, Uxx, . . . ),

where ux, uxx, . . . are curve jet coordinates, whereas X,U,Xx, Xu, Ux, Uu, Xxx, . . . are
diffeomorphism jet coordinates.

The groupoid structure on E (n) is induced by that on D(n), namely composition and
inversion of jets of diffeomorphisms, (2.12), coupled with the prolonged action of diffeo-
morphisms on submanifold jets (2.15). For the associated double fibration

E (n)

�
�

	
σ̃

(n) @
@R
τ̃

(n)

Jn Jn

(2.16)

the source map is merely the projection, σ̃
(n)(z(n), Z(n)) = z(n), while the target is defined

by the prolonged action of D(n) on Jn, namely

(X, Û(n)) = Ẑ(n) = τ̃
(n)(Z(n)) = τ̃

(n)(z(n), Z(n)) = Z(n) · z(n). (2.17)
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Here, as noted above, we place hats on the target submanifold jet coordinates to avoid
confusion with the diffeomorphism jet coordinates. In local coordinates, the entries of the
target map encode the implicit differentiation formulae

Ûα
J = Fα

J (z(n), Z(n)) = Fα
J (x, u(n), X(n), U (n)) (2.18)

for the jets of transformed submanifolds, which we now determine.

The bundle structure σ̃
(∞): E (∞) → J∞ induces a splitting of its cotangent bundle

T∗E (∞) into jet and group components, spanned, respectively, by5 the jet forms, consisting
of the horizontal and contact one-forms

dxi, θα
J , i = 1, . . . , p, α = 1, . . . , q, #J ≥ 0, (2.19)

from the submanifold jet bundle J∞, and the contact one-forms

Υb
A = dG Z

b
A = dZb

A −
m∑

c=1

Zb
A,c dz

c, b = 1, . . . , m, #A ≥ 0, (2.20)

from the diffeomorphism jet bundle D(∞) ⊂ J∞(M,M), cf. [53]. We will call the latter
group forms, in order to distinguish them from the contact forms on the submanifold jet
bundle. For instance, in the planar case of Example 2.1, the group forms are

Υ1 = dX −Xx dx−Xu du, Υ2 = dU − Ux dx− Uu du,

Υ1
x = dXx −Xxx dx−Xxu du, Υ1

u = dXu −Xxu dx−Xuu du,
(2.21)

and so on. We accordingly decompose the differential on E (∞) into jet and group compo-
nents, the former further splitting into horizontal and vertical components:

d = dJ + dG = dH + dV + dG . (2.22)

The resulting operators satisfy

d 2
J = d 2

G = d 2
H = d 2

V = 0, (2.23)

dJ dG = − dG dJ , dH dV = − dV dH , dH dG = − dG dH , dV dG = − dG dV ,

and so form a pseudo-group generalization of the “lifted tricomplex” introduced in [30, 31].

The horizontal differential of a function F (Z(n)) = F (z(n), Z(n)) has the local coordi-
nate formula

dH F =

p∑

j=1

(DxjF ) dxj, (2.24)

where

Dxj = Dxj +

q∑

α=1


uα

j Duα +
∑

#J ≥ 1

uα
J,j

∂

∂uα
J


 (2.25)

5 In all cases, to avoid unnecessary clutter, we identify functions and forms with their pull-backs

to E
(∞) under the appropriate bundle projection.
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are the lifted total derivative operators on E (∞), which are obtained from the usual to-
tal derivatives (2.9) by replacing the order zero partial derivatives6 ∂/∂xj, ∂/∂uα by the
corresponding total derivative operators

Dza =
∂

∂za
+

m∑

b=1

∑

#A≥ 0

Zb
A,a

∂

∂Zb
A

, a = 1, . . . , m, (2.26)

on the diffeomorphism jet bundle D(∞). We use the same notation for the total derivative
operators on Jn and E (n) since they coincide when F (z(n)) = F (x, u(n)) does not actually
depend upon the diffeomorphism jet coordinates. When computing, it is important to
remember that the horizontal differential dH also includes differentiation with respect to
the pseudo-group parameters. The local coordinate formulas for the vertical and group
differentials are given by

dV F =

q∑

α=1


 (DuαF ) θα +

∑

#J ≥ 1

∂F

∂uα
J

θα
J


 , dG F =

m∑

b=1

∑

#A≥ 0

∂F

∂Zb
A

Υb
A. (2.27)

In the planar case, the differentials of F (x, u, ux, uxx, . . . , Xx, Xu, Ux, . . .) are

dH F = (DxF ) dx

dV F = (DuF ) θ +
∂F

∂ux

θx +
∂F

∂uxx

θxx +
∂F

∂uxxx

θxxx + · · · ,

dG F =
∂F

∂X
Υ1 +

∂F

∂U
Υ2 +

∂F

∂Xx

Υ1
x +

∂F

∂Xu

Υ1
u +

∂F

∂Ux

Υ2
x + · · · ,

where Dx is the total derivative operator (2.4), while Du is given in (2.3).

Recall that the capitalized notation Z = (X,U) refers to the target coordinates of the
diffeomorphism, and hence its entries can be viewed as functions on D(∞), and, through
a further pull-back, on E (∞). We use the target independent variables X i on E (∞) to
construct the lifted horizontal coframe

dH X i =

p∑

j=1

(DxjX i) dxj, i = 1, . . . , p, (2.28)

whose coefficients

DxjX i = X i
xj +

q∑

α=1

uα
j X

i
uα

depend linearly on the first order jet coordinates Z(1) = (X(1), U (1)) ∈ D(1) and on the
submanifold jet coordinates u(1). In local coordinate computations, to ensure that the one-
forms (2.28) are linearly independent, we restrict our attention to the dense open subset

6 We only need to replace the order zero partial derivatives because we are dealing with pseudo-
groups of point transformations. With a little extra work, our methods can be straightforwardly
extended to pseudo-groups of (first order) contact transformations, [48].
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where the total Jacobian determinant is non-zero,

det
(
DxjX i

)
6= 0, (2.29)

which excludes jets of submanifolds which no longer intersect the vertical fibers transver-
sally when acted on by the diffeomorphism jet. Again, the excluded submanifolds can be
handled by adopting an alternative system of local coordinates. The horizontal differenti-
ation formula

dH F =

p∑

i=1

(DXiF ) dHX
i, (2.30)

which is valid for any differential function F (z(n), Z(n)), serves to define the dual total
differentiation operators

DXi =

p∑

j=1

W j
i Dxj , where

(
W j

i

)
=
(
DxjX i

)−1
(2.31)

indicates the entries of the inverse total Jacobian matrix. For instance, in the planar case,
the horizontal one-form

dH X = (DxX) dx = (Xx + uxXu) dx has dual differentiation DX =
1

Xx + uxXu

Dx,

as noted above in (2.5).

With all this in hand, the chain rule formulae (2.18) for the higher-order prolonged
action of D(n) on Jn, i.e., the target map τ̃

(n): E (n) → Jn, are obtained by successively
differentiating the target dependent variables Uα with respect to the target independent
variables X i, whereby

Ûα
J = DJ

XU
α = DXj1 · · ·DXjkU

α. (2.32)

These are the multi-dimensional versions of the implicit differentiation formulae (2.6).

For later purposes, we introduce the right-invariant contact one-forms on D(∞), which,
according to [53], are to be interpreted as the Maurer–Cartan forms for the diffeomorphism
pseudo-group. To this end, we use the product bundle structure of D(∞) ⊂ J∞(M,M) to
split its differential d = dM + dG into horizontal and group (or vertical or contact) compo-
nents — as in the standard variational bicomplex construction noted above. This splitting
is invariant under right composition of diffeomorphisms. Since the target coordinates Za

are obviously right-invariant, so are their horizontal differentials

σa = dM Za =

m∑

i=1

Za
i dz

i, a = 1, . . . , m. (2.33)

Let DZ1 , . . . ,DZm denote the corresponding dual right-invariant total derivative operators,
so that

dM F =
m∑

a=1

(DZaF ) σa whenever F :D(∞) → R. (2.34)

10



Then the basis Maurer–Cartan forms are obtained by successively Lie differentiating the
(right-invariant) order 0 contact forms Υb = dG Z

b:

µb
A = D

A
ZΥb,

b = 1, . . . , m, A = (a1, . . . , ak), 1 ≤ aν ≤ m,

where D
A
Z = DZa1 · · ·DZak , k = #A ≥ 0.

(2.35)

The complete collection of one-forms σa, µb
A in (2.33, 35) forms a right-invariant coframe on

D(∞). See [53] for the explicit form of the resulting diffeomorphism structure equations.

Example 2.2. In the planar case of Example 2.1, the right-invariant horizontal
forms (2.33) on D(∞)(R2) are

σ1 = dM X = Xx dx+Xu du, σ2 = dM U = Ux dx+ Uu du, (2.36)

with dual total derivative operators

DX =
Uu Dx − Ux Du

XxUu −XuUx

, DU =
−Xu Dx +Xx Du

XxUu −XuUx

. (2.37)

The zeroth order Maurer–Cartan forms coincide with the zeroth order contact forms

µ = Υ1 = dGX = dX −Xx dx−Xu du,

ν = Υ2 = dG U = dU − Ux dx− Uu du,
(2.38)

while the higher-order Maurer–Cartan forms are obtained by repeatedly applying the right-
invariant differential operators (2.37) to the one-forms (2.38). In particular, the first order
Maurer–Cartan forms are expressed in terms of the basis contact forms (2.21) as follows:

µX = DXµ =
Uu Υ1

x − Ux Υ1
u

XxUu −XuUx

, µU = DUµ =
Xx Υ1

u −Xu Υ1
x

XxUu −XuUx

,

νX = DXν =
Uu Υ2

x − Ux Υ2
u

XxUu −XuUx

, νU = DUν =
Xx Υ2

u −Xu Υ2
x

XxUu −XuUx

.

(2.39)

3. Moving Frames for Pseudo–Groups.

Roughly speaking, a sub-pseudo-group G ⊂ D is called a Lie pseudo-group if its local
diffeomorphisms ϕ ∈ G are a complete system of local solutions to a formally integrable
system of partial differential equations. We will impose technical assumptions of regularity
and tameness on the pseudo-group; see [53] for details. In particular, for each n∗ ≤ n <∞,
for a fixed n∗ ≥ 0, the subgroupoid G(n) ⊂ D(n) consisting of the pseudo-group jets
jnϕ for ϕ ∈ G is assumed to form a smooth, embedded subbundle with fiber dimension

rn = dimG(n)|z for any z ∈ M . In the limit, the infinite pseudo-group jet bundle G(∞) ⊂
J∞(M,M) can be identified with the complete determining system of partial differential
equations for the pseudo-group. We use

g(n) = (z, g(n)) = (x, u, g(n))

to indicate local coordinates of a jet g(n) ∈ G(n), with the “pseudo-group parameters”
g(n) = (g1, . . . , grn

) parametrizing the jet fiber G(n)|z.
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We let H(n) ⊂ E (n) denote the subgroupoid obtained by pulling back G(n) ⊂ D(n) via
the projection π̃n

0 : Jn → M . The groupoid structure on H(n) is induced by that of E (n);
the explicit formulae are obtained either by specializing the general prolonged diffeomor-
phism transformations (2.17) to the pseudo-group subbundle, or by direct construction via
implicit differentiation of the pseudo-group transformations on M .

In this context, the notion of a differential invariant for the pseudo-group G can be
formulated as follows.

Definition 3.1. A differential invariant is a differential function7 I: Jn → R which
is unaffected by the prolonged action of G(n) on Jn, and so

I(X, Û(n)) = I(g(n) · (x, u(n))) = I(x, u(n)), (3.1)

for all (x, u(n)) ∈ Jn, and all pseudo-group jets g(n) ∈ G(n) such that both the source and

target submanifold jets, namely (x, u(n)) and (X, Û (n)) = g(n) · (x, u(n)), belong to the
domain of I.

In other words, differential invariants are constant on the prolonged pseudo-group
orbits in Jn. Morally, the entire collection of differential invariants forms an algebra;
however, since they are in general only locally defined, they in fact define a sheaf of algebras
over J∞, [32, 63]. But, to foster intuition at the expense of precision, we will usually refer
to the “algebra of differential invariants”. One of our main goals is to understand its
structure in complete detail.

If G is a finite-dimensional transformation group acting locally effectively on subsets of
M , as in [49], then, for n≫ 0, the bundle H(n) can be locally identified with the principal
bundle Jn × G introduced in [21]. So, working by analogy with the finite-dimensional
version, we define a moving frame to be an equivariant section of this bundle. Therefore,
our pseudo-group moving frame construction will include the finite-dimensional version in
[21, 30, 31] as a special subcase.

Definition 3.2. A moving frame ρ(n) of order n is a G(n) equivariant local section
of the bundle H(n) → Jn.

More explicitly, we require ρ(n): Jn → H(n) to satisfy

σ̃
(n)(ρ(n)(z(n))) = z(n), ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · (g(n))−1,

for all g(n) ∈ G(n)|z, with z = π̃n
0 (z(n)), and groupoid inverse (g(n))−1 ∈ G(n)|

τ
(n)(g(n)),

such that both z(n) and g(n) · z(n) lie in the domain of definition of ρ(n).

Remark : Definition 3.2 defines a right-equivariant moving frame, [21]. Classical mov-
ing frames for finite-dimensional Lie group actions, [8, 24], are always left-equivariant. It
is not difficult to formulate the notion of a left moving frame in the pseudo-group context.
As usual, the inversion map converts between right and left moving frames, and so we can
concentrate on the slightly simpler right-equivariant version from here on.

7 We continue to use the convention that functions need only be defined on an open subset of
their domain space.
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In the finite-dimensional construction, [21], the existence of a moving frame requires
that the group action be free and regular on an open subset of the jet space. Similar
conditions are required in the pseudo-group framework. The crucially important freeness
condition is defined as follows. Let

G(n)
z =

{
g(n) ∈ G(n)

∣∣∣ τ
(n)(g(n)) = σ

(n)(g(n)) = z
}
⊂ G(n)|z

denote the nth order isotropy jet subgroup of the point z ∈M , which, as a consequence of
our definition of a Lie pseudo-group, is a finite-dimensional Lie group when n < ∞. The
isotropy subgroup of z(n) = (x, u(n)) ∈ Jn is then defined as the closed Lie subgroup

G
(n)

z(n) =
{

g(n) ∈ G(n)
z

∣∣∣ g(n) · z(n) = z(n)
}
⊂ G(n)

z , where z = π̃n
0 (z(n)). (3.2)

Thus, the isotropy subgroup of a submanifold n-jet only contains diffeomorphism jets of
order n, and ignores their higher order derivatives. The n–jet of the identity diffeomorphism

11:M →M at z, denoted 11(n)
z , clearly lies in G

(n)

z(n) . Freeness requires that this be the only
isotropy jet.

Definition 3.3. The pseudo-group G acts freely at z(n) ∈ Jn if G
(n)

z(n) =
{

11(n)
z

}
, and

locally freely if G
(n)

z(n) is a discrete subgroup of G(n)
z . The pseudo-group G is said to act

(locally) freely at order n if it acts (locally) freely on an open subset Vn ⊂ Jn, called the
set of regular n-jets.

In other words, freeness of the action means that every pseudo-group transformation
that fixes the jet z(n) ∈ Jn|z must have the same derivatives (jet) as the identity map up
to order n, irrespective of the values of its derivatives of order > n. Note that the freeness
condition for a pseudo-group is, in fact, equivalent to the freeness of the action of the
isotropy jet subgroup G(n)

z on the jet fiber Jn|z. At order n = 0, any pseudo-group action

trivially satisfies the freeness condition, because G(0)
z = {11(0)

z }. Thus, freeness is only of
interest when n ≥ 1.

Warning : According to the standard definition, [21], any (locally) free action of a
finite-dimensional Lie group satisfies the (local) freeness condition of Definition 3.3, but
the converse is not valid. For instance, the four-dimensional Lie group

(x, u) 7−→ (x+ a, u+ b x2 + c x+ d)

defines a free pseudo-group action on Jn(R2, 1) for all n ≥ 0. But, as a Lie group, the
action is only free when n ≥ 2. In this paper, even for finite-dimensional Lie group actions,
we will use “free” in the more general sense of Definition 3.3. An interesting project would
be to revisit the study of differential invariants of finite-dimensional Lie group actions using
this more refined notion of freeness.

Let
O

(n)

z(n) =
{

g(n) · z(n)
∣∣∣ g(n) ∈ G(n)|z, z = π̃n

0 (z(n))
}

⊂ Jn (3.3)

denote the prolonged pseudo-group orbit passing through the submanifold jet z(n) ∈ Jn.
The tameness condition of [53; Definition 5.2] implies, by a theorem of Sussmann, [60],
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that the pseudo-group orbits are immersed submanifolds. Regularity requires that the
orbits form a regular foliation, i.e., its leaves intersect small open sets in pathwise connected
subsets. Further details can be found in [52].

Proposition 3.4. The pseudo-group G acts locally freely on the subset

{
z(n) ∈ Jn

∣∣∣ dimO
(n)

z(n) = rn

}
, (3.4)

consisting of those jets whose orbit dimension equals the fiber dimension of the nth order
jet groupoid G(n) →M .

Thus, freeness of the pseudo-group at order n requires, at the very least, that the fiber
dimension satisfy the inequality

rn = dimG(n)|z ≤ dimJn = p+ (m− p)

(
p+ n

p

)
. (3.5)

Therefore, freeness is an alternative — and simpler — means of quantifying the Spencer
cohomological growth conditions imposed by Kumpera, [32]. Pseudo-groups having too
large a fiber dimension rn will, typically, act transitively on (a dense open subset of) Jn,
and thus possess no non-constant differential invariants. A familiar example is the pseudo-
group of canonical transformations of a symplectic manifold. In such cases, all (generic)
submanifolds are locally equivalent, and the local theory is trivial. But there are, of course,
deep global issues not addressed by the local moving frame theory, [23].

In a forthcoming paper, [54], we will establish the following fundamental result,
thereby rigorously justifying the general constructions used in this paper.

Theorem 3.5. Let G be a regular pseudo-group acting on anm-dimensional manifold
M . If G acts (locally) freely at z(n) ∈ Jn for some n > 0, then it acts (locally) freely at
any z(k) ∈ Jk with π̃k

n(z(k)) = z(n), for k ≥ n.

As in the finite-dimensional Lie group version, [21], moving frames are constructed
through a normalization procedure based on a choice of cross-section to the pseudo-group
orbits, i.e., a transverse submanifold of the complementary dimension.

Theorem 3.6. Suppose G(n) acts freely and regularly on Vn ⊂ Jn. Let Kn ⊂ Vn

be a (local) cross-section to the pseudo-group orbits. Given z(n) ∈ Vn, define ρ(n)(z(n)) ∈
H(n) to be the unique groupoid jet such that τ̃

(n)(ρ(n)(z(n))) ∈ Kn (when such exists).
Then ρ(n): Jn → H(n) is a moving frame for G defined on an open subset of Vn. The
local cross-section coordinates of the induced map I(n) = τ̃

(n) ◦ρ(n): Jn → Kn provide a
complete system of functionally independent nth order differential invariants on the domain
of definition of the moving frame.

In most practical situations, we select a coordinate cross-section, defined by fixing
the values of rn of the individual jet coordinates z(n) = (x, u(n)). We first write out the
implicit differentiation formulae for the prolonged pseudo-group action

(X, Û (n)) = F (n)(x, u(n), g(n)) (3.6)
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in terms of the submanifold jet coordinates (x, u(n)) and a convenient system of group
parameters g(n) = (g1, . . . , grn

) which, when combined together, serve to coordinatize the

bundle H(n) → Jn. The rn components of (3.6) corresponding to our choice of cross-section
variables serve to define the normalization equations

F1(x, u
(n), g(n)) = c1, . . . Frn

(x, u(n), g(n)) = crn
. (3.7)

Solving them for the group parameters

g(n) = γ(n)(x, u(n)) (3.8)

(a solution is assured by their arising from a bona fide cross-section) yields the explicit
formula for the moving frame section:

ρ(n)(x, u(n)) = (x, u(n), γ(n)(x, u(n))).

Substituting the moving frame formulae for the pseudo-group parameters (3.8) into the
unnormalized components of (3.6) yields the normalized differential invariants:

I(n)(x, u(n)) = F (n)(x, u(n), γ(n)(x, u(n))) =
(
. . . Hi(x, u(n)) . . . Iα

K(x, u(n)) . . .
)
. (3.9)

The rn components of I(n) appearing in the normalization equations (3.7) will be constant,
and are known as the phantom differential invariants. The remaining sn = dim Jn −
rn components are the cross-section coordinates, and hence form a complete system of
functionally independent differential invariants of order ≤ n.

Definition 3.7. A moving frame ρ(k): Jk → H(k) of order k > n is compatible with
a moving frame ρ(n): Jn → H(n) of order n provided π̂k

n
◦ρ(k) = ρ(n) ◦ π̃k

n where defined.

A complete moving frame is provided by a mutually compatible collection of mov-
ing frames of all orders k ≥ n. To avoid technical problems with shrinking domains of
definition, we further assume that the lowest order moving frame ρ(n) is defined on a
domain Vn ⊂ Jn, while each higher order compatible moving frame ρ(k) is defined on
Vk = (π̂k

n)−1(Vn). In applications, we typically deal with complete moving frames, and we
use ρ(∞): J∞ → H(∞) to denote the limiting equivariant local section. Before continuing,
let us understand how the moving frame algorithm works in two basic examples.

Example 3.8. Consider the intransitive pseudo-group action

X = f(x), Y = y, U =
u

f ′(x)
, (3.10)

on M = R
3 \ {u = 0}. This pseudo-group was introduced by Lie, [36; p. 373], in his

study of second order partial differential equations integrable by the method of Darboux,
and also considered by Vessiot, [62], in his paper on group splitting and automorphic
systems. More recently, Kumpera, [32], again employed this pseudo-group as the one
example used to illustrate his Spencerian formalization of the Lie theory of differential
invariants. Our methods reproduce Kumpera’s final results with minimal effort, and,
subsequently, elucidate the structure of its differential invariant algebra, which was not
exposed in previous treatments of this elementary example.
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We are interested in the induced action of (3.10) on surfaces S ⊂ M , which, for
simplicity, we assume to be the graph of a function u = h(x, y). (Extending the method to
more general parametric surfaces, cf. [21], is not difficult.) We adopt the Taylor coordinates
f, fx, fxx, . . . of the diffeomorphism f(x) to parametrize the pseudo-group. The lifted
horizontal coframe is

dH X = fx dx, dH Y = dy, (3.11)

and hence the dual implicit differentiations are

DX =
1

fx

Dx, DY = Dy. (3.12)

The prolonged pseudo-group transformations on the surface jet bundle Jn = Jn(M, 2)
are obtained by repeated application of the implicit differentiation operators (3.12) to
U = u/fx, and so

X = f, Y = y, Û = U =
u

fx

, ÛX =
ux

f2
x

−
ufxx

f3
x

, ÛY =
uy

fx

,

ÛXX =
uxx

f3
x

−
3ux fxx

f4
x

−
ufxxx

f4
x

+
3uf2

xx

f5
x

, ÛXY =
uxy

f2
x

−
uy fxx

f3
x

, ÛY Y =
uyy

fx

,

(3.13)

and so on. Since u 6= 0, the isotropy subgroup G
(n)

z(n) of any (x, u(n)) ∈ Jn consists only
of the identity jet, f = x, fx = 1, fxx = 0, . . . , and hence the pseudo-group acts freely at
every order n ≥ 0.

We choose the coordinate cross-section

x = 0, u = 1, ux = uxx = uxxx = · · · = 0.

The associated moving frame map is found by solving the corresponding normalization
equations

X = 0, U = 1, ÛX = 0, ÛXX = 0, . . . , (3.14)

for the group parameters:

f = 0, fx = u, fxx = ux, fxxx = uxx, . . . . (3.15)

Substituting (3.15) into the prolonged transformation formulae (3.13) yield the normalized
second order differential invariants; those corresponding to the normalization variables
(3.14) are the constant phantom differential invariants, while the remainder, namely

Y 7−→ y, ÛY 7−→ J =
uy

u
, ÛXY 7−→ J1 =

uuxy − uxuy

u3
, ÛY Y 7−→ J2 =

uyy

u
,

(3.16)
form a complete system of functionally independent second order differential invariants.
Moreover, substitution of the moving frame formulae (3.15) into the lifted horizontal forms
(3.11), i.e., pulling back by the moving frame, leads to the basic invariant horizontal
coframe

dH X 7−→ u dx, dH Y 7−→ dy, (3.17)
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and corresponding dual invariant differential operators

D1 =
1

u
Dx, D2 = Dy. (3.18)

As we shall subsequently prove — see Examples 7.2, 8.3, and 8.5 — all the higher-order
normalized differential invariants can be obtained by successively applying the invariant
operators (3.18) to the basic differential invariant J . For example,

D1J =
uuxy − uxuy

u3
= J1, D2J =

uuyy − u2
y

u2
= J2 − J2. (3.19)

Later, we will learn how to algorithmically derive such recurrence formulae relating the
differentiated invariants to the normalized differential invariants.

Example 3.9. Consider the action of the pseudo-group

X = f(x), Y = f ′(x) y + g(x), U = u+
f ′′(x) y + g′(x)

f ′(x)
, (3.20)

on surfaces u = h(x, y). To obtain the prolonged pseudo-group transformations, we begin
with the lifted horizontal coframe,

dH X = fx dx, dH Y = ex dx+ fx dy, (3.21)

where, for convenience, we set

e(x, y) = f ′(x) y + g(x), and so ey = fx, fy = 0.

The prolonged pseudo-group transformations are found by applying the dual implicit dif-
ferentiations

DX =
1

fx

Dx −
ex

f2
x

Dy, DY =
1

fx

Dy,

successively to

Û = U = u+
ex

fx

= u+
fxx y + gx

fx

,

so that

ÛX =
ux

fx

+
exx − ex uy

f2
x

− 2
fxx ex

f3
x

, ÛY =
uy

fx

+
fxx

f2
x

,

ÛXX =
uxx

f2
x

+
exxx − exx uy − 2ex uxy − fxx ux

f3
x

+

+
e2x uyy + 3exfxx uy − 4exx fxx − 3ex fxxx

f4
x

+ 8
ex f

2
xx

f5
x

,

ÛXY =
uxy

f2
x

+
fxxx − fxx uy − ex uyy

f3
x

− 2
f2

xx

f4
x

, ÛY Y =
uyy

f2
x

,

(3.22)

and so on. The pseudo-group cannot act freely on J1 since r1 = dimG(1)|z = 6 > dim J1 =

5. On the other hand, r2 = dimG(2)|z = 8 = dimJ2, and the action on J2 is, in fact,
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locally free and transitive on the sets V 2
+ = J2 ∩ {uyy > 0} and V 2

− = J2 ∩ {uyy < 0}.

Moreover, in accordance with Theorem 3.5, G(n) acts locally freely on the corresponding
open subsets of Jn for any n ≥ 2.

To construct the moving frame, we restrict our attention to8 V 2
+ and adopt the fol-

lowing normalizations:

X = 0, f = 0,

Y = 0, e = 0,

U = 0, ex = −u fx,

ÛY = 0, fxx = −uy fx,

ÛX = 0, exx = (uuy − ux) fx,

ÛY Y = 1, fx =
√
uyy ,

ÛXY = 0, fxxx = −
√
uyy

(
uxy + uuyy − u2

y

)
,

ÛXX = 0, exxx = −
√
uyy

(
uxx − uuxy − 2u2uyy − 2uxuy + uu2

y

)
.

(3.23)

At this stage, we have normalized enough parameters to find the first two fundamental
differential invariants of the pseudo-group, namely,

ÛXY Y 7−→ J1 =
uxyy + uuyyy + 2uyuyy

u
3/2
yy

, ÛY Y Y 7−→ J2 =
uyyy

u
3/2
yy

. (3.24)

The two remaining third order jet coordinates can be normalized to ÛXXX = ÛXXY = 0,
to produce formulae for the pseudo-group parameters fxxxx and exxxx. In general, for
n ≥ 2, there are

dim Jn − rn =

[
(n+ 1)(n+ 2)

2
+ 2

]
− (2n+ 4) =

(n+ 1)(n− 2)

2

functionally independent differential invariants of order ≤ n.

Finally, substituting the pseudo-group normalizations into (3.21) fixes the invariant
horizontal coframe

dH X 7−→ ω1 =
√
uyy dx, dH Y 7−→ ω2 =

√
uyy (dy − u dx). (3.25)

The dual invariant total differential operators are

D1 =
1√
uyy

(Dx + uDy), D2 =
1√
uyy

Dy. (3.26)

As we shall subsequently prove — see Example 8.6 — the higher-order differential
invariants can be generated by successively applying these differential operators to the
pair of basic differential invariants (3.24). According to the general theorem in [54], all

8 To cover V
2
−, just insert an absolute value inside the square root and keep track of signs.
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syzygies or functional relations among the differentiated invariants in this example are
consequences of the lowest order such syzygy, which is

D1J2 −D2J1 = 2. (3.27)

4. Infinitesimal Generators.

Our subsequent analysis will rely heavily on the infinitesimal generators of the pseudo-
group action. Let X (M) denote the space of locally defined smooth vector fields on M ,
i.e., local sections of the tangent bundle TM . In terms of the local coordinates z = (x, u)
on M , a vector field takes the form

v =

m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
, (4.1)

where the coefficients (ζ1, . . . , ζm) = (ξ1, . . . , ξp, ϕ1, . . . , ϕq) are smooth functions.

Given 0 ≤ n ≤ ∞, let JnTM denote the nth order jet bundle of the tangent bundle,
whose elements are n-jets jnv of locally defined vector fields v ∈ X (M). In local coordi-
nates, the n-jet (z, ζ(n)) ∈ JnTM of the vector field (4.1) at a point z = (x, u) is determined
by the partial derivatives of its coefficients with respect to all variables z = (x, u) up to
order n, which we denote by

ζ(n) = ( . . . ζb
A . . . ) = (ξ(n), ϕ(n)) = ( . . . ξi

A . . . ϕα
A . . . ),

where
b = 1, . . . , m, i = 1, . . . , p, α = 1, . . . , q,

A = (a1, . . . , ak), with 1 ≤ aν ≤ m and 0 ≤ k = #A ≤ n.

(4.2)

Given v ∈ X (M), let v(n) ∈ X (Jn) denote the corresponding prolonged vector field
on the submanifold jet bundle Jn. At each jet z(n) ∈ Jn|z, the prolongation operation
prescribes a linear map

p(n) = p
(n)

z(n) : JnTM |z −→ TJn|z(n) . (4.3)

In terms of the local coordinates z(n) = (x, u(n)) on Jn, the nth prolongation of the vector
field (4.1) has the form

v(n) =

p∑

i=1

ξi ∂

∂xi
+

q∑

α=1

∑

#J ≤n

ϕ̂ α
J

∂

∂uα
J

. (4.4)

As with the Ûα
J , we place hats on the prolonged vector field coefficients ϕ̂ α

J so as to
distinguish them from the partial derivatives (jet coordinates) ϕα

A in (4.2). The coefficients
are computed via the usual prolongation formula, cf. [47, 48]:

ϕ̂ α
J = DJ

x Q
α +

p∑

i=1

uα
J,i ξ

i, where Qα = ϕα −

p∑

i=1

uα
i ξ

i, α = 1, . . . , q, (4.5)
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are the components of the characteristic of v. Consequently, each prolonged vector field
coefficient

ϕ̂ α
J = Φα

J (u(n), ζ(n)) (4.6)

is a certain universal linear combination of the vector field jet coordinates (4.2), whose

coefficients are polynomials in the submanifold jet coordinates uβ
K for 1 ≤ #K ≤ n.

Example 4.1. On R
2, with coordinates (x, u) as in Example 2.1, the prolongation

of a vector field

v = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u
(4.7)

to Jn = Jn(R2, 1) takes the familiar form

v(∞) = ξ
∂

∂x
+ ϕ

∂

∂u
+ ϕ̂ x ∂

∂ux

+ ϕ̂ xx ∂

∂uxx

+ · · · + ϕ̂ n ∂

∂un

,

where

ϕ̂ x = Dxϕ− ux Dxξ = ϕx + ux(ϕu − ξx) − u2
xξu,

ϕ̂ xx = D2
xϕ− ux D2

xξ − 2 uxx Dxξ

= ϕxx + ux(2ϕxu − ξxx) + u2
x(ϕuu − 2 ξxu) − u3

x ξuu + uxx(ϕu − 2 ξx) − 3 ux uxx ξu,

(4.8)

and so on.

Given a pseudo-group G, let g ⊂ X (M) denote the local Lie algebra consisting of its
infinitesimal generators, i.e., the set of locally defined vector fields whose flows belong to
the pseudo-group. Let Jn

g ⊂ JnTM denote the subbundle9 prescribed by their jets. In
local coordinates, Jn

g is defined by a linear system of partial differential equations

L(n)(z, ζ(n)) = 0 (4.9)

for the vector field coefficients, called the linearized or infinitesimal determining equations

for the pseudo-group. They are obtained by linearizing the nonlinear determining equations
for the pseudo-group transformations at the identity. If G is the symmetry group of a
system of differential equations, then the linearized determining equations (4.9) are the
(involutive completion of) the usual determining equations for its infinitesimal generators
obtained via Lie’s algorithm, [13, 14, 37, 38, 47].

Let
g
(n)|z(n) = p(n)(Jn

g|z) ⊂ TJn|z(n)

denote the subspace spanned by the prolonged infinitesimal generators of the pseudo-

group. Assuming tameness of the prolonged pseudo-group action, g
(n)|z(n) = TO

(n)

z(n) |z(n)

is equal to the tangent space to the pseudo-group orbit through z(n), [52]. The infinitesimal
characterization of local freeness of the prolonged pseudo-group action is immediate:

9 The fact that this forms a subbundle is a consequence of our definitions and local solvability.

20



Proposition 4.2. The pseudo-group acts locally freely near z(n) if and only if the
prolongation map p(n): Jn

g|z −→ g
(n)|z(n) is a monomorphism.

Example 4.3. Consider the pseudo-group

X = f(x), U =
u

f ′(x)
, (4.10)

where f(x) ∈ D(R) is an arbitrary local diffeomorphism, acting on M = R
2 \ {u = 0}. Its

infinitesimal generators are the vector fields v = ξ ∂x + ϕ∂u that are subject to the linear
determining equations

ξx = −
ϕ

u
, ξu = 0, ϕu =

ϕ

u
,

along with all their differential consequences; see [53] for details. When solved, the deter-
mining equations yield ξ = a(x), ϕ = − a′(x) u, where a(x) is an arbitrary scalar function,
resulting in the explicit formula

v = a(x)
∂

∂x
− a′(x) u

∂

∂u
(4.11)

for the infinitesimal generators of this pseudo-group.

The prolonged infinitesimal generators are obtained by substituting (4.11) into the
prolongation formula (4.8):

v(n) = a
∂

∂x
− axu

∂

∂u
− (axxu+ 2 axux)

∂

∂ux

− (axxxu+ 3 axxux + 3axuxx)
∂

∂uxx

− · · · .

(4.12)
Since u 6= 0, the only vector fields satisfying v(n) = 0 are those with trivial nth order jet:
a = ax = axx = · · · = an+1 = 0. Proposition 4.2 implies that the pseudo-group acts locally
freely on Jn for all n ≥ 0.

5. Lifted Differential Forms.

The next order of business is to establish complete systems of invariant differential
forms on the lifted diffeomorphism jet groupoid E (∞). Recall the induced splittings (2.22)
of the differential:

d = dJ + dG = dH + dV + dG .

While the initial split into jet and group components is invariant under the action of the
diffeomorphism jet groupoid D(∞) on E (∞), the finer split into horizontal and vertical
components is only invariant under the sub-groupoid generated by the projectable (or
fiber-preserving) diffeomorphisms X = χ(x), U = ψ(x, u). As in [30, 31], we decompose
the space of differential forms on E (∞) into

Ω∗ =
L

k,l Ωk,l =
L

i,j,l Ωi,j,l,
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where l indicates the number of Maurer–Cartan forms µb
A, (2.35) (or, equivalently, group

forms (2.20)), k = i + j indicates the number of jet forms (2.19), i indicates the number
of horizontal forms dxi, and j indicates the number of contact forms θα

J . We let

Ω∗
J =

L

k Ωk,0 =
L

i,j Ωi,j,0

denote the subspace of jet forms, i.e., those containing no Maurer–Cartan forms — al-
though their coefficients are allowed to depend upon the pseudo-group parameters. Let
πJ :Ω∗ → Ω∗

J be the natural projection that takes a differential form Ω̂ on E (∞) to its

jet component πJ (Ω̂). Formally, πJ(Ω̂) is obtained by annihilating all Maurer–Cartan

forms in Ω̂, i.e., by setting all µb
A 7→ 0. If Ω̂ is invariant under the right action of local

diffeomorphisms ϕ ∈ D on E (∞), so is πJ(Ω̂).

Given any differential form ω on J∞, its pull-back Ω̂ = (τ̃ (∞))∗ω by the target map
τ̃

(∞): E (∞) → J∞ is automatically invariant. The jet components of the pulled-back forms
are also invariant, and play a crucial role in our constructions.

Definition 5.1. The lift of a differential form ω on J∞ is the jet form

Ω = λ(ω) = πJ

[
(τ̃ (∞))∗ω

]
. (5.1)

The lift map is an exterior algebra morphism:

λ(ω + σ) = λ(ω) + λ(σ), λ(ω ∧ σ) = λ(ω) ∧ λ(σ). (5.2)

In local coordinates, λ maps the jet coordinates xi, uα
K , to their lifted counterparts10

X i, Ûα
K , the latter being prescribed by the implicit differentiation formulae (2.32). Simi-

larly, their differentials dxi, duα
K lift to the jet differentials of their lifts. In other words,

when computing dJ X
i, dJ Û

α
K , we only differentiate with respect to the submanifold jet

coordinates xi, uβ
J , and not with respect to the diffeomorphism jet coordinates X i

A, U
α
A.

The resulting one-forms

Ωi = λ(dxi) = dJ X
i =

p∑

j=1

DxjX i dxj +

q∑

α=1

X i
uαθα, i = 1, . . . , p,

Θα = λ(θα) = dJ U
α −

p∑

i=1

DXiUα dJ X
i =

q∑

β=1

(
Uα

uβ −

p∑

i=1

X i
uβ Û

α
Xi

)
θβ, (5.3)

Θα
K = λ(θα

K) = DK
XΘα = dJ Û

α
K −

p∑

i=1

Ûα
K,i dJ X

i, α = 1, . . . , q, #K ≥ 0,

form a basis for the space of lifted jet forms.

10 The jet projection πJ has no effect on functions.
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Example 5.2. In the case of plane curves, the lift map takes the curve jet coordinates
x, u, ux, . . . to their lifted counterparts, as given by (2.6):

λ(x) = X, λ(u) = U, λ(ux) = ÛX , λ(uxx) = ÛXX , . . . . (5.4)

The lifts of the basis horizontal and contact one-forms, (2.11), are given by11

Ω = λ(dx) = dJ X = Xx dx+Xu du = (Xx + uxXu) dx+Xu θ = DxX dx+Xu θ,

Θ = λ(θ) = dJ U − ÛX dJ X =
Xx Uu −Xu Ux

DxX
θ, (5.5)

ΘX = λ(θx) = dJ ÛX − ÛXX dJ X = DXΘ =
1

DxX
Dx

(
Xx Uu −Xu Ux

DxX
θ

)
.

The higher order lifted contact forms

Θn = λ(θn) = Dn
XΘ

are obtained by repeated Lie differentiation with respect to the implicit differentiation
operator (2.5).

The formulas for the differentials of a lifted form are of critical importance. The jet
differential is straightforward:

Proposition 5.3. Let Ω = λ(ω) be a lifted form. Then dJ Ω = λ(dω).

To describe the formula for the group differential, we will extend the lift map to vector
field jets. The required construction is most easily explained in local coordinates. With
additional effort, it can be placed in a fully intrinsic framework by introducing suitable
tensor product bundles. However, the constructions are a bit elaborate, and so, in the
interests of brevity, will not be presented here.

We define the lift of a vector field jet coordinate (4.2) to be the corresponding Maurer–
Cartan form (2.35); specifically,

λ(ζb
A) = µb

A, for b = 1, . . . , m, #A ≥ 0. (5.6)

At first sight this definition might strike the reader as a bit odd; however, keep in mind
that, at each point, ζb

A defines a linear function on the space of vector fields X (M), and
so should be regarded as a kind of differential form. Thus, defining its lift to be another
differential form should not be so surprising. Slightly more generally, suppose

P (z(n), ζ(n)) =

m∑

b=1

∑

0≤#A≤n

P b
A(x, u(n)) ζb

A

is any finite linear combination of vector field jet coordinates whose coefficients are differ-

ential functions, i.e., a section of the bundle ˜(JnTM)∗ → Jn which is obtained by pulling

11 Within this example, Ω is used to denote the lift of dx, and not a generic differential form.
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back the dual bundle (JnTM)∗ →M via the projection π̃n
0 : Jn →M . We define its lift to

be the group one-form

λ
[
P (z(n), ζ(n))

]
= P (Ẑ(n), µ(n)) =

m∑

b=1

∑

0≤#A≤n

P b
A(X, Û (n))µb

A (5.7)

on E (n). Of particular importance are the lifts of the vector field prolongation coefficients
(4.6), which are denoted by

Ξ i = λ(ξi) = µi, Ψ̂α
J = λ(ϕ̂ α

J ) = λ
[
Φα

J (u(n), ζ(n))
]

= Φα
J (Û (n), µ(n)). (5.8)

Thus, each Ψ̂α
J is a particular linear combination of Maurer–Cartan forms whose coefficients

are polynomials in the lifted coordinates Ûα
K for 1 ≤ #K ≤ #J . More generally, the lift

of a differential form whose coefficients are linear combinations of vector field coefficient
jets, i.e., a section of

Vk
T∗Jn

⊗
˜(JnTM)∗ → Jn, is defined as

λ




m∑

b=1

∑

#A≤n

ζb
A ω

b
A


 =

m∑

b=1

∑

#A≤n

µb
A ∧ λ(ωb

A), (5.9)

which is a differential form in Ωk,1. With the above conventions, we can compactly write
the group differential of a lifted form as follows.

Proposition 5.4. Let Ω = λ(ω) be a lifted form. Then its group differential is the lift
of its Lie derivative with respect to the prolonged vector field v(∞), so dG Ω = λ

[
v(∞)(ω)

]
.

Combining Propositions 5.3 and 5.4, we arrive at the fundamental formula for the
differential of a lifted form.

Theorem 5.5. Let Ω = λ(ω) be a lifted differential form on E (∞). Then

dΩ = dλ(ω) = λ
[
dω + v(∞)(ω)

]
. (5.10)

Before presenting the proof of Proposition 5.4, let us look closely at our running planar
example.

Example 5.6. We continue analyzing the pseudo-group action in Example 5.2. Ac-
cording to (5.6), the lifts of the derivatives of the coefficients of a planar vector field,
cf. (4.7), are the Maurer–Cartan forms (2.38–39):

λ(ξ) = µ, λ(ϕ) = ν, λ(ξx) = µX , λ(ξu) = µU ,

λ(ϕx) = νX , λ(ϕu) = νU , λ(ξxx) = µXX , . . . .

Thus, by (5.8), the lifts of the prolonged vector field coefficients (4.8) are the following
linear combinations of Maurer–Cartan forms:

Ψ = λ(ϕ) = ν,

Ψ̂X = λ(ϕ̂ x) = νX + ÛX(νU − µX) − Û2
XµU ,

Ψ̂XX = λ(ϕ̂ xx) = νXX + ÛX(2 νXU − µXX ) + Û2
X(νUU − 2µXU ) − Û3

X µUU

+ ÛXX (νU − 2µX) − 3 ÛX ÛXX µU ,

(5.11)
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and so on.

With these in hand, and recalling (5.5), we apply our key formula (5.10) to determine
the differentials of the implicit differentiation formulae (2.6):

dX = dλ(x) = λ
[
dx+ v(∞)(x)

]
= λ(dx+ ξ) = Ω + µ,

dU = dλ(u) = λ
[
du+ v(∞)(u)

]
= λ(ux dx+ θ + ϕ) = ÛX Ω + Θ + ν,

dÛX = dλ(ux) = λ
[
dux + v(∞)(ux)

]
= λ(uxx dx+ θx + ϕ̂ x) = ÛXX Ω + ΘX + Ψ̂X ,

dÛXX = dλ(uxx) = λ
[
duxx + v(∞)(uxx)

]
= λ(uxxx dx+ θxx + ϕ̂ xx)

= ÛXXX Ω + ΘXX + Ψ̂XX ,

and so on. In each case, the group differential is the final term, while the preceding one or
two terms are the jet differential; for instance,

dJ ÛX = ÛXX Ω + ΘX , while dG ÛX = Ψ̂X .

By the same reasoning, and recalling the prolongation formulae (4.8), the differentials of
the basis lifted forms (5.5) are

dΩ = dλ(dx) = λ
[
d(dx) + v(∞)(dx)

]
= λ(dξ) = λ

[
(ξx + ux ξu) dx+ ξu θ

]

= (µX + ÛX µU ) ∧ Ω + µU ∧ Θ,

dΘ = dλ(θ) = λ
[
dθ + v(∞)(θ)

]
= λ

[
−θx ∧ dx+ dϕ− ux dξ − ϕ̂ x dx

]

= λ
[
−θx ∧ dx+ (ϕu − ux ξu)θ

]
= −ΘX ∧ Ω +

(
νU − ÛX µU

)
∧ Θ,

dΘX = dλ(θx) = λ
[
dθx + v(∞)(θx)

]
= λ

[
−θxx ∧ dx+ dϕ̂ x − uxx dξ − ϕ̂ xx dx

]

= −ΘXX ∧ Ω +
[
νXU + ÛX(νUU − µXU ) − Û2

X µUU − ÛXX µU

]
∧ Θ

+
[
νU − µX − 2 ÛX µU

]
∧ ΘX .

The higher-order formulae are similarly established. The direct verification of these for-
mulae is a tedious, but instructive computation.

Proof of Proposition 5.4 : As noted in [53], associated to each vector field

v =
m∑

a=1

ζa(z)
∂

∂za
∈ X (M)

with prolongation v(∞) ∈ X (J∞), there is a unique diffeomorphism invariant vector field

V̂(∞) ∈ X (E (∞)) on the groupoid which is tangent to the source fibers. We note that V̂(∞)

and v(∞) are τ̃
(∞)–related vector fields, that is,

dτ̃ (∞)
(
V̂(∞)|

g(∞)

)
= v(∞)|

τ̃
(∞)(g(∞))

.

Therefore, the Lie derivatives of (τ̃ (∞))∗ω and ω are similarly related:

V̂(∞)((τ̃ (∞))∗ω) = (τ̃ (∞))∗
[
v(∞)(ω)

]
.
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Noting that the Lie derivative with respect to V̂(∞) preserves the spaces of jet forms and
group forms, an application of the jet projection πJ to both sides of this identity and using
(5.1) results in the equation

V̂(∞)(Ω) = λ
[
v(∞)(ω)

]
(5.12)

for the lift Ω = λ(ω) of ω.

Next we expand the left hand side of (5.12) using Cartan’s formula relating Lie deriva-
tives and interior products, cf. [47; (1.65)]:

V̂(∞)(Ω) = V̂(∞) dΩ + d(V̂(∞) Ω). (5.13)

Since V̂(∞) is tangent to the source fibers, V̂(∞) Ω = 0 for any jet form Ω ∈ Ω∗
J . Thus,

decomposing dΩ = dJ Ω + dG Ω, the only nonzero term on the right hand side of (5.13) is

V̂(∞) dG Ω. Hence, substituting back into (5.12), we deduce the identity

V̂(∞) dG Ω = λ
[
v(∞)(ω)

]
. (5.14)

In local coordinates, since Ω is a jet form, its group differential is a finite sum

dG Ω =

m∑

b=1

∑

#A≤n

µb
A ∧ Ωb

A, (5.15)

involving wedge products of the Maurer–Cartan forms µb
A, with certain jet forms Ωb

A ∈ Ω∗
J .

Thus, the left hand side of (5.14) is

V̂(∞) dG Ω =
m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(Z) Ωb

A, (5.16)

where we use the fact that the left hand side is invariant on a source fiber, and hence can
simply be evaluated at the identity jet, which is easily done in local coordinates. On the
other hand, the right hand side of (5.14) is

λ
[
v(∞)(ω)

]
= λ




m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(z) ωb

A


 =

m∑

b=1

∑

#A≤n

∂#Aζb

∂zA
(Z) λ(ωb

A), (5.17)

Since (5.16) and (5.17) must be equal for any vector field v ∈ X (M), we deduce that
λ(ωb

A) = Ωb
A. Substituting this relation back into (5.15) and recalling (5.9) completes the

proof of Proposition 5.4. Q.E.D.

Next, given a pseudo-group G, we restrict the invariant differential forms to the asso-
ciated subgroupoid H(∞) ⊂ E (∞). Clearly, the restricted12 Maurer–Cartan forms µb

A will
no longer be linearly independent. The remarkable fact, proved in [53; Theorem 6.1], is

12 For simplicity, we do not explicitly indicate the pull-back map when restricting the forms to

H
(∞).
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that the linear constraints among the restricted Maurer–Cartan forms are precisely given
by the lifts, cf. (5.7), of the linearized determining equations (4.9):

L(n)(Z, µ(n)) = λ
[
L(n)(z, ζ(n))

]
= 0, n ≥ 0. (5.18)

Subject to these constraints, the preceding constructs can be effectively used in determining
recurrence relations for pseudogroup actions, as we illustrate in the subsequent examples.

6. Invariant Differential Forms.

We now use the moving frame to construct the invariant differential forms correspond-
ing to the prolonged action of the pseudo-group on the submanifold jet bundles Jn. The
general invariantization procedure introduced in [30, 31] in the finite-dimensional case
adapts straightforwardly — provided the prolonged pseudo-group actions are eventually
free and hence admits a complete moving frame on (an open subset of) J∞. Invariantiza-
tion of a differential function or form on J∞ is implemented by first lifting it to the bundle
E (∞) as in the preceding section, and then pulling back the lifted function or form with
the moving frame map.

Definition 6.1. Let13 ρ(∞): J∞ → H(∞) be a complete moving frame. If Ω is any
differential form on J∞, then its invariantization is the invariant differential form

ι(Ω) = (ρ(∞))∗
[
λ(Ω)

]
. (6.1)

Lemma 6.2. The invariantization of an arbitrary differential form is an invariant
differential form. Moreover, if Ω is already invariant, then ι(Ω) = Ω on their common
domains of definition.

Thus, in view of (5.2), invariantization defines an exterior algebra morphism,

ι(Ω + Θ) = ι(Ω) + ι(Θ), ι(Ω ∧ Θ) = ι(Ω) ∧ ι(Θ), (6.2)

that projects the spaces of ordinary functions and forms to the spaces of invariant func-
tions and forms. The proof of this result follows the finite-dimensional version in [31].
Indeed, the invariantization of a differential function/form is the unique invariant differ-
ential function/form that has the same values when restricted to the cross-section defining
the moving frame.

In particular, invariantizing the coordinate functions on J∞ leads to the normalized

differential invariants

Hi = ι(xi), i = 1, . . . , p, Iα
J = ι(uα

J ), α = 1, . . . , q, #J ≥ 0, (6.3)

which are the individual components of I(∞) described earlier in (3.9). Secondly, invari-
antization of the basis horizontal one-forms leads to the invariant horizontal one-forms

̟i = ι(dxi) = ωi + κi, i = 1, . . . , p, (6.4)

13 As usual, functions and forms may only be defined on an open subset of their domain space.
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where ωi, κi, are, respectively, the horizontal and vertical (contact) components. If the
pseudo-group acts projectably, then the contact components vanish: κi = 0. Otherwise,
the two components are not individually invariant, although the horizontal forms ω1, . . . , ωp

are, in the language of [48], a contact-invariant coframe on J∞.

The dual invariant differential operators D1, . . . ,Dp are uniquely defined by the for-
mula

dF =

p∑

i=1

(DiF )̟i + · · · , (6.5)

valid for any differential function F , where we omit the invariant contact components
(although these do play an important role in the study of invariant variational problems,
cf. [30, 31]). The invariant differential operators do not, in general, commute, but are
subject to linear commutation relations of the form

[
Di,Dj

]
=

p∑

k=1

Y k
i,j Dk, i, j = 1, . . . , p, (6.6)

where the coefficients Y k
i,j are certain differential invariants that must also be determined.

Finally, invariantizing the basis contact one-forms

ϑα
K = ι(θα

K), α = 1, . . . , q, #K ≥ 0, (6.7)

provide a complete system of invariant contact one-forms. They are contact forms because
both the lift map and the moving frame pull-back preserve the relevant contact ideals.

Theorem 6.3. The invariant horizontal and contact one-forms (6.4), (6.7) form an
invariant coframe on a dense open subset of the domain of definition of the moving frame.

From now on, we restrict the domain of definition of our complete moving frame ρ(∞),
which we continue to denote by V∞ ⊂ J∞, to the subset where the one-forms (6.4), (6.7)
form an invariant coframe. The exceptional points correspond to jets z(∞) = j∞S of
submanifolds that become tangent to the vertical fibers under the action of the groupoid
element ρ(∞)(z(∞)) ∈ H(∞) in the chosen coordinate system; see (2.29). In particular, if
the pseudo-group acts projectably, the one-forms (6.4), (6.7) prescribe an invariant coframe
on the entire domain of definition of ρ(∞).

On V∞, the invariant horizontal and contact forms induce an invariant splitting of
T∗J∞. The contact component remains as in the standard, non-invariant splitting, while
the invariant horizontal component agrees with the usual horizontal component if and only
if the pseudo-group acts projectably. As a result, the invariant coframe serves to define
the invariant variational quasi-tricomplex for the pseudo-group. See [30, 31] for further
developments in the finite-dimensional case, all of which carry over to infinite-dimensional
pseudo-group actions. Analysis of the resulting pseudo-group-invariant characteristic co-
homology, cf. [4, 27], is left to a future project.

Example 6.4. Let us use the moving frame to derive the invariant differential forms
for the pseudo-group of Examples 3.8, 5.2 and 5.6. First, invariantization of the horizontal
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forms leads to the invariant horizontal coframe elements (6.4), namely

̟1 = ω1 = ι(dx) = u dx, ̟2 = ω2 = ι(dy) = dy.

Since G acts projectably, there are no “contact corrections”, so κ1 = κ2 = 0. The dual
invariant differential operators are, as before, D1 = (1/u)Dx, D2 = Dy.

To obtain the order zero invariant contact form, we apply the invariantization map
to θ = du − ux dx − uy dy. First, in view of the prolonged pseudo-group formulae (3.13)
coupled with (5.3), the lifted contact form is

Θ = λ(θ) = πJ(dU − UX dX − UY dY ) =
(
Uu − UX Xu − UY Yu

)
θ =

θ

fx

.

Second, we use the moving frame normalizations (3.15) to pull back Θ, and so the invari-
antized zeroth order contact form is

ϑ = ι(θ) =
θ

u
=
du− ux dx− uy dy

u
. (6.8)

Higher order invariant contact forms are obtained by similarly invariantizing the higher-
order contact forms, e.g.,

ϑ1 = ι(θx) =
θx

u2
−
ux θ

u3
, ϑ2 = ι(θy) =

θy

u
.

Alternatively, we can generate higher-order invariant contact forms by invariant (Lie) dif-
ferentiation; a direct computation shows that

D1ϑ =
θx

u2
−
ux θ

u3
= ϑ1, D2ϑ =

θy

u
−
uy θ

u2
= ϑ2 − J ϑ . (6.9)

The recurrence relations, to be derived shortly, can be used to establish all of the formulae
connecting the differentiated and invariantized forms.

7. Recurrence Formulae.

The recurrence formulae, cf. [21, 30, 31], relate the differentiated invariants and in-
variant forms to their normalized counterparts. These formulae are fundamental, since they
completely determine the structure of the algebra of differential invariants, and thereby
enable the systematic classification of generating differential invariants and their syzygies
(differential identities). They also underly the intrinsic calculus of invariant variational
problems and, indeed, the local structure of the entire invariant variational bicomplex.
As in the finite-dimensional setting, the recurrence formulae are established using purely
infinitesimal information, requiring only linear algebra and differentiation. In particular,
they do not require the explicit formulae for either the Maurer–Cartan forms, or the nor-
malized differential invariants and invariant forms, or the invariant differential operators,
or even the moving frame itself! Beyond the standard formulae for the prolonged infinites-
imal generators, the only information required is the specification of the moving frame
cross-section.
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Under the moving frame map, the pulled-back Maurer–Cartan forms will be denoted

ν(∞) = (ρ(∞))∗ µ(∞)

with individual components

νb
A = (ρ(∞))∗ (µb

A), b = 1, . . . , m, #A ≥ 0. (7.1)

As such, they are invariant one-forms, and so are certain invariant linear combinations of
our invariant coframe elements (6.4), (6.7). Fortunately, the precise formulas need not be
established a priori, as they will be a direct consequence of the recurrence formulas for the
phantom differential invariants. In accordance with our interpretation of the invariantiza-
tion process as the composition of the lift map followed by the moving frame pull-back, we
identify the pulled-back Maurer–Cartan forms as the invariantizations of the vector field

coefficient jet coordinates (4.2):

ι(ζb
A) = νb

A, b = 1, . . . , m, #A ≥ 0. (7.2)

As with the lift map (5.9), we extend the invariantization process to differential functions
or forms whose coefficients are linear combinations of vector field coefficient jets in the
evident manner:

ι




m∑

b=1

∑

#A≤n

ζb
A ω

b
A


 =

m∑

b=1

∑

#A≤n

νb
A ∧ ι(ωb

A). (7.3)

If ωb
A are k–forms on J∞, then the result is an invariant differential (k + 1)-form on J∞.

Applying (ρ(∞))∗ to (5.18), we find that the pulled-back Maurer–Cartan forms νb
A

are subject to the linear relations

L(n)(I(0), ν(n)) = ι
[
L(n)(z, ζ(n))

]
= 0, n ≥ 0, (7.4)

obtained by invariantizing the original linear determining equations (4.9). Here,

I(0) = ι(z) = ι(x, u) = (H, I)

are the differential invariants in (6.3) obtained by invariantizing the coordinates on M .
Further, the invariantizations of the prolonged infinitesimal generator coefficients (4.6),

ηi = (ρ(∞))∗ Ξ i = ι(ξi) = νi, ψ̂ α
J = (ρ(∞))∗ Ψ̂α

J = ι(ϕ̂ α
J ) = Φα

J (I(n), ν(n)), (7.5)

are certain linear combinations of the pulled-back Maurer–Cartan forms (7.2), whose co-

efficients are polynomials in the normalized differential invariants Iβ
K for 1 ≤ #K ≤ #J .

With all these in hand, the desired universal recurrence formula is immediately ob-
tained by applying (ρ(∞))∗ to (5.10), using (6.1) and the fact that the exterior derivative
commutes with any pull-back map.

Theorem 7.1. If ω is any differential form on J∞, then

d ι(ω) = ι
[
dω + v(∞)(ω)

]
. (7.6)
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We now specialize the universal formula (7.6) to establish the complete system of
recurrence formulae for the normalized differential invariants and invariant one-forms. As
first noted in [21; (13.7)] and [31; (5.21)], each recurrence formula equates an invariant
exterior derivative of an invariantized function or form to the invariantization of its deriva-
tive plus a certain correction term, arising from ι

[
v(∞)(ω)

]
, which is an invariant linear

combination of the pulled-back Maurer–Cartan forms ν(∞). The latter are uniquely pre-
scribed by the recurrence formulae for the phantom differential invariants. The resulting
correction terms can be interpreted as a kind of “moving frame connection”. We defer any
development of a geometry of moving frame connections to a future research project.

First, taking ω in (7.6) to be one of the coordinate functions xi, uα
J yields recurrence

formulae for the normalized differential invariants (6.3),

dHi = ι
(
dxi + ξi

)
= ̟i + ηi,

dIα
J = ι

(
duα

J + ϕ̂ α
J

)
= ι

(
p∑

i=1

uα
J,i dx

i + θα
J + ϕ̂ α

J

)
=

p∑

i=1

Iα
J,i̟

i + ϑα
J + ψ̂ α

J ,
(7.7)

where the correction terms are the invariantized prolonged vector field coefficients (7.5),
each of which is a certain invariant linear combination of pulled-back Maurer–Cartan
forms νb

A, which are subject to the linear constraints (7.4). Each phantom differential
invariant is, by definition, normalized to a constant value, and hence has zero differential.
Therefore, the phantom recurrence formulae in (7.7) form a system of linear equations for
the pulled-back Maurer–Cartan forms. If the pseudo-group acts locally freely on Jn, then,
as we shall prove in [54], these equations can be uniquely solved for the Maurer–Cartan
forms of order ≤ n as invariant linear combinations of the invariant horizontal and contact
one-forms ̟i, ϑα

J . Substituting the resulting formulae into the remaining, non-phantom
recurrence formulae in (7.7) leads to a complete system of recurrence relations, for both
the vertical and horizontal differentials of all the normalized differential invariants.

Next, if we let ω in (7.6) be a one-form in the coordinate coframe dxi, θα
J , and use

the previously derived expressions for the pulled-back Maurer–Cartan forms, we are led to
the corresponding recurrence formulae for differentials of the invariant coframe ̟i, ϑα

J . In
particular, the formulae for the differentials of the invariant horizontal forms,

d̟k = −
∑

i<j

Y k
i,j ̟

i ∧̟j + · · · , (7.8)

where we only display the terms that do not involve invariant contact forms, prescribe
the differential invariant coefficients Y k

i,j in the commutation relations (6.6) among the
invariant differential operators. (As in [21], this follows from writing out the non-contact
components in d2F = 0, using formula (6.5), for a differential function F .) The full
justification of these claims and more substantial illustrative examples will appear in the
forthcoming papers [14, 54].

Let us see how this all works in our running pseudo-group example.

Example 7.2. Consider the pseudo-group (3.10). For the particular moving frame
constructed in Example 3.8, the normalized differential invariants are obtained by invari-
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antizing the jet coordinates:

ι(x) = H = 0, ι(y) = y, ι(u) = I00 = 1, ι(ux) = I10 = 0, ι(uy) = I01 = J,

ι(uxx) = I20 = 0, ι(uxy) = I11 = J1, ι(uyy) = I02 = J2,

ι(uxxx) = I30 = 0, ι(uxxy) = I21 = J3, ι(uxyy) = I12 = J4, ι(uyyy) = I03 = J5,

and so on, where J, J1, J2 are the differential invariants (3.16), while the formulae for
J4, J5, J6 remain to be determined. According to Example 6.4, the invariant coframe on
J∞ consists of the invariantized horizontal forms

̟1 = ι(dx) = u dx, ̟2 = ι(dy) = dy,

along with the invariantized contact forms

ϑ = ι(θ) =
θ

u
, ϑ1 = ι(θx), ϑ2 = ι(θy), ϑ3 = ι(θxx), ϑ4 = ι(θxy), ϑ5 = ι(θyy), . . . .

The dual invariant differential operators are

D1 =
1

u
Dx, D2 = Dy.

The recurrence formulae for the invariantly differentiated invariant functions and
forms all follow from our fundamental identity (7.6). The first task is to compute the
coefficients

v(∞) = ξ
∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u
+ ϕ̂ x ∂

∂ux

+ ϕ̂ y ∂

∂uy

+ ϕ̂ xx ∂

∂uxx

+ · · ·

of the prolonged infinitesimal generator v = a(x)∂x − a′(x) u ∂u. Invoking the standard
prolongation formula (4.5), we find

ξ = a,

η = 0,

ϕ = −u ax,

ϕ̂ x = Dx(−u ax − uxa) + uxxa = −u axx − 2 uxax,

ϕ̂ y = Dy(−u ax − uxa) + uxya = −uyax,

ϕ̂ xx = D2
x(−u ax − uxa) + uxxxa = −u axxx − 3 ux axx − 3 uxxax,

ϕ̂ xy = DxDy(−u ax − uxa) + uxxya = −uy axx − 2 uxyax,

ϕ̂ yy = D2
y(−u ax − uxa) + uxyya = −uyyax,

(7.9)

and so on. According to (7.5), their invariantizations are linear combinations of pulled-
back Maurer–Cartan forms, which are subject to the invariantized determining equations.
Thus, a basis is provided by the one-forms

αk = ι(ak) = ι(Dk
xa) (7.10)
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obtained by invariantizing the jet coordinates (derivatives) of the function a(x). We do
not need to compute the one-forms αk directly, since the required formulas will shortly
follow from the recurrence formulae for the phantom differential invariants.

We now apply (7.7) to obtain the differentials of the phantom invariants

0 = dH = ι(dx+ ξ) = ι(dx+ a) = ̟1 + α,

0 = dI00 = ι(du+ ϕ) = ι(ux dx+ uy dy + θ − u ax)

= I10̟
1 + I01̟

2 + ϑ− I00 α1 = J ̟2 + ϑ− α1,

0 = dI10 = ι(dux + ϕ̂ x) = ι(uxx dx+ uxy dy + θx − u axx − 2 uxax)

= I20̟
1 + I11̟

2 + ϑ10 − I00 α2 − 2 I10 α1 = J1̟
2 + ϑ1 − α2,

0 = dI20 = ι(duxx + ϕ̂ xx) = ι(uxxx dx+ uxxy dy + θxx − u axxx − 3 ux axx − 3 uxxax)

= I30̟
1 + I21̟

2 + ϑ20 − I00 α3 − 3 I10 α2 − 3 I20 α1 = J3̟
2 + ϑ3 − α3,

etc. Solving the resulting linear system produces the formulae for the pulled-back Maurer–
Cartan forms:

α = −̟1, α1 = J ̟2 + ϑ, α2 = J1̟
2 + ϑ1, α3 = J3̟

2 + ϑ3, . . . .

Observe that, to deduce these formulae for the pulled-back Maurer–Cartan forms, we did
not require any of our explicit formulas for either the moving frame map or the original
Maurer–Cartan forms.

Substituting these expressions into the differentials of the non-constant differential
invariants, we deduce

dy = ι(dy + η) = ̟2,

dJ = dI01 = ι(duy + ϕ̂ y) = ι(uxy dx+ uyy dy + θy − uyax)

= I11̟
1 + I02̟

2 + ϑ01 − I01 α1

= J1̟
1 + (J2 − J2)̟2 + ϑ2 − J ϑ,

dJ1 = dI11 = ι(duxy + ϕ̂ xy) = ι(uxxy dx+ uxyy dy + θxy − uy axx − 2 uxyax)

= I21̟
1 + I12̟

2 + ϑ11 − I01 α2 − 2 I11 α1

= J3̟
1 + (J4 − 3 J J1)̟

2 + ϑ4 − J ϑ1 − 2 J1 ϑ,

dJ2 = dI02 = ι(duyy + ϕ̂ yy) = ι(uxyy dx+ uyyy dy + θyy − uyyax)

= I12̟
1 + I03̟

2 + ϑ02 − I02 α1

= J4̟
1 + (J5 − J J2)̟

2 + ϑ5 − J2 ϑ.

Breaking these formulae up into horizontal and vertical14 components yields the explicit

14 Since the pseudo-group acts projectably, the invariant horizontal forms contain no contact
components, and hence the invariant vertical differential coincides with the usual vertical differ-
ential. Non-projectable actions are slightly more complicated; see [31] for details.
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recurrence formulae for the differential invariants,

D1J = J1, D2J = J2 − J2, dV J = ϑ2 − J ϑ,

D1J1 = J3, D2J1 = J4 − 3 J J1, dV J1 = ϑ4 − J ϑ1 − 2 J1 ϑ,

D1J2 = J4, D2J2 = J5 − J J2, dV J2 = ϑ5 − J2 ϑ,

the first couple of which we earlier produced by direct calculation. Proceeding by induc-
tion (or, more directly, by (8.32) below), we easily verify that all higher-order differential
invariants are obtained by successively applying the invariant total derivative operators to
the fundamental invariant J = I01:

J1 = D1J, J2 = D2J + J2, J3 = D2
1J,

J4 = D1D2J + 2 J D1J = D2D1J + 3 J D1J, J5 = D2
2J + 3 J D2J + J3, . . . .

Similarly, we can determine the differentials of the basic invariant horizontal and
contact forms. Taking ω to be dx or dy in (7.6), we find

d̟1 = dι(dx) = ι
[
d(dx) + v(∞)(dx)

]
= ι(da) = ι(ax dx)

= α1 ∧̟
1 = −J̟1 ∧̟2 + ϑ ∧̟1,

d̟2 = dι(dy) = ι
[
d(dy) + v(∞)(dy)

]
= 0.

In view of (7.8), we deduce the basic commutation formula

[D1,D2 ] = J D1 (7.11)

for the invariant differential operators. Finally, taking ω = θ to be the order 0 contact
form, we deduce

dϑ = dι(θ) = ι
[
dθ + v(∞)(θ)

]
= ι
[
dx ∧ θx + dy ∧ θy − ax θ

]

= ̟1 ∧ ϑ1 +̟2 ∧ ϑ2 − α1 ∧ ϑ = ̟1 ∧ ϑ1 +̟2 ∧
(
ϑ2 − J ϑ

)
.

Therefore,
D1ϑ = ϑ1, D2ϑ = ϑ2 − J ϑ, (7.12)

which reproduces (6.9). The recurrence formulae for the higher order contact forms are
similarly constructed.

Our second pseudo-group Example 3.9 can be handled by analogous manipulations.
But we prefer to wait for the alternative, more powerful computational approach based on
power series expansions, which will be presented next.

8. Power Series.

A practical disadvantage of the computational algorithms developed above is that
they must be implemented order by order, and so may require an excessive amount of
computing. In [53], we showed how formal power series expansions can be used to concisely
formulate the structure equations for general pseudo-groups. In this section, we explain
how power series can streamline the computation of moving frame normalizations and
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resulting recurrence formulae. Throughout, the symbols h, k,H and K will be used to
denote formal parameters in power series. Keep in mind that these parameters are not

affected by any pseudo-group transformations.

Given a local diffeomorphism of M mapping the source variables z = (x, u) to the
target variables Z = (X,U), we introduce the formal power series

X i[[ h, k ]] =
∑

#I,#J≥0

1

I! J !
X i

IJ h
IkJ ,

Uα[[ h, k ]] =
∑

#I,#J≥0

1

I! J !
Uα

IJ h
IkJ ,

in
h = (h1, . . . , hp),

k = (k1, . . . , kq),
(8.1)

to represent its infinite jet or, equivalently, Taylor expansion at the source point. The
groupoid structure of D(∞) is recovered by formal composition and inversion of power
series, making sure that the target of the initial series matches the source of its successor.
Similarly, the infinite jet of a submanifold S at a point z = (x, u) ∈ S is represented by
the power series

uα[[ h ]] =
∑

#J ≥ 0

1

J !
uα

J h
J

in h = (h1, . . . , hp). (8.2)

Given a diffeomorphism represented by (8.1), we let

Ûα[[H ]] =
∑

#J ≥ 0

1

J !
Ûα

J H
J , where H = (H1, . . . , Hp), (8.3)

denote the corresponding Taylor expansion of the transformed submanifold15 at the target
point Z = (X,U). The transformed power series (8.3) can be explicitly determined by
eliminating h from the composite power series

Û [[H ]] = U [[ h, u[[ h ]]− u[[ 0 ]] ]], when H = X [[ h, u[[ h ]]− u[[ 0 ]] ]]−X [[ 0, 0 ]]. (8.4)

In other words one inverts the second equation to rewrite the parameters h = F [[H ]] as
power series in H, and then substitutes these expressions into the first power series to
produce (8.3). The individual coefficients of the resulting power series yield the implicit
differentiation formulae (2.32).

Example 8.1. Consider the planar case, M = R
2, with a single independent variable

x and a single dependent variable u. The Taylor expansion for a plane curve C ⊂ R
2 at a

point (x, u) ∈ C has the form

u[[ h ]] = u+ ux h+ 1
2 uxx h

2 + · · · .

15 As before, we assume that the transformed submanifold continues to be represented locally
as the graph of a function.
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Let
X [[ h, k ]] = X +Xx h+Xu k + 1

2
Xxx h

2 +Xxu h k + 1
2
Xuu k

2 + · · · ,

U [[ h, k ]] = U + Ux h+ Uu k + 1
2 Uxx h

2 + Uxu h k + 1
2 Uuu k

2 + · · · ,

be the Taylor expansion of a general local diffeomorphism of R
2. According to (8.4), to

obtain the Taylor series

Û [[H ]] = U + ÛX H + 1
2 ÛXXH

2 + · · · (8.5)

for the transformed curve, we first invert the power series

H = X [[ h, u[[ h ]]− u[[ 0 ]] ]]−X [[ 0, 0 ]] =

∞∑

k=1

1

k!
Dk

xX hk

= (Xx + uxXu) h+ 1
2

(Xxx + 2Xxu ux +Xuu u
2
x +Xuuxx)h2 + · · · ,

to produce the expansion

h =
1

Xx + uxXu

H −
1

2

Xxx + 2Xxu ux +Xuu u
2
x +Xuuxx

(Xx + uxXu)3
H2 + · · · .

Substituting this series into

U [[ h, u[[ h ]]− u[[ 0 ]] ]] =

∞∑

k=0

1

k!
Dk

xU h
k

= U + (Ux + ux Uu) h+ 1
2 (Uxx + 2Uxu ux + Uuu u

2
x + Uuuxx)h2 + · · ·

leads to the power series

Û [[H ]] = U + ÛX H + 1
2 ÛXX H2 + · · · ,

whose coefficients U, ÛX , ÛXX , . . . are precisely the implicit differentiation formulae (2.6).

Given a pseudo-group G, we will identify the infinite jets of its transformations with
their Taylor series at the source point. The induced action of G(∞) on the submani-
fold jet bundle J∞ is obtained by restricting the general prolonged action (8.3) to the
pseudo-group jets, as constrained by the determining equations. A complete coordinate
cross-section K∞ ⊂ J∞ is specified by normalizing an appropriate subset of the Taylor
coefficients in Û [[H ]] to suitably prescribed constants. Solving the normalization equations
for the pseudo-group jet parameters yields a complete moving frame ρ(∞): J∞ → H(∞),
now expressed in power series form. Moreover, substituting the induced moving frame
formulae back into the series Û [[H ]] leads to a (vector-valued) power series

I[[H ]] = (ρ(∞))∗
(
Û [[H ]]

)
, (8.6)

whose coefficients Iα
J are the normalized differential invariants (3.9).
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Definition 8.2. The invariantization of a formal power series

F [[ h ]] =
∑

#J ≥ 0

FJ h
J ,

whose coefficients FJ are differential functions, or, more generally, differential forms, is the
formal power series

ι
(
F [[ h ]]

)
=
∑

#J ≥ 0

ι(FJ)HJ , (8.7)

obtained by invariantizing the individual coefficients. For clarity, we will consistently
distinguish the formal parameters h in the original series from the formal parameters H
in its invariantization, i.e., formally, ι(h) = H.

In particular, the invariantization of the dependent variable series (8.2) is the normal-
ized differential invariant series (8.6),

I[[H ]] = ι
(
u[[ h ]]

)
. (8.8)

The power series moving frame method is best assimilated by working through an
explicit example.

Example 8.3. The transformations of the pseudo-group (3.10) can be written in
power series form

X = f [[ h ]], Y = y + k, U =
u[[ h, k ]]

f ′[[ h ]]
, (8.9)

where
f [[ h ]] = f + fx h+ 1

2 fxx h
2 + 1

6 fxxx h
3 + · · · ,

while

f ′[[ h ]] = fx[[ h ]] =
∂f

∂h
[[ h ]] = fx + fxx h+ 1

2
fxxx h

2 + · · ·

indicates the differentiated series. The prolonged pseudo-group action on the surface jet
space J∞ = J∞(R3, 2) is found by inverting the power series

H = f̃ [[ h ]] ≡ f [[ h ]] − f [[ 0 ]] = fx h+ 1
2 fxx h

2 + · · · , K = k. (8.10)

Substituting the resulting expressions for h = f̃−1[[H ]], K = k, into the series (8.9) for U
leads to

Û [[H,K ]] =
∑

m,n≥0

1

m! n!
Ûm,nH

mKn =
u[[ f̃−1[[H ]], K ]]

f ′[[ f̃−1[[H ]] ]]
, (8.11)

whose coefficients Ûm,n = Dm
XDn

Y U are the prolonged pseudo-group transformations (3.13).

Let us employ this formulation to construct a power series expansion for the moving
frame. The normalizations chosen in Example 3.8 are equivalent to setting

Û [[H, 0 ]] = 1, so that Û0,0 = 1, Ûm,0 = 0, m ≥ 1, (8.12)
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or, expressed in another way, setting

Û [[H,K ]] = 1 +K V [[H,K ]], (8.13)

for some power series V [[H,K ]]. We solve the normalization equations for the derivative
parameters fm = ∂m

x f , or, equivalently, the power series f [[ h ]]. Using (8.10–11), the
normalization equations (8.12) can be written in the series form

1 = Û [[H, 0 ]] =
u[[ h, 0 ]]

f ′[[ h ]]
and hence f ′[[ h ]] = u[[ h, 0 ]]. (8.14)

The result is equivalent to the individual normalizations fm = um−1,0, m ≥ 1, the first
few of which were found, much more laboriously, in Example 3.8.

We substitute the moving frame formulae (8.14) into the lifted series (8.11), resulting
in

Û [[H,K ]] 7−→ I[[H,K ]] = 1 +K J [[H,K ]], (8.15)

where the coefficients of J [[H,K ]] are the independent (non-phantom) normalized differ-
ential invariants. We use (8.10) and (8.14) to write

J [[H,K ]] =
u[[ h, k ]] − u[[ h, 0 ]]

k u[[ h, 0 ]]
, (8.16)

where the first parameter

H = f̃ [[ h ]] =

∫ h

0

f ′[[ η ]] dη =

∫ h

0

u[[ η, 0 ]]dη = uh+ 1
2
ux h

2 + 1
6
uxx h

3 + · · ·

is obtained by term-by-term integration. Explicitly inverting the power series:

h = f̃−1[[H ]] =
1

u
H −

ux

2 u3
H2 −

uuxx − 3 u2
x

6 u5
H3 − · · · , k = K. (8.17)

On the other hand,

u[[ h, k ]] − u[[ h, 0 ]]

k u[[ h, 0 ]]
=
uy

u
+
uuxy − uxuy

u2
h+

uyy

2u
k +

+
u2uxxy − uuyuxx − 2uuxuxy + 2u2

xuy

2u3
h2 +

uuxyy − uxuyy

2u2
h k +

uyyy

6u
k2 + · · · .

Substituting (8.17) into this series produces the formulae

J [[H,K ]] =
uy

u
+
uuxy − uxuy

u3
H +

uyy

2 u
K + (8.18)

+
u2uxxy − uuyuxx − 3uuxuxy + 3u2

xuy

2u5
H2 +

uuxyy − uxuyy

2u3
HK +

uyyy

6u
K2 + · · · .

The individual coefficients of (8.18) are the fundamental normalized differential invariants
for our pseudo-group.
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We can also use power series to re-express the prolongation formula for vector fields.
Given a vector field v as in (4.1), let

ξi[[ h, k ]] =
∑

#I,#L≥ 0

ξi
IL

hI kL

I!L!
, ϕα[[ h, k ]] =

∑

#I,#L ≥ 0

ϕα
IL

hI kL

I!L!
, (8.19)

be the Taylor expansions representing its infinite jet at a point z = (x, u). The coefficients
in the composite series

ϕα[[ h, u[[ h ]] − u[[ 0 ]] ]] =
∑

#J ≥ 0

DJ
xϕ

α hJ

J !

are the total derivatives of ϕα with respect to x. Define the vector-valued power series
ϕ̂ [[ h ]], whose components

ϕ̂ α[[ h ]] =
∑

#J ≥ 0

ϕ̂ α
J

hJ

J !
, α = 1, . . . , q, (8.20)

provide the prolonged vector field coefficients. The prolongation formula (4.5) can then be
written in vector-valued series form

ϕ̂ [[ h ]] = ϕ[[ h, u[[ h ]]− u[[ 0 ]] ]]−∇hu[[ h ]]
(
ξ[[ h, u[[ h ]] ]]− ξ[[ 0, 0 ]]

)
, (8.21)

where ∇hu[[ h ]] is the matrix-valued power series obtained by forming the q × p Jacobian
matrix of u[[ h ]] with respect to the formal parameters h.

Example 8.4. According to (7.9), the prolonged infinitesimal generator of the
pseudo-group (3.10) has the form

v(∞) = a ∂x − u ax ∂u − (u axx + 2 ux ax ) ∂ux
− uy ax ∂uy

− (8.22)

− (u axxx + 3 ux axx + 3 uxx ax ) ∂uxx
−
(
uy axx + 2 uxy ax

)
∂uxy

− uyy ax ∂uyy
− · · · .

In this case, the prolonged infinitesimal generator series (8.21) has the explicit form

ϕ̂ [[ h, k ]] = −u[[ h, k ]] ah[[ h ]] − uh[[ h, k ]]
(
a[[ h ]] − a[[ 0 ]]

)

= −
∂

∂h

{
u[[ h, k ]]

(
a[[ h ]] − a[[ 0 ]]

) }
,

(8.23)

where
a[[ h ]] = a+ axh+ 1

2 axxh
2 + · · · (8.24)

is the Taylor series representing the infinite jet of the function a(x).

Finally, we employ power series to establish a complete system of recurrence formulae
for the normalized differential invariants. Let ψ̂ [[H ]] be the vector-valued power series
whose coefficients are the invariant forms (7.5). Its components

ψ̂ α[[H ]] =
∑

#J ≥ 0

ψ̂ α
J

HJ

J !
= ι
(
ϕ̂ α[[ h ]]

)
, α = 1, . . . , q, (8.25)
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are obtained by invariantizing the prolonged vector field series (8.20) as described in Def-
inition 8.2. Our key recurrence formula (7.6), when evaluated on the differential invariant
series I[[H ]] = ι(u[[ h ]]), takes the form

dI[[H ]] = ι
(
du[[ h ]] + ϕ̂ [[ h ]]

)
= ι
(
∇hu[[ h ]] dx+ θ[[ h ]] + ϕ̂ [[ h ]]

)

= ∇HI[[H ]]̟ + ϑ[[H ]] + ψ̂ [[H ]].
(8.26)

Applying (8.21), we obtain the explicit formulae for

ψ̂ [[H ]] = ψ[[H, I[[H ]] − I[[ 0 ]] ]]−∇HI[[H ]]
(
η[[H, I[[H ]] ]] − η[[ 0, 0 ]]

)
, (8.27)

in which

η[[H,K ]] = ι
(
ξ[[ h, k ]]

)
, ψ[[H,K ]] = ι

(
ϕ[[ h, k ]]

)
, (8.28)

are power series whose coefficients are the pulled-back Maurer–Cartan forms ν(∞), (7.1),
or, equivalently, the invariantizations of the expansions (8.19). The phantom coefficients
in I[[H ]] are used to uniquely prescribe the pulled-back Maurer–Cartan forms ν(∞), and
thus the correction terms in the recurrence formulae.

Example 8.5. Let us return to the pseudo-group in Example 8.3. Let

α[[H ]] = α+ α1H + 1
2 α2H

2 + · · · = ι
(
a[[ h ]]

)
(8.29)

be the series whose coefficients are the pulled-backed Maurer–Cartan forms (7.10), which
we identify as the invariantization of the series (8.24). Then, according to formula (8.26),

dI[[H,K ]] =
∂I

∂H
[[H,K ]]̟1 +

∂I

∂K
[[H,K ]]̟2 + ϑ[[H,K ]]

−
∂

∂H

{
I[[H,K ]]

(
α[[H ]] − α[[ 0 ]]

) }
,

(8.30)

where we used (8.23) to compute

ψ̂ [[H,K ]] = ι
(
ϕ̂ [[ h, k ]]

)
= ι

(
−

∂

∂h

{
u[[ h, k ]]

(
a[[ h ]] − a[[ 0 ]]

) })

= −
∂

∂H

{
I[[H,K ]]

(
α[[H ]] − α[[ 0 ]]

) }
.

Since we are normalizing Û [[H, 0 ]] = 1, we have

I[[H, 0 ]] = 1 and hence IH [[H, 0 ]] = 0, dI[[H, 0 ]] = 0.

Therefore, when we substitute K = 0 in (8.30), we can solve for the pulled-back Maurer–
Cartan forms

αH [[H ]] = IK [[H, 0 ]]̟2 + ϑ[[H, 0 ]] =

∞∑

j =0

Hj

j!

(
Ij,1̟

2 + ϑj,0

)
,
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and so, upon integrating with respect to H,

α[[H ]] − α[[ 0 ]] =

∫ H

0

(
IK [[ Ĥ, 0 ]]̟2 + ϑ[[ Ĥ, 0 ]]

)
dĤ =

∞∑

j =1

Hj

j!

(
Ij−1,1̟

2 + ϑj−1,0

)
.

(8.31)
Substituting into (8.30), we find that the horizontal recurrence formulae are given in power
series form by

dH I[[H,K ]] = IH [[H,K ]]̟1 +

[
IK [[H,K ]] −

∂

∂H

(
I[[H,K ]]

∫ H

0

IK [[ Ĥ, 0 ]]dĤ

)]
̟2,

or, in components,

D1Ijk = Ij+1,k, D2Ijk = Ij,k+1 −

j∑

i=0

(
j + 1

i

)
Iik Ij−i,1. (8.32)

Consequently, the lowest order differential invariant J = I01 serves to generate the entire
differential invariant algebra through invariant differentiation. Since the Ijk are func-

tionally independent, there are no syzygies among the differentiated invariants Dj
1D

k
2J .

Furthermore, the vertical component of (8.30) yields

dV I[[H,K ]] = ϑ[[H,K ]] −
∂

∂H

(
I[[H,K ]]

∫ H

0

ϑ[[ Ĥ, 0 ]]dĤ

)
,

with individual coefficients

dV Ijk = ϑjk −

j∑

i=0

(
j + 1

i

)
Iik ϑj−i,0. (8.33)

The initial cases reproduce our earlier results found in Example 7.2.

Finally, using (8.23) and the fact that the group acts projectably, the differentials of
the invariant contact forms are provided by the power series

dϑ[[H,K ]] = ι ( dθ[[ h, k ]] + dV ϕ̂ [[ h, k ]] )

= ι

(
dx ∧

∂θ

∂h
[[ h, k ]] + dy ∧

∂θ

∂k
[[ h, k ]] −

∂

∂h

{ (
a[[ h ]] − a[[ 0 ]]

)
∧ θ[[ h, k ]]

})

= ̟1 ∧
∂ϑ

∂H
[[H,K ]] +̟2 ∧

∂ϑ

∂K
[[H,K ]] −

∂

∂H

{ (
α[[H ]] − α[[ 0 ]]

)
∧ ϑ[[H,K ]]

}
.

Substituting the formula (8.31) for the normalized Maurer–Cartan forms, we find

dϑ[[H,K ]] = ̟1 ∧
∂ϑ

∂H
[[H,K ]] −

∂

∂H

[(∫ H

0

ϑ[[ Ĥ, 0 ]]dĤ

)
∧ ϑ[[H,K ]]

]

+̟2 ∧

{
∂ϑ

∂K
[[H,K ]] −

∂

∂H

[(∫ H

0

∂I

∂K
[[ Ĥ, 0 ]]dĤ

)
ϑ[[H,K ]]

]}
,
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which give both the horizontal and vertical recurrence formulae for the invariantized con-
tact forms. In particular, the horizontal components yield

D1ϑjk = ϑj+1,k, D2ϑjk = ϑj,k+1 −

j∑

i=0

(
j + 1

i

)
Ij−i,1 ϑjk,

of which the case j = k = 0 appears in (6.9).

Example 8.6. As our ultimate illustrative example, we apply the power series mov-
ing frame method to analyze the action of the pseudo-group (3.20) on surfaces S ⊂ R

3.
We first write the power series expansions

X = f [[ h ]],

Y = f ′[[ h ]] (y + k) + g[[ h ]] = f ′[[ 0 ]] y + g[[ 0 ]] + f ′[[ h ]]
(
k − a[[ h ]]

)
,

U = u[[ h, k ]] +
f ′′[[ h ]] k + g′[[ h ]]

f ′[[ h ]]
= u[[ h, k ]] +

f ′′[[ h ]]

f ′[[ h ]]

(
k − a[[ h ]]

)
− a′[[ h ]] ,

(8.34)

for the pseudo-group transformations, where we have introduced the power series

a[[ h ]] = −

(
f ′[[ h ]] − f ′[[ 0 ]]

)
y + g[[ h ]]− g[[ 0 ]]

f ′[[ h ]]

for later computational convenience. Inverting the power series

H = f̃ [[ h ]] ≡ f [[ h ]] − f [[ 0 ]], K = f ′[[ h ]]
(
k − a[[ h ]]

)
, (8.35)

and substituting the result into the series for U in (8.34), yields the power series Û [[H,K ]]
for the prolonged action on the surface jet bundle J∞ = J∞(R3, 2), whose first few coeffi-
cients were given in (3.22).

The moving frame normalizations chosen in Example 3.9 are equivalent to setting

Û [[H,K ]] = 1
2
K2 V [[H,K ]], where V [[H,K ]] = 1 + V1H + V2K + · · · (8.36)

is a power series whose constant term equals 1. When we substitute (8.35) into the nor-
malization equations (8.36), the left hand side becomes the third power series in (8.34),
while the right hand side becomes

1
2 f

′[[ h ]]2
(
k − a[[ h ]]

)2
v[[ h, k ]],

where we set v[[ h, k ]] = V [[H,K ]] when their parameters are related by (8.35). The
resulting power series equation,

u[[ h, k ]] = a′[[ h ]] −
f ′′[[ h ]]

f ′[[ h ]]

(
k − a[[ h ]]

)
+ 1

2 f
′[[ h ]]2

(
k − a[[ h ]]

)2
v[[ h, k ]], (8.37)

will prescribe the complete moving frame formulae for the pseudo-group parameters in
f [[ h ]], a[[ h ]] as follows. First, setting k = a[[ h ]] in (8.37), we find

a′[[ h ]] = u[[ h, a[[ h ]] ]]. (8.38)
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We can view (8.38) as the power series analog of the first order nonlinear ordinary differ-
ential equation

da

dx
= u(x, a(x)) with initial conditions a(0) = 0,

reflecting the fact that the power series

a[[ h ]] = axh+ 1
2 axxh

2 + · · ·

has no constant term. The series solution to this ordinary differential equation has coeffi-
cients

ax = u, axx = ux + axuy = ux + uuy, axxx = uxx + 2uuxy + u2uyy + uxuy + uu2
y ,

and, in general,
aj = (Dx + uDy)j−1 u. (8.39)

Second, differentiating (8.37) with respect to k and then setting k = a[[ h ]] yields

f ′′[[ h ]] = −uy[[ h, a[[ h ]] ]] f ′[[ h ]], (8.40)

which is the power series form of the second order linear ordinary differential equation

d2f

dx2
= −uy(x, a(x))

df

dx
.

The series solution, based upon (8.39), yields the normalization formulae

fxx = −uyfx, fxxx = − (uxy + axuyy)fx − uyfxx = − (uxy + uuyy − u2
y) fx,

and, in general,

fj = fx (Dx + uDy − uy)
1

fx

fj−1 = fx (Dx + uDy − uy)j−1(1) , j ≥ 2. (8.41)

To normalize the one remaining coefficient fx, we differentiate (8.37) twice with respect to
k and set h = k = 0, yielding

uyy = f2
x , so that fx =

√
uyy .

Thus, our pseudo-group normalization formulae (8.39), (8.41) become

fj =
√
uyy (Dx + uDy − uy)j−1(1), aj = (Dx + uDy)j−1u, j = 1, 2, . . . . (8.42)

Substituting these normalized values into the power series (8.36) produces the differential
invariant power series

I[[H,K ]] = 1
2
K2 J [[H,K ]], (8.43)

where the non-constant coefficients of

J [[H,K ]] = 1 + J1H + 1
3 J2K + · · · = 1 +

uxyy + uuyyy + 2uyuyy

u
3/2
yy

H +
uyyy

3 u
3/2
yy

K + · · ·

(8.44)
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form a complete system of normalized differential invariants. The first two terms recover
our earlier formulae (3.24).

The infinitesimal generators of this pseudo-group have the form

v = ξ
∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u
= a(x)

∂

∂x
+
[
a′(x) y + b(x)

] ∂
∂y

+
[
a′′(x) y + b′(x)

] ∂
∂u

, (8.45)

where a(x), b(x) are arbitrary scalar functions. The corresponding Taylor series are

ξ[[ h, k ]] = a[[ h ]], η[[ h, k ]] = ah[[ h ]] (y + k) + b[[ h ]], ϕ[[ h, k ]] = ahh[[ h ]] (y + k) + bh[[ h ]],

and thus the prolonged infinitesimal generator coefficient series (8.21) is

ϕ̂ [[ h, k ]] = ahh[[ h ]] (y + k) + bh[[ h ]] − uh[[ h, k ]] (a[[ h ]]− a[[ 0 ]])

− uk[[ h, k ]]
(
ah[[ h ]] (y + k) − ah[[ 0 ]] y+ b[[ h ]] − b[[ 0 ]]

)
.

(8.46)

Invariantization results in

ψ̂ [[H,K ]] = αHH [[H ]]K + βH [[H ]] − IH [[H,K ]]
(
α[[H ]] − α[[ 0 ]]

)

− IK [[H,K ]]
(
αH [[H ]]K + β[[H ]] − β[[ 0 ]]

)
,

where the coefficients of

α[[H ]] = α+ α1H + 1
2 α2H

2 + · · · , β[[H ]] = β + β1H + 1
2 β2H

2 + · · · ,

are the moving frame pull-backs of the independent Maurer–Cartan forms, so

αk = ι(ak), βk = ι(bk).

According to (8.26)

dI[[H,K ]] = IH [[H,K ]]̟1 + IK [[H,K ]]̟2 + ϑ[[H,K ]] + ψ̂ [[H,K ]]. (8.47)

The phantom components of this series identity are the terms in Hj, HjK, and K2. Sub-
stituting K = 0 yields

βH [[H ]] = −ϑ[[H, 0 ]].

Differentiating with respect to K and then setting K = 0 yields

αHH [[H ]] = − IKK [[H, 0 ]]
(
̟2 − β[[H ]] + β[[ 0 ]]

)
− ϑK [[H, 0 ]].

Finally, the coefficient of K2 yields

α1 = 1
2

(
J1̟

1 + J2̟
2 + ϑ0,2

)
.

Substituting these back into (8.47) yields a complete system of recurrence formulae for the
differential invariants. In particular, the horizontal component is

dH I[[H,K ]] =
(
IH [[H,K ]] − 1

2 J1

{
H IH [[H,K ]] +K IK [[H,K ]]

} )
̟1

+

(
IK [[H,K ]] − 1

2 J2

{
H IH [[H,K ]] +K IK [[H,K ]]

}
−K IKK [[H, 0 ]]

+K IK [[H,K ]]

∫ H

0

IKK [[ Ĥ, 0 ]]dĤ + IH [[H,K ]]

∫ H

0

∫ Ĥ

0

IKK [[ H̃, 0 ]]dH̃ dĤ

)
̟2.
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Expanding the series term by term will produce the complete system of recurrence rela-
tions among the differentiated and normalized invariants. In particular, we are able to
conclude that J1, J2 generate all higher-order differential invariants by invariant differ-
entiation. Similar manipulations will produce the recurrence formulae for the invariant
differential forms.

Clearly, the computations can become quite intricate. Nevertheless, we hope that the
reader is convinced that they are completely systematic and can, with sufficient comput-
ing resources, be straightforwardly implemented on a suitably powerful computer algebra
system.

9. Further directions.

In this paper, we have succeeded in establishing a general, completely algorithmic
moving frame calculus for Lie pseudo-group actions. A broad range of applications of
these methods in geometry, physics and applied sciences is apparent.

(a) One immediate area of application is to the analysis of symmetry groups of differential
equations, [47]. We now have a comprehensive and efficient algorithm that can
be applied to the symmetry analysis of the differential equations of physical and
mathematical significance, including gauge theory, [5, 27], fluid mechanics and
meteorology, [47, 59], and many other systems of partial differential equations with
infinite-dimensional symmetry groups. The first applications of these methods, to
the Korteweg–deVries and KP equations, appear in [12, 13, 14].

(b) As we showed in [53], the moving frame method can produce the structure equa-
tions for the symmetry group directly from the determining system, providing an
attractive alternative to the series expansion procedure advocated by Lisle, and
Reid, [37, 38, 57]. Other methods, and some comparisons between them, can be
found in the papers of Morozov, [44, 45]. An advantage of our algorithm is that it
enables one to also compute recurrence relations and syzygies, and thereby expose
the structure of the algebra of differential invariants without having to solve the
determining equations or explicitly compute the moving frame.

(c) Owing to the overall complexity of the computations, any serious implementation
of the methods discussed here will, ultimately, rely on computer algebra. Thus,
the development of appropriate software packages is a significant priority. Effi-
cient implementation of the structure equations through some form of differential
Gröbner basis methods would be crucial. Evelyne Hubert, [25], has implemented
the finite-dimensional moving frame algorithms using the Maple package Ves-

siot, [2], which can be adapted to the infinite-dimensional situation. A good
source of interesting examples can be found in the classifications of Lie, [35], and
Cartan, [9].

(d) As noted in [16], the symmetry groups of integrable soliton equations in more than
one space dimension, including the KP, DKP, and Davey–Stewartson equations,
exhibit a Kac–Moody Lie algebraic structure. This motivates developing in detail
the connections between the structure theory of Lie pseudo-groups and Kac–Moody
Lie algebras based on the underlying moving frame calculus.
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(e) Symmetry classification methods developed by Lisle, Reid and Wittkopf, [39, 58], rely
on the invariant differential operators, and so can be effectively handled by our
moving frame approach. Mansfield, [41], has already demonstrated their efficacy
when the symmetry group is finite-dimensional.

(f ) The group foliation method of Vessiot, [62, 28], provides a powerful, but underdevel-
oped approach to the construction of explicit, non-invariant solutions to partial
differential equations. Modern developments by Ovsiannikov, [55], and Martina,
Nuktu, Sheftel, and Winternitz, [42, 46], have underscored its potential for appli-
cations. Since the method relies on the classification of the differential invariants
and their syzygies, our moving frame algorithms should play a key role in its fur-
ther development. See also Anderson and Fels, [3], for a related method based on
exterior differential systems.

(g) Adapting Kogan’s recursive construction, [29], in the pseudo-group context would
enable one to directly relate the differential invariants and invariant differential
forms of smaller sub-pseudo-groups to those of a larger pseudo-groups. Such an
algorithm would help resolve complicated pseudo-group actions by splitting them
into simpler sub-pseudo-group actions.

(h) Applications to variational problems admitting infinite pseudo-groups of symmetries,
cf. [4], are also immediate via a straightforward adaptation of the constructions
in [30, 31]. In particular, we can now construct the explicit formulas relating
variational problems that admit an infinite-dimensional symmetry group with the
differential invariant form of their Euler–Lagrange equations. Connections with
Noether’s Second Theorem, [47], should also be pursued.

(i) Computation of the characteristic cohomology of the invariant variational bicomplex
was investigated by Anderson and Pohjanpelto in the projectable case, [4], and
generalized to non-projectable actions by Itskov, [27]. Again, the moving frame
calculus provides an ideal tool for further developments in cohomology theory and
computations for general pseudo-group actions.

(j) Additional applications worth investigating include the classification of characteristic
classes, [6], Gel’fand–Fuks cohomology, [22], and Chern–Moser invariants of real
hypersurfaces, [15].

(k) The analysis of joint invariants and joint differential invariants for pseudo-groups can
be based on an adaptation of the moving frame methods introduced in [50], and
would be a worthwhile project, particularly in light of the applications in com-
puter vision, geometric numerical integration, [43], and the design of symmetry-
preserving numerical algorithms, [51].

(l) A longer range hope is that these constructions will help elucidate the incompletely
developed foundations of the theory of Lie pseudo-groups. For instance, how are
Cartan’s notions of holohedric and merihedric equivalence, [10, 11], reflected in
our version of the structure equations?
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