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1. Introduction.

Lie group methods have proven to play a vital role in modern research in computer
vision. Indeed, certain visually-based symmetry groups and their associated differential
invariants have, in recent years, assumed great significance in practical image processing
and object recognition. Recent surveys can be found in the papers appearing in earlier
volumes [20], [23], and, in particular, the review papers [22], [28]. For reasons of space, we
shall not attempt to describe the applications of differential invariants to object recognition
and geometric diffusion-based multi-scale smoothing, referring the interested reader to the
preceding references and the other papers in this volume.

In order to construct a numerical approximation to the differential invariant I, we use
a finite difference approach and introduce a mesh or discrete sequence of points P, € C, 1 =
0,1,2,..., to approximate the curve. The approximation scheme will be computed using
appropriate combinations of the coordinates of the mesh points. The approximation will be
invariant under the underlying group G, and hence its numerical values will not depend on
the group transformations, provided it depends on the joint invariants of the mesh points.
Again, the simplest example is provided by the Euclidean distance d(P, Q) between points
in the plane, which depends on two points. Thus, any G-tnvariant numerical approrimation
to a differential invariant must be governed by a function of the joint invariants of G. For
instance, any Euclidean invariant approximation to the curvature of a plane curve must
be based on the distances between the mesh points.

Our approach to differential invariants in computer vision is governed by the following
philosophy. We begin with a transformation group G acting on a space F, representing the
image space, whose subsets are the objects of interest. In visual applications, the group G
is typically either the Euclidean, affine, similarity, or projective group. We are particularly
interested in how the geometry, in the sense of Klein, induced by the transformation group
@ applies to (smooth) submanifolds contained in the space E. A differential invariant I of G
is a real-valued function, depending on the submanifold and its derivatives at a point, which
is unaffected by the action of G. In general, a transformation group admits a finite number
of fundamental differential invariants, I,,...,I,, and a system of invariant differential
operators D,,...,D,, equal in number to the dimension of the submanifold, and such that
every other differential invariant is a function of the fundamental differential invariants and
their successive derivatives with respect to the invariant differential operators. This result
dates back to the original work of S. Lie, [17]; see [21] for further historical remarks and
a modern exposition. For example, in the case of Euclidean curves in the plane, the group
action is provided by the Euclidean group consisting of translations and rotations, and
every differential invariant is a function of the Euclidean curvature and its derivatives with
respect to Euclidean arc length. Similarly, for affine planar geometry, the underlying group
is the equi-affine group of area-preserving affine transformations, and every differential
invariant of a curve is a function of the affine curvature and its various derivatives with
respect to affine arc length.

The fact that, for transitive group actions, an object can be fully reconstructed, mod-
ulo group transformations, from a suitable collection of differential invariants, was proved
in a general result of E. Cartan’s. Thus, for example, a curve in the Euclidean plane is
uniquely determined, modulo translation and rotation, from its curvature invariant x and
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its first derivative with respect to arc length x,. Thus, the curve is uniquely prescribed
by its euclidean signature curve, parametrized by the two functions (x,x,). Similarly, a
curve in the affine plane is uniquely determined, modulo an affine transformation, by its
affine signature curve which is the planar curve parametrized by its affine curvature and
its derivative with respect to affine arc length. This definition of signature offers significant
advantages over the traditional approach, cf. BKLP, which plot curvature as a function
of arc length, in that @) it does not include the ambiguity in the choice of initial point
on the curve, and b) it readily extends, via Cartan’s general theorem, to surfaces and
higher-dimensional submanifolds. In this paper, we present some preliminary pictures of
Euclidean signature curves, leaving their general analysis for a later work.

In practical applications of invariant theory to computer vision, one is forced to prac-
tically compute a differential invariant, such as the curvature of a curve, by a discrete
numerical approximation. A robust and efficient numerical implementation is crucial, but
is a nontrivial problem in that the more important differential invariants depend on high
order derivatives and are thus particularly sensitive to noise and round-off error. Although
the differential invariants reflect the invariance of the image under a transformation group,
most standard numerical approximation schemes fail to incorporate this symmetry. Con-
sequently, two objects which are equivalent under a group transformation, while having
the same differential invariants, may have unequal numerical versions, thereby complicat-
ing the implementation of their invariant characterization by signatures. In our approach,
the problem of invariance of the numerical approximation is solved through the use of
an explicitly group-invariant numerical scheme, based on suitable combinations of joint
invariants based on the mesh points used to approximate the object in question. Thus,
our schemes are automatically invariant under the prescribed transformation group.

Motivations for this approach come from a variety of sources. In modern numeri-
cal analysis, the introduction of numerical schemes that incorporate additional structure
enjoyed by the problem being approximated have become quite popular in recent years.
The first instances of such schemes are the symplectic integrators arising in Hamiltonian
mechanics, and the closely allied energy conserving methods; see [9], [18], [29]. Closer in

spirit are the invariant numerical schemes for solving partial differential equations studied
by Shokin, [25], and Dorodnitsyn, [10].

More specifically, any discrete approximation scheme ultimately relies on introducing
a mesh, or discrete number of points, in the submanifold. The approximation scheme will
then rely on certain appropriate combinations of the coordinates of the mesh points. The
approximation will be invariant under the underlying transformation group G, and hence
its numerical values will not be affected by the group transformations, provided it depends
on the various “joint invariants” of the mesh points. In general, if G is any group acting
on a space F, then a joint invariant is a function J(m(l), . ,a:(k)) depending on several
points (¥ € E having the property that its value is unchanged under simultaneous action
of the group elements g € G on the point configuration, so that J(g - V. g- .’B(k)) =
J(m(l), . ,:c(k)). For example, in the case of the Euclidean group, every joint invariant is
given as a function of the Euclidean distances d(P, Q) between pairs of points P, @, which
are the fundamental joint invariants in this case. Similarly, in the case of the equi-affine
group, the simplest joint invariant is the area A(P,Q,R) of the triangle whose vertices
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are the three points P, @, R, and, again, every other joint invariant is a function of these
triangular area invariants. Results of M. Green [12], generalized in [21], relate the number
of differential invariants of curves to the number of joint invariants of the group action,
serving as an additional motivation for establishing a more practical connection between
the two quantities — a bridge between the discrete and continuous invariant theory.

The recent preprint of Bruckstein, Rivlin, and Weiss, [6], is very close in spirit to ours;
the crucial (and, in our opinion, tremendously important) distinction is that our approach
allows arbitrary discretizations of the curve, whereas in their approach, the distances (or
other joint invariant measures) between mesh points is required to be the same, making
the actual discretization quite tricky to implement. By allowing arbitrary discretizations,
we achieve a far broader range of discrete invariant signatures. Related ideas appear in
the work of Cooper et. al., [15], on a more algebraic use of joint invariants in computer
vision; a direct comparison of our approach with theirs would be of great interest.

An intermediary role is played by the “semi-differential invariants” (or, as we would
prefer they be known, “joint differential invariants”) introduced into vision by Van Gool
et. al., [19]. Related work appears in the theory of “noise resistant” differential invariants
developed by Weiss, [30], as well as the local invariant signatures of Bruckstein et. al., [3],
[4], [5]. In such an approach, one approximates a higher order differential invariants by a
joint differential invariant depending on lower order derivatives evaluated at several points
on the curve. In our view, this is only a partial resolution of the difficulty, since to compute
any such semi-differential invariant, one must still evaluate each derivative that appears in
it by a discrete approximation, and hence the original high order differential invariant is
itself approximated in the end by a fully discrete finite difference version. In particular, to
maintain invariance of the approximation, one must use a finite difference approximation
to the semi-differential invariant by joint invariants, and so one always ends up analyzing
the approximation of differential invariants by joint invariants anyway. (On the other
hand, one can certainly motivate the construction of useful joint invariant approximations
via semi-differential invariants.)

In this survey, we discuss the cases of planar curves under the Euclidean and affine
groups in some detail, and conclude with an outline of the general theory. A more detailed
version of these results, including a new approach to the affine geometry of convex curves,
appears in the authors’ recent paper [7].

2. Euclidean Curves in the Plane.

As our first example, we describe the geometry of curves in the Euclidean plane
E ~ R?. The underlying group is the Euclidean group E(2) = O(2) x R? consisting of
rotations, reflections, and translations. According to Weyl, [32], every joint invariant of
the Euclidean group is a function of the Euclidean distances d(P,Q) = |P — Q| between
points.

Consider a regular, smooth plane curve C C E of class C?. The simplest differential
invariant of the Euclidean group is the Euclidean curvature of C, whose value at a point
P € C is defined as the reciprocal of the radius of the osculating circle to C at P. In terms
of a coordinate system such that the part of C near P is represented by the graph of a
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Figure 1. Euclidean Signature Curve for r = 3 + 11—0 cos 6.

function y = u(z), then
u

K = Zij—;:—gzzjjgjﬂz. (]_)
The Euclidean arc length parameter is defined as ds = 4/1 + u2 dz, the right hand side

representing the simplest invariant one-form for the Euclidean group.

Theorem 1. Every differential invariant of curves in the Euclidean plane is a
function of the Euclidean curvature and its derivatives with respect to Euclidean arc length:

I =F(k,Kg,Kyy...).

Although the successive derivatives of curvature with respect to arc length lead to
an infinite hierarchy of higher and higher order differential invariants, as far as the char-
acterization of the curve goes, one only needs to consider the first two: x and x,. This
fact motivates the following definition of the signature curve in the Euclidean case, and is
formalized in the subsequent theorem, the proof of which follows from the more general
results discussed below — see Theorem 16.

Definition 2. The Fuclidean signature curve associated with a parametrized plane
curve C = {(z(t),y(¢))} C E is the curve S C Z ~ R? parametrized by the curvature and
its first derivative with respect to arc length: S = {(k(¢),x,(?))} C Z.

Theorem 3. Two smooth (C3) curves C and C can be mapped to each other by
a Fuclidean transformation, C = g -C, g € E(2), if and only if their signature curves are

identical: S = S.

In Figure 1, the top two pictures show a roughly circular curve on the left, and its
Euclidean signature curve, parametrized by (k,k,), on the right. Note particularly the
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Figure 2. Euclidean Curvature Approximation.

scales on the signature plot. Indeed, the original curve is described, in polar coordinates,
by r =3+ % cos 6. Its near circularity is reflected by the fact that its signature curve is
very small, concentrated near the point (0, %), which is the signature “curve” for a circle
of radius 3. The more a curve deviates from circularity, the less concentrated its signature
curve becomes — see Figures 3 and 4 below.

As a first illustration of our general philosophy of approximating differential invariants
by joint invariants, we describe how to use standard geometrical constructions to obtain a
numerical approximation to the Euclidean curvature that is unaffected by rigid motions,
so that any translated or rotated version of the curve will provide precisely the same
numerical approximation for its curvature. We first approximate the parametrized curve
by a sequence of mesh points P, € C, not necessarily equally spaced. Our goal is to
approximate the Euclidean curvature of C in a Euclidean invariant manner, and, in view
of the characterization of Euclidean joint invariants, this requires the approximation to
depend only on the distances d(Pi,Pj) between mesh points. Because the curvature is
a second order differential function, the simplest approximation will require three mesh
points. With this in mind, we now derive the basic approximation formula for the Euclidean
curvature.

Let A, B, C be three successive points on the curve C such that the Euclidean distances
are a = d(A4, B), b =d(B,C), c = d(4,C), which are assumed to be small; see Figure 2.
The key idea is to use the circle passing through the points A, B, C as our approximation to
the osculating circle to the curve at B. Therefore, the reciprocal of its radius r = r(4, B, C)
will serve as an approximation to the curvature of the curve at B. Let A denote the area of
the triangle whose vertices are A, B, C, and let s = %(a—{— b+ ¢) denote its semi-perimeter,

so that A = 1/s(s — a)(s — b)(s — ¢). We apply Heron’s formula to compute the radius of
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the circle passing through the points A, B, C, leading to the exact formula

%(A,B,C) = 4 % g Vols - “)E;)C_ b)(s = <)

(2)

for its curvature. Since formula (2) only depends on the Euclidean distances between the
three points, it provides us with a completely Euclidean invariant numerical approximation
to the curvature of C at the middle point B. In other words, the approximation for two
curves related by a Euclidean motion will be identical.

We now need to analyze how closely the numerical approximation k(4, B,C') is to the
true curvature x(B) at the point B. Our analysis is based on a Taylor series expansion —
see [7] for a detailed argument.

Theorem 4. Let A, B,C be three successive points on the curve C, and let a, b,
¢ be their Euclidean distances. Let k = x(B) denote the Euclidean curvature at B. Let
K = K(A4, B,C) denote the curvature of the circle passing through the three points. Then
the following expansion is valid:

dr 1 d’k

~ . 2
K=K+ (b a)—ds—l- —(b ab—l-a)ds +
1 3 2 2 d2 2 d (3)
‘|‘%(b —ab ‘|‘a b—a)ﬁ-l-m(b—a)@b -|-5ab—|—3a )lﬁ: E‘I‘

In particular, if we choose the points to be equal distance apart, meaning that a = b
then the first error term in the approximation (3) is of second order.

Remark: Since a, b, and ¢ are Euclidean invariants, every coefficient of the powers
a™b™ in the series expansion (3) must be a Euclidean differential invariant, and hence a
function of k and its arc length derivatives.

The same general method can also be used to find Euclidean-invariant numerical
approximations for computing the higher order differential invariants x, = dx/ds, etc. For
example, to determine a fully Euclidean invariant finite difference approximation to x,, we
approximate the Euclidean distance along the curve by the Euclidean distance between the

individual mesh points. Thus, to approximate x,(P,) we use the finite difference quotient

- &(P;_y, Py Py ) — K(P;_y, Pi_q, P;)
“s(Pi—zapi—17Pi7Pi+1) = - d—i—(lp 2 ) 2 : > (4)
27 % i—1

to approximate x (P;). However, equation (4) suffers from a numerical bias owing to the
asymmetry of points chosen to represent the curve near P,. In the lower two pictures in
Figure 1, the original curve has been discretized by choosing 25 points (equally spaced
in the angular variable, but not equal Euclidean distance apart). The bottom left figure
gives the discrete Euclidean signature curve based on (3) and (4). Note the bias in the
vertical direction of the signature points, as opposed to the exact signature curve, which
is symmetric about the x axis.
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Figure 3. Euclidean Signature Curve for r = 3 + % cos 26.

To counteract such biases, we propose to use the centered difference formula

~ %(Piﬁpi 7Pi )_%(Pi— ,Pi_ 7P¢)
Ro(Piozy Piys Py Py, Piyy) = - d(J;.H P, 1)2 . (3)

as the Euclidean invariant approximation to the derivative x,. Thus, we obtain a fully
Euclidean invariant discrete approximation to the Euclidean signature curve by using

Pi.5)) (6)

as our approximating points. The bottom right picture in Figure 1 gives the corresponding

k(P,_,,P., P,
((1, 127 22

z+1)7zs(Pi—27Pi—17Pi7P'

1+1?

unbiased discrete Euclidean signature curve based on the Euclidean invariant approxima-
tion (6). Similar preliminary numerical experiments indicate a very good agreement be-
tween the signature curve and its discrete counterpart. Examples of signature curves and
their discrete approximations are displayed in Figure 3 and Figure 4. Note particularly
the increase in complexity and size of the signature curve with the deviation of the original

8



4 1

3 0.75
2 0.5
1 0.27
-4 1 2 3 4 -1 -0.75 -0.5 -0.25 0. RS\ 0O 0.75 1
-OAZX
-0.5
-3 -0.75
-4 1
1 1
0.75 0.75
0.5 0.5
0.25 0.25%
-1 -0.75 -0.5 -0.25 0250.5 0.75 1 -1 -0.75 -0.5 -0.25
-0.25‘ - -OAZE‘S
0.5 -0.5
0.75 -0.75
1 1

Figure 4. Euclidean Signature Curve for r = 3 + % cos 26 + % cos 56.

curve from circularity. Angular Fourier modes are characterized by the signature curve’s
winding around the circular point (0, %) The discrete approximations, based on 50 and
100 points in the original curve, are in excellent agreement with the true signature curve,
represented in the top left picture.

3. Affine Curves in the Plane.

In our second example, we discuss a fully affine-invariant finite difference approxima-
tion to the affine curvature and arc length of a convex curve in the plane E ~ R2. The un-
derlying transformation group is the special affine (or equi-affine) group SA(2) = SL(2)xR?
consisting of all area-preserving affine transformations: x — Ax + b, det A = 1. Thus, the
simplest joint affine invariant is the area of a triangle whose vertices are three given points.
Given a configuration of points P, = (z,,y,) € E, we define

z, y; 1
[ijk] = [P, P;, P] = (P, — P;) N (P, — P) =det |z, y;, 1/, (7)
z, vy, 1



so that [¢jk] equals the signed area of the parallelogram whose sides are P, —P; and P,— P,
which is twice the signed area of the triangle whose vertices are P;, P;, P,. (The area is
positive if the triangle is traversed in a clockwise direction.) According to Weyl, [32],
every joint affine invariant I(P,,..., P, ) depending on the points P, is a function of these
triangular areas [ijk]. Unlike Euclidean distances, the joint affine area invariants are not
functionally independent, but are subject to certain relations or “syzygies”, which are all
consequences of the following:

531) + [0 = ] + b "

[17k][¢lm] — [i71][tkm] + [ijm][tk]] = 0.
For example, in a configuration of five points F,,..., Py, there are 10 possible triangular
areas, but only five independent ones.

Consider a regular, smooth convex plane curve C C E of class C*. Affine geometry
requires the (unfortunate) restriction to convex curves, although many applications to com-
puter vision can dispense with this restriction. For example, the affine-invariant curvature
flow can be extended to arbitrary curves by omitting the tangential component, cf. [24],
[22]. The simplest differential invariant of the equi-affine group is its affine curvature. If
we represent the curve as a graph, y = u(z) then the affine curvature is the fourth order
differential invariant

9wy, )S/?

Note that x is undefined at inflection points, where u,, = 0, corroborating our restriction
to convex curves. Two smooth, convex curves passing through a common point P have
the same equi-affine curvature at P if and only if they have fourth order contact at P. In
particular, the curvature to a curve C at P equals the (constant) curvature of its osculating
conic at P, which is defined as unique conic passing through P having fourth order contact
with C at P. The affine arc length element

ds = {/u,, de (10)

is the simplest invariant one-form.

Theorem 5. Every equi-affine differential invariant for a curve in the plane is a
function of the successive derivatives of affine curvature with respect to affine arc length:

I =F(k KKy, .).

Definition 6. The affine signature curve associated with a parametrized plane
curve C = {(z(t),y(¢))} C E is the curve S C Z ~ R? parametrized by the affine curvature
and its first derivative with respect to affine arc length: S = {(k(¢),x,(¢))} C Z.

Theorem 7. Two smooth (C®) curves C and C can be mapped to each other by
an affine transformation, C = g - C, g € SA(2), if and only if their signature curves are

identical: S = S.
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As with Theorem 3, this result is a special case of Theorem 16 below.

Turning to the numerical approximations to affine differential invariants, our starting
point is the result that one can approximate the (positive) affine curvature at a point
of a plane curve by the affine curvature of the conic section passing through five nearby
points. We will explicitly show how this may be used to produce an affine-invariant finite
difference approximation to the affine curvature. We thus need to determine the formula
for the affine curvature of such a conic.

Theorem 8. The affine curvature of a nondegenerate conic C defined by the quad-
ratic equation

Az? + 2Bzy + Cy* + 2Dz + 2Ey + F = 0. (11)
is given by
S
K:m7 (12)
where
A B A B D
S:AC—B2=det‘B ol T=det|B C E (13)
D E F

Remark: Both S and T are equi-affine invariants of the conic. The invariant S vanishes
if and only if the five points lie on a parabola. The invariant 7' vanishes if and only if the
conic degenerates to a pair of lines, and hence fails our convexity hypothesis.

In particular, the equi-affine curvature of an ellipse in the plane is given by x =
(w/A)?/3, where
T

A:WW

(14)

is the area of the ellipse.

Five points in general position in the plane determine a unique conic section that
passes through them. The explicit formula is not difficult to establish; see [26] for a proof
of the following classical result.

Theorem 9. Let P,,...,P, be five points in general position in the plane. There
is then a unique conic section C passing through them, whose quadratic equation has the
affine-invariant form

[013][024][x12][x34] = [012][034][x13][x24], (15)

where x = (z,y) is an arbitrary point on C.

Combining Theorems 8 and 9, we deduce an explicit formula for the affine curvature
of the conic passing through five given points. According to the general result about joint
affine invariants, the resulting formula can be written in terms of the 10 triangular areas
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Figure 5. The Affine Pentagram.

determined by the points taken three at a time; see Figure 5. Substituting the formulas
for the coeflicients, we find a particularly nice athine-invariant expression for our first affine

ar= [ Gkl (16)

0<i<j<k<4

invariant

in other words, to compute 7', multiply together all 10 triangular areas in the pentagram
described by the 5 points. The fact that 7' has such a form is not so surprising, since T’
vanishes if and only if the conic degenerates to a pair of lines, which requires that three
of the five points lie on a line, meaning that [ijk] = 0 for some ¢ < j < k. The simplest
affine-invariant formula for S that we know is

45 = [013]2[024]2 ([124] — [123])° + [012]?[034]? ([134] + [123])” —

— 2[012][034][013][024] ([123][234] + [124][134]). (17)

Formula (17) is not nearly as pleasant as (16), particularly because the right hand side
appears to be asymmetrical with respect to permutations of the five points. However, S
must clearly be symmetrical with respect to these permutations. Of course, the explanation
lies in the syzygies (8) among the triangular areas, a judicious application of which suffices
to demonstrate that (17) is symmetrical under permutation. A completely symmetrical
formula for S can, of course, be obtained by symmetrizing (17), i.e., summing over all
possible permutations of the set {0,1,2,3,4} and dividing by 5! = 120, although the result
is much more complicated than (17). We have been unable to find a simple yet symmetrical
version of the formula for S.
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As in the Euclidean case, we are interested in finite difference numerical approxima-
tions to the affine curvature of a strongly convex plane curve C which are invariant under
the special affine group. We thus approximate the parametrized curve x(¢) by a sequence
of mesh points P, = x(¢,). Any affine-invariant numerical approximation to the affine
curvature k (as well as any other affine differential invariant d"x/ds™) must be a function
of the joint affine invariants of the mesh points, which means that it must be a function of
the areas [tjk] of the parallelograms (or triangles) described by the mesh points. Because
the affine curvature is a fourth order differential function, the simplest approximation will
require five mesh points, so that the approximation will depend on the ten triangular areas
(or, more basically, the five independent areas) in the pentagram whose vertices are the
five mesh points; see Figure 5.

With this in mind, let us number the five successive mesh points as P, P, P,, P,, P,.
(This is just for simplicity of exposition; of course, in general, one should replace the
indices 0,...,4 by ¢,7 + 1,4+ 2,¢ + 3,7 + 4.) Since we are assuming that C is convex,
the mesh points are in general position. Let C = C(P,, P;, P,, P;, P,) be the unique conic
passing through the mesh points. Let kK = kK(P,, P, P,, P;, P,) denote the affine curvature
of the conic C, which we evaluate via the basic formula (12), where the invariants S, T
are computed in terms of the triangular areas according to (17), (16). We regard K as a
numerical approximation to the affine curvature k = x(P,) of C at the middle point P,. We
now need to analyze how closely the numerical approximation k is to the true curvature
x at the point P,. Assuming the points are close together, we need to compute a Taylor
series expansion of the distance k. An extensive MATHEMATICA computation produces the
desired result; see [7] for details.

Theorem 10. Let Py, P,, P,, P;, P, be five successive points on the convex curve C.
Let k be the affine curvature of C at P,, and let k = k(P,, P,, P,, P;, P,) denote the affine
curvature of the conic section passing through the five points. Let

B;
Li:/ ds, 1=0,...,4, (18)
P,

denote the signed affine arc length of the conic from P, to P;; in particular L, = 0. We
assume that each L, is small. Then the following expansion is valid:

4
~ 1 de 1 d’k
i=0 0<i<j<4

The higher order terms are cubic in the distances L.

Remark: The property of “being close” is therefore expressed in affine-invariant form
as the statement that all the arc lengths L,,..., L, are small. In this way, we are able to
introduce a fully affine-invariant notion of “distance”, albeit one that requires knowledge
of five, rather than two, points.
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As in the Euclidean case, we can similarly determine affine-invariant numerical ap-
proximations for computing the higher order differential invariants given by the successive
derivatives of affine curvature with respect to affine arc length. The starting point is an
affine-invariant approximation to the affine arc length measured along the given curve C
to replace the Euclidean distance between the two mesh points as an approximation to the
Euclidean arc length of the curve between the two mesh points. The obvious candidate
for this is to measure distance along the interpolating conic section passing through five
successive mesh points. Thus we need an explicit formula for the arc length of a conic
section.

Theorem 11. Let C be an ellipse defined by the quadratic equation (11), and let
S > 0 and T be the two afline invariants defined by (13). Note that CT < 0, since
otherwise (11) has no real solutions. Let P, = (z,,y,) and P, = (z,,y,) be two points on
C. Then the affine arc length, measured along the conic, from P, to P, is given by

Py T1/3 [—cT CD — BE
. ds = 512 arcsin 52 T+ — g

L1

(20)

=T

A similar formula can be found in the hyperbolic case. The fact that the right hand
side of (20) is affine-invariant is not so obvious from the explicit formula. In the elliptical
case, its invariance follows from the following geometrical interpretation.

Corollary 12. IfC is an ellipse, then the affine arc length from P, to P, is equal to
28T2/*A(P,, P,), where A(P,, P,) denotes the area of the elliptical sector obtained by
connecting P, and P, to the center of the ellipse by straight line segments.

In particular, using equations (12), (14), we discover that the total affine arc length
of an ellipse equals twice the cube root of its area:

. T1/3

It is a curious fact that, in equi-affine geometry, the arc length of an ellipse is given by
elementary functions, while in Euclidean geometry, it must be computed via an elliptic
integral.

In order to approximate the affine arc length along an arbitrary curve, we use the
formula (15) to determine the interpolating conic section, and then (20) to compute the
approximation to the arc length between two successive mesh points. Although the result-
ing formula is affine invariant by construction, it is not so easy to re-express it directly in
terms of the triangular areas (7). Indeed, we strongly suspect that the explicit formula
(guaranteed by the general theory) is a highly complicated transcendental function, and
not amenable to explicit computation in this form, although of course, one can readily use
(20) in conjunction with (15) to directly compute the approximate affine arc length in an
affine-invariant manner. Another approach is, in the elliptical case, to replace the area
of the elliptical sector indicated in Corollary 12 by the area of an approximating triangle
whose vertices are the two mesh points and the center of the interpolating ellipse. This
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does have an explicit formula in terms of the ten triangular areas of the affine penta-
gram. (Indeed, we are employing a similar device in the Euclidean case, since we should
be approximating the Euclidean arc length of the curve by the arc length along the inter-
polating circle, but, at least to the order of approximation of interest, this can be more
simply computed by just using the Euclidean distance between the two mesh points.)

For example, to determine a fully equi-affine invariant finite difference approximation
to the derivative k, of affine curvature with respect to affine arc length at a mesh point
P,, we can use the finite difference quotient

Es(Pi—?nPi—27Pi—17Pi7Pi+17Pi+2) =
_ E(Pi—ZaPi—17Pi7Pi—|—17Pi—|—2) - E(Pi—:hPi—27Pi—17Pi7Pi—|—1) (22)

L(Pi—lapi;Pi—27Pi—17Pi7Pi+17Pi+2)

Here K(P;_,, P;_,, P;, P, ,, P, ,) denotes the affine curvature of the conic passing through

the points P;_,,P;_,,P;, P, |, P, ,, as given by (12) in conjunction with (17), (16), while

2

p;

denotes the affine arc length from P, , to P, as measured along the same conic, and so
given by (20) (or its triangular approximation). Again, as with the Euclidean case, the
six point formula (22) is not symmetrical with respect to to the central mesh point P,,
and thus subject to numerical bias. Therefore, we propose a more symmetrical centered

difference seven point version:

Es(Pi—?nPi—27Pi—l’Pi7Pi—|—17Pi+27Pi—|—3) =
— %(Pi—vPi7Pi—|—17Pi+27Pi+3) - E(Pi—s’Pi—mPi—17Pi7Pi+1) (23)

L(P;_y,Pii1; Py Py, Py Py, Piys)
to approximate x (P;). Again, we can use these formula to provide a fully equi-affine
invariant numerical approximation to the equi-affine signature curve associated with an
arbitrary curve in the plane, and thus perform a fully equi-affine invariant object recogni-
tion. Numerical experimentation in this case remains to be done.

4. Differential Invariants and Joint Invariant Signatures.

The Euclidean affine and groups are certainly not the only ones of interest in computer
vision, and so we now indicate the general methods lying behind the constructions in
the last two sections. This indicates how (at least in principle) to find invariant finite
difference approximations to differential invariants of general submanifolds for arbitrary
transformation groups acting on arbitrary spaces. For simplicity of exposition, though, we
restrict our attention to the case of planar curves, and their differential invariants under
a finite-dimensional, connected Lie group acting transitively on E ~ R2%, with coordinates
z,y. Details and generalizations can be found in [21].
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Remark: Lie, [16], completely classified all possible finite-dimensional transformation
groups on the plane, up to change of coordinates, and their associated differential in-
variants. The corresponding classification in three-dimensional space remains incomplete,
although many examples are known. See [21] for details.

Let G be an r-dimensional Lie group acting transitively on E. We are interested in
the differential invariants of curves C C E under the group G. We represent the curve C
(locally) as a function y = u(z). Let J® ~ R™*2 denote the nth jet space of E — the coor-
dinates of J™ are provided by the independent variable z, the dependent variable v and the
derivatives of u with respect to z up to order n, denoted (z,u'™) = (z,u,u ,u,,,...,u,).
A function F(w,u(”)) depending on the jet space coordinates is said to have order n
provided F' does explicitly depend on nt! order derivatives. For example, the Euclidean
curvature k = u,, /(1 + ui) is a second order function.

The group G acts on curves by transforming them pointwise, and hence induces a
prolonged action G(™ on the jet space, which is found by determining how the deriva-
tive coordinates are transformed under the group elements. (In practical terms, this just
amounts to the chain rule for derivatives.) We make the technical assumption, for simplic-
ity, that G is an ordinary r-dimensional transformation group, which means that G(™ acts
transitively on (an open subset of) J” for each 0 < n < r — 2. Most groups are ordinary.
Indeed, Lie’s classification shows that the only transitive group actions which fail to be
ordinary are the elementary similarity group (z,u) — (Az+ ¢, Au+d) and some minor vari-
ants thereof. (These “non-ordinary” groups can also be analyzed, cf. [21], but the results
are slightly different.) The theorems quoted above concerning the differential invariants
of the Euclidean and equi-affine groups are both special cases of general theorems on the
differential invariants of ordinary transformation groups. (Again, these in turn are special
cases of general theorems on the differential invariants of curves and even more general
submanifolds of higher dimensional Euclidean spaces, cf. [21].)

Theorem 13. Let G be an ordinary r-dimensional transformation group acting on
E ~ R?%. Then there is, up to constant multiple, a unique G-invariant one-form of lowest
order, ds = P(m,u(n))dw, which we call the G-invariant arc length element. The order n
of ds is at most n < r — 2.

For example, the Euclidean group has dimension r = 3, and admits an arc length
element of order n =1 = r — 2. On the other hand, the equi-affine group has dimension
r = 5, but its arc length element has order n = 2 < 3 = r — 2. An interesting and
unresolved problem is to geometrically characterize those groups whose arc length element
has order strictly less than r — 2.

Theorem 14. Let G be an ordinary r-dimensional transformation group acting on
E ~ R2%. Then there is, up to constant multiple, a unique differential invariant of lowest
order, /s:(:c,u('”_l)), having order exactly r — 1, which we call the G-invariant curvature.
Moreover, the derivatives of the G-invariant curvature with respect to the G-invariant arc
length, d™k/ds™, m > 0, provide a complete list of differential invariants of G, meaning
that any other differential invariant is a function of these: I = I(k,K,,K,,--.).
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Again, the Euclidean curvature has order r — 1 = 2, and the equi-affine curvature has
order r — 1 = 4. See [21] for the complete list of all possible transformation groups in the
plane, and their associated invariant arc length element and curvature. Of course, once
one has determined the formulas for x and ds for curves given by graphs y = u(z), one can
recompute them for arbitrary parametrized curves C = (z(¢),y(t)). The result as stated
still holds true.

Thus, according to Theorem 14, a complete list of differential invariant signatures
associated with a plane curve is provided by the group-invariant curvature and its succes-
sive derivatives with respect to arc length. How many of these are required to uniquely
characterize the curve up to a group transformation? The answer is that we only need to
know the first two, namely x and «,.

Definition 15. Let G be an ordinary transformation group acting on F ~ R2. Then
the signature curve associated with a parametrized plane curve C = {(z(t),y(¢))} C E is

the curve S C E ~ R? parametrized by the G-invariant curvature and its first derivative
with respect to arc length: & = {(k(¢),x,(¢))} C E.

Note that since x has order » — 1, then s, has order r = dim G, and so the signature
curve requires the computation of rtt order derivatives of the parametrizing functions.
Generically, the signature curve is given by specifying x, as a function of , so that k, =
H(k). Therefore, a curve parametrized by a graph y = u(z) will be a solution to the rth
order ordinary differential equation

ry(z,u”) = H(x(z,u'""V)) (24)

determined by its signature curve. Thus, the curve will be uniquely recovered from the
signature curve and the initial conditions

u(zy) =y, u,(z9) =¥y, u,_1(g) =Y,_;- (25)

The importance of the signature curve lies in the fact that it uniquely characterizes the
original curve up to a group transformation.

Theorem 16. Let G be an ordinary transformation group acting on E ~ R%. Two
smooth (C”) curves C and C are equivalent up to a group transformation,C = g -C, if and

only if their signature curves are identical: $ = S.

Proof: The proof of Theorem 16 just relies on the uniqueness theorem for ordinary
differential equations. Indeed, since k and k, are differential invariants, their values are
identical for two curves related by a group transformation. Conversely, if the signature
curves are identical, the two curves are solutions to the signature equation (24) correspond-
ing to two different sets of initial conditions (25). Transitivity of G~ on J™~1 implies
that it acts transitively on the set of possible initial conditions (mo,ugr_l)). Let g € G
map the initial conditions for C to those of C. Uniqueness of solutions to the differential

equation (24) implies that g maps C to C, completing the proof. Q.E.D.

Remark: An interesting question is which signature curves S correspond to closed
curves C C E.
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Theorem 16 is a special case of a general theorem of E. Cartan characterizing equiv-
alent submanifolds of a homogeneous space. Indeed, a homogeneous space M = G/H,
where H C G is a Lie subgroup of the Lie group G, can be identified with a global tran-
sitive action of G on M, and conversely; the subgroup H is just the isotropy subgroup of
the point z, € M which gets identified with the identity element of G. For example, the
Euclidean plane is identified as the homogeneous space E = E(2)/0(2), where the rotation
subgroup O(2) is the isotropy subgroup of the origin in E. Cartan’s Theorem states that
the signature submanifold corresponding to a submanifold S C G/H is parametrized by
its (n + 1)%t order differential invariants, where n denotes the order of a Frenet frame on
S. Two submanifolds are equivalent under a group transformation if and only if their
signature submanifolds are identical. See [8], [13] for details. The signature curve (or
manifold) plays the same role in the theory of transformation groups that the classifying
curve (or manifold) does in the Cartan equivalence method, [21].

Of particular importance are the curves whose G-invariant curvature is a constant.
Such curves play the same role for general transformation groups that the circles and
straight lines play for the Euclidean group, and the conic sections play for the equi-affine
group. If K = c is constant, then x, = 0, and hence the associated signature curve
degenerates to a single point S = {(¢,0)}. Thus, such curves are found, not by solving an
rth order equation (24), but rather as solutions to the (r — 1)t order ordinary differential
equation

/s:(m,u(r_l)) =c. (26)

In fact, one does not need to integrate the ordinary differential equation (26), since these
curves can be found directly from the group action.

Theorem 17. Let G be an ordinary transformation group acting on R2. A curve
C C M has constant G-invariant curvature if and only if it is an orbit of a one-parameter
subgroup of G, i.e., C = {exp(tv)P,} for some infinitesimal generator v of the group action.
Two curves have the same constant curvature if and only if they are related by a group
transformation, C = g - C.

Theorem 17 is a special case of a result of E. Cartan which states that a submanifold
of a homogeneous space is homogeneous if and only if all its differential invariants are
constant; see [8], [13] for details.

Thus, for the Euclidean group, we recover the circles and straight lines as the con-
stant curvature curves, while for the special affine group, the curves with constant affine
curvature are the conic sections. For the projective group in the plane, the curves of con-
stant projective curvature are the so-called “W-curves” which were investigated in detail
by Klein and Lie in the last century; see [14], [33; §IIL.8].

Since (26) has order r — 1, given r points P,,...,P, € E in “general position”,

there exists a unique constant curvature curve Cy(P,,..., P,.) passing through them. Let
K(Py,...,P,) denote its curvature. Since (26) is a G-invariant ordinary differential equa-
tion, K(P,,...,P.) is a joint invariant of the r points.

Let C C M be an arbitrary curve in the plane. We are interested in constructing a
G-invariant finite difference approximation to its G-invariant curvature x(P;) at a given
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point P, € C in the curve. Choose r — 1 nearby points P,,...,P. € C. Then the curvature
K =k(Py,...,P.) ~ r(P)) (27)

of the constant curvature curve Cy, = Cy(P,, ..., P.) passing through the points determines
our approximation to x(P,). This provides a general method for constructing G-invariant
finite difference approximations to the G-invariant curvature of a curve.

Conjecture: The following series expansion holds:

1 - dr 1 d’k
K= - L. —+ — LL.| — +--. 28
R=RT r (; Z) ds * r(r+1) 1<;<T Yl ds? T (28)

where k, di/ds, etc. are evaluated at P, and

P;

Py

denotes the G-invariant “distance” from the point P, to P;, measured as the G-invariant
arc length along the constant curvature curve C;. The expansion assumes that all the arc
lengths L, are small.

Example 18. Counsider the translation group (z,u) — (& + ¢,u + d). In this case,
k = du/dz, and the constant curvature curves are the straight lines. Then k(P,,P,) =
(uy — uy)/(z5 — ;). Therefore, the expansion (28) is merely the Taylor series, and so
is valid to general order! (Note that since dz is the translation-invariant arc length, the

“length” of a straight line segment is fgz de =z, —z,.)

Thus, the conjectured series expansion (28) is valid up to order 2 for the translation
group, the Euclidean group, and the special affine group. Direct verification for other
planar groups appears to be problematic because the formulas for the finite difference ap-
proximation k are not so easy to come by, because the constant curvature curves involve
transcendental functions. Moreover, the Euclidean series (3) shows that the natural gen-
eralization of (28) is not valid to order 3. The proof of the second order expansion (28)
and the determination of its higher order terms, remains an important open problem.

Approximations to the G-invariant arc length from P, to P,, say, are determined by
computing the arc length L(P,, P,) = f;:f ds from P, to P, along the constant curvature
curve Cy(Py,..., P,) passing through them; again this is a joint invariant of the r mesh
points, and so invariant under G. Thus, one obtains a G-invariant finite difference approx-
imation to the derivative x, at a point P, by choosing r nearby points P,,..., P, and
using the G-invariant difference quotient

k(Py,...,P._,,P)—k(P,...,P

1 )
~ r—17" r+1
— ~ P 30
Ks I(P17P2) K’s( 1)’ ( )

where L(P,, P,) is computed along one of the two possible constant coefficient curves

Co(Pyy...,P._1,P) or Cy(Py,...,P

15 P, +—1>P.11), or, more symmetrically, their average. As
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in the Euclidean and affine cases, a centered difference approach would be more accurate.
The details of this construction remain to be fully explored.

Formulas (27), (30) thus provide a completely G-invariant finite difference approxima-
tion to the signature curve S associated with a curve C C E, guaranteeing that two curves
related by a group transformation have identical discrete signatures. Thus our approach
provides a fully group-invariant method for numerically approximating the differential in-
variant signature curves of arbitrary transformation groups. Extensions to surfaces are
straightforward in principle, although the precise numerical implementation remains to be
fully explored.

Acknowledgments: We would like to thank Peter Giblin for reverifying the Euclidean
curvature expansion (3), Boris Komrakov for guiding us to the work of Cartan, and
Guillermo Sapiro for inspiring comments on signature curves.
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