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1. Introduction

Since their introduction by I.J, Schoenberg in
1946, splines have played =n incressingly grester role
in many problems involving interpolation and approximation,
The application of cubic and perhaps even more general
splines to the graphing of functions by computer, for
which splines are ideally suited, has not been so thoroughly
investigated, A few of the many areas in this field where
splines can be effectively'utilized are the graphing of
smooth curves and surfaces and the solution of boundary
value problems in ordinary snd partial differential
equations, The great sdvantage of spline approximastions
over linear and other interpolation schemes is the
convergence not only of the spline functions themselves
to the function being interpolated, but 2lso the first
three derivatives converge in a uniform manner. Thus, for
example, in the area of curve plotting, the splines will
give a C? curve sequence which converges to the original
smooth curve along with the Tirst thrse derivatives,
whereas a linear interpolation on the curve will only
give a piecewlse smooth approximation,

In this thesis I will present the basic theory
of cubic splines needed to solve some of these graphic
problems and illustrate this theory with the solution of
two such problems: the drawing of closed plane curves
through a given set of points in R* and the approximation
of Surfaces by blcublc splines on star-shaped planar
regions bounded by Jordan curves, The first part of the
thesis will derive the relevant spline theory for these
problens, The second part bontains a discussion of the

graphic results when these problems were programmed on



a computer and numerous figures that serve to illustrate
different aspects of the theory, The third part gives

a short description and a listing of each subroutine
that was programmed to obtain the figures in the second
part, as well as some general hints for the use of the
progrezms, It is hoped that the simplicity end power

of the spline methods demonstrated by the examples

will siark further. interest in applications of splines

to further areas in computer graphics,

!



I, Cubic Spline Theory




2. Basic Theory of One Dimensional Cubic Splines

Consider the closed interval {a,bl where a,beR
subdivided by a meshzﬁ:ixéz i=0,1,...,n% such that
a=x,<%,<,,.<X,=b, We shall usu=ally be concerned only
with uniform neshes, namely those where

3 =%pl=h | J=1,24,. 040
but for the time being, we shall let A be guite arbitrary,
We are further given a sebt of ordinates Y={yo, ¥y ¢ceerVa}
with each yj corresponding to the value of the function

f(x}) that is to be interpolated,

Definition A cubic spline on [a,b] with respect to the

mesh A ond the ordinstes Y, denoted by SA(X;Y) or just
S8a(x) (we will also sometimes omit the subscript A), is =
function that satisfies the conditions
1) 8,eC*(a,b]
ii) Sp, 18 & cubic polynomial on each interval
[X‘\'»l rxéjr J=1,2,..0410
111) Sp(%;)=y;.
It can be shown, LANW], that given any mesh and
corresponding set of ordinates Y, then there salways
exists a cublc spline SQ(X;Y). In fact, in general
there will be an infinite number of cubic splines satisfying
these conditioné, depending on their behavior near the
ends of the intervsl [a,b], .(For example see the section
on cardinal splines,)
As a typical example of the convergence propertieq
of cubic splines, we cite the following theorem from Canwl,

Definition The norm of a mesh A is defined by

“& n = Supi!}{& -Xéw“ly : j:1!21 €0 ’nz

Theorem 2,1 Let fesza,b and let YA, k=1,2,... be a
‘ &



Ul

seguence of meshes on [a,b) such that

lim || A= 0

and T N |
R = supi-m[.\.éi’ai‘%wmg k=1, 2,000 =2y 'nﬁ%} -
[X(‘l AE e, b

Let Yy=§ 0 (x): x€nf. Then 1f 8, (x;Y,) is periodic if
A B ‘i ey
f is periodic or satisfies certain elementary nonperiocdic

end conditions (see [ANW], page 29) then
. PR
£ (x) - 8P (i) = ol AN, p=0,1,2,3

uniformly with respect to x in {a,b}. If in addition
£ (x) satisfies a H#lder condition on [a,b] of order

oy, O<etgl, then

£ (x) - 8 () = 0(WALWT) L p=0,1,2,3
uniformly with respect to x in la,b].

For the proof of this theorem end further theorens

of this type consult UANWI. |

Since this thesis willl be primarily concerned

with splines defined over uniforn meshes, it is useful
to determine what the error is in replacing a nonuniform
mesh /A by a uhiform mesh ﬁfand evaluating the spline
over.ﬁ with respect to the same set of ordinates ¥, By

the snslysis of LAl it can be seen that if the mesh
'is looally‘approximately‘uniform, then the error incurred
by replacing Sﬁ(X;Y) by SK(X;Y) will be governed by the
local modulus of continuity of the function f., In

other words, the more rapidly f varies near a point, the

loed
closer A must approximate A near that point,



3. QRepresentation of @& Cubic Spline on a

Uniform Mesh

Let n be a positive integer, and consider the interval

[a,b] along with the uniform mesh
A ::{a,+ J(b-a): j:O,l,...,Il}.
n

We can trsnsform the interval [a,bld into {0,nd by mesns of
the linear map that takes xeR into n(x-a)/(b-a), such that
A becomes the mesh {0,1,...,nY., We need therefore to only
be concerned with the interval [0,n] and the mesh {0,1,...,n}%
when solving for a spline over a uniform mesh, The
construction of a spline S on this interval with respect
to the ordinates Y={yo,¥,s... ¥~} 18 as follows, Since
S must be a cubic polynomial in esch_interval between mesh

points, we have

s*(x) = M, , (J~x) + My(x-j+1) , xelJ-1,J1 (3.1)
where the M}, j=0,1,...,n, are the moments or second
derivatives of S at the point j. InZtegrating this
expression twice giyes N . 3

S(x) = M., (J-x) + Mégfléiij + Cyx + C, , xelj-1,31 .
Setting S(Jj-1)=y; .4 5(J)=y; yields
S(x) = Mj_i(jgx)?" + I\’zg_(f_:éi_lw)a + (yd‘,,j,—ﬁ,é.::)(j-x) +

(3.2)
+ (y4,~ﬂ§t)(X~j+1) ,  xelj-1,31
\ (3-x)" . (x=-3+1)* M, =M,
SH(x) = ~Mjoy ~op o+ M tn (y; =¥y ) = =47 (3.3)

The moments must satisfy equations such that the derivative

S' is continuous at the mesh points,

s'(J-) = f/[_é:_‘ v Miy (y;=¥p=y)
3 j:1,2,...,n—1.
UEN ] .
St (j+) = ".I..Iﬁ' - E}%ﬂ. + (¥ "'y,,v')



Equating these two gives the n-1 equations

Mo, o+ 2+ My, = B(yJ“,~2yJ+yé+‘), j=l,...yn~1

in the n+l unknowns M,,...,M,. To obtain the remaining
two equations, it is necessary to ilmpose some kind of
Tend conditiohs" on the spline. The nonperiodic caSe
will be treated in & different manner in the section on
cardinal splines, (A derivation in the spirit of the
following csan be found inTANW].) We will here derive
expressions for the M} in the case of a periodic spline,
namely one that satisfies
s e (0+) = 8 (n-), p=0,1,2,

In particular, this implies that y,=Va and M =M.
Equating the first derivative terms ylelds the remaining
equation

L, + 2My + B, = 6y, =20ty ).
The system of equations in Mg, ...,M, caen be vritten

compactly in matrix form as

AM =4 . (3-5)

where — o I -

2% « « . 2 Mg . d g4

1

1
A = . y M= y d = (3.6
. 32 % . .
S IRIEE S Mo KEEN

with 4 = 3(Y a2 Ve ) (Fmey) =y.). Note that by

the criteris of Gerschgorin's Theorem, A is- obviously
invertible, so the periodic spline on [0,n] exists and
is uniquely determined, To explicitly calculate A

we define the n¥n determinant

3 ' .
In this and subsequent diagramming of matrices, only

the nonzero elements will usually be displayed.

(3.4)

3*
)

7/
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2% 0.
T2% . ..
%
D.. = det : i '", 2 : (3.7)
. 223 |

and let D_i:O, D

equation

s=1. The D, satisfies the difference

Dy~ 2Dy, + 2D guy = 0 (3.8)

as can be seen by expanding D., by the first row, The

roots of the characteristic equation of this difference

equation,
' x%f2x+i = 0
x, =203y, 222
2 2
The general solution is then,EIKj,
D.. = ¢, x> +@%X{*l .

Evaluating the constants v, and o, gives

¢ —
o, +ooly = 0

2 -
oe, (21 Jj) + w}(E_M“XE) = 1,
2 2
hence oK, = ;& ) ol = 1£ .
V3 V3
Thus we obtain
' | / |
D, = (1+«/3/2) | - (1”«/3/2) ) (3,9)
Now to compute the determinant of A,
2 X i
2 e . e 2
%
det A=det | ° " "
s N 'é‘ N
: 123
%‘l . L] % 2




9

X F1 A 1 1
2 P ] 0 . B2 + . 3 PN ¢
1 1 1
2 e ] O 2 = ) O 2 2 . .
w~l
=2det |. . .| ~#det |. 3. .| 4 F(-1) det|. . %
[ 4 . -%{ L] .l ;2— L] % 2
* L] [ % 2 % . L] %.:‘ 2 %,‘ - . O %’
2 é’j L] e * % 13 1 2 (3
1 1
5 . ) 2 5 .
} e
= 2Dpoy- B | Fdet |, . L] 4 (1) Bdet| 5 +
1 1
' . 2' ¢ 2 s
T .. B 2 %
I 1 1 1 ~
=z 2 35 . 2 5 v .
1 2.
\ ] . Z o
o . ned
+ (1) E [ det |, . E| + (~1)Rdet |, ..
K 1
' El 2 . . 2
L] * . * JE L] . . % 2
= i
el "2, et n=12 1
= 2Dy = FDaq + (~1)"72(3) + (-1)7 2(2) = %D ,na.
1 | e 4%
det A = 2D,y - Doy + (=2) 77, (3.10)

These equations follow from expansion by rows and columns

and the fact that the second and third n-2¥n-2 determinants in
the trird line are lower and upper triangular, respectively,.
Now let So, 811000y 9my De the elements of the first row of.A"‘.

Then, since A is a circulant matrix,

| AJX = gu~§{' (3.11)
To compute , L 4 i
5 2 : )
1 \ ’
2 f !
L[] ’ :
5 2 '
£ l
‘ "VH’"ﬁ%Tg_gfd_""’J'
(-1)*§.+det A = det 0 2 20 J
é 0 0 2'%
At (S CPTEE
! ;3:_]—1 2
| ' 2 .
z !
) A




(expanding by the j'th TOW).
‘ |
$ 23 . 323 .
3 X 1
z , ] |
] N . {
L2 . ’.
= Rdet|. _ E - Zdet 22
o 2 : o LveE Lo
- i -
! S
(%) z 2 § L7
j=1 (3) o z 2
. j '
-\
= %(%)‘! Dn-l (A'.,.n 4 “
- 151 ! 2 % |
5 2 Z ! i ]
L ¢ 2 {
5 X &
. |
. 4 1
§ j Bl
| ) 2! T e
3 lddet {0 . 00 . |+(-1) zdet i
2 7 I
|"}<‘ = f .
O \ .
X ' i +
E . % { 5 P
1 B2 s i
L. j-2 j-1
(where the last bterm is omitted in case j=0)
—‘ ‘i\‘} . ‘Y\“"L'“‘ o !}
= 27D, gyt 0 = (- D ()T
- o=} 1 Yho ey
= 274D, Lt (-1)72¢ "Dy
Thus, -
L)oo+ (-2 D et 4 (3.12)
Finally by use of (3.6) we can express the moments 11 { in
terms of the AE; and the ordinates yy by
|
My = § AL,‘, d-g = Z 3A\J (¥j-1 =29 +Tiwr)
Ly .,\
9 o "
32;: (AT —28% +A‘é“)y& . (3.%3)
Now since
~ga-»\ helon oy
S —'23 + S(.ﬂ ‘——[ D"\“k +( 2) D-h-)."z(“z) G‘Dm-fs-l—

- 2( z)*‘ ™ Doyt (=27 N Dyt (<200 D) det A
[ (=2)'"8 (Dy. g ~2Dmerer +3Dmotier) = 3(=2) " Doport
+ (~2)M\W'(Dk-ZDh_‘%th&l) - 3(-2)%" Dy 1/det A
-6 Sp 4 k=},.,..,n-1 (3,142)

"




$.y -2 gﬁ'ﬁg, =2§-2F8,
2[(-2)"' D,y +(-2)"" D =D ] Jdet
2[2D,.; ~3Dnug+(=2)"™ 23D, T /det A

: = 2 - 6 go (3.11“3)
by (3.10), combining (3,13), (3.1%a and b) and (3.11) gives

rise to the formula

[t

it

N e §
o . . e 5
M 18 &E:‘Aw yi + 6yp . (3.15)
Vle now summarize the relevant formulase of this section

for the computation of the periodic spline S(x3;Y) on LO,n7:

. % Y ‘
S(x;Y) = I“IJ-I‘S“}“‘:}‘(“) + I"’I‘é(‘( i+1)° i (yé"“\ - ﬂ_ﬁ_‘j)(iux) +
6 6 6 :
+ (yém yi)(x—i+1), xeli-1,17]
G ;
“n -y
M‘: = ~18 ZAL « y& + 6yi
- Jz }4'.
Aéla‘ = g“‘é'\ '
-4 Becan
8& = E(‘Z) D‘v\w@;ol + <—2) Dg_‘]/(d-et A)l 1{201 LI} ’n'—l
det A = 2D,., = #D,., + (-2)""™
b | pel .
p - (1 +V3/2) - (1-4/3/2)  p=-1,0,1,...

i | /3

b

(3.16)



i, Cardinal Spline Representations

&

While the construction of the periodic spline on
the interval [0,n] gilven in the previous section eventﬁally
gives a reasonably simple set of equations, (3.16), the
intervening algebra is overly compleX and tedious, In fact,
a2 sinilar derivation can be devised for the nonperiodic
spline (see'ﬁMMﬂ)z i1t is even more complicated. Another
method based on the "linearity" of splines, which yields
the same result, although perhaps regquliring more computing
time and storage (see [ AWJ for scome estimates) has = much
simpler derivation, We first quote = result from LANWI:

Lemma 4,1: Let A=1Xp,%,,... X, 4 be a mesh on the

interval (2,5 and let Y be a corresponding set of ordinates,

Given s,teR there exists =2 unicue spline SLJX;Y) such that

S&(X};Y) = Yé ' j=0,1,....10
Salbrei¥) = s
SA(X“;Y) = t. i

The basic observation for the cardinsl spline
representatién is that given two spline functions S(x3Y)
and S(x;Y) on the same mesh A, then the function

®S(x;Y) +(§$S(X;§‘)
where N,@@B is also a spline on A corresponding to the
ordinates «Y +/3§. Thus, in view of the lemma, it seens
natural to consider the set of all splines on A as s vector

space with bessis of ‘the form

N ~
icb,co,c‘,...,c,\,,,c%,c,ﬁ}
where ’

60(X}) =0 J=0,.. 41

Cllxg) = 1 (4.12)

6'0(}(“) = 0 '

C{(X&)': SL& 1,3=0,...y1 (u L )
v .1b

‘ig(xo) = Cl(x,) =0

C“'\(XJ:> = O ' j=0,...,n

Ct(x,) =0 _ (%, 1c)

Trx,) = 1.



Then giveh any sét of ordinates Y and values for the

derivatives at a and b - y and y,)_

S(x3Y,y5,y,) = ;Z;foya;c'g (x) = y;/@o(X) + y,,i#C‘.%(X) (4. 2)
will be the spline passing through the ordinates Y and
having the specified derivatives at a and b, It can easily
be seen that the right hand expresslon satisfles all the
conditions for S, hence by the lemma they must be equal, In
particular, if A={0,1,...,n}, we can view /s as a subset of
Y%, the integers, and then the cardinal spline basis for
will be a subset of {C': Ci(j)ZEgé, i,je@d, the cardinsl
spline basis of %, namely the subset ECmQ,CQ,,..,CwK
(We shall show below that'(}\U and 8% are nultiples of C.,
end Cosy .) It can obviously be seen that all the cardinal
splines must be trenslates of, say, Cg: '

Ci(x) = Culx-1) , e, (4.3)
Let %\ =-2+/3. Then, as may be verified by direct computation,

the primary cardinal spline Cy 1s given by

(3%+2)x¥ = 3(0+1)x % + 1, Osxs<l
3 [41) (x=30% - (42) (x-0)7 + (x=3)],

‘ CO(X) = jg}cgj_‘_l (LPULI,)
Co("’X)l - X<O
For later reference, we compute
0, j=0
Cr(g) =1 327, S J=1.2,.0 (4.5)
—3 ’kﬂ&} .j=—l,~2,,.,
{ "6(}\’{‘1—) ' j:O

cr () 1 -6 (w2) L JeL,2,.. (4.6)
"‘6%%(;‘%"‘2) [ j:"lx’“zino- '



5, End Conditions

%

With the cardinal spline representation of a given
spline, we are now in a position to derive specific
formulae for various types of splines., Since the number
of splines on a mesh A satisfying a given set of ordinates
is infinite by lemma 4,1, it is necessary to specify the
behavior of the spline near the ends of the interval, In
this section verious possibilities for these end conditions
are investigated, We will again‘work with the mesh
A:iO,l,...,n}, elthough the generslization to an arbitrary

mesh 1s immediate, The basic equation is

S(x;Y)

11

f:ijjuj +®Cuy(x) + BCou(X)
o
or

S(x3Y) = % y; Colx-1) + oCo(x+l) + pCo(x-n-1)  (5.1)
JT.‘
where 0<and/g are variable, depending on the end conditioms,

Note that by lemma 4,1 and (4.5) all splines satisfying .

the ordinates Y are expressed by (5.1).

a) Specified Derivatives

The derivatives S'(0)=y! and 8'(n)=y! are specifled
in advance in these end conditions, Then solving for
ys and yl we have

)

Jz’oc;,(-'j)y&. + oGt (1) + ACY(-n~1) = y!
& 4 , ¢ i _ - v
%zcg(n J)yJ + =xC'(n+l) + AC'(1) = vl

or, on substitution from (4,5),
Phec = 3XMH =yl + BNy
3%+ 30g = va - 3Ry

Thus we obtain

L5 + 2yd) + 5 (M- a0y,
D (1+A) -

D5 - Myl - 2 Omied™)y; ]
A (A |

6 =

(5.2)

‘ﬁ:



b) Parsbolic Run-out

With these end conditions, the spline is required
to be parsbolic on the two end intervals (0,11 and Mm-1,n],
Then for Ogxgl, ~j<x-jg~j+1l, so J=1€J~x<) and j-x~(j-1)=1-x,

Computing, we obtain through use of (5.1) and (4. 4)

S(x) = y, L(3%2)x?-3(3+1)x* +1] +
+ oy LOM2) (1-x) =3 (0+1) (1-x)* 417 +
+ £ 3Ny LO) (12 ) - (r2) (1-x)* +(1-x)] +
+ 3 L)% - (A+2) 2% 4% + '
+ 3B L) (1-x)° - (h42) (1= +(1-x)] ,  Ogx<d.

Also for n-1g<x<n, nmjw1<iej<n—j and x-J-(n-j-1)=x-n+1., Thus

=

ATy DOH1) (x-n41)® - (042) (rmnt 1 4 (x-nt1)] +
+ Vet LOM2) (=041 ) =3 (041) (x-n41)* 417 +

+ v L (3%+2) (n- V)3 =3 (0+1) (n-x)*+17] +

+ 33X L (41) (x-n+1)* - (%42) (x-n+1)* + (x-n+1)) +
3AALOH1) (n-x)® = (A+2) (n-x)" +(n-x)] , n-l<x<n.

S(x) = i

e

o

ot
¥

Seltting the coefficient of x? equal to zero in these two
expressions yields, upon dividing by 33(1+1) the equations

X - N e 3M2 (yi-ys) - ?;:"a“m
331) o (5.3)
P j?\+2 R RN 1 "
=N e = 2R (ya —ya) DAy
£ 3x(+1) e ‘
Solving for « and J2
x = Oy =yt 2 (yonmy,)], B A2 Vi - ;ﬂ*‘lyé”
C3A(0+1) (-2 (L= (5.4)
m "~ NYyes
ﬁ - (37&-2)[&‘“ 2N E ‘(.Y “;Yo )]+ %L_L 4= Yy :’—:‘1(’\ ‘2 M
3A(+1) (1-9%) (1~ 2%)

c) Rabinowitz End Conditions

Another possibility for end conditions, originally
suggested by P, Rabinowitz, is to prescribe that the
discontinuity in the third derivative of the gpline over



each of the ends-two intervals be removed Since S
is cubic,
S"™(x) = 8"(J+1) - S"(J) ,  Jsxgi+l.
Therefore this condition is ensured by the equations
SH(2) - 25"(1) + S"(0)=0 (5.5)
St (n=2) ~ 28"(n-1) + 8"(n) = 0
Substituting (5.1) and (4.6) these become

= [V (h42) =200 +2) +

(a+1)1y, ‘M (3+2) =2+ (A+ 1) +2(4+2)) v
FLOD) =200 2) - N (A r2) gy + 5 (0 —21+1><w+.4w typ o+
+ (A =2241) (A+2) de + (}”—2A+1)(X42 )ANTA

0 = :%1()‘1 ~2%1) (h2) N\ yp o+ LO1)

23 4+2) A A +2)] v,

+

-q,
+ [2(A+2)=2(A+1)+ A2 youy + LA (A42) =20 (M42)+ (241 ) v, 4

+ AV =201) (2) X e 4 (AT -2041) (42)05
Simplifying, these become

S . 3 T
O‘+'>"‘n~1ﬁ - “}1:;)\%#}5]‘; _ ()\ "3)"‘17)(30‘{‘}71) + (’XL'FZ:)S—Z)

2 O-1)" (h+2) ,
Nkt o= -3 ity y; - (?\’»3‘)»1)(yf,w;_+y:) + (W+2:\-2)yw()'6)
e A-1)*(A+2)

from which & and,@ can easily be computed

d) Periodic End Conditions

Rather than using the derivation of section 3,
alternate approach to obtain a periodic spline on

an
pl] O,n
is to impose the periodic end conditions
51(0) = 8" (n) (5.7)
S"(0) = 8" (n)
(It is assumed that Vo =Vm.) Expanding these equations gives
~£, 39y, 33 = by A g3t =30
6(Nt1) Y, - -£ 60 Oe2)y; - JBAO2)w-6 A" (142)8 =
= —26 Al (142) =6 (a+1)y, =6 X (N +2)x 61 (A +2) A
or, Since yQ =Ya s



(5.8)

hence

& 3~ (509)
ﬁ:z-t!EmLZL

A further observation can be made, namely, that given'the
interval EO,ﬁ] we can form a basls of periodic sulines
CP)L(X,H) i 1=0,1,,.,,n-1

where Cpeg(j,n):gcé, It is apparent that these cardinal
periodic splines are all translates, modulo n, of the
fundamental cardinal periodic spline on [0,n] CP(X,H)
given by

NEI ={1 B=0m (5.10)

0 i=2,3,...,n-1

In particular, substitution. in equation (5.9) yields

w=f=2"""/(1- %", hence

e b

Cplxim) = Colx) + Colx-n) + =2zfe (xe1) + ¢, (x-n-1)]

Ogxamn. (5.11)

3



6. Plane Curve Fitting

Let I" be a closed curve in the
X-y plane and suppose we are given a

set of points
{(X{,ly\:): i:O,l,..,,l’l.&

where (x.,¥,)=(x,,y.,), numbered in
consecutive order along the curve {°, Using point number

as a parsmetric varisble to describe ', we can conpute the
two perilodic splines S,(t;X) and S,(t;Y) where
X:fxo,x.,...,xl} and Y=§y,,¥, ... % and consider the

curve I :i(SP(t;X),SP(t;Y)) : Ogtsn} as a spline approx-
lmation to ", The properties of the convergence of the
various Me¢'s to I" will be similar to those given in theorem
2.1 and its analogs in [ANW]., In other words, besides
giving a good approximgtion to I', the curves M, also yield
good approximations to the first three derivatives of the
parametric representation of [I',

Acttelly, the number of points needed so that the
spline approximates ' . close i3 guite small, especially
if these points are chosen Judiciously, Using arc length
along ' from (X4,Yo) as another parametrization of ™
with parametric variable s, we have each point (x;,y;)
located at s distance s, along " from (x,,y,). The mesh
‘{O,l,...,n} used in the previous parametrization of the
splines can be thought of as s uniforn approximation to
the nonuniform mesh S:Eso,s‘,.;.,sk?(or, more scurately,
some multiple of 3), From the remark in sectioh 2 on the
imposition of a nonuniform mesh, it can be seen that
the spacing of the points along ' should be locally nearly
uniform with respect to arc length, although this of course
does not imply that this should be done globally., Also

| 8
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it can be shown that the convergence properties of
theorem 2.1 vary as the local magniitude of the second
derivative of the function approximated, so in this case
a general rule for the choice of points on " would be

to take the spacing between points small where the
curvature of I" is large, Examples of the concepts in
this section can be found in section 11, FTurther

discussion and illustrations can be found in [AW).



2.0

7. Spline Surfaces

The extension of the concept of spline functions
to twc or even more dimensions is gulite natural on
rectangular regions, For the purposes of this thesis
it will suffice to consider only the two dimensional
case with the splines defined on uniform meshes, Consider
the rectengular mesh A=%(i,j): i=0,1,...,n, j=0,1,...,m}%
and the set of ordinates Z={z.: (i,J)cA}. = A basis of
doubly cublic splines on ZnxZ 1is given by

LColx-1)Coly-3) + (1,3)e b

Ve then express the general spline on the rectangle
[o,nixL0,mIby the formuls

S(x,y) = & f 2y Co (x=1)Co(y-3) +

iro s

+ C,(V+1)§(%~Cn(x~i) + Cyoly-m-1

);oﬁtc x-1) +
4+ C (X+1)> ¥, Coly-3) + Cua(x-n-1)
-1

t
WA

x5 C(y=-3) +  (7.1)

d=o jzo
+ NeeCo (X+1) C (F41) + )gp Co (x-n-1)Co(y+1)
+ jmgp(X4l)Ca(y~m~l) +‘1MhCQ(X~n -1)C o(y-m-1)

WHETE ®yyvve 1% fBoresss fus - SR ST AP ’gm’ﬁvo’ﬁﬂw s M omas e
are variable depending on end conditions, The substitution
of x=1 (or y=j) will yield a one dimensional cubic spline

so the imposition of end conditions along these lines and
use of the equations in section 5 gives values for the

®'s, 2's, ¥'s, and §'s, To determine Yoo 1 “upr Yows rm 1T

igs necessary to impose further restrictions at the corners

of the rectangle, which will be related to the value of
38 (x,y)/3xdy at the cbrner points, Rather than try to

find realistic conditions to use, ﬁn¢"ﬁaa’ Nor s G will

hereafter be set to zero,



8, Splines on Polar Recions

In this section we derive s formula for a spline
surface defined over the unit disk, Consider the polar

mesh on the disk, given in polar coordinates,

2 , : .
K}g:§ }“D'jJ> H l:O,...,l’l, J:Oyoco’m}

and a corresponding set of ordinates Z defined over A,
To find a cardinsl spline basis on &, let

u=nr and v=m8/ 2, (8.1)
Under this transformation the unit circle goes onto the
rectangle [0,nlx[0,m], Now since the splines in the
direction must match up st 0=0 and $=2m, it seems
natural rather than use the cardinal splines Ca(v-i)
in the v direction, to use the basis of periodic splines
on [0,n}, namely (see section 5d)

§_C (v-3,m) : j=1, 2,...,m}

We then obtain the representation

8(u,v) = f‘dziz Co(u-1)Cp(v-3,m) + (8.2)
4—fi{w Colutl) + ﬁgcé(uwnul)ﬁcp(v-j,m)

where the ﬁ;'s and &é's of formula (7.1) have been

implicitly determined by the use of periodic splines in

the v direction. Furthermore, since f(x)=1 lS a

periodic spline on [o,m] and by Lemma 4,1,

| ﬁ‘cp(v»j,m) =1, Ogvgnm, (8.3)
Combining (8,3) and the fact ﬁhat-zemzzﬁlz...zzbm, (8.2)
simplifies to '

S(u,v) = 2z,,C.(u) + ﬁ by Zyy C olu-1)Cplv-j,m) + (8,4)
+ ﬁo[mac (u+1 + ﬂACé u-n- 1f§CP(V j,m),

We now assume that mzzﬂ,for some,ue%. In order to ensure
radial continuity of the first and second derivatives of



S at the origin of the disk, we must have

mS'(O,kﬁ#)
S”(O,k“l‘/b_)

ST(0,k)
S'"(0,k)

il

- k:O!lln‘n!/‘L- (835)

i

Fix a k between 0 and/u, then

S(u,k) = 2,,C (u) + g(z;hc (u=-i) + (8.6)
+ oty Co (u+l) +‘ﬁﬁca(u~n~1).

Substituting (8.6) into (8.5) and referring to (4.5) and
(4,6),

v

3N 2

2

L b DAy - 34N Ry =
S: -3 2z + 3%y, 3 ’A"‘“,ﬁw 3

T

\H

l-“l"'

\,M/g~
or

l _ L"“‘
O"f-l + &Aﬁ;“m - Afﬂ.i - )\p”ﬁ(" Z>_:J’ (Z bﬁwfu ) A
We also have

-6(\+1)z o5 B -6 (M2)zig ~6(0+2)e, -6 XM (h+2) gy =

= "6(}’1 ) °@+ ’L 6A <') }‘2 L“N',u—6)(‘% ?)‘\'{‘,‘,/‘A 69\’\” j\+2) ‘iﬁﬁl‘a’,}

by
or

« -
C('{i . o(ﬁti'*/h + I}\ \ﬁi’i._ Amﬁéa%}& = E (Zl’i‘qf‘“ z (-'t) :x‘ '

13-

Therefore radial continuity of the first two derivatives

at the origin is met when the equations

O\,"k + D(-{; ,->‘ /3»&, (g{l*'f,e— w‘ k=0,.1;--.s/~'\ (8‘7>

CX‘,{L - D\ﬁ‘»/& + '>\ /3.% % /géd/,\— (’ﬁ '
where

LJ; = 2' (Zc'hflp _"‘ZD‘\) >‘L‘w ‘\ . (808}

@%=:§‘(meﬂ—2ca>?f”

are satisfied, To'get two further equations for K#,m{vg,
ﬁﬁ,ﬁ£V&to solve along with (8,7), we must prescribe end

conditions for each radius vector {(r,e): 0grgl, é=2ﬂk/m1
near the edge of the unit disk, Again there are a number

of possibilities:



a) Zero End Conditions

This prescribes that £;=0 for all k., which might
be viewed as a kind of "natural®end condition. Thus
(8.7) reduces to

Gy T Dy, = W,
oy, - ‘-'%’5_,3/,,5_ = g
hence '

Il

&,
&y

(a0, +,) (8.9)

= 2 (0= ey)

b) Parabolic Run-out

Vle again want S{u,k) to be parabolic on the interval
n-1,n . Thus the second equation of (5,3) is applicable

and we obtain

am(‘_,%-k b /5{3 e L) by
where
8 = I?\"\m. ] b - "’1
LAamel, LWL aie 32
A= -')\v Z - '\ v ZH + - (Zm‘z ,\ﬁ) (8-113)
: o T YCREY "
o9 sl -l L 3%—(—2
= ~ A"z - %) Zitept o (2 -z ).
% eo - DR wh, et dup
S 730w T

¢) Rabinowitz End Conditions

In this case we again require that the discontinuity
in the third derivative of S(u,k) with respect to u be
removed at u=n-1, Then equation (5,6b) is applicable giving

awo, + Db i = L  (8.10Db)
2 N"@’x’.&—i‘n b ﬁ-fnﬂ«,: l’k} 4

where



s =%"%,b=1 and
-3

e - ;\“““;32.¢ _ (7\3~3')\+1)(z,._,?_¢k7 ~}~zq.¢t) + (A 422=2) 2 ny s,
S e S 3O (A5) (8.11b)
m-3 P 3 ~ 30 . - . > A A
L= = 5N gy - (=321 (Zwanytan,) + (NH22-2)2 s i

A -1)F (A+2)

Combinihg equations (8,7) and (8,10a) or (8,10b) we have

a system of the form

X+ y =iz - Qw = o,
X =y +8z -"hw = ¢,
ax + bz = Wy (8.12)

8y o+ bW o= Wy

where 2=7%", x=o, Y= Xneps 2= fy, W:ﬂﬂuv The explicit solution

to (8;12), which may be verified by direct substitution, is

g (L, -0,) - Zab(o,+ ;) + b Wy~ a Loy

zZ =
(b> - a*p*)
y = %(L\),"Uz) +R\Z (8.13)
= (YS - Qy)/b
x = (o 4+ @)+ Lw,
Note finally that

Blogtw) = 8z, 2! (8.14)
%({"_) - ty) = cgz Zik A

Therefore the equations for a polar spline on the unit
disk are given by (8.4) and (8,11), (8.13) and (8.14),*or

(8.9) and (8,14) in the case of zero end conditions,
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9. General Star-Shaped BResgions sasnd

Surface Singularities

The extension of the preceding analysis for polar
splines tc more general planar reglons is immediate,
suppose, for example, that D is a star-shaped region
with respect to the origin bounded by = Jordan curve [T,
Given 0<82n define rmax(®) to be the distance from

the origin to " in the #-divection, Since D is star-

shaped, this definiticn is unaembiguous, e
Then introduce the coordinate change %% \\w/“\
ED o]
N |
- T o : L
Y = G:G (9ol> el r\
rmax (8) o 4
e
D o

which transforms D into the unit disk,
where the previous anslysis and formulae apply. Although
this will require giving the ordinates slong curves
“similar" to [, with respect to r, this requirement is
not as stringent as 1t may sound, since the results on
the imposition of 2 uniform mesh apply again, so only
approximations to these curves need to be used with minimsl
loss in accuracy,.

A more serious drawback to this method occurs when
we inspect the behavior of the derivatives of the resulting

surface spline, since these will now involve derivatives

of rmax(6), In particular, the partial derivative of
S(%,6) with respect to 8§ is
25(5,8) = 25(5,8) + I 2.8(3,8) (9.2)
206 Qe » rmax(p) oF

so & .discontinuity in the first derivative of rmax at
some B, will result in a discontinuity of the derivative
of 8 with respect to © along the ray H=04.

Bven if " is smooth, there may still be a singularity
of S(¥,0) at the origin of D, We have



D858 = Ds(F8) T

or 7 rnax (0)
which does not in general eqgual

-SL S (¥, 64m) = - DS(Fb)
T e o ar rmax (6 -+1) e
a5 1
P ”“‘“1— “)(I‘,(’) 2 At
o7 rmax (84+7)| . o

unless rmax(0) = rmax (6+4m), Several approaches to

hertially resolve this problem have been suggested, (see
Uanwl), but these sacrifice the continuity of other
derivetives of S or impose special restrictions on the

ordinastes, hence are not entirely satisfactory.



10. Approximation and Truncation

VMany of the formulae for cardinsl spline representg-
tions can be simplified if a certain degree of
approximaﬁion is allowed for a saving in computer
time snd storage, We note that Ax—-,267949 and thus
71 <1,  Thus terms in the eguations involving ¥ for n>n,,
for some relatively large n, can be omitted with little
loss in accuracy., As an example, the equation for the
periodic~cérdinal spline (5.11) cen be simplified by
ignoring the last two terms for n>rn,+l, A practical
value of n, would be arouad 10, since 12'°} <2x10" %, so
the loss in sccuracy for most purposes, especially in
applications to computer graphics, will be acceptable,
In fact the derivation of many of the equations becomes
much simpler for large n, For example, the equations
in the m's and £'s will uncouple using this approach;
the derivation in TA2] follows this idea. However,
since many of the splines used in the applicstions
in this thesis involved meshes of less than & points
in any one direction, it was deemed necessary for
the accuracy desired to derive all the equatioﬁs in
exact form, The reader 1s referred to [Ag]for thelr

approximate derivation,

3
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Discussion of Computer HResults




11, Plsne Curves and Lettering

To investigate the convefgence properties of spline
approximations to plane curves, the coordinstes of sixty-
four points on a stendard French curve were found and
splinevapproximations hased on sixteen, twenty-one, thirty-
two and 21l sixty-four of these points were calculated and
drawn by the computer, The results are displayed in figures
one through four., The curve based on sixty-four points 1is
an slmost exact duplicaterof the original French curve,
failing only the original curve had a cusp, As can be seen,
even the spline curves based on =2 compar%tively small ﬁb/
nunber of points provide a reasonably good fit to the
curve, the major regions of disagreement being where the
curvature is large, This confirms the remarks in section 6 -
where the curvature is large, the mesh size should be
small, The lower half of the curve, where hardly any
curvature exists, remains fairly constant in each of the
four spline fits,

An interesting application of the curve drawing
properties of splines is to construct a font of letters
based on the spline spproximations to the original font,

For this purpose, a standard block oapital font was used,
The coordinates. of an average of ten points on the outer
contour of each letter were chosen, the small number of
points being used so that the spline would add some extra
"flourishes" and other interesting features to the letters,
A program was written to draw any message of alphabetic
charscters on the CALCOMP, from which the title page of
this thesis was drawn. The small number of points needed
to give a recognizable letter makes this method ideally

sulted to applying the computer to many drawing tasks,



< PFilgure 1:’ Sixteen point spline approximation

to a Prench curve

Figure 2: Twenty-one point spline approximation

Ed

to a French curve
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Figure 3: Thirty-two peint spline approximation

to a Prench curve,

/ (‘—“}( oy
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« Pigure 4: Sixty-four point spline approximation

to a Prench curve,
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12, Polsr Spline Examples

The remaining figures illustrate several aspects of
the theory of polar spline on star-shaped regions. They
are labelled as to the function z=f (x,y) approximated Dby
splines, the polar mesh size - number of divisions in the
r-direction by the nuwrber in the Q~diréction, the region
the spline is computed over - circle means the unit disk
and trisngle is the eguilateral trisngle of altitude 3
centered at the origin, the end conditions of the spline
and the side length of the sguare mesh over which the
surface is dravn, all sguare meshes being 15 by 15 points,
The funotions plotted'wefe the plare z=x+1,3y end the
saddle z=x2-y%, chosen for their simplicity so that the
effects of the spline approximation could be easily noticed.
The spline surfaces were drawn by the Brown University
scope operating programs and photographed directly from
the scope,

Figures six through éight show the effects of the
different end conditions on the polar spline approximations
to the planar function, As can be seen, the parsbolic
end conditions yield the most true approximaticn followed
by the Rabinowitz and finally the zero end conditions,

On the basis of this observation, all further spline functions
are to be done with parabolic end conditions., It is
surprising how close the spline spproximation using

parabolic end conditions 1is, especlally considering the

small number of mesh points used - 4 by 4, A numerical
comparison of the values of the spline and the values of

the function over the mesh reveals an overall error of

less than 4%, the greatest error being near the corners of

the square, i,e, near the edges of the disk, In fact,

most mesh points have an error of less than 2%. This also

holds for the parabolic spline approximation to x*-y*



using the same polar mesh, as shown in figure nine.
‘ The next four figures investigate the convergence
of the spline approximétioﬁ to thes plane over the
triangle as the nuuber of mesh points ilncreases. The
crinkles in the surfaces result from eguation (9.2) and
are slong the rays through the corners of the triangle,
The crinkles are smoothed out as the number of mesh
points increases - the most noticeable smoothing occuring
when the number of divisions in the O-direction is increased,
There is hardly eny change in the spline surfaces when the
number of divisions in the r-direction is increasel from
figure 11 to figure 12, indicating that sn optimum mesh
for polar splines would be one that has relatively more
divisions in the O~direction,

The final four figures investigate the singuvlarity
of splines at the origin, the splines being computed
over a trisngular region, Flgures 14 and 16 display the
the spline surface approximastion to z=xX*-y% over =z
square of side length 1, while figures 15 and 17 show
on enlarged view of 14 =nd 16 respectively near the
origin on a sguare of side length .1. To emphasize the
singularity, the function values were multiplied by
a factor of 20 in the latter two figures, A distinct
discontinuity in the first derivative can be noticed
in these disgrams, whereas it 1is not so noticeable
in the larger surfaces, vA smoothing out of the singularity
oorresponding to an increase in the number of mesh points

from figure 15 to figure 17 can be noticed,
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Figure 12: Polar Spline
Function Mesh Size Region fnd Conditions Sguare Size
z=x+1,3y . 12 by 12 Trisngle Parsbolic 1.0

N

Figure 13: Polar Spline

Function Mesh Size Region End Conditions Sguare 3ize
z=x+1,3y 12 by 18 Triangle Parabolic 1,0




Figure 14: Polar Spline

Function Mesh Size Reglon Ind Conditions Sguare Size

2=x*~y > 8 by & Trisngle Parabolic 1.0

Figure 15: Folar Spline
Function Mesh Size Reglon End Conditions Scuare Size

Z=x"-y* 8 by 6 Triangle Parabolic 0.1
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Figure 16: Polar Spline

Function liesh Size Region End Conditions Saguare Size
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Figure 17: Polar Spline
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