Peter Olver's Papers and Preprints
Last updated:
October 9, 2024
-
Moving Frames, Equivalence, and Pseudo-groups
-
Image Processing, Computer Vision, Anthropology
-
Symmetry, Lie groups, Lie algebras
-
Waves, Fluid Mechanics, Integrable Systems
-
Hamiltonian Systems
-
Calculus of Variations
-
Elasticity and Continuum Mechanics
-
Quantum Mechanics and Physics
-
Invariant Theory, Algebra, Number Theory
-
Numerical Analysis
-
Analysis
Note: The papers are listed in the order in which they were written, which is not necessarily the order in which they appear in print.
Moving Frames, Equivalence, and Pseudo-groups
-
Olver, P.J., Using moving frames to construct equivariant maps, preprint, 2024.
pdf
-
Olver, P.J., On the structure and generators of differential invariant algebras, in: Computer Algebra in Scientific Computing, F. Boulier, M. England, I. Kotsireas, T.M. Sadykov, E.V. Vorozhtsov, eds., Lecture Notes in Computer Science, vol. 14139, Springer-Verlag, New York, 2023, pp. 292-311.
pdf
-
Olver, P.J., The outline signature of a convex body, preprint, 2022.
pdf
-
Olver, P.J., Sabzevari, M., and Valiquette, F., Normal forms, moving frames, and differential invariants for nondegenerate hypersurfaces in C2, J. Geom. Anal. 33 (2023) 192.
pdf
-
Olver, P.J., Projective invariants of images, European J. Appl. Math. 34 (2023) 936-946.
pdf
-
Olver, P.J., A higher order moving frame for equi-affine plane curves, preprint, 2020.
pdf
-
Olver, P.J., Qu, C., and Yang, Y., Feature matching and heat flow in centro-affine geometry, SIGMA: Symmetry Integrability Geom. Methods Appl. 16 (2020) 093.
pdf
-
Olver, P.J., Invariants of finite and discrete group actions via moving frames, Bull. Iranian Math. Soc. 49 (2023) 11.
pdf
-
Tuznik, S.L., Olver, P.J., and Tannenbaum, A., Equi-affine differential invariants for invariant feature point detection, European J. Appl. Math. 31 (2020) 277-296.
pdf
-
Gün Polat, G., and Olver, P.J., Joint differential invariants of binary and ternary forms, Portugaliae Math. 76 (2019) 169-204.
Corrected version: pdf
Corrections and additions to published version: pdf
-
Olver, P.J., Equivariant moving frames for Euclidean surfaces, preprint, 2016.
pdf
-
Adams, S., and Olver, P.J., Prolonged analytic connected group actions are generically free, Transformation Groups 23 (2018), 893-913.
pdf
-
Olver, P.J., Moving frame derivation of the fundamental equi-affine differential invariants for level set functions, preprint, 2015.
pdf
-
Olver, P.J., The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory 26 (2015), 235-267.
pdf
-
Kogan, I.A., and Olver, P.J., Invariants of objects and their images under surjective maps, Lobachevskii J. Math. 36 (2015), 260-285.
Corrected version: pdf
Corrections and additions to published version: pdf
-
Olver, P.J., and Valiquette, F., Recursive moving frames for Lie pseudo-groups, Results Math. 73 (2018), 57.
pdf
-
Olver, P.J., Modern developments in the theory and applications of moving frames, London Math. Soc. Impact150 Stories 1 (2015), 14-50.
pdf
-
Olver, P.J., Normal forms for submanifolds under group actions, in: Symmetries, Differential Equations and Applications, V. Kac, P.J. Olver, P. Winternitz, and T. Özer, eds., Proceedings in Mathematics & Statistics, Springer, New York, 2018, pp. 3-27.
pdf
-
Olver, P.J., Recursive moving frames, Results Math. 60 (2011), 423-452.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., Recent advances in the theory and application of Lie pseudo-groups, in: XVIII International Fall Workshop on Geometry and Physics, M. Asorey, J.F. Cariñena, J. Clemente-Gallardo, and E. Martínez, AIP Conference Proceedings, vol. 1260, American Institute of Physics, Melville, NY, 2010, pp. 35-63.
pdf
-
Olver, P.J., Differential invariant algebras, Contemp. Math. 549 (2011), 95-121.
pdf
-
Olver, P.J., and Pohjanpelto, J., Persistence of freeness for pseudo-group actions, Arkiv Mat. 50 (2012), 165-182.
pdf
-
Olver, P.J., Moving frames and differential invariants in centro-affine geometry, Lobachevskii J. Math. 31 (2010), 77-89.
pdf
-
Itskov, V., Olver, P.J., and Valiquette, F., Lie completion of pseudo-groups, Transformation Groups 16 (2011), 161-173.
pdf
-
Mari-Beffa, G., and Olver, P.J., Poisson structures for geometric curve flows on semi-simple homogeneous spaces, Regular and Chaotic Dynamics 15 (2010), 532-550.
pdf
-
Olver, P.J., Pohjanpelto, J., and Valiquette, F., On the structure of Lie pseudo-groups, SIGMA: Symmetry Integrability Geom. Methods Appl. 5 (2009), 077.
pdf
-
Olver, P.J., Lectures on moving frames, in: Symmetries and Integrability of Difference Equations, D. Levi, P. Olver, Z. Thomova, and P. Winternitz, eds., London Math. Soc. Lecture Note Series, vol. 381, Cambridge University Press, Cambridge, 2011, pp. 207-246.
pdf
-
Olver, P.J., Differential invariants of maximally symmetric submanifolds, J. Lie Theory 19 (2009), 79-99.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., Invariant variational problems and invariant flows via moving frames, in: Variations, Geometry and Physics, O. Krupková, and D. Saunders, eds., Nova Science Publ., New York, 2009, pp. 209-235.
pdf
-
Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., and Pohjanpelto, J., Differential invariant algebras of Lie pseudo-groups, Adv. in Math. 222 (2009), 1746-1792.
Corrected version: pdf
Corrections to published version: pdf
-
Hubert, E., and Olver, P.J., Differential invariants of conformal and projective surfaces, SIGMA: Symmetry Integrability Geom. Methods Appl. 3 (2007), 097.
pdf
-
Olver, P.J., and Pohjanpelto, J., Moving frames and differential invariants for Lie pseudo-groups, in: Symmetry and Perturbation Theory, G. Gaeta, R. Vitolo, and S. Walcher, eds., World Scientific, Singapore, 2007, pp. 172-180.
pdf
-
Kamran, N., Olver, P.J., and Tenenblat, K., Local symplectic invariants for curves, Commun. Contemp. Math. 11 (2009), 165-183.
pdf
-
Olver, P.J., Differential invariants of surfaces, Diff. Geom. Appl. 27 (2009), 230-239.
pdf
-
Olver, P.J., and Pohjanpelto, J., Differential invariants for Lie pseudo-groups, in: Gröbner Bases in Symbolic Analysis; M. Rosenkranz, D. Wang, eds, Radon Series Comp. Appl. Math., vol. 2, Walter de Gruyter, Berlin, 2007, pp. 217-243.
pdf
-
Welk, M., Kim, P., and Olver, P.J., Numerical invariantization for morphological PDE schemes, in: Scale Space and Variational Methods in Computer Vision, F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Computer Science, vol. 4485, Springer-Verlag, New York, 2007, pp. 508-519.
pdf
-
Olver, P.J., and Pohjanpelto, J., Pseudo-groups, moving frames, and differential invariants, in: Symmetries and Overdetermined Systems of Partial Differential Equations, M. Eastwood and W. Miller, Jr., eds., IMA Volumes in Mathematics and Its Applications, vol. 144, Springer-Verlag, New York, 2008, pp. 127-149.
pdf
-
Olver, P.J., Generating differential invariants, J. Math. Anal. Appl. 333 (2007), 450-471.
Corrected version: pdf
Corrections to published version: pdf
-
Cheh, J., Olver, P.J., and Pohjanpelto, J., Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math. 8 (2008), 501-532.
pdf
-
Olver, P.J., A survey of moving frames, in: Computer Algebra and Geometric Algebra with Applications, H. Li, P.J. Olver, and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519, Springer-Verlag, New York, 2005, pp. 105-138.
pdf
-
Kim, P., and Olver, P.J., Geometric integration via multi-space, Regular and Chaotic Dynamics 9 (2004), 213-226.
pdf
-
Olver, P.J., and Pohjanpelto, J., Regularity of pseudogroup orbits, in: Symmetry and Perturbation Theory, G. Gaeta, B. Prinari, S. Rauch-Wojciechowski, and S. Terracini, eds., World Scientific, Singapore, 2005, pp. 244-254.
pdf
-
Cheh, J., Olver, P.J., and Pohjanpelto, J., Maurer-Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys., 46 (2005), 023504.
pdf
-
Olver, P.J., An introduction to moving frames, in: Geometry, Integrability and Quantization; vol. 5, I.M. Mladenov, and A.C. Hirschfeld, eds., Softex, Sofia, Bulgaria, 2004, pp. 67-80.
pdf
-
Lewis, D., Nigam, N., and Olver, P.J., Connections for general group actions, Commun. Contemp. Math. 7 (2005), 341-374.
pdf
-
Olver, P.J., and Pohjanpelto, J., Moving frames for Lie pseudo-groups, Canadian J. Math. 60 (2008), 1336-1386.
pdf
-
Olver, P.J., and Pohjanpelto, J., Maurer-Cartan forms and the structure of Lie pseudo-groups, Selecta Math. 11 (2005), 99-126.
pdf
-
Olver, P.J., Moving frames, J. Symb. Comp. 36 (2003), 501-512.
pdf
-
Olver, P.J., Moving frames: a brief survey, in: Symmetry and Perturbation Theory, D. Bambusi, M. Cadoni, and G. Gaeta, eds., World Scientific, Singapore, 2001, pp. 143-150.
pdf
-
Kogan, I., and Olver, P.J., The invariant variational bicomplex, Contemp. Math. 285 (2001), 131-144.
Corrected version: pdf
Corrections to published version: pdf
-
Kogan, I., and Olver, P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., The canonical contact form, Adv. Studies Pure Math. 37 (2002), 267-285
pdf
-
Olver, P.J., Moving frames — in geometry, algebra, computer vision, and numerical analysis, in: Foundations of Computational Mathematics, R. DeVore, A. Iserles, and E. Suli, eds., London Math. Soc. Lecture Note Series, vol. 284, Cambridge University Press, Cambridge, 2001, pp. 267-297.
pdf
-
Olver, P.J., Moving frames, RIMS Kokyuroku 1150 (2000), 114-124.
pdf
-
Olver, P.J., Geometric foundations of numerical algorithms and symmetry,
Appl. Alg. Engin. Comp. Commun. 11 (2001), 417-436.
Updated version: pdf
Updates to published version: pdf
-
Olver, P.J., Moving frames and joint differential invariants, Regular and Chaotic Dynamics 4 (4) (1999), 3-18.
pdf
-
Olver, P.J., Joint invariant signatures, Found. Comput. Math. 1 (2001), 3-67.
pdf
-
Berchenko, I., and Olver, P.J., Symmetries of polynomials, J. Symb. Comp. 29 (2000), 485-514.
pdf
-
Mari-Beffa, G., and Olver, P.J., Differential invariants for parametrized projective surfaces, Commun. Anal. Geom. 7 (1999), 807-839.
pdf
-
Olver, P.J., Moving frames and singularities of prolonged group actions, Selecta Math. 6 (2000), 41-77.
Corrected version: pdf
Corrections to published version: pdf
-
Fels, M., and Olver, P.J., Moving frames and moving coframes, in: Algebraic Methods in Physics,
Y. Saint-Aubin and L. Vinet, eds., CRM Series in Math. Phys., Springer-Verlag, New York, 2001, pp. 47-64.
pdf
-
Fels, M., and Olver, P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208.
Corrected version: pdf
Corrections to published version: pdf
-
Fels, M., Olver, P.J., Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., Pseudo-stabilization of prolonged group actions. I. The order zero case, J. Nonlinear Math. Phys. 4 (1997), 271-277.
pdf
-
Fels, M., and Olver, P.J., On relative invariants, Math. Ann. 308 (1997), 701-732.
pdf
-
Olver, P.J., Differential invariants and invariant differential equations, Lie Groups and their Appl. 1 (1994), 177-192.
pdf
-
Olver, P.J., Differential invariants, Acta Applicandae Math. 41 (1995), 271-284.
pdf
-
Olver, P.J., Equivalence and the Cartan form, Acta Applicandae Math. 31 (1993), 99-136.
pdf
-
Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians III. New invariant differential equations, Nonlinearity 5 (1992), 601-621.
pdf
-
Hsu, L., Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians II. The Cartan form for particle Lagrangians, J. Math. Phys. 30 (1989), 902-906.
pdf
-
Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians I. Formulation and reduction, J. Math. Pures et Appliquees 70 (1991), 369-391.
pdf
-
Kamran, N., and Olver, P.J., Le probleme d'équivalence à une divergence près dans le calcul des variations des intégrales multiples, Comptes Rendus Acad. Sci. (Paris), Série I, 308 (1989), 249-252.
Scanned: pdf
-
Olver, P.J., Invariant theory, equivalence problems and the calculus of variations, in: Invariant Theory and Tableaux, D. Stanton, ed., IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 59-81.
pdf
-
Kamran, N., and Olver, P.J., Equivalence of differential operators, SIAM J. Math. Anal. 20 (1989), 1172-1185.
pdf
-
Kamran, N., and Olver, P.J., Equivalence problems for first order Lagrangians on the line, J. Diff. Eq. 80 (1989), 32-78.
pdf
-
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary Forms, Adv. in Math. 80 (1990), 39-77.
pdf
-
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians, Bull. Amer. Math. Soc. 18 (1988), 21-26.
pdf
-
Olver, P.J., The equivalence problem and canonical forms for quadratic Lagrangians, Adv. Appl. Math. 9 (1988), 226-257.
pdf
Image Processing, Computer Vision, Anthropology
-
O'Neill, R.C.W., Yezzi-Woodley, K., Calder, J., Olver, P.J., En masse scanning and automated surfacing of small objects using Micro-CT, preprint, 2024.
pdf
-
Calder, J., Coil, R., Melton, J.A., Olver, P.J., Tostevin, G., and Yezzi-Woodley, K., Use and misuse of machine learning in anthropology, IEEE BITS 2 (1) (2022) 102-115.
pdf
-
Yezzi-Woodley, K., Terwilliger, A., Li, J., Chen, E., Tappen, M., Calder, J., and Olver, P.J., Using machine learning on new feature sets extracted from three-dimensional models of broken animal bones to classify fragments according to break agent, J. Human Evolution, to appear.
pdf
-
Yezzi-Woodley, K., Calder, J., Sweno, M., Siewert, C., and Olver, P.J., The Batch Artifact Scanning Protocol: A new method using computed tomography (CT) to rapidly create three-dimensional models of objects from large collections en masse, preprint, 2022.
pdf
-
Olver, P.J., The outline signature of a convex body, preprint, 2022.
pdf
-
Olver, P.J., Reconstruction of bodies from their projections, preprint, 2021.
pdf
-
Yezzi-Woodley, K., Calder, J., Olver, P.J., Melton, J.A., Cody, P., Huffstutler, T., Terwilliger, A., Tappen, M., Coil, R., and Tostevin, G., The virtual goniometer: demonstrating a new method for measuring angles on archaeological materials using fragmentary bone, Archaeological Anthropological Sci. 13 (2021) 106.
pdf
Meshlab plugin
-
Olver, P.J., Projective invariants of images, European J. Appl. Math. 34 (2023) 936-946.
pdf
-
Olver, P.J., Qu, C., and Yang, Y., Feature matching and heat flow in centro-affine geometry, SIGMA: Symmetry Integrability Geom. Methods Appl. 16 (2020) 093.
pdf
-
O'Neill, R.C.W., Angulo-Umaña, P., Calder, J., Hessburg, B., Olver, P.J., Shakiban, C., and Yezzi-Woodley, K., Computation of circular area and spherical volume invariants via boundary integrals, SIAM J. Imaging Sci. 13 (2020) 53-77.
pdf
-
Tuznik, S.L., Olver, P.J., and Tannenbaum, A., Equi-affine differential invariants for invariant feature point detection, European J. Appl. Math. 31 (2020) 277-296.
pdf
-
Olver, P.J., Moving frame derivation of the fundamental equi-affine differential invariants for level set functions, preprint, 2015.
pdf
-
Grim, A., O'Connor, T., Olver, P.J., Shakiban, C., Slechta, R., and Thompson, R., Reassembly of three-dimensional jigsaw puzzles, Int. J. Image Graphics 16 (2016), 1650009.
pdf Matlab routines
-
Olver, P.J., The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory 26 (2015), 235-267.
pdf
-
Kogan, I.A., and Olver, P.J., Invariants of objects and their images under surjective maps, Lobachevskii J. Math. 36 (2015), 260-285.
Corrected version: pdf
Corrections and additions to published version: pdf
-
Olver, P.J., Modern developments in the theory and applications of moving frames, London Math. Soc. Impact150 Stories 1 (2015), 14-50.
pdf
-
Hoff, D., and Olver, P.J., Automatic solution of jigsaw puzzles, J. Math. Imaging Vision 49 (2014), 234-250.
Corrected version: pdf
Corrections to published version: pdf
Matlab routines
-
Hoff, D., and Olver, P.J., Extensions of invariant signatures for object recognition, J. Math. Imaging Vision 45 (2013), 176-185.
Corrected version: pdf
Corrections to published version: pdf
Matlab routines
-
Brinkman, D., and Olver, P.J., Invariant histograms, Amer. Math. Monthly 119 (2012), 4-24.
pdf
-
Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
Corrected version: pdf
Corrections to published version: pdf
-
Welk, M., Kim, P., and Olver, P.J., Numerical invariantization for morphological PDE schemes, in: Scale Space and Variational Methods in Computer Vision, F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Computer Science, vol. 4485, Springer-Verlag, New York, 2007, pp. 508-519.
pdf
-
Olver, P.J., A survey of moving frames, in: Computer Algebra and Geometric Algebra with Applications, H. Li, P.J. Olver, and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519, Springer-Verlag, New York, 2005, pp. 105-138.
pdf
-
Rathi, Y., Olver, P.J., Sapiro, G., and Tannenbaum, A., Affine invariant surface evolutions for 3D image segmentation, in: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, E.R. Dougherty, J.T. Astola, K.O. Egiazarian, N.M. Nasrabadi, and S.A. Rizvi, eds., vol. 6064, SPIE Press, Bellingham, Wash., 2006, pp. 606401.
pdf
-
Georgiou, T., Olver, P.J., and Tannenbaum, A., Maximal entropy for reconstruction of back projection images, in: Mathematical Methods in Computer Vision, P.J. Olver and A. Tannenbaum, eds., IMA Volumes in Mathematics and its Applications, vol. 133, Springer-Verlag, New York, 2003, pp. 57-64.
pdf
-
Olver, P.J., Moving frames — in geometry, algebra, computer vision, and numerical analysis, in: Foundations of Computational Mathematics, R. DeVore, A. Iserles, and E. Suli, eds., London Math. Soc. Lecture Note Series, vol. 284, Cambridge University Press, Cambridge, 2001, pp. 267-297.
pdf
-
Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision 26 (1998), 107-135.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Affine invariant gradient flows, in: ICAOS '96: Images, Wavelets and PDE's, M.-O. Berger, et. al., eds., Lecture Notes in Control and Information Sciences, vol. 219, Springer-Verlag, New York, 1996, pp. 194-200.
pdf
-
Calabi, E., Olver, P.J., and Tannenbaum, A., Invariant numerical approximations to differential invariant signatures, preprint, University of Minnesota, 1995.
pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Affine invariant detection: edge maps, anisotropic diffusion, and active contours, Acta Appl. Math. 59 (1999), 45-77.
pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Affine invariant detection: edges, active contours, and segments, in: Proceedings 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Proceedings, IEEE Computer Soc. Press, Los Alamitos, CA, 1996, pp. 520-525.
pdf
-
Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., and Tannenbaum, A., A gradient surface evolution approach to 3D segmentation, in: Proceedings of the IS&T's 49th Annual Conference; Society for Imaging Science and Technology, Springfield, Virginia, 1996, pp. 305-307
pdf
-
Kumar, A., Yezzi, A., Kichenassamy, S., Olver, P.J., Tannenbaum, A., Active contours for visual tracking: a geometric gradient based approach, in: Proceedings of the 34th Conference on Decision and Control, IEEE Computer Soc. Press, Piscataway, N.J., 1995, pp. 4041-4046.
pdf
-
Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., and Tannenbaum, A., A geometric snake model for segmentation of medical imagery, IEEE Trans. Medical Imaging 16 (1997), 199-209.
pdf
-
Calabi, E., Olver, P.J., and Tannenbaum, A., Affine geometry, curve flows, and invariant numerical approximations, Adv. in Math. 124 (1996), 154-196.
Corrected version: pdf
Correction to published version: pdf
-
Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A., Conformal curvature flows: from phase transitions to active vision, Arch. Rat. Mech. Anal. 134 (1996), 275-301.
pdf
-
Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A., Gradient flows and geometric active contour models, in: Fifth International Conference on Computer Vision, IEEE Computer Soc. Press, Cambridge, Mass., 1995, pp. 810-815.
pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Invariant geometric evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math. 57 (1997), 176-194.
pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Differential invariant signatures and flows in computer vision: a symmetry group approach, in: Geometry-Driven Diffusion in Computer Vision, B.M. Ter Haar Romeny, ed., Kluwer Acad. Publ., Dordrecht, Netherlands, 1994, pp. 255-306.
pdf
-
Olver, P.J., Sapiro, G., and Tannenbaum, A., Classification and uniqueness of invariant geometric flows, Comptes Rendus Acad. Sci. (Paris), Série I, 319 (1994), 339-344.
pdf
Symmetry, Lie groups, Lie algebras
-
Olver, P.J., On the structure and generators of differential invariant algebras, in: Computer Algebra in Scientific Computing, F. Boulier, M. England, I. Kotsireas, T.M. Sadykov, E.V. Vorozhtsov, eds., Lecture Notes in Computer Science, vol. 14139, Springer-Verlag, New York, 2023, pp. 292-311.
pdf
-
Olver, P.J., Higher order symmetries of underdetermined systems of partial differential equations and Noether's second theorem, Stud. Appl. Math. 147 (2021) 904-913.
pdf
-
Olver, P.J., Divergence invariant variational problems, in: The Philosophy and Physics of Noether's Theorems, J. Read and N.J. Teh, eds., Cambridge University Press, Cambridge, UK, 2022, pp. 134-143.
pdf
-
Barral, D., Bencheikh, K., Olver, P.J., Belabas, N., Levenson, J.A.; Symmetry-based analytical solutions to the χ(2) nonlinear directional coupler, Phys. Rev. E 99 (2019) 042211.
pdf
-
Olver, P.J., Emmy Noether's enduring legacy in symmetry, Symmetry: Culture and Science 29 (2018) 475-485. pdf
-
Ruiz, A., Muriel, C., and Olver, P.J., On the commutator of C∞ symmetries and the reduction of Euler-Lagrange equations, J. Phys. A 51 (2018) 145202. pdf
-
Olver, P.J., The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory 26 (2015), 235-267.
pdf
-
Olver, P.J., Invariant variational problems and invariant flows via moving frames, in: Variations, Geometry and Physics, O. Krupková, and D. Saunders, eds., Nova Science Publ., New York, 2009, pp. 209-235.
pdf
-
Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
Corrected version: pdf
Corrections to published version: pdf
-
Cheh, J., Olver, P.J., and Pohjanpelto, J., Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math. 8 (2008), 501-532.
pdf
-
Muriel, C., Romero, J.L., and Olver, P.J., Variational C∞ symmetries and Euler-Lagrange equations, J. Diff. Eq. 222 (2006), 164-184.
pdf
-
Cheh, J., Olver, P.J., and Pohjanpelto, J., Maurer-Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys., 46 (2005), 023504.
pdf
-
Olver, P.J., Nonlocal symmetries and ghosts, in: New Trends in Integrability and Partial Solvability, A.B. Shabat et. al., eds., Kluwer Acad. Publ., Dordrecht, Netherlands, 2004, pp. 199-215.
pdf
-
Olver, P.J., Sanders, J., and Wang, J.P., Ghost symmetries, J. Nonlinear Math. Phys. 9, Suppl. 1 (2002), 164-172.
pdf
-
Kogan, I.A., and Olver, P.J., The invariant variational bicomplex, Contemp. Math. 285 (2001), 131-144.
Corrected version: pdf
Corrections to published version: pdf
-
Kogan, I.A., and Olver, P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.
Corrected version: pdf
Corrections to published version: pdf
-
Foursov, M.V., and Olver, P.J., On the classification of symmetrically-coupled integrable evolution equations, in: Symmetries and Differential Equations, V.K. Andreev and Yu.V. Shanko, eds, Institute of Computational Modelling, Krasnoyarsk, Russia, 2000, pp. 244-248.
pdf
-
Olver, P.J., Lie groups and differential equations, in: The Concise Handbook of Algebra, A.V. Mikhalev and G.F. Pilz, eds., Kluwer Acad. Publ., Dordrecht, Netherlands, 2002, pp. 92-97.
pdf
-
Foursov, M.V., Olver, P.J., and Reyes, E.G., On formal integrability of evolution equations and local geometry of surfaces, Diff. Geom. Appl., 15 (2001), 183-199.
pdf
-
Olver, P.J., Geometric foundations of numerical algorithms and symmetry,
Appl. Alg. Engin. Comp. Commun. 11 (2001), 417-436.
Updated version: pdf
Updates to published version: pdf
-
Olver, P.J., Sanders, J., and Wang, J.P., Classification of symmetry-integrable evolution equations, in: Bäcklund and Darboux Transformations. The Geometry of Solitons, A. Coley, D. Levi, R. Milson, C. Rogers and P. Winternitz, eds., CRM Proceedings & Lecture Notes, vol. 29, 2001, pp. 363-372.
pdf
-
Olver, P.J., and Wang, J.P., Classification of integrable one-component systems on associative algebras, Proc. London Math. Soc. 81 (2000), 566-586.
pdf
-
Kamran, N., Milson, R., and Olver, P.J., Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems, Adv. in Math. 156 (2000), 286-319.
pdf
-
Olver, P.J., and Sokolov, V.V., Non-abelian integrable systems of the derivative nonlinear Schrödinger type, Inverse Problems 14 (1998), L5-L8.
pdf
-
Olver, P.J., and Sokolov, V.V., Integrable evolution equations on associative algebras, Commun. Math. Phys. 193 (1998), 245-268.
pdf
-
Heredero, R.H., Olver, P.J., Classification of invariant wave equations, in: GROUP21: Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, vol. 2, H.-D. Doebner, W. Scherer, C. Schulte, eds., World Scientific, Singapore, 1997, pp. 1010-1016.
pdf
-
Heredero, R.H., and Olver, P.J., Classification of invariant wave equations, J. Math. Phys. 37 (1996), 6414-6438.
pdf
-
Olver, P.J., and Vorob'ev, E.M., Nonclassical and conditional symmetries, in: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3, N.H. Ibragimov, ed., CRC Press, Boca Raton, Fl., 1996, pp. 291-328.
pdf
-
Olver, P.J., Non-associative local Lie groups, J. Lie Theory 6 (1996), 23-51.
Corrected version: pdf
Correction to published version: pdf
-
Olver, P.J., Differential invariants and invariant differential equations, Lie Groups and their Appl. 1 (1994), 177-192.
pdf
-
Clarkson, P.A., and Olver, P.J., Symmetry and the Chazy equation, J. Diff. Eq. 124 (1996), 225-246.
pdf
-
Olver, P.J., Differential invariants, Acta Applicandae Math. 41 (1995), 271-284.
pdf
-
Anderson, I.M., Kamran, N., and Olver, P.J., Internal symmetries of differential equations, in: Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, N.H. Ibragimov, M. Torrisi, and A. Valenti, eds., Kluwer, Dordrecht, Netherlands, 1993, pp. 7-21.
pdf
-
Olver, P.J., Direct reduction and differential constraints, Proc. Roy. Soc. London A 444 (1994), 509-523.
pdf
-
Olver, P.J., Symmetry and explicit solutions of partial differential equations, Appl. Numerical Math. 10 (1992), 307-324.
pdf
-
Olver, P.J., Internal symmetries of differential equations, in: Differential Equations and Computer Algebra, M. Singer, ed., Academic Press, New York, 1991, pp. 1-28.
-
Olver, P.J., and Shakiban, C., Dissipative decomposition of partial differential equations, Rocky Mountain J. Math. 22 (1992), 1483-1510.
pdf
-
Anderson, I.M., Kamran, N., and Olver, P.J., Internal, external and generalized symmetries, Adv. in Math. 100 (1993), 53-100.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339-368.
pdf
-
Olver, P.J., Recursion operators and Hamiltonian systems, in: Symmetries and Nonlinear Phenomena, D. Levi and P. Winternitz, eds., CIF Series, Vol. 9, World Scientific, Singapore, 1988, pp. 222-249.
Scanned: pdf
-
Olver, P.J., and Shakiban, C., Dissipative decomposition of ordinary differential equations, Proc. Roy. Soc. Edinburgh 109A (1988), 297-317.
pdf
-
Olver, P.J., Generalized symmetries, in: XV International Colloquium on Group Theoretical Methods in Physics, R. Gilmore, ed., World Scientific, Singapore, 1987, pp. 216-228.
-
Olver, P.J., and Rosenau, P., Group-invariant solutions of differential equations, SIAM J. Appl. Math. 47 (1987), 263-278.
pdf
-
Olver, P.J., and Rosenau, P., The construction of special solutions to partial differential equations, Phys. Lett. 114A (1986), 107-112.
pdf
-
Olver, P.J., Noether's theorems and systems of Cauchy-Kovalevskaya type, in: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, B. Nicholaenko, D.D. Holm and J.M. Hyman, eds., Lectures in Applied Math., vol. 23, part 2, Amer. Math. Soc., Providence, R.I., 1986, pp. 81-104.
Scanned: pdf
-
Olver, P.J., Symmetry groups and path-independent integrals, in: Fundamentals of Deformation and Fracture, B.A. Bilby, K.J. Miller and J.R. Willis, eds., Cambridge Univ. Press, New York, 1985, pp. 57-71.
Scanned: pdf
-
Olver, P.J., How to find the symmetry group of a differential equation, appendix in: Group Theoretic Methods in Bifurcation Theory, D.H. Sattinger, Lecture Notes in Mathematics, vol. 762, Springer-Verlag, New York, 1979.
pdf
-
Olver, P.J., Symmetry groups and group invariant solutions of partial differential equations, J. Diff. Geom. 14 (1979), 497-542.
pdf
-
Olver, P.J., Symmetry groups and conservation laws in the formal variational calculus, preprint, University of Oxford, 1978.
Scanned: pdf
-
Olver, P.J., and Shakiban, C., A resolution of the Euler operator I, Proc. Amer. Math. Soc. 69 (1978), 223-229.
pdf
-
Olver, P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212-1215. Reprinted in: Solitons and Particles, C. Rebbi and G. Soliani, eds., World Scientific, Singapore, 1984, pp. 235-238.
pdf
-
Olver, P.J., On the symmetry group of a linear partial differential equation, preprint, University of Chicago, 1977.
Scanned: pdf
-
Olver, P.J., Symmetry groups of partial differential equations, thesis, Harvard University, 1976.
Scanned: pdf
Waves, Fluid Mechanics, Integrable Systems
-
Farmakis, G., Kang, J., Olver, P.J., Qu, C., Yin, Z.; New revival phenomena for bidirectional dispersive hyperbolic equations, preprint, 2023.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondences for integrable hierarchies, in: Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China, N. Euler and D.-J. Zhang, eds., CRC Press, 2022, pp. 102-134.
pdf
-
Boulton, L., Olver, P.J., Pelloni, B., and Smith, D.A., New revival phenomena for linear integro-differential equations, Stud. Appl. Math. 147 (2021) 1209-1239.
pdf
-
Olver, P.J., and Stern, A., Dispersive fractalization in Fermi-Pasta-Ulam-Tsingou lattices, European J. Appl. Math. 32 (2021) 820-845.
pdf
-
Olver, P.J., Sheils, N.E., and Smith, D.A., Revivals and fractalisation in the linear free space Schrödinger equation, Quart. Appl. Math. 78 (2020) 161-192.
pdf movies
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondences between multi-component integrable hierarchies, Theor. Math. Phys. 204 (2020) 843-874.
pdf
-
Olver, P.J., and Tsatis, E., Points of constancy of the periodic linearized Korteweg-deVries equation, Proc. Roy. Soc. London A 474 (2018) 20180160.
pdf
-
Olver, P.J., and Sheils, N.E., Dispersive Lamb systems, J. Geom. Mech. 11 (2019) 239-254.
pdf movies
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondences between integrable hierarchies, SIGMA: Symmetry Integrability Geom. Methods Appl. 13 (2017), 035.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Bäcklund transformations for tri-Hamiltonian dual structures of multi-component integrable systems, J. Integ. Sys. 2 (2017), xyw016.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy, J. Nonlinear Science 26 (2016), 141-170.
pdf
-
Liu, Y., Olver, P.J., Qu, C., and Zhang, S.; On the blow-up of solutions to the integrable modified Camassa-Holm equation, Analysis Appl. 12 (2014), 355-368.
pdf
-
Liu, X., Liu, Y., Olver, P.J., and Qu, C., Orbital stability of peakons for a generalization of the modified Camassa-Holm equation, Nonlinearity 27 (2014), 2297-2319.
pdf
-
Chen, G., and Olver, P.J., Numerical simulation of nonlinear dispersive quantization, Discrete Cont. Dyn. Syst. A 34 (2013), 991-1008.
pdf
-
Chen, G., and Olver, P.J., Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London A 469 (2012), 20120407.
pdf
-
Gui, G., Liu, Y., Olver, P.J., and Qu, C., Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys. 319 (2013), 731-759.
pdf
-
Olver, P.J., Dispersive quantization, Amer. Math. Monthly 117 (2010), 599-610.
Corrected version: pdf
Corrections to published version: pdf
-
Olver, P.J., Invariant submanifold flows, J. Phys. A 41 (2008), 344017.
Corrected version: pdf
Corrections to published version: pdf
-
Guha, P., and Olver, P.J., Geodesic flow and two (super) component analog of the Camassa-Holm equation, SIGMA: Symmetry Integrability Geom. Methods Appl. 2 (2006), 054.
pdf
-
Foursov, M.V., and Olver, P.J., On the classification of symmetrically-coupled integrable evolution equations, in: Symmetries and Differential Equations, V.K. Andreev and Yu.V. Shanko, eds, Institute of Computational Modelling, Krasnoyarsk, Russia, 2000, pp. 244-248.
pdf
-
Foursov, M.V., Olver, P.J., and Reyes, E.G., On formal integrability of evolution equations and local geometry of surfaces, Diff. Geom. Appl., 15 (2001), 183-199.
pdf
-
Olver, P.J., Sanders, J., and Wang, J.P., Classification of symmetry-integrable evolution equations, in: Bäcklund and Darboux Transformations. The Geometry of Solitons, A. Coley, D. Levi, R. Milson, C. Rogers and P. Winternitz, eds., CRM Proceedings & Lecture Notes, vol. 29, 2001, pp. 363-372.
pdf
-
Olver, P.J., and Wang, J.P., Classification of integrable one-component systems on associative algebras, Proc. London Math. Soc. 81 (2000), 566-586.
pdf
-
Li, Y.A., and Olver, P.J., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eq. 162 (2000), 27-63.
pdf
-
Olver, P.J., and Sokolov, V.V., Non-abelian integrable systems of the derivative nonlinear Schrödinger type, Inverse Problems 14 (1998), L5-L8.
pdf
-
Li, Y.A., Olver, P.J., and Rosenau, P., Non-analytic solutions of nonlinear wave equations, in: Nonlinear Theory of Generalized Functions, M. Grosser, G. Hormann, M. Kunzinger, and M. Oberguggenberger, eds., Research Notes in Mathematics, vol. 401, Chapman and Hall/CRC, New York, 1999, pp. 129-145.
pdf
-
Gunney, B.T.N., Li, Y.A., and Olver, P.J., Solitary waves in the critical surface tension model, J. Engin. Sci. 36 (1999), 99-112.
pdf
-
Olver, P.J., and Sokolov, V.V., Integrable evolution equations on associative algebras, Commun. Math. Phys. 193 (1998), 245-268.
pdf
-
Li, Y.A., and Olver, P.J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. II. Complex analytic behavior and convergence to non-analytic solutions, Discrete Cont. Dyn. Syst. 4 (1998), 159-191.
pdf
-
Li, Y.A., and Olver, P.J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons, Discrete Cont. Dyn. Syst. 3 (1997), 419-432.
pdf
-
Fokas, A.S., Olver, P.J., and Rosenau, P., A plethora of integrable bi-Hamiltonian equations, in: Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, A.S. Fokas and I.M. Gel'fand, eds., Progress in Nonlinear Differential Equations, vol. 26, Birkhäuser, Boston, 1996, pp. 93-101.
pdf
-
Olver, P.J., and Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 1900-1906.
pdf
-
Olver, P.J., Higher order models for water waves, in: Geometrical Methods in Fluid Dynamics, R. Salmon, B. Ewing-Deremer, eds., Woods Hole Oceanographic Institution, Technical Report WHOI-94-12, Woods Hole, MA, 1994, pp. 327-331.
Scanned: pdf
-
Kichenassamy, S., and Olver, P.J., Existence and non-existence of solitary wave solutions to higher order model evolution equations, SIAM J. Math. Anal. 23 (1992), 1141-1166.
pdf
-
Kaup, D.J., and Olver, P.J., Quantization of biHamiltonian systems, J. Math. Phys. 31 (1990), 113-117.
pdf
-
Olver, P.J., Unidirectionalization of Hamiltonian waves, Phys. Lett. 126A (1988), 501-506.
pdf
-
Clarkson, P., McLeod, J.B., Olver, P.J., and Ramani, A., Integrability of Klein-Gordon equations, SIAM J. Math. Anal. 17 (1986), 798-802.
pdf
-
Olver, P.J., Hamiltonian and non-Hamiltonian models for water waves, in: Trends and Applications of Pure Mathematics to Mechanics, P.G. Ciarlet and M. Roseau, eds., Lecture Notes in Physics No. 195, Springer-Verlag, New York, 1984, pp. 273-290.
Scanned: pdf
-
Olver, P.J., Hamiltonian perturbation theory and water waves, Contemp. Math. 28 (1984), 231-249.
Scanned: pdf
-
Olver, P.J., Conservation laws of free boundary problems and the classification of conservation laws for water waves, Trans. Amer. Math. Soc. 277 (1983), 353-380.
pdf
-
McLeod, J.B., and Olver, P.J., The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevé type, SIAM J. Math. Anal. 14 (1983), 488-506.
pdf
-
Olver, P.J., A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl. 89 (1982), 233-250.
pdf
-
Benjamin, T.B., and Olver, P.J., Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech. 125 (1982), 137-185.
pdf
-
Olver, P.J., On the construction of deformations of integrable systems, preprint, University of Minnesota, 1981.
Scanned: pdf
-
Olver, P.J., Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Soc. 85 (1979), 143-160.
pdf
-
Olver, P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212-1215. Reprinted in: Solitons and Particles, C. Rebbi and G. Soliani, eds., World Scientific, Singapore, 1984, pp. 235-238.
pdf
Hamiltonian Systems
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondences between multi-component integrable hierarchies, Theor. Math. Phys. 204 (2020) 843-874.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondences between integrable hierarchies, SIGMA: Symmetry Integrability Geom. Methods Appl. 13 (2017), 035.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Bäcklund transformations for tri-Hamiltonian dual structures of multi-component integrable systems, J. Integ. Sys. 2 (2017), xyw016.
pdf
-
Kang, J., Liu, X., Olver, P.J., and Qu, C., Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy, J. Nonlinear Science 26 (2016), 141-170.
pdf
-
Fernandez, O.E., Bloch, A.M., and Olver, P.J., Variational integrators for Hamiltonizable nonholonomic systems, J. Geom. Mech. 4 (2012), 137-163.
pdf
-
Guha, P., and Olver, P.J., Geodesic flow and two (super) component analog of the Camassa-Holm equation, SIGMA: Symmetry Integrability Geom. Methods Appl. 2 (2006), 054.
pdf
-
Mari-Beffa, G., and Olver, P.J., Differential invariants for parametrized projective surfaces, Commun. Anal. Geom. 7 (1999), 807-839.
pdf
-
Fokas, A.S., Olver, P.J., and Rosenau, P., A plethora of integrable bi-Hamiltonian equations, in: Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, A.S. Fokas and I.M. Gel'fand, eds., Progress in Nonlinear Differential Equations, vol. 26, Birkhäuser, Boston, 1996, pp. 93-101.
pdf
-
Olver, P.J., and Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 1900-1906.
pdf
-
Olver, P.J., Canonical forms for biHamiltonian systems, in: The Verdier Memorial Conference on Integrable Systems, O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach eds., Progress in Math., Birkhäuser, Boston, 1993, pp. 239-249.
pdf
-
Olver, P.J., Canonical forms for compatible biHamiltonian systems, in: Solitons and Chaos, I. Antoniou and F. Lambert, eds., Springer-Verlag, New York, 1991, pp. 171-179.
Scanned: pdf
-
Olver, P.J., Canonical forms and integrability of biHamiltonian systems, Phys. Lett. 148A (1990), 177-187.
pdf
-
Jodeit, M., and Olver, P.J., On the equation grad f = M grad g, Proc. Roy. Soc. Edinburgh 116 (1990), 341-358.
pdf
-
Arik, M., Neyzi, F., Nutku, Y., Olver, P.J., and Verosky, J.M., Multi-Hamiltonian structure of the Born-Infeld equation, J. Math. Phys. 30 (1989), 1338-1344.
pdf
-
Kaup, D.J., and Olver, P.J., Quantization of biHamiltonian systems, J. Math. Phys. 31 (1990), 113-117.
pdf
-
Olver, P.J., Recursion operators and Hamiltonian systems, in: Symmetries and Nonlinear Phenomena, D. Levi and P. Winternitz, eds., CIF Series, Vol. 9, World Scientific, Singapore, 1988, pp. 222-249.
Scanned: pdf
-
Olver, P.J., and Nutku, Y., Hamiltonian structures for systems of hyperbolic conservation laws, J. Math. Phys. 29 (1988), 1610-1619.
pdf
-
Olver, P.J., Unidirectionalization of Hamiltonian waves, Phys. Lett. 126A (1988), 501-506.
pdf
-
Olver, P.J., BiHamiltonian systems, in: Ordinary and Partial Differential Equations, B.D. Sleeman and R.J. Jarvis, eds., Pitman Research Notes in Mathematics Series, No. 157, Longman Scientific and Technical, New York, 1987, pp. 176-193.
Scanned: pdf
-
Olver, P.J., Darboux' theorem for Hamiltonian differential operators, J. Diff. Eq. 71 (1988), 10-33.
pdf
-
Olver, P.J., Dirac's theory of constraints in field theory and the canonical form of Hamiltonian differential operators, J. Math. Phys. 27 (1986), 2495-2501.
pdf
-
Olver, P.J., Hamiltonian and non-Hamiltonian models for water waves, in: Trends and Applications of Pure Mathematics to Mechanics, P.G. Ciarlet and M. Roseau, eds., Lecture Notes in Physics No. 195, Springer-Verlag, New York, 1984, pp. 273-290.
Scanned: pdf
-
Olver, P.J., Hamiltonian perturbation theory and water waves, Contemp. Math. 28 (1984), 231-249.
Scanned: pdf
-
Olver, P.J., A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl. 89 (1982), 233-250.
pdf
-
Benjamin, T.B., and Olver, P.J., Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech. 125 (1982), 137-185.
pdf
-
Olver, P.J., On the Hamiltonian structure of evolution equations, Math. Proc. Camb. Phil. Soc. 88 (1980), 71-88.
pdf
Calculus of Variations
Olver, P.J., Boundary conditions and null Lagrangians in the calculus of variations and elasticity, J. Elasticity 155 (2024) 75-108.
pdf
Olver, P.J., Divergence invariant variational problems, in: The Philosophy and Physics of Noether's Theorems, J. Read and N.J. Teh, eds., Cambridge University Press, Cambridge, UK, 2022, pp. 134-143.
pdf
Olver, P.J., Emmy Noether's enduring legacy in symmetry, Symmetry: Culture and Science 29 (2018) 475-485. pdf
Olver, P.J., Invariant variational problems and invariant flows via moving frames, in: Variations, Geometry and Physics, O. Krupková, and D. Saunders, eds., Nova Science Publ., New York, 2009, pp. 209-235.
pdf
Muriel, C., Romero, J.L., and Olver, P.J., Variational C∞ symmetries and Euler-Lagrange equations, J. Diff. Eq. 222 (2006), 164-184.
pdf
Kogan, I., and Olver, P.J., The invariant variational bicomplex, Contemp. Math. 285 (2001), 131-144.
Corrected version: pdf
Corrections to published version: pdf
Kogan, I., and Olver, P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137-193.
Corrected version: pdf
Corrections to published version: pdf
Olver, P.J., Equivalence and the Cartan form, Acta Applicandae Math. 31 (1993), 99-136.
pdf
Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians III. New invariant differential equations, Nonlinearity 5 (1992), 601-621.
pdf
Hsu, L., Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians II. The Cartan form for particle Lagrangians, J. Math. Phys. 30 (1989), 902-906.
pdf
Kamran, N., and Olver, P.J., Equivalence of higher order Lagrangians I. Formulation and reduction, J. Math. Pures et Appliquees 70 (1991), 369-391.
pdf
Kamran, N., and Olver, P.J., Le probleme d'équivalence à une divergence près dans le calcul des variations des intégrales multiples, Comptes Rendus Acad. Sci. (Paris), Série I, 308 (1989), 249-252.
Scanned: pdf
Olver, P.J., Invariant theory, equivalence problems and the calculus of variations, in: Invariant Theory and Tableaux, D. Stanton, ed., IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 59-81.
pdf
Kamran, N., and Olver, P.J., Equivalence problems for first order Lagrangians on the line, J. Diff. Eq. 80 (1989), 32-78.
pdf
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary Forms, Adv. in Math. 80 (1990), 39-77.
pdf
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians, Bull. Amer. Math. Soc. 18 (1988), 21-26.
pdf
Olver, P.J., and Sivaloganathan, J., The classification of null Lagrangians, Nonlinearity 1 (1988), 389-398.
pdf
Olver, P.J., The equivalence problem and canonical forms for quadratic Lagrangians, Adv. Appl. Math. 9 (1988), 226-257.
pdf
Olver, P.J., Noether's theorems and systems of Cauchy-Kovalevskaya type, in: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, B. Nicholaenko, D.D. Holm and J.M. Hyman, eds., Lectures in Applied Math., vol. 23, part 2, Amer. Math. Soc., Providence, R.I., 1986, pp. 81-104.
Scanned: pdf
Olver, P.J., Conservation laws and null divergences II. Nonnegative divergences, Math. Proc. Camb. Phil. Soc. 97 (1985), 511-514.
pdf
Olver, P.J., Symmetry groups and path-independent integrals, in: Fundamentals of Deformation and Fracture, B.A. Bilby, K.J. Miller and J.R. Willis, eds., Cambridge Univ. Press, New York, 1985, pp. 57-71.
Scanned: pdf
Olver, P.J., Conservation laws and null divergences, Math. Proc. Camb. Phil. Soc. 94 (1983), 529-540.
pdf
Olver, P.J., Hyperjacobians, determinantal ideals and weak solutions to variational problems, Proc. Roy. Soc. Edinburgh 95A (1983), 317-340.
S pdf
Ball, J.M., Currie, J.C., and Olver, P.J., Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Func. Anal. 41 (1981), 135-174.
pdf
Olver, P.J., Symmetry groups and conservation laws in the formal variational calculus, preprint, University of Oxford, 1978.
Scanned: pdf
Olver, P.J., and Shakiban, C., A resolution of the Euler operator I, Proc. Amer. Math. Soc. 69 (1978), 223-229.
pdf
Elasticity and Continuum Mechanics
-
Olver, P.J., Boundary conditions and null Lagrangians in the calculus of variations and elasticity, J. Elasticity 155 (2024) 75-108.
pdf
-
Bozhkov, Y., and Olver, P.J., Pohozhaev and Morawetz identities in elastostatics and elastodynamics, SIGMA: Symmetry Integrability Geom. Methods Appl. 7 (2011), 055.
pdf
-
Hatfield, G.A., and Olver, P.J., Canonical forms and conservation laws in linear elastostatics, Arch. Mech. 50 (1998), 389-404.
pdf
-
Olver, P.J., Canonical anisotropic elastic moduli, in: Modern Theory of Anisotropic Elasticity and Applications, J.J. Wu, T.C.T. Ting and D.M. Barnett, eds., SIAM, Philadelphia, 1991, pp. 325-339.
Scanned: pdf
-
Jodeit, M., and Olver, P.J., On the equation grad f = M grad g, Proc. Roy. Soc. Edinburgh 116 (1990), 341-358.
pdf
-
Olver, P.J., and Sivaloganathan, J., The classification of null Lagrangians, Nonlinearity 1 (1988), 389-398.
pdf
-
Olver, P.J., Conservation laws in elasticity. III. Planar linear anisotropic elastostatics, Arch. Rat. Mech. Anal. 102 (1988), 167-181.
pdf
-
Olver, P.J., Canonical elastic moduli, J. Elasticity 19 (1988), 189-212.
pdf
-
Olver, P.J., The equivalence problem and canonical forms for quadratic Lagrangians, Adv. Appl. Math. 9 (1988), 226-257.
pdf
-
Olver, P.J., Conservation laws in continuum mechanics, in: Non-classical Continuum Mechanics, R.J. Knops and A.A. Lacey, eds., London Math. Soc. Lecture Note Series #122, Cambridge Univ. Press, Cambridge, 1987, pp. 96-107.
Scanned: pdf
-
Olver, P.J., Conservation laws and null divergences II. Nonnegative divergences, Math. Proc. Camb. Phil. Soc. 97 (1985), 511-514.
pdf
-
Olver, P.J., Symmetry groups and path-independent integrals, in: Fundamentals of Deformation and Fracture, B.A. Bilby, K.J. Miller and J.R. Willis, eds., Cambridge Univ. Press, New York, 1985, pp. 57-71.
Scanned: pdf
-
Olver, P.J., Conservation laws in elasticity. II. Linear homogeneous isotropic elastostatics, Arch Rat. Mech. Anal. 85 (1984), 131-160.
pdf
Errata, Arch Rat. Mech. Anal., 102 (1988), 385-387.
pdf
-
Olver, P.J., Conservation laws in elasticity. I. General results, Arch Rat. Mech. Anal. 85 (1984), 111-129.
pdf
-
Olver, P.J., Group-theoretic classification of conservation laws in elasticity, in: Systems of Nonlinear Partial Differential Equations, J.M. Ball, ed., D. Reidel, Boston, 1983, pp. 323-331.
pdf
-
Olver, P.J., Conservation laws and null divergences, Math. Proc. Camb. Phil. Soc. 94 (1983), 529-540.
pdf
-
Olver, P.J., Hyperjacobians, determinantal ideals and weak solutions to variational problems, Proc. Roy. Soc. Edinburgh 95A (1983), 317-340.
S pdf
-
Ball, J.M., Currie, J.C., and Olver, P.J., Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Func. Anal. 41 (1981), 135-174.
pdf
Quantum Mechanics and Physics
-
Olver, P.J., Motion and continuity, Math. Intelligencer 44 (2022) 241-249.
pdf
-
Barral, D., Bencheikh, K., Olver, P.J., Belabas, N., Levenson, J.A.; Symmetry-based analytical solutions to the χ(2) nonlinear directional coupler, Phys. Rev. E 99 (2019) 042211.
pdf
-
Grinberg, D., and Olver, P.J., The n body matrix and its determinant, SIAM J. Appl. Algebra Geometry 3 (2019) 67-86.
pdf
-
Chen, G., and Olver, P.J., Numerical simulation of nonlinear dispersive quantization, Discrete Cont. Dyn. Syst. A 34 (2013), 991-1008.
pdf
-
Chen, G., and Olver, P.J., Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London A 469 (2012), 20120407.
pdf
-
Olver, P.J., Dispersive quantization, Amer. Math. Monthly 117 (2010), 599-610.
Corrected version: pdf
Corrections to published version: pdf
-
Kamran, N., Milson, R., and Olver, P.J., Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems, Adv. in Math. 156 (2000), 286-319.
pdf
-
Olver, P.J., A quasi-exactly solvable travel guide, in: GROUP21: Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, vol. 1, H.-D. Doebner, W. Scherer, and P. Nattermann, eds., World Scientific, Singapore, 1997, pp. 285-295.
pdf
-
Finkel, F., González-López, A., Kamran, N., Olver, P.J., and Rodriguez, M.A., Lie algebras of differential operators and partial integrability, in: Proceedings of IV Workshop on Differential Geometry and its Applications; Santiago de Compostela, Spain, 1995.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Quasi-exact solvability in the real domain, preprint, University of Minnesota, 1995.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Real Lie algebras of differential operators, and quasi-exactly solvable potentials, Phil. Trans. Roy. Soc. London A 354 (1996), 1165-1193.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Quasi-exact solvability in higher dimensions, appendix in: Quasi-Exact Solvability; A.G. Ushveridze, Adam Hilger, Bristol, 1994.
-
González-López, A., Kamran, N., and Olver, P.J., Quasi-exact solvability, Contemp. Math. 160 (1994), 113-140.
pdf
-
González-López, A., Hurturbise, J., Kamran, N., and Olver, P.J., Quantification de la cohomologie des algèbres de Lie de champs de vecteurs et fibrés en droites sur des surfaces complexes compactes, Comptes Rendus Acad. Sci. (Paris), Série I, 316 (1993), 1307-1312.
Scanned: pdf
-
González-López, A., Kamran, N., and Olver, P.J., New quasi-exactly solvable Hamiltonians in two dimensions, in: Group Theoretic Methods in Physics, M.A. del Olmo, M. Santander, and J. Mateos Guilarte, eds., Proc. XIX International Colloquium, Anales de Física Monografias, Editorial Ciemat, Madrid, 1992, Vol. I, pp. 233-236.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., New quasi-exactly solvable Hamiltonians in two dimensions, Commun. Math. Phys. 159 (1994), 503-537.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators, Commun. Math. Phys. 153 (1993), 117-146.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables, J. Phys. A 24 (1991), 3995-4008.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Lie algebras of first order differential operators in two complex variables, in: Differential Geometry, Global Analysis, and Topology, A. Nicas and W.F. Shadwick, eds., Canadian Math. Soc. Conference Proceedings, vol. 12, Amer. Math. Soc., Providence, R.I., 1991, pp. 51-84.
-
González-López, A., Kamran, N., and Olver, P.J., Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339-368.
pdf
-
González-López, A., Kamran, N., and Olver, P.J., Lie algebras of differential operators in two complex variables, American J. Math. 114 (1992), 1163-1185.
pdf
-
Kaup, D.J., and Olver, P.J., Quantization of biHamiltonian systems, J. Math. Phys. 31 (1990), 113-117.
pdf
-
Kamran, N., and Olver, P.J., Equivalence of differential operators, SIAM J. Math. Anal. 20 (1989), 1172-1185.
pdf
-
Kamran, N., and Olver, P.J., Lie algebras of differential operators and Lie-algebraic potentials, J. Math. Anal. Appl. 145 (1990), 342-356.
pdf
-
Olver, P.J., Dirac's theory of constraints in field theory and the canonical form of Hamiltonian differential operators, J. Math. Phys. 27 (1986), 2495-2501.
pdf
Invariant Theory, Algebra, Number Theory
-
Olver, P.J., Invariants of finite and discrete group actions via moving frames, Bull. Iranian Math. Soc. 49 (2023) 11.
pdf
-
Grinberg, D., and Olver, P.J., The n body matrix and its determinant, SIAM J. Appl. Algebra Geometry 3 (2019) 67-86.
pdf
-
Olver, P.J., and Tsatis, E., Points of constancy of the periodic linearized Korteweg-deVries equation, Proc. Roy. Soc. London A 474 (2018) 20180160.
pdf
-
Gün Polat, G., and Olver, P.J., Joint differential invariants of binary and ternary forms, Portugaliae Math. 76 (2019) 169-204.
Corrected version: pdf
Corrections and additions to published version: pdf
-
Olver, P.J., Modern developments in the theory and applications of moving frames, London Math. Soc. Impact150 Stories 1 (2015), 14-50.
pdf
-
Olver, P.J., Petitot, M., Solé, P., Generalized transvectants and Siegel modular forms, Adv. Appl. Math. 38 (2007), 404-418.
pdf
-
Olver, P.J., A survey of moving frames, in: Computer Algebra and Geometric Algebra with Applications, H. Li, P.J. Olver, and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519, Springer-Verlag, New York, 2005, pp. 105-138.
pdf
-
Olver, P.J., Lie algebras and Lie groups, in: Encyclopedia of Nonlinear Science, A. Scott, ed., Routledge, New York, New York, 2005, pp. 526-528.
pdf
-
Olver, P.J., Moving frames — in geometry, algebra, computer vision, and numerical analysis, in: Foundations of Computational Mathematics, R. DeVore, A. Iserles and E. Suli, eds., London Math. Soc. Lecture Note Series, vol. 284, Cambridge University Press, Cambridge, 2001, pp. 267-297.
pdf
-
Olver, P.J., Lie groups and differential equations, in: The Concise Handbook of Algebra, A.V. Mikhalev and G.F. Pilz, eds., Kluwer Acad. Publ., Dordrecht, Netherlands, 2002, pp. 92-97.
pdf
-
Olver, P.J., and Sanders, J., Transvectants, modular forms, and the Heisenberg algebra, Adv. Appl. Math. 25 (2000), 252-283.
pdf
-
Berchenko, I., and Olver, P.J., Symmetries of polynomials, J. Symb. Comp. 29 (2000), 485-514.
pdf
-
Fels, M., and Olver, P.J., On relative invariants, Math. Ann. 308 (1997), 701-732.
pdf
-
Maliakis, M., and Olver, P.J., Explicit generalized Pieri maps, J. Algebra 148 (1992), 68-85.
pdf
-
Olver, P.J., Invariant theory, equivalence problems and the calculus of variations, in: Invariant Theory and Tableaux, D. Stanton, ed., IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 59-81.
pdf
-
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary Forms, Adv. in Math. 80 (1990), 39-77.
pdf
-
Olver, P.J., and Shakiban, C., Graph theory and classical invariant theory, Adv. in Math. 75 (1989), 212-245.
pdf
-
Olver, P.J., Classical invariant theory and the equivalence problem for particle Lagrangians, Bull. Amer. Math. Soc. 18 (1988), 21-26.
pdf
-
Olver, P.J., Invariant theory of biforms, preprint, University of Minnesota, 1986.
Scanned: pdf
-
Olver, P.J., Invariant theory and differential equations, in: Invariant Theory, S.S. Koh, ed., Lecture Notes in Mathematics, vol. 1278, Springer-Verlag, New York, 1987, pp. 62-80.
Scanned: pdf
-
Olver, P.J., Differential hyperforms I, preprint, University of Minnesota, 1982.
Scanned: pdf
-
Olver, P.J., Hyperjacobians, determinantal ideals and weak solutions to variational problems, Proc. Roy. Soc. Edinburgh 95A (1983), 317-340.
pdf
Numerical Analysis
-
Olver, P.J., and Stern, A., Dispersive fractalization in Fermi-Pasta-Ulam-Tsingou lattices, European J. Appl. Math. 32 (2021) 820-845.
pdf
-
Chen, G., and Olver, P.J., Numerical simulation of nonlinear dispersive quantization, Discrete Cont. Dyn. Syst. A 34 (2013), 991-1008. pdf
-
Chen, G., and Olver, P.J., Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London A 469 (2012), 20120407.
pdf
-
Fernandez, O.E., Bloch, A.M., and Olver, P.J., Variational integrators for Hamiltonizable nonholonomic systems, J. Geom. Mech. 4 (2012), 137-163.
pdf
-
Welk, M., Kim, P., and Olver, P.J., Numerical invariantization for morphological PDE schemes, in: Scale Space and Variational Methods in Computer Vision, F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Computer Science, vol. 4485, Springer-Verlag, New York, 2007, pp. 508-519.
pdf
-
Olver, P.J., A survey of moving frames, in: Computer Algebra and Geometric Algebra with Applications, H. Li, P.J. Olver, and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519, Springer-Verlag, New York, 2005, pp. 105-138.
pdf
-
Kim, P., and Olver, P.J., Geometric integration via multi-space, Regular and Chaotic Dynamics 9 (2004), 213-226.
pdf
-
Olver, P.J., On multivariate interpolation, Stud. Appl. Math. 116 (2006), 201-240.
Corrected version: pdf
Corrections to published version: pdf
-
Lewis, D., Nigam, N., and Olver, P.J., Connections for general group actions, Commun. Contemp. Math. 7 (2005), 341-374.
pdf
-
Lewis, D., and Olver, P.J., Geometric integration algorithms on homogeneous manifolds, Found. Comput. Math. 2 (2002), 363-392.
pdf
-
Olver, P.J., Moving frames — in geometry, algebra, computer vision, and numerical analysis, in: Foundations of Computational Mathematics, R. DeVore, A. Iserles, and E. Suli, eds., London Math. Soc. Lecture Note Series, vol. 284, Cambridge University Press, Cambridge, 2001, pp. 267-297.
pdf
-
Olver, P.J., Geometric foundations of numerical algorithms and symmetry,
Appl. Alg. Engin. Comp. Commun. 11 (2001), 417-436.
Updated version: pdf
Updates to published version: pdf
-
Gunney, B.T.N., Li, Y.A., and Olver, P.J., Solitary waves in the critical surface tension model, J. Engin. Sci. 36 (1999), 99-112.
pdf
-
Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision 26 (1998), 107-135.
Corrected version: pdf
Corrections to published version: pdf
-
Calabi, E., Olver, P.J., and Tannenbaum, A., Invariant numerical approximations to differential invariant signatures, preprint, University of Minnesota, 1995.
pdf
-
Calabi, E., Olver, P.J., and Tannenbaum, A., Affine geometry, curve flows, and invariant numerical approximations, Adv. in Math. 124 (1996), 154-196.
Corrected version: pdf
Correction to published version: pdf
-
Olver, P.J., Some applications of spline functions to problems in computer graphics, senior honors thesis, Brown University, 1973.
Scanned: pdf
Analysis
-
Olver, P.J., Boundary conditions and null Lagrangians in the calculus of variations and elasticity, J. Elasticity 155 (2024) 75-108.
pdf
-
Olver, P.J., Motion and continuity, Math. Intelligencer 44 (2022) 241-249.
pdf
-
Malkoun, J., and Olver, P.J., Continuous maps from spheres converging to boundaries of convex hulls, Forum Math. Sigma 9 (2021) e13.
pdf
Python routines
-
Olver, P.J., and Raphael, R., The absolute value of functions, Real Analysis Exchange, 25 (1999/2000), 257-290.
pdf
-
Olver, P.J., and Shakiban, C., Dissipative decomposition of partial differential equations, Rocky Mountain J. Math. 22 (1992), 1483-1510.
pdf
-
Olver, P.J., A nonlinear differential operator series which commutes with any function, SIAM J. Math. Anal. 23 (1992), 209-221.
pdf
-
Olver, P.J., and Shakiban, C., Dissipative decomposition of ordinary differential equations, Proc. Roy. Soc. Edinburgh 109A (1988), 297-317.
pdf