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1. Introduction. Of the problems that occupied the researchers 
working in the area of Lie algebras at the turn of the last century, one 
can identify at least two which led to important developments which are 
still of great interest today. One is the classification problem for abstract 
finite-dimensional complex semisimple Lie algebras, which was solved 
by Elie Cartan in his thesis, [7]. The other problem, which is different 
in nature, but equally interesting, is that of classifying, up to local dif- 
feomorphisms, the finite-dimensional Lie algebras of vector fields v = 
I t'(x)aIaxl defined on an open subset of the complex Euclidean space 
Cn. For nonsingular Lie algebras (i.e. those of locally constant dimen- 
sion), this problem was solved by Lie in the cases n = 1 and 2, [14]; 
Lie also claimed to have solved the case n = 3, but only an incomplete 
classification ever appeared in print, [15, Chapter 2]. 

One may also consider the more general question of classifying the 
finite-dimensional Lie algebras of first order differential operators (D = 
E t'(x)ahaxl + f(x). These Lie algebras appear naturally in the theory 
of projective (or multiplier) representations of Lie groups, [18]. They 
are also relevant in quantum mechanics through the so-called algebraic 
approach to scattering theory and molecular dynamics, [3]. In this latter 
context, R. Levine, [13], posed the problem of classifying all the second 
order time-independent Schrodinger operators which lie in the universal 
enveloping algebra of a finite dimensional Lie algebra g of first order 
differential operators, i.e. which can be written as a constant coefficient 
bilinear combination of the generators of g. This problem is also a 
generalization of the factorization problem for differential operators, 
[20]. 
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In an earlier pair of papers, [11], [12], (see also [22]), two of the 
present authors gave a complete solution to Levine's problem on the 
line, that is in the case n = 1. The basic approach, which in principle 
extends to all dimensions, consists of the following two steps. First, one 
classifies all finite-dimensional Lie algebras of differential operators up 
to local diffeomorphisms, leading to a complete set of normal forms for 
these Lie algebras. Then one solves the equivalence problem for second 
order differential operators, thereby determining when a given Schro- 
dinger operator can be written in bilinear form using one of the Lie 
algebras obtained in the first step. The resulting potentials, named Lie 
algebraic potentials in reference 12, include many of the well-known 
one-dimensional potentials of quantum mechanics, as well as a number 
of previously unstudied ones. A significant omission is the Coulomb 
potential, which is known to be expressible as a bilinear combination 
of planar differential operators generating a finite-dimensional Lie al- 
gebra, [3], but cannot be so expressed using purely one-dimensional 
operators. This fact, and the general problem of determining new and 
interesting classes of potentials for which the Schrodinger equation is 
amenable to treatment by the algebraic method of Levine et al. motivate 
the present work. 

In this paper we give a complete solution to the classification prob- 
lem for finite dimensional nonsingular complex Lie algebras of first order 
differential operators in the planar case n = 2, exhibiting a complete 
list of such Lie algebras. This corresponds to the first of the two steps 
mentioned above for the solution to Levine's problem in 02. 

There are three basic steps required to classify finite dimensional 
Lie algebras of differential operators over a given manifold. First, one 
needs to classify the finite dimensional Lie algebras of vector fields b 
on the manifold up to diffeomorphism. Secondly, for each of these Lie 
algebras, one needs to classify all possible finite dimensional I-modules 
m of Cm functions. Finally, for each of the modules m, one needs to 
determine the first cohomology space H1(I, C-(M)lm) of the Lie algebra 
I with coefficients in the quotient t-module C"(M)lm. As detailed in 
Section 2, this is equivalent to effecting the required classification. 

In the case of 02, the first step in our classification procedure was 
already achieved by Lie, [14], who obtained 24 essentially different 
classes of nonsingular Lie algebras of vector fields, some of which de- 
pend on parameters. (See [2] for an English translation of Lie's fun- 
damental paper.) A nice summary of the basic classification appears in 
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the "Gruppenregister" at the end of volume 5 of Lie's collected works, 
[16]. See also Bianchi, [5; Chapter 11], and Campbell, [6; Chapters 21, 
22], for other treatments of Lie's result. Our paper is devoted to the 
two subsequent stages of the classification, namely the determination 
of the finite dimensional modules of smooth functions for the Lie al- 
gebras on Lie's list, and the corresponding cohomology spaces. 

We should point out that there are several features of the two- 
dimensional case which were absent in the much simpler one-dimen- 
sional case, and which make our problem more interesting. The Lie 
algebras of vector fields in 02 can have arbitrarily high dimension, the 
module may depend on arbitrary functions, the polynomial modules 
need not be spanned by monomials, and the structure of the modules 
may depend critically on the value of the essential parameter on which 
these Lie algebras depend (even to the extent of being different for 
rational and irrational values of the parameter). As a consequence, the 
expression for the Lie algebra cohomology may be extremely compli- 
cated. Finally, we should remark that H1(b, C-(M)lm) need not vanish 
if I is semisimple as suggested by the Whitehead lemma, cf. [10], since 
C'(M)lm is not a finite dimensional module. 

Extensions of this work to higher dimensions are readily apparent, 
but the computational difficulties are formidable. A more modest pro- 
gram would be to classify the Lie algebras of differential operators 
corresponding to transitive, primitive transformation groups, which are 
completely known in all dimensions, [8]. These are of interest for several 
reasons, including their connections with nonlinear ordinary differential 
equations with superposition principles, [21]. Also, the extensions of 
this classification to real two dimensional spaces can be done, since we 
now have, [9], a complete classification of the real Lie algebras of vector 
fields on . 

We would like to thank Willard Miller, Jr. for many insightful 
comments on this work. Also, we wish to thank Thomas Hawkins for 
sharing his research into the history of Lie's classification of Lie algebras 
of vector fields. The support and hospitality of the Institute for Math- 
ematics and its Applications (I.M.A.) is gratefully acknowledged. 

2. Lie algebras of differential operators-general facts. Let M be 
a smooth manifold. Consider the space 0D = [D(M) of all first order 
differential operators on M. In local coordinates x = (xi, . . , 

these take the form 
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n 

(2.1) = X fi(x)Di + g(x) = f(x)-D + g(x), 

where Di denotes derivative with respect to xi. There is a natural Lie 
bracket which makes 0D into a Lie algebra, given by the commutator 
[6, 8] = 6 - 8 - 8 * 6. The fundamental problem to be addressed in 
this paper is the determination of all possible finite-dimensional Lie 
subalgebras of the Lie algebra D. 

There are two natural classes of coordinate changes which act on 
the algebra of differential operators. The first are the (invertible) smooth 
changes of variables: x = p(x), which transform the operator (2.1) 
according to the standard chain rule formula. Second, we can rescale 
the field variable by smooth functions qp(x), which, in order to preserve 
the Lie algebra structure of D, must act on differential operators ac- 
cording to 

(2.2) 6D= 1 

We will call two (Lie algebras of) differential operators equivalent if 
there is a change of variables x = p(x) and a scalar-valued function 
p(x) such they are related by (2.2). 

Let V C 0D denote the subalgebra of all vector fields v = f(x) * D 
on M. Let M C D denote the abelian subalgebra of multiplication op- 
erators, consisting of the operators (2.1) with f 0, so that M - C (M). 
The vector fields act naturally on the multiplication operators, giving D 
= V X M the structure of a semidirect product. Let w : D 3-- V denote 
the projection aT((W) = f D for (D = f D + g. Then the above notion 
of equivalence preserves the exact sequence of Lie algebra 
homomorphisms 

O --> M--> D - t V-- 0. 

Any finite-dimensional Lie subalgebra g C 0D is spanned by differ- 
ential operators 

(2.3) v1 + fl(x) . . . V Vr + fr(x), hi(x), . . . hm(x), 
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where v1, . . ., Vr are linearly independent vector fields spanning an r- 
dimensional Lie algebra I = wr(g) of vector fields, and the functions 
hi(x), . . . , hm(x) span the abelian subalgebra m = g n M of multipli- 
cation operators in g. Thus g also has the structure of a semidirect 
product: g Xn m. There is a convenient interpretation of this data 
in cohomological terms. (See Miller, [18], for a slightly different version 
of these results.) In general, if I is a Lie algebra, and M an I-module, 
the space of i-cochains, i : 0, is the I-module Ci(I, M) consisting of 
all alternating i-linear maps F: I x ... x I -* M. Let 8: Ci(I, M) -* 

Cl 1(b, M) be the usual coboundary operator, cf. [10]. The space of 
i-cocycles is Zi(I, M) = Ker s f C1(I, M), the space of i-coboundaries 
is Bi(I, M) = 8[C0-1(I, M)], and Hi(I, M) = Zi(I, M)IB'(I, M) is the 
ith cohomology space. 

THEOREM 1. Let M be a smooth manifold, and C-(M) the algebra 
of smooth scalar-valued functions on M. There is a one-to-one corre- 
spondence between finite dimensional Lie algebras of differential oper- 
ators on M and triples (I, m, F), where 

1. I is a finite-dimensional Lie algebra of vector fields on M, 
2. m C C"(M) is a finite-dimensional f-module of functions on M, 
3. F E Zl(b, C-(M)lm) is a 1-cocycle with coefficients in the quotient 

module C"(M)lm. 

Proof. Consider the Lie algebra g spanned by the differential 
operators (2.3), and let I and m be defined as above. Since [vi + fi, hj] 
= vi(hj) must also lie in g, and hence in m, we see that m must be an 
I-module, in accordance with condition 2. Next, define the 1-cochain 
F: I -* C'(M) by (F; vi) = fi, and extend by linearity. The map 

(2.4) D, = v + (F; v) 

associates a differential operator D, E g with any vector field v E I. 
However, the functions fi are not uniquely determined since we can 
replace fi by fi + h for any h E m without changing g. Thus, we should 
regard each function f = (F; v) as lying in the quotient module C-(M)I 
m, and F is a well-defined C"(M)/m-valued 1-cochain. Moreover, the 
commutator [Dv, Dw] = D[v,w] + (SF; v, w) lies in g if and only if 
(SF; v, w) E m, which implies that g is a Lie algebra if and only if F is 
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a C"(M)/m-valued 1-cocycle. Conversely, given a triple (i, m, F) sat- 
isfying the hypotheses, the direct sum g = {v + (F; v) I v E Il} ED m is 
easily shown to be a Lie algebra. E 

To classify Lie algebras of differential operators, we only need to 
determine representatives of different equivalence classes. The equiv- 
alence relation between differential operators will induce an equivalence 
relation between the corresponding triples (i, m, F). First, the change 
of variables x = p(x) acts on the Lie algebra of vector fields I in the 
obvious manner; it similarly transforms the module m and the cocycle 
F. Moreover, for a fixed I, two j-modules are equivalent if they are 
mapped to each other under a change of variables in the isotropy group 
of I. Rescaling the field variable via (2.2) does not affect I or m, but 
has the effect of replacing the differential operator D, in (2.4) by the 
operator D, - v(log *) = D, - (5 log *; v), which amounts to sub- 
tracting the coboundary 8 log if from the 1-cocycle F. Also, since the 
coboundary operation preserves m, we can regard log if as lying in 
C'(M)lm. Therefore, for fixed I and m, two cocycles F and F will 
determine equivalent Lie algebras of differential operators if and only 
if they are cohomologous. In this way the different Lie algebras 
of differential operators are classified by cohomology classes in 
Hl(b, C-(M)lm). 

THEOREM 2. Let M be a smooth manifold. There is a one-to-one 
correspondence between equivalence classes of finite dimensional Lie 
algebras of differential operators on M and equivalence classes of triples 
(I, m, [F]), where 

1. I is a finite-dimensional Lie algebra of vector fields on M, 
2. m C C'(M) is a finite-dimensional f-module of functions on M, 
3. [F] E H1(t, C-(M)lm). 

Two such triples are equivalent if they are directly mapped to each 
other by a change of variables, the cohomology taking care of the re- 
scaling (2.2). We will always work with a specific representative of each 
equivalence class [i, m, [F]]. Moreover, in most cases, the isotropy group 
is trivial, so we can ignore the equivalence of modules under isotropy. 
There are thus three steps in to the general classification procedure for 
finite-dimensional Lie algebras of differential operators: 1. classify fi- 
nite-dimensional Lie algebras I of vector fields on M up to change of 
variables; 2. classify finite-dimensional I-modules m; 3. determine the 
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cohomology space H1(f, C-(M)lm). Our solution to these problems is 
summarized in Tables 1-3. In this paper, we will be only concerned with 
the local classification of nonsingular (i.e. generic) Lie algebras of dif- 
ferential operators. Analysis of singular points, where the dimension 
reduces, is considerably more complicated, even for the case of a single 
vector field. (See the discussion of normal forms given in Arnol'd, 
[4; Chapter 5].) In particular, we will work entirely in local coordinates, 
and ignore global topological questions. 

3. Classification of modules. We now specialize the preceding 
considerations to the case when M is an open subset of 02. We use the 
notation 

(3.1) (D = f1(x, y)p + f2(x, y)q + g(x, y), 

for a differential operator in the plane, where we abbreviate p = DX, 
q = Dy. Lie's classification of finite-dimensional Lie algebras of vector 
fields on 02 iS summarized in Table 1. (We have omitted the trivial case 
when the Lie algebra just consists of the 0 vector field.) The first column 
gives our number for the (class of) Lie algebras, and the second column 
gives a basis. Some of these algebras have been written in slightly more 
convenient coordinate systems than are to be found in Lie. The third 
column gives its structure as an abstract Lie algebra. Here, b2 = 0 k 
0 denotes the unique solvable two-dimensional Lie algebra. The last 
column indicates where the Lie algebra lies in Lie's "Gruppenregister," 
[16]. The list is not completely duplication-free (see Campbell, [6]). For 
example, the Lie algebra of type 5 for a given 0 #o a E 0 is clearly 
isomorphic to the same algebra with constant 1/at by interchanging x 
and y; also type 4 is a special case of type 18, although it is convenient 
to treat this case separately. Note that the transitive, primitive Lie al- 
gebras in the plane are cases 7, 8 and 15, i.e. the special linear affine 
group, the general linear affine group, and the full projective group in 
the plane. 

The second step in the classification procedure is to determine the 
most general finite-dimensional I-module of functions for each Lie al- 
gebra I appearing in Table 1. These are listed in Table 2, which we 
discuss in detail below, omitting the fairly straightforward proofs in order 
to keep the exposition short. To begin with, a module m is trivial, written 
m = 0, if it consists of the zero function alone. The next simplest case 
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is when m consists of just the constant functions, which we write m = 

{1}, since the function 1 generates m. Every Lie algebra of vector fields 
admits either of these two possibilities as modules. In some cases (11, 
15, 23, 24) these are the only possibilities, but usually there4will be other 
possible types of finite-dimensional modules. 

Definition 3. An x-translation module is a finite-dimensional mod- 
ule for the one-dimensional Lie algebra generated by p = ax. A semi- 
polynomial x-translation module is a finite-dimensional module spanned 
by functions fk(x, y) = Yi g'(y)x' and all their x derivatives ajfklax', 
j ? 0, where g'(y) are functions of y. If the g'(y) are themselves poly- 

nomials, the module is called a polynomial x-translation module. If the 
module is spanned by semimonomials gk(y)x-' and their x derivatives, 
then the module is called a semimonomial x-translation module. If the 
gk's are monomials, so there is a basis consisting of monomials xlyj, then 
we have a monomial x-translation module. 

PROPOS1TION 4. Every x-translation module is a direct sum offinitely 
many submodules m, = uMAe', where mA, is a semi-polynomial x-trans- 
lation module. 

It is interesting to contrast the situation here with the corresponding 
one-dimensional version, where I is generated by p = ax, but the func- 
tions are only allowed to depend on x. In that case, [12], every translation 
module is spanned by monomials xe'. In contrast, by admitting y- 
dependence, we no longer retain the property that translation modules 
are spanned by monomials. This complicating fact will cause a number 
of difficulties in our classification procedure. 

Definition 5. A translation module is a finite-dimensional module 
for the Lie algebra {p, q} of translations in the plane. The space spanned 
by a finite collection of polynomials fk(x, y) = Eij aijxlyj, and all their 
x and y derivatives amfklax'aym'-l m 2 1 2 0, is called a polynomial 
translation module. If the module is spanned by monomials, xlyJ, then 
it is called a monomial translation module. 

Again, it is perhaps surprising that not every polynomial translation 
module is spanned by monomials. An example is the polynomial trans- 
lation module spanned by x2 + y, x, 1. In the special case of a translation 
module generated by monomials xlyi, the exponents (i, j) lie in some 
subset S C Z+ x Z+. Note that if (i, j) E S, and O c i' < i, 0 1 j' < 
j, then (i', j') E S, so S is a (Young) diagram (or Ferrers graph), [17]. 
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We remark that any nonmonomial translation module can always be 
included in a larger monomial module merely by taking all the constit- 
uent monomials of the elements. 

PRoPosMoN 6. Every translation module is a direct sum of finitely 
many submodules mt,,, = mAX,e"I'Y, where mti,v' is a polynomial trans- 
lation module. 

This takes care of cases 1 and 4 in Table 2. Many of the other cases 
are handled by the following pair of simple lemmas. 

LEMMA 7. If b contains the vector fields p, q, and (ax + by)p + 
(cx + dy)q, ad - bc # 0, then any finite dimensional f-module is a 
polynomial translation module. 

LEMMA 8. If I contains the vector fields p, q, and 

(ax + by)p + (cx + dy)q, where ad - bc #4 O, 

(UX2 + fxy + yy2)p + (Xx2 + pxy + vy2)q, 

where rank = 2, 
A ,u v O 

then any nonzero finite-dimensional 1-module contains only constants. 
An interesting case is the solvable Lie algebra 1Ja = {p, q, 

xp + oayq}, which appears as type 5 in Table 1. A polynomial is called 
ot-homogeneous if the vector field xp + oayq takes it into a multiple of 
itself. A polynomial module is called o-homogeneous if it is spanned by 
a basis of a-homogeneous polynomials. The structure of the b"-modules 
depends critically on whether a is rational or irrational (a fact that may 
be related to the existence of rational Casimir operators, [19]). 

PROPOSITON 9. Any b"-module (oa #0 ) is an oa-homogeneous poly- 
nomial translation module. Moreover, if a is not a positive rational num- 
ber, then the module is a monomial translation module. 

For example, b2 = {p, q, xp + 2yq}, and has a nonmonomial 
module spanned by x4 + x2y, 4x3 + 2xy, X2, x, y, 1. 

The other cases are handled by the following series of propositions, 
which, for reasons of space, are stated without proof. 
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PROPOSITION 10. Every finite-dimensional module for the Lie al- 
gebra of type 13 is a direct sum offinitely many of the irreducible modules 
m(n) spanned by the functions 

(X - y)knQ(X +y) 

n~ ~ ~~~dn 

where Qn(z) = dz 2n-k (z2 - 1), k = 0, 2n. 

We -note that, up to a multiple Qk is same as the Gegenbauer 
(ultraspherical) polynomial Ckk+(1/2), and, in particular, Qn is a multiple 
of the nth Legendre polynomial. Indeed, this identification is equivalent 
to the curious polynomial identity 

dk k__ __ d2n-k 

Zk (Z2 _ 1)n = (Z2 _ 1)n-k d_ (z2 _ 1)n, 0 ? k ? 2n. 

PROPOSMON 11. Every finite-dimensional module for the Lie al- 
gebra of type 12 is a direct sum of finitely many of the irreducible modules 
m(n) spanned by the monomials xiyn, 0 ? i c n. 

PROPOSMON 12. Any finite dimensional module for the Lie algebra 
of type 18 is a direct sum of submodules m,n, = Mt,i,e, where m,, is 
a polynomial x-translation module, with xkaum. C mtk+, for X E A, 
k rx. 

PROPOSITION 13. Any finite-dimensional module m for the Lie 
algebra of type 20 is spanned by polynomials. Moreover, if a c r, or 
a t c, then m is spanned by monomials. 

With these results in hand, we complete the classification of finite- 
dimensional modules for all the Lie algebras of vector fields from Table 
1. In Table 2, the first column shows the Lie algebra considered from 
Table 1. The second column indicates whether the module is necessarily 
spanned by monomials, i.e. single terms of the indicated form. Here i, 
j, k, n are all nonnegative integers. The third column indicates a typical 
term in any generator of the module. If the module is not spanned by 
monomials, then the generators will be certain linear combinations of 
the indicated monomials. The fourth column either indicates ranges of 
indices which must be included, or, in the case of an arrow, indicates 
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other indices which must be included if the given one is. For instance, 
in case 19, if the monomial xlyjel- appears in the module, so must 
xi-1yie' and xi+ryi-le1(+x)Y (provided i > 0 and/or j > 0) for each 
exponent X in the Lie algebra. In all cases, the arbitrary functions (e.g. 
the g(y) in cases 1-3) or the exponents (e.g. the X and ,u in case 4) all 
are restricted to belong to a finite set, so that the module is finite- 
dimensional. We note that in all nonmonomial cases, the generators can 
still be taken to be "exponentially homogeneous," i.e. only one expo- 
nential appears. Cases when the module is not generated by monomials 
must be treated with care, as certain coefficients can also appear. 

4. Calculation of cohomology. The final step is the computation 
of the cohomology spaces Hl(b, C'(M)lm) for each of the Lie algebras 
and corresponding modules appearing in Tables 1 and 2. The results 
are displayed in Table 3. The first column indicates the dimension of 
the cohomology space, and the second column gives a representative 
cocycle F of each nontrivial cohomology class. Only the vector fields 
which are actually modified are indicated, i.e. in the notation of (2.3), 
only the differential operators vi + fi- with nonzero fi = (F; vi) # 0 are 
explicitly written down. Again, in the interests of brevity, we will not 
give the details of most of the calculations. We explain the first four 
cases for illustrating the basic techniques, and finally discuss the two 
most complicated cases, types 16 and 18. 

Our computations are considerably simplified by using the following 
"normalization" procedure. Suppose G C I are two Lie algebras of 
vector fields. Any I-module m is automatically an B-module, and any 
tj-cocycle F reduces to an B-cocycle, denoted by Fj,. Suppose the re- 
stricted cocycle Fl is cohomologous to an B-cocycle Fo E Zl(G, C-(M)I 
m) so that, when applied to vector fields in 6, we have Fl, = Fo + 8?J 
for some function qj. On the larger algebra , then, the cohomologous 
cocycle F = F + 5ij will restrict to the B-cohomologous cocycle Fo = 
F I. In other words, if a cocycle is cohomologous to a simpler cocycle 
when restricted to a subalgebra, then it is cohomologous, on the larger 
algebra, to a cocycle which agrees with the simpler one on the subal- 
gebra. In particular, if we can reduce certain components of F to zero 
in the computation of the B-cohomology class of its restriction Fi v, then 
the same components can be reduced to zero in the computation of its 
I-cohomology class. In this context, we will refer to such a cocycle as 
normalized. Once we have normalized our cocycle according to a sub- 
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algebra G of the Lie algebra I, we can still modify it by coboundaries, 
but only ones that respect the normalization. Thus, a normalized co- 
boundary must satisfy 8&PK = 0, or equivalently, (8*; v) = v(+) E m 
for all v E B. This rather trivial remark will serve to enormously simplify 
cohomology calculations. 

Case 1. In the case of the Lie algebra spanned by the single trans- 
lation vector field p, any 1-cocycle is determined by a single function 
(F; p) = f(x, y) E C"(M)lm. The coboundaries are given by (8*; p) = 
*P. Therefore, by setting 1 = f fdx to be any integral of f, we deduce 
that any cocycle is a coboundary, and so there is no cohomology. 

Case 2. For the Lie algebra generated by p, xp, a cocycle F will 
be specified by two functions: (F, p) = f(x, y), (F; xp) = g(x, y). 
According to case 1, the cohomology for the subalgebra spanned by p 
is trivial, hence we can normalize our cocycle so that it automatically 
vanishes on the basis vector field p. To maintain this normalization, 
then, we are only allowed to modify the cocycle by addition of co- 
boundaries 85i which are trivial on p, i.e. satisfy (8*; p) = *x E m. Thus 
our cocycle (now called F) is determined by a single function (F; xp) = 
g(x, y) E CO(M)lm. The condition that F be a cocycle is (5F; p, xp) = 
gC E m. Since (8*; xp) = x*.,, two such cocycles are cohomologous if 
and only if g = g + xJ,P, where * E C'(M) satisfies the normalization 
restriction 4 E m. Since m is generated by monomials xAh(y), 0 ? i ? 

nh, the function g must be a linear combination of monomials xjh(y), 
O - j < nh + 1. (If h(y) is not in m, then nh -1, i.e. we can include 
arbitrary functions of y in g.) On the other hand, if 1 ? j ? nj + 1, 
then the monomial xjh(y) can be incorporated into a normalized co- 
boundary, namely 85i where +p(x, y) = xjh(y)lj. Therefore the only 
contributions to cohomology are functions g = g(y) which do not lie in 
m, and every nonzero cohomology class has as representative p, xp + 
g(y), where g E CO(M)lm. 

Case 3. For the Lie algebra of type 3, we normalize using the 
subalgebra generated by p, xp of case 2, so that our cocycle satisfies 
(F; p) = 0, (F; xp) = g(y), (F; x2p) = h(x, y). Normalized coboundaries 
must satisfy (8*; p) = * E m, (8*f; xp) = x*., E m. But m contains 
only functions of y, so there are no nonzero coboundaries which obey 
the normalization restrictions. The conditions that F define a cocycle 
are (5F; p, x2p) = h. - 2g E m, (5F; xp, x2p) = xhx - h E m. We 
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deduce that h(x, y) = 2x[g(y) + k(y)] + h(y), where k, h E m. But 
h is trivial, so, replacing g by g + k, we find a general cohomology 
representative to be p, xp + g(y), x2p + 2xg(y). 

Case 4. For the Lie algebra {p, q} of translations in the plane, we 
normalize the cocycle F so that (F; p) = 0, and hence F is uniquely 
determined by a single function (F; q) = g(x, y) E C-(M)lm. The only 
cocycle condition is (5F; p, q) = g. E m. Note that any function go(y) 
E Co(y) can be readily absorbed by a coboundary, so we may assume 
that g(O, y) = 0, and the derivative gx uniquely determines g. Define 
Div m axm + aym = {lox + 3y I ot, P E m}. We can then write gx = 
p + ax + fy where a, ,B E m, and where p E m is a representative of 
an element of the quotient vector space m/Div m. Let '1 = f fdx, so 
that qj satisfies the normalization restriction ifr E m. Then the modified 
function g = g - a - 4iy determines a cohomologous cocycle, and also 
satisfies g p = . We therefore conclude that the cohomology classes are 
classified by elements p of the finite-dimensional vector space m/Div m. 
We can make one further simplification. According to Proposition 6, 
the module m is a direct sum of submodules m,nv = mA ,'e'+'LY, where 
each mv is a polynomial translation module. Lemma 14 (stated below), 
with K = 0, implies that m/Div mnm- o,o/Div moo, and we need only 
look at polynomials for cohomology representatives. In the special case 
when mo,o is a monomial translation module, spanned by monomials xlyi 
corresponding to (i, j) in a diagram S, then it is easy to see that the 
basis elements of mo,O/Div mo,o will correspond to monomials with (i, j) 
on an outside corner of S, where by definition, (i, j) E S is an outside 
corner if both (i + 1, j) and (i, j + 1) do not belong to S. 

LEMMA 14. Suppose m = meAx+>yX where tm is a polynomial trans- 
lation module. Suppose K =, X. Given (p E m there exists J E m such 
that ix - KqJ = (P. 

Case 16. We may assume without loss of generality that the first 
vector field is just q, i.e. (l(x) = 1, and normalize the cocycle F so that 
it vanishes on q. Note that the operators tk(x)q + fok(x), with fok E Co(x), 
fok v m, will certainly contribute to the cohomology, so H1(I, C'(M)/ 
m) contains the nontrivial infinite-dimensional component (CX(x)/mo)r-l 
-(C(x)Inmo) 0 V, where mo = m n C-(x). Here V denotes a complex 
vector space of dimension r - 1 with basis e2, . . . , er. The remaining 
cohomology can be computed from that of an associated algebraic com- 
plex, and will be finite-dimensional. Define aym = {fy I f E: m}, Bin = 
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Span{ti f I f E m, 1 ? i c r}. Note that aybm C m. Define t = 
Yk?2 tk(x)ek E C-(x) 0 V C C'(M) 0 V. Then the "algebraic" differ- 
ential 

(4.1) 8 : C-(M) 0 AkV __ C?(M) 0 Ak+ 1, 8*(W) = A 

defines a complex on the space of C"(M)-valued k-forms on V. Consider 
the quotient complex 

(4.2) y Im y- (mh3ym) 0 V - (&nml) 0 A2V, 

where 8*, 8* are the appropriate restrictions of V. Let H' = Ker 8A / 
Im 8. 

THEOREM 15. For a Lie algebra of type 16, with finite dimensional 
module m, 

H1(J, C-(M)lm) {(C-(x)/mo) 0 V} D HM. 

Proof. Let F be a normalized cocycle, so (F; q) = 0, (F; Ek(x)q) = 
fk(x, y), k> 2, and, by the above remarks, we may assume fk(x, 0) = 

0. The cocycle conditions require 

(4.3) (SF; q, (kq) = fy E m, (SF; (kq, q) = (kfy - 'f.k E mn. 

We represent F by the one-form (F = Xk?2 fykek E m ? V. Since F is 
trivial if and only if fyk E aym, we can identify a nontrivial cocycle F with 
a nonzero element of the quotient module (m/aym) 09 V. Furthermore, 

8*()F) = t A JF = k2l (tkfy 
- 

jfyk)ek 
A el E &n 0 A2V, 

so the cocycle conditions (4.3) are equivalent to the condition 8*(w) E 
m 0 A2v, which is the same as requiring that 8*(w) = 0 as an element 
of C-(M)lm 0 A2v. A function 'p E C'(M) determines a normalized 
coboundary B'p if and only if 'py E m. Let X = pyy, so that the one-form 
corresponding to the coboundary 8p is 

(+= 8*(X) = -k2 tk(x)X(x, y)ek. 
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So F = F + Bq are cohomologous if and only if WF = wfF + 8*(X) are 
algebraically cohomologous for some X E nym. Finally, if Py E aym (hence 
x E ay2m) then w8 E aym i0 V, and is trivial as an element of (midym) 
0V. D1 

For example, in the special case r = 2, the space V is one-dimen- 
sional, and hence A2V = {O}. Thus (4.2) degenerates to the complex 
aym/hy2m -+ m/nym O-- 0, where the first map is just multiplication by (2(x) . 
We conclude that, in this particular case, H1(b, C'(M)lm) -(C(x)/ 
m10) ffl (M/O2yM) 

If m = EDmn, where mn = Mnyn, is generated by "monomials" g(x)y", 
with g E Ai C C-(x), it is possible to further analyze the algebraic 
complex. Define 

Min =Span{lk(x)g(x) I gE Mn, k = 1,... r, 

so that m is a module if and only if n C Mn-1, n ? 1. Further define 
the quotient modules qn = Mniuin+l, &jn = nn, SO M/ayM- Dq,yn. 
The complex (4.2) then decomposes into the direct sum of simpler 
subcomplexes 

qn+1 qn 0 Vi4 &qn 0A2v, 

whose cohomology H = Ker bIn/Im O,, is readily computable. The 
full cohomology H' is the direct sum of these. If I hi(x)ei is a nontrivial 
cohomology representative in H' n, then the corresponding cocycle rep- 
resenting a nontrivial cohomology class in H1(t, C-(M)lm) is given by 
(F; q) = 0, (F; (iq) = h (x)yn+1, 1 = 2, . . . , r. 

Case 18. The cohomology for case 18, which is always finite- 
dimensional, is the most complicated of all. If the module is spanned 
by monomials, we obtain fairly explicit results using a convenient graph 
theoretic interpretation; in the non-monomial case, we can only provide 
partially explicit answers, and bounds on the dimension of the coho- 
mology based on the monomial calculations. We begin by assuming that 
each submodule mi. = iL ex is generated by monomials x'yJe'", for 
(i, j) E S~, C Z+ x Z+. For any pair of integers (i, j) E Z2 (both positive 
and negative), define the index 

=1 t, iothwe0, j20, (i,j) t S,. 
fEtL = I] 

O, otherwise. 
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Normalize so (F; p) = 0. Let (F; xke'q) = g'k(x, y)e', X E A, 
0 c k c rx. The first set of cocycle conditions are (SF; p, xkelq) = 
gX k - kg'kl E M,. An easy induction using Lemma 14 shows that only 
polynomial functions gX,k will contribute to the cohomology. Integrating 
these conditions, we deduce that, up to elements of m, 

( =~~g,kX y) k!(i + rx)! X +kyj (4.4) E.y= ( + k)r! E1+k, Cj x yi , 

where the c,j are constants, and the sum ranges over all (i, j) E Z2 such 
thatj -0, (i + rx,j) t SA, and either -rx c i c Gor (i - 1,j) E SA. 
The index E{I+k,j is zero when the "rational monomial" xi+kyj is either in 
m, or not a polynomial. Furthermore, 

(4.5) (SF; xkexq, x'e&q) - ay(xkg'Ll - xlgxk) E m+,1. 

Consider first the case X = ,u in (4.5). If rx = 0, this imposes no 
restrictions on gXO. If rx > 0, and i = 0, then all the coefficients in (4.4) 
are 1 or 0, and (4.5) also imposes no conditions. For rx > 0, i # 0, 
suppose k = rx, I = r, - 1. Then (4.5) implies that c,j = 0 unless either 
j = 0 or (i + 2r, - 1, j - 1) E S2A, i.e. unless E+2r-l,j-1 = 0. This 
condition ensures that for X = ,u all the other cocycle conditions (4.5) 
are automatically satisfied. On the other hand, if rx = 0, then (i - 1, 
j) E SA, so (i + 2rx - 1, j - 1) = (i - 1, j - 1) E S2A automatically. 
We conclude that ci, = 0 unless X E Ai,j, where 

[{X E A | i,j = 0, Ei+2r -1,j-1 = O}, 0 # i - rx, j 2 0, 
Ai,j = 

A, i= 0,1?>0 

Moreover, unless X E Ai,+j {X E A,I |i+rx,j =# O}, all the terms in (4.4) 
involving c,j will lie in M,\ and hence will not contribute directly to any 
cohomology. Note that there are a finite number of integer pairs (i, j) 
for which the set Ai,. is not empty. Next we analyze (4.5) for A # ,u. 
Setting k = r, I = r, we see that either E',+L+r"j =0, or cij= c4i. 
Moreover, if either rx or r,, is positive, then setting k = - 1, 1 =r, 
(or, if rx = 0, setting k = rx, I = r,, - 1) we find that either i = 0, or 
Ei'++rL+r1 , j 1 = 0, or c-j = c4 = 0. Moreover, if these conditions hold, 
then all the remaining cocycle conditions (4.5) hold trivially. This com- 
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pletes the cocycle conditions and the characterization of the cohomol- 
ogy. 

These results can be most readily visualized using an elementary 
graphical approach. For each (i, j) with i ? - r,, j 2 0, we define a 
graph Gi,j whose vertices correspond to the exponents X E Aisj. We say 
that two such exponents are linked if Eit+ r,,r.,j-1 'A 0 and in this case Gi,j 
contains an edge connecting the vertices corresponding to X and ,u. Note 
that if j = 0, then there is no linkage, and each graph consists of a 
single vertex. The edge is called a zero link if i #0 0 and EA_+N'+r>-L1,j-1 0 
0. This decomposes the graph Gi,j into a finite number of disjoint con- 
nected subgraphs, denoted G7fj. We say that G-yj is a positive subgraph 
if it contains no zero links and also it contains at least one "positive" 
vertex X E A:j'. We define di,j to be the number of positive subgraphs 
Gyj. With each subgraph we associate a constant k'yj which is arbitrary 
if the graph is positive, but is otherwise zero. Then the above analysis 
proves that F is a nontrivial cocycle if and only if the polynomials gAk 

have the form (4.4), where the coefficients are given by ci.j = klZj for 
each X E G7,j. Note that this implies that cij vanishes unless A belongs 
to a positive subgraph Gzj. Therefore the dimension of the space of 
normalized cocycles is equal to the number of independent constants 
k7,j. This is the same as the total number of positive subgraphs for all 
indices (i, j), which is also the sum of the di,j over all possible (i, j). In 
particular, since by the earlier remark, there are a finite number of 
positive graphs, this space is finite dimensional. 

Finally we need to deal with coboundaries. Clearly * E C"(M) will 
make a contribution if and only if it is a polynomial. The condition 
'Px E m implies that qi is a sum of monomials x'yj+1 with either i = 0 or 
(i - 1, j + 1) E So. Define eij,to be 1 if i = Oor (i - 1,j + 1) E So, 
and 0 otherwise. In this case, the module conditions imply that 
Ei+r-lj= 0, hence Ei4++r'+r,-i j = 0, for each exponent X E A. Therefore, 
in this case, Bp(xkekxq) = (j + 1)xi+kyje' E m unless k = rx. Thus, we 
can use this coboundary to absorb one of the constants kZj, and hence 
eliminate one positive linkage class. We therefore conclude a general 
formula for the cohomology in the monomial case: 

(4.6) dim H1(j, C-(M)Im) = (dij - ei,j). 

The case when the module is not generated by monomials is even 
more complicated, and we are not able to offer definitive results. How- 
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ever, we can relate the cohomology in this case to a "subset" of an 
associated monomial cohomology. A general finite-dimensional module 
always breaks up into submodules m,l = m,,ex, but the individual polyno- 
mial x-translation module mu,,L may not be spanned by monomials. We 
order the monomials lexicographically, so xiyj > x'yj' if i > i' or i = i' 
and j > j'. Let ff,,(x, y) = Xiyj + X(k,0<(i,J) CkijXkyl, (i, j) E S>, be a basis 
for m consisting of "monic" polynomials, satisfying a ffj = if l.j, 
i - 0. Now, the definitions of the E's and the graphs proceeds just as 
in the monomial case with the same collection of diagrams. We claim 
that the corresponding cocycles for the nonmonomial case are indexed 
by a subset of the cocycles for the associated monomial case, so, in 
some sense, the cohomology for the nonmonomial case is a subset of 
the associated monomial cohomology. In particular, the cohomology is 
always finite dimensional, bounded by the right hand side of (4.6). The 
reason for this is that all the cocycle restrictions on F can be ordered 
lexicographically, so that, unless the leading monomial of each gAk sat- 
isfies the cocycle condition, the entire polynomial will not satisfy it. 
However, the cocycle conditions will impose additional constraints on 
the lower order terms, so that there may be more requirements than in 
the monomial case. The only case in which we could run into trouble 
is when j = 0, so that when we differentiate with respect to y we end 
up, not with zero as in the monomial case, but with some lower order 
polynomial. However, there is never any linkage in the j = 0 graph, so 
that every exponent X gives rise to a monomial cohomology class, and 
hence a potential nonmonomial cohomology class. As the cocycle con- 
ditions depend very crucially on the lower order terms, there does not 
seem to be any further statement that can be made in this regards. 

This completes our discussion of the cohomology. One final remark 
is that Tables 1-3 also solve the "embeddability problem": Given a 
triple [b, m, [F]] corresponding to a Lie algebra g of differential oper- 
ators, when does there exist a larger Lie algebra 4 C g corresponding 
to a triple [b, m', 0] having trivial cohomology? (In the construction of 
Lie algebraic potentials, cf. [12], having trivial cohomology is a big 
advantage, and going to a larger Lie algebra does not affect the con- 
struction.) An inspection of the tables reveals that this is always possible 
in cases 1, 2, 4, 5, 6, 7, 8, 14, 16, 17, 18, 19, 20, 21, 22, but that it is 
not possible to remove the cohomology class in general in cases 3, 9, 
10, 11, 12, 13, 15, 23, 24. 
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Note. An expanded version of this paper, including many explicit 
examples and more detailed proofs, appears in Differential Geometry, 
Global Analysis and Topology, CMS Conference Proceedings, Vol. 12, 
Amer. Math. Soc., Providence, R.I., 1991, 51-84. See our paper in 
J. Phys. A, 24(1991), 3995-4008 for further applications of these results. 

UNIVERSIDAD COMPLUTENSE, SPAIN 

MCGILL UNIVERSITY, QUEBEC, CANADA 

UNIVERSITY OF MINNESOTA 

REFERENCES 

[1] M. Abramowitz, and I. Stegun, Handbook of Mathematical Functions, National Bureau 
of Standards Appl. Math. Series, #55, U.S. Govt. Printing Office, Washington, 
D.C., 1970. 

[2] M. Ackerman and R. Hermann, Sophus Lie's 1880 Transformation Group Paper, Math. 
Sci. Press, Brookline, Mass., 1975. 

[3] Y. Alhassid, J. Engel, and J. Wu, Algebraic approach to the scattering matrix, Phys. Rev. 
Lett. 53 (1984), 17-20. 

[4] V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, 
Springer-Verlag, New York, 1983. 

[5] L. Bianchi, Lezioni sulla Theoria dei Gruppi Continui Finiti di Transformazioni, Enrico 
Spoerri, Editore, Pisa, 1918. 

[6] J. E. Campbell, Introductory Treatise on Lie's Theory of Finite Continuous Transformation 
Groups, The Clarendon Press, Oxford, 1903. 

[7] E. Cartan, Sur la Structure des Groupes de Transformations Finis et Continus, Th6se, 
Paris, Nony, 2e edition, Vuibert, 1913, in Oeuvres Completes, Pt. I, v. 1, Gauthier- 
Villars, Paris, 1952, 137-287. 

[8] M. Golubitsky, Primitive actions and maximal subgroups of Lie groups, J. Diff. Geom., 
7 (1972), 175-191. 

[9] A. Gonzalez-L6pez, N. Kamran, and P. J. Olver, Lie algebras of vector fields in the real 
plane, Proc. London Math. Soc., (3) 64 (1992), 339-368. 

[10] N. Jacobson, Lie Algebras, Interscience Publ. Inc., New York, 1962. 
[11] N. Kamran and P. J. Olver, Equivalence of differential operators, SIAM J. Math. Anal., 

20 (1989), 1172-1185. 
[12] and , Lie algebras of differential operators and Lie-algebraic potentials, 

J. Math. Anal. Appl., 145 (1990), 342-356. 
[13] R. D. Levine, Lie algebraic approach to molecular structure and dynamics, in Mathematical 

Frontiers in Computational Chemical Physics, D. G. Truhlar, ed., IMA Volumes 
in Mathematics and its Applications, Vol. 15, Springer-Verlag, New York, 1988, 
245-261. 



1182 A. GONZALEZ-L6PEZ ET AL. 

[14] S. Lie, Theorie der Transformationsgruppen, Math. Ann., 16 (1880), 441-528; also 
Gesammelte Abhandlungen, vol. 6, B. G. Teubner, Leipzig, 1927, 1-94; see [21 
for an English translation. 

[15] , Theorie der Transformationsgruppen, vol. 3, B. G. Teubner, Leipzig, 1893. 
[16] Gruppenregister, Gesammelte Abhandlungen, vol. 5, B. G. Teubner, Leipzig, 

1924, 767-773. 
[17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 

1979. 
[18] W. Miller, Jr., Lie Theory and Special Functions, Academic Press, New York, 1968. 
[19] J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, Invariants of real low dimension 

Lie algebras, J. Math. Phys., 17 (1976), 986-994. 
[20] F. Schwarz, A factorization algorithm for linear ordinary differential equations, Interna- 

tional Symposium on Symbolic and Algebraic Computation, Proceedings of the 
ACM-SIGSAM 1989, ACM Press, New York, 1989, 17-25. 

[21] S. Shnider and P. Winternitz, Nonlinear equations with superposition principles and the 
theory of transitive primitive Lie algebras, Lett. Math. Phys., 8 (1984), 69-78. 

[22] A. V. Turbiner, Quasi-exactly solvable problems and sl(2) algebra, Commun. Math. Phys., 
118 (1988), 467-474. 



DIFFERENDAL OPERATORS 1183 

Iz t >V 4 e 2 

s M N &@ N ON 
C N'4 C N N N 

N!. 
C9 r 

K 

a t > Al e '' |~~~~~~~~~~~~~~~~~~~~~A 

a e 6_ + v W_ ̂  + * + y~~~~~~~~~~~~~~~~~~A 
1 <= s *t vG,, g Bve K R < w * > - r + !~~~~~A 

co>>' r ,*b > X 
0 Al-^^^^^ . 

~~~~~~~~izN VINN 



1184 A. GONZALEZ-L6PEZ ET AL. 

+ + 

II 

+ + 

4) @ ^ . I I __ OX &C 
s X __ 44; ^___I 44 

VI VI VIW W - I I 

+ + VI VI VI VI V I 

CX - ~ V -I I VI VI 

.o + 1o 

W ) ?z t 0 o t At%C -'6a 

i + W 

o 
a 0 ,, Q 0w ,,00000 QQQO v 
0 

z t_ 6i ?? ? a 



DIFFERENTIAL OPERATORS 1185 

P's~~~~~~~~~~~ 
+~~~~~ 

+ 

+ 
+ 

V +~~~+ 

F .t ~~+ c s Cw + + .t + 

wS + + + + + + + + 

+~~~~ 

5:~~~~P 

+ + + + 

+ 

0~~~~~~~~~~~~~ 0~~~~~~~~~~~~~~ 

o, 
b? 1 1 l,o i 1 1 

0~~~~~~~~~~~~~ 
0~~~~~~~~~~~~~~ U~~~~~~~~~~ 

g 6 S S S s + 8 $ sui A 

o8 8 r -4o8 8 Vooo 

- "- - - ' ? F ?? ?-4 " " - I 4 4 " o 4 a N 


