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1. Introduction.

A Schrédinger operator H is said to be quasi-exactly solvable, [11], [12], [13], if there
exists a finite-dimensional Lie algebra g of first-order differential operators, admitting a
finite-dimensional module, or representation space, 1 of smooth functions, such that H
can be written as a bilinear combination

H= 2 C ,TT" + Z c, I (1)
a=1

a,b=1

of the generators T'* of g. Here r = dim g, the C;’s and C,’s are real constants, and we have
omitted an irrelevant constant term that can be absorbed in the energy. The Hamiltonian
H thus admits 9 as a finite-dimensional invariant space, H(91) C 91, and assuming that
the functions in 91 are normalizable, the spectrum of a quasi-exactly solvable Schrodinger
operator H has an algebraic sector, which can be computed using linear algebra. In
the decomposition (1), even though H is required to be a real differential operator, the
generators T* of g could conceivably be complex-valued, with complex coefficients C,,
C, also. In practice, however, if the operators T, are complex-valued the conditions on
the complex constants C,, and C, arising from the fact that H must be a real differential
operator — 1.e., the potential V must be a real-valued function when the coordinates are
real — are virtually impossible to satisfy. Therefore, the primary objects of interest for
the construction of real quasi-exactly solvable Schrodinger operators are finite-dimensional
real Lie algebras of real-valued first-order differential operators on an open subset M of
m-dimensional Euclidean space, which admits a finite-dimensional module of (smooth)
complez-valued wave functions.

Complete results are known in one dimension. In this case, the real and complex
classifications are identical, since, up to equivalence, there is essentially just one family of
one-dimensional quasi-exactly solvable Lie algebras of first-order differential operators, in-
dexed by a single quantum number n € N; the symmetry algebra can be identified with the
unimodular Lie algebra sl(2,C) (or s/(2,R)) corresponding to the projective group action,
having its standard representation on the space of polynomials of degree at most n. The
complete list of one-dimensional quasi-exactly solvable Schrodinger operators was found in
[12]; further, a complete solution to the normalizability problem for these operators was
recently determined, [5], [7]. The higher-dimensional case is much more challenging, ow-
ing notably to the fact that, already in the case of planar vector fields, there are infinitely
many distinct finite-dimensional Lie algebras of vector fields, of arbitrarily large dimen-
sion. Moreover, some of the complex Lie algebras have several different inequivalent real
forms, and so the classification of complex quasi-exactly solvable Lie algebras or differential
operators does not fully resolve the corresponding real problem. In the two-dimensional
case, a complete list of Lie algebras of first-order differential operators in two complex
variables was found by us in [1], [2]. Our starting point was Lie’s complete classification
of the finite-dimensional Lie algebras of vector fields in two complex variables, [9], [10],
and then applying methods based on Lie algebra cohomology to determine the associated
Lie algebras of differential operators. In [6], this classification was applied to construct
several new families of normalizable quasi-exactly solvable Schrédinger operators in two
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dimensions, on both flat and curved spaces. The complete classification of (normalizable)
quasi-exactly solvable Schrédinger operators remains to be done, although this appears to
be an extremely difficult problem. In this paper, we summarize our recently completed
classification of Lie algebras of first-order differential operators in two real variables, [4].
Our starting point will be the classification of Lie algebras of vector fields in R? that was
rigorously established in [3]. Interestingly, for the five additional real forms not appearing
in Lie’s complex classification of Lie algebras of vector fields, every associated Lie algebra of
differential operators is a subalgebra of a discrete family of algebras isomorphic to 50(3,1).
We will obtain a few interesting new examples of real quasi-exactly solvable Schrédinger
operators in two-dimensions.

2. Lie Algebras of Differential Operators.

Let us briefly review the results underlying the classification of Lie algebras of differ-
ential operators in the complex domain, referring the reader to [7] for details. Let A be
an open subset of m-dimesional complex Euclidean space. Let F(M)denote the space of
complex-valued analytic functions on M. Let V(M) denote the space of analytic vector
fields on M, which forms an infinite-dimensional Lie algebra based on the standard Lie
bracket operation [v,w]. The Lie algebra of first-order differential operators on M can be
identified with the semidirect product of these two Lie algebras, D' (M) = V(M) x F(M).

In local coordinates z = (2%,...,2™), a first-order differential operator has the form
mo D)
T=v+f= Zéz(z) e + f(z), (2)
i=1

where the coefficients ¢¢ and f are analytic functions of z. We let m: D' (M) — V(M), with
(v + f) = v, denote the natural projection of a first-order differential operator onto its
vector field part.

We are interested in studying Lie subalgebras g C D!(M). Our classification of finite-
dimensional subalgebras will be local so that from now on we will usually avoid explicit
use of the term “local”. The vector field part of the algebra, defined as ) = n(g) C V(M),
forms a Lie algebra of vector fields on M. Let 9 = g N F(M) denote the subspace of g
consisting of all the multiplication operators in g. It is immediately clear that )t must be
an h-module, meaning that if v € ) and h € 9N, then v(h) € M. Consider the quotient
space Q@ = F(M)/9M, which also forms an fj-module, and define F': ) — Q by

(Fivy =[f]l € Q, if veh and v+ feg. (3)

The fact that the differential operators in g form a Lie algebra implies that F' must satisfy
the bilinear identity

V(F;w) —w(F;v)— (F;[v,w]) =0, v,wecb. (4)

In the language of Lie algebra cohomology, [8], the left hand side of (4) defines the differ-
ential 6F of the linear map F'; the fact that it vanishes implies that F' defines a 1-cocycle
on fy with values in the f)-module Q. The basic classification theorem, [7], can be stated
as follows.



Proposition 1. Let g C D*(M) be a Lie algebra of first-order differential operators.
Then g can be represented by a triple (), 9, F'), where:

(i) h=gnVY(M) is a Lie algebra of vector fields on M,
(i) M =gn F(M) is an h-module of scalar-valued functions,
(iif) F e Z'(h,Q)is a Q = F(M)/M-valued 1-cocycle on §).

There are two classes of equivalence maps that preserve the basic Lie algebra structure
of the space D*(M). The first are the changes of variables, provided by local diffeomor-
phisms ¢: M — M, which act naturally on D*(M) via

0 (T) =, (v+f)=do(v)+fop?, (5)

where dip is the usual differential (push-forward) map on vector fields. The second are
the gauge transformations, obtained by multiplying the functions in F(M) by a fixed
non-vanishing function! n(z) = ¢?(®), The corresponding gauge action on a differential
operator is given by

G (I)=¢e7-T-¢° sothat G (v+f)=v+f+v(o). (6)

Thus, a gauge transformation has the effect of modifying the cocycle F' by the coboundary
do = blogn.

Definition 2. Two Lie algebras of differential operators g and g are equivalent if
and only if there is an equivalence map ¥ = (¢,G,), consisting of a change of variables
and a gauge transformation, that maps one to the other, so g = G, o ¢,(g).

Theorem 3. There is a one-to-one correspondence between equivalence classes of
Lie algebras g of first-order differential operators on M and equivalence classes of triples

(h,9M, [F]), where
(i) b is a Lie algebra of vector fields,
(i) M C F(M) is an h-module of functions,
(iii) [F] is a cohomology class in H'(l), Q), where Q = F(M)/9M.

The classification of Lie algebras of first-order differential operators therefore reduces
to the problem of classifying triples (f), 9, [F]) under local changes of variables. We should
note that most of the known results on Lie algebra cohomology, [8], are not directly appli-
cable since they apply to cohomology classes having values in finite-dimensional modules,
whereas in our case the relevant module Q has finite co-dimension in F(M).

t Here, in contrast to the usual physics version, the gauge factor 7 is not assumed to be

unitary, i.e., ¢ is not necessarily purely imaginary.
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3. Real Forms of Complex Algebras.

We now turn to the main topic of this paper, which is the extension of the known
classification results for complex Lie algebras of differential operators to the real domain.
Assuming analyticity, there is an important connection between the real and complex
objects, provided by the inverse procedures of restriction to the real domain and analytic
continuation. Since we are dealing with local issues, we can assume, for simplicity, that
our differential operators are defined on open subsets of the appropriate real or complex
Euclidean space. First, suppose M c C™is an open domain in complex m-dimensional
Euclidean space, and f M — C a complex-analytic function. Then the restriction of f

tot M = M NR™ defines a (in general) complex-valued real-analytic function f: M — C.
We let R:F (]\/f ) — F(M,C) denote this restriction map. Conversely, given a complex-
valued analytic function f € F(M,C) defined on an open subset M C R™, its analytic
continuation to the complex domain C™ defines a complex-analytic function f M- C
defined on a subdomain M C C™ such that MNR™= M. We will always assume that, by
suitably restricting the domain M the analytic continuation f is a single-valued functlon
In our applications, the functions considered are, by and large, combinations of rational
and exponential functions, and so the more technical issues associated with the process
of analytic continuation do not arise. We let C: F(M,C) — F (M ) denote the process of
analytic continuation, so C(f) = f Note that the restriction and analytic continuation
operators are inverses of each other, meaning that RoC = 1 and CoR =1, provided M
and M are suitably related.

The restriction of a subspace MM C F (M) to the real axis will be a subspace R(D/ﬁ)
of the space F(M,C) of complex-valued functions. However, in general R(iﬁ) is not the
complexification 9 e C of a subspace 9 of real-valued functions. This happens if and only
if the subspace R(ﬁ) equals its own complex conjugate.

Similar considerations provide a correspondence between real-analytic complex-valued
vector fields and differential operators defined on M C R™ and their complex-analytic
counterparts, defined on Mccm,

Proposition 4. The analytic continuation of a real-valued finite-dimensional Lie
algebra of real-analytic differential operators defines a finite-dimensional Lie algebra of
complex-analytic differential operators. Conversely, a Lie algebra of complex-analytic dif-
ferential operators determines a real Lie algebra of differential operators via restriction if
and only if its restriction is a complexified Lie algebra.

Two complex Lie algebras of differential operators are equivalent if and only if there
is a complex-analytic change of variables and gauge transformation mapping one to the
other. Similarly, two real Lie algebras of differential operators are equivalent if and only
if there is a real-analytic change of variables and gauge transformation mapping one to
the other. Clearly, analytically continuing the complexifications of two equivalent real Lie
algebras produces (locally) equivalent complex Lie algebras. The converse, though, is false

! We always assume that M NR™ # @.



in general: two real Lie algebras on M whose complexifications have equivalent analytic
continuations are not necessarily equivalent.

In general, by a real form of a complex Lie algebra of differential operators g, we
mean any real Lie algebra of differential operators g which is obtained by first applying a
complex change of variables and gauge transformation, leading to the complex-equivalent
algebra g = ¥(g), and then restricting to the real axis. Proposition 4 requires that the
resulting complex-valued algebra g, = R(7 ) be a complexified algebra, whereby g = Re g,
and go = geC. Two different real forms of a given complex Lie algebra will always be
analytically continuable to complex-equivalent Lie algebras, although the real forms may
not be real-equivalent (even if they are isomorphic as abstract Lie algebras). For example,
the real Lie algebras generated by 9, +0,, 0, +y0,, z%8, + yzay, and by 9, 0, + y9,,
(2® —y*)8, + 22y0, are both isomorphic to 5[(2,R), and are real forms of the complex Lie
algebra with generators 0,40, 20, +wd,,, zzaz + wzaw. However, the two real forms are
not equivalent — there is no real change of variables mapping one to the other; see [3]. A
key problem, then, is to determine the different possible (real-)inequivalent real forms of
a given complex Lie algebra of differential operators.

We have the basic complexification result:

Theorem 5. Let 6 C V(]/\Z) be a complex Lie algebra of complex-analytic vector
fields, and let 9N C .7:(117) be a complex E—modu]e of complex-analytic functions. Suppose
the restrictions R(f)\) C V(M,C) and R(9M) C F(M,C) are complexified spaces:

——

RM) =heC=hy  RON) =MeC =M.

The quotient module Q = f(ﬂ)/ﬁ restricts to R(@) = Q¢ = QoC = F(M,C)/M,
with real counterpart @ = F(M)/9. Moreover, the restriction ROHl(f),Q)OC of the

associated cohomology space H*! (6, @) is also a complexified space, with
RoH'(5,0)°C = H' ()¢, Qc) = H'(),Q) o C = HE.

In particular, Theorem 5 implies that the real and complex cohomology spaces of a
complex Lie algebra of vector fields and any of its real forms have the same dimension:

dimg, H'(H,Q) = dimg H' (h¢, Qc) = dimg H™ (, Q). (7)

Therefore, the space of complex-inequivalent Lie algebras of differential operators corre-
sponding to a given ) C V(J/W\ ) and MM cF (J/W\ ) has the same dimension as the space
of real-inequivalent Lie algebras of differential operators corresponding to the real forms
h C V(M) and 9 C F(M). If B = {[F],...,[F,]} forms a basis for the complex coho-
mology space H(hp, Qp), then a basis for the real form H'(f, Q) can be found among
ReBUImB = {[ReF],...,[Re F,],[Im F],...[ImF,]}. In other words, exactly n of the
real and imaginary parts of the complex cocycles Fj,...,F, will be linearly independent
modulo coboundaries.



Theorem 5 implies that the problem of classifying real Lie algebras of differential
operators can be tackled directly as follows. Let f) be a real form of a comBlex Lie algebra
of vector fields f) Let o: M — M be the change of variables mapping l) to a complex-
equivalent Lie algebra [] = (f)) whose restriction coincides with the complexification
of our chosen real form: b R(f)) = heC. EMC F (M ) is a finite-dimensional b-
module of complex-analytic functions, then m = <P*(§JVT) is a finite-dimensional E—module
obtained by applying the change of variables. We assume that its restriction R(ﬁ) is a
complexified module: M = ’R(ﬁ) =MeC, with M C F(M) a real h-module. Set D =

F(M, C)/ﬂﬁ = QoC, with Q@ = F(M)/M. According to Theorem 5, the cohomology
space Hi = H'(hg, Q) is complexified: H{ = H'eC, where H' = H'(),Q). Any
complex Lie algebra of differential opelators with vector field part [)7 represented by a
cohomology class in the space H 1( b, ) H{, is found by applying ¢, to a Lie algebra of
differential operators represented by an element of H' = H! (6, ~) where Q = F (117 )/ .
Theorem 5 implies that a real basis for H! can be constructed by taking the real and
imaginary parts of the elements of a basis for H 1(!), Q) and restricting ourselves to the real
subspace.

4. Quasi-Exact Solvability.

A finite-dimensional Lie algebra g C D (M) is called quasi-exactly solvable if it admits
a non-zero finite-dimensional module (or representation space) M C F(M) consisting of
functions on M. The condition of quasi-exact solvability has one elementary consequence
that simplifies our classification procedure. We state this result for complex Lie algebras,
although the real version is identical.

Proposition 6. Ifg is a quasi-exactly solvable Lie algebra represented by the triple
(h,9M, [F]) as in Theorem 3, then the module 9 of multiplication operators is either trivial,
M = 0, or consists of constants, M = C. Moreover, if g = (,0,[F]), then g C g = geC,
where g = (h,C, [F]) is a quasi-exactly solvable central extension of g.

Therefore, we can assume, without loss of generality, that the only multiplication
operators in our Lie algebra are the constant functions, i.e., gN F(M) = C. The quotient
space Q@ = F(M)/C is also fixed in this case.

A basic fact is that the quasi-exact solvability condition is respected by the process
of complexification.

Proposition 7. Let M C C™ be an open subset, and let § C ’DI(J/\J\) be a Lie

algebra of complex-analytic first-order differential operators. Let M = M N R™  and
assume that the restriction R(g) is a complexified Lie algebra of differential operators, so
that R(§) = geC = g for some real Lie algebra g C D'(M). Then § is quasi-exactly
solvable if and only if g¢ is quasi-exactly solvable if and only if g is quasi-exactly solvable.

5. The Planar Case.

In the two-dimensional complex case, the Lie algebras of vector fields were first clas-
sified by Lie, [10]. In their canonical forms, each of the Lie algebras appearing in the
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complex classification is a complexified algebra, and hence has an obvious real counter-
part, obtained by restricting the coordinates to be real. Moreover, according to Theorem 5,
in such cases the associated real Lie algebras of differential operators and finite-dimensional
modules are readily obtained by restriction. Interestingly, every imprimitive real Lie al-
gebra is obtained by this simple procedure. In addition to these real Lie algebras, there
are precisely five additional primitive real Lie algebras of vector fields in two dimensions
that are not equivalent to any of the Lie algebras obtained by straightforward restriction
of the complex normal forms. However, the complexification (or analytic continuation) of
each of these five additional Lie algebras will, of course, be equivalent, under a complex
diffeomorphism, to one of the complex normal forms on our list. The complete list of
these additional real forms along with their canonical complexification appear in Table 1.
Therefore, to complete the classification of all real Lie algebras of first-order differential
operators, we need only determine the real cohomology spaces associated with these five
additional real forms, and, further, to determine what values of the cohomology parame-
ters will produce quasi-exactly solvable algebras. Remarkably, only one of the additional
real forms admits non-trivial cohomology under the assumption of quasi-exact solvability.
We have the following result, [4].

Theorem 8. Among the five additional real Lie algebras of planar vector fields in
R2, the only one admitting a nonzero real-valued quasi-exactly solvable cohomology class
is (a central extension of) 50(3,1), for which the corresponding Lie algebra of first-order
differential operators is spanned by '
f[’0 :1, Tl :8:1:, Tzzay, T?’:mam—l—y@y, T4:y8m—w<9y, (8)
T° = (2* —4y*)8, + 2zy0, — 2nz, T® = 2298, + (v* — :cz)c?y — 2ny,
where n is a non-negative integer. Every finite-dimensional Lie algebra of first order
differential operators with vector field part given by one of the five additional primitive
real forms listed in Table 4 is a subalgebra of one of the Lie algebras given by (8).

6. New Quasi-Exactly Solvable 50(3,1) Potentials.

We now use the results of the preceding section to construct new examples of quasi-
exactly solvable Schrédinger operators. By a Schrédinger operator we mean of course a
second order differential operator of the form

H=—-A+V(z); (9)
here
A = Z gij(:cl, ")V, VJ,
i,5=1

is the Laplacian (kinetic energy) operator on the finite-dimensional real Riemannian mani-
fold M with contravariant metric (¢*), and V, is the covariant derivative associated to this
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metric. Let g be one of our real quasi-exactly solvable Lie algebras of first order differen-
tial operators written in canonical form. The most general (real) second-order differential
operator L which is quasi-exactly solvable with hidden symmetry algebra g takes the form

L= Z C,T°T" + Z c, T, (10)

a,b=1 a=1

where the T'® are the generators of g, and C;, C, are real constants. Now, in general L
need not be a Schrodinger operator (9); however, L can sometimes be transformed into a
Schrodinger operator by applying a suitable change of variables ¢ and gauge transformation
G,. The transformed operator L = e~ o, (L) o e” is then a quasi-exactly solvable operator
with respect to the transformed algebra G_ o (g) = g, with generators Te = G, o, (T%).

We recall now the necessary and sufficient conditions under which the operator (10)
can be transformed into a Schrodinger operator H, cf. for example [6]. First of all, we
rewrite L in the form

m

sz — +c(:c)

We must first require that L be elliptic, meaning that the quadratic form associated to
the symmetric matrix (¢*/(z)) be positive definite everywhere. We may thus interpret the
functions g*/(z) as the contravariant components of a Riemannian metric

Z g% ()

1,j=1

ds* = Z 9;i(z) dzt dz?. (11)
It is convenient to express L in covariant form as follows:

=- Z g9V — A)V; — 4, +V,

4,j=1

where V. is the covariant derivative associated to the metric (11), and
j—. gij 2+2\/§Zawk(\/§g ) ’ —‘ g j
— k=1 =1
8 ,
= A A — — gA*

with g = det(g,;;). We define the magnetic one-form associated with such an operator to

be .
w = z A, dzt.
=1




Theorem 9. The necessary and sufficient condition for an elliptic second order
differential operator L to be equivalent to a Schrédinger operator is that its magnetic
one-form be closed:

dw = 0. (12)

For a given Lie algebra of differential operators g, equation (12) is equivalent to
a set of algebraic equations in the coefficients C,; and C,, which are called the closure
conditions. In the complex case, these conditions were extensively analyzed in [6], although
their complete solution, and hence the complete classification of quasi-exactly solvable
Schrédinger operators, remains problematic.

We now proceed to construct a few new examples of quasi-exactly solvable Hamilto-
nians. According to Theorem 8, there is no loss of generality in working exclusively with
$0(3,1). Interestingly, we are not aware of any quasi-exactly solvable potential that has
been ezplicitly linked to s0(3,1) in the literature. The only example of quasi-exactly solv-
able s0(3,1) potential that we know of is the remarkable multiparameter family recently
constructed by Zaslavskii, [14; eq. (31-33)]. Although the Hamiltonians in this family were
obtained without explicitly using Lie algebraic techniques, it can be shown (cf. [15]) that
they arise from Hamiltonians that are quasi-exactly solvable with respect to the Lie algebra
5l(2) @ 5((2). In fact, these Hamiltonians could have been obtained much more directly by
starting with the most general Lie-algebraic second-order differential operator by taking
an arbitrary polynomial of degree two in the generators of 50(3,1), and imposing that )
the coordinates for the induced metric be isothermal, and i) the closure conditions be sat-
isfied. It can be shown that the most general Hamiltonian satisfying these two conditions
depends on 15 real parameters satisfying 9 algebraic constraints. Thus, the set of all such
Hamiltonians is parametrized by a 6-dimensional algebraic variety. Although the number
of essential parameters in Zavslaskii’s multiparameter family is 6, we shall now show that
the latter family is only one of several components of the variety. Indeed, we now present
a different 6-parameter family of Hamiltonians satisfying the above two conditions.

Indeed, consider the family of second-order differential operators (10) defined by the
following choice of the coefficients C;, and C|, :

a 0 0 0 u/2 -8
0 a 0 O 0 0
_ 0 0 0 B « A _
(Cab) - 0 0 ﬂ @ ) y ’ (Oa) - 27?,(0,0,0,,8,’)’,)\),
w/2 0 v =X v 0
-8 0 X v 0 v

where T, ..., T® are the 50(3,1) generators given by (8). (We omit T = 1 without loss of
generality.) A long but straightforward calculation shows that the closure conditions are
satisfied. The associated metric is

ds? = A1 (daz2 + dy?), (13)

with
A=a+us® —20ey+2y2(a® +97) + 22y (2® +¢°) +v (2 +9°),
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so that the (z,y) coordinates are isothermal. The Gaussian curvature is given by

k=Aat+bz+cy+d(z®+y*)tery+fal +gz(a® +y7) +hy (2 +y*) + k(2 +y2)?],
with

a=ap, b=8a7y, c=8al,

d:2(4av—ﬂ2), 622/3/1'7 f:_’qu,

9g=22B8A—vp), h=20QBFy+Ap), k=pr-27"-2)%

Since the closure conditions are satisfied, we know that L is equivalent under a gauge
transformation to a Schrodinger operator (9) on the open subset of R? where A is positive,
with metric given by (13). In fact, we have

H=nTn"'=-A+V(z,y), where n=A""2
and the potential is

_ n(n+2)
=——0

+22(yp—BN)(2* +97) ~2B7y(=* +47) + (1 +2°) (2 +47)7].

Vv [—4a(7m+>\y)—|—w2,u2—2,B,u,:13y—|—(,82—4av)(:c2+y2)

It should be noted that for generic values of the parameters neither the above solution of
the closure conditions (nor the one given by Zaslavskii), satisfy the additional condition
that the associated metric be positive definite in all of R2.

One can obtain many other multiparameter families of 50(3, 1) potentials, for instance
by dropping the condition that the (z,y) coordinates be isothermal for the metric. We
shall content ourselves with the following example, in which

(C,p) = diag(a, o, 8,7, A, A), (C,)=0.

Again, the closure conditions are satisfied by the above choice of coefficients. The associ-
ated contravariant metric tensor (g*/) is given by

gl =a+ B vy + A2+ ),
g =(B—-7)zy,
g =atvy2? +By* + (2 +47)".

The Gaussian curvature is

o (=B + 37)(a® + A?1®) + 2(By + 4ad)r?(a + Ar*) + 2aX(58 + v)r*
(a+y72 4 Art)?

with r? = 22 + 9%, In contrast with the previous case, if the parameters «, 8, v and A are
positive, then the metric is positive definite for (z,y) ranging over all of R

11



As before, the fact that the closure conditions are satisfied guarantees the existence
of a gauge factor i such that H = Ln~! is a Schrodinger operator. If

p:4a)\—,32,

the gauge factor is given by

nﬂ ﬂ—I"ZATz) 5 _i_n 1
exp | — arctan ————— | (a+Br2+Art) 2 % (a+yr2 + A7)t p > 0;
(22 srcan L) (e et 4 ar) HF (@t 1 an)E, o0
2n o _1_, 1
A T (‘W) (2a+Br2) " (40 +dayr?+ B2rt)E, p=0;

np
272 —|—,8~v\/~—_p>\/:7
2Ar2 4+ B4 +/—p ’

(a—f—ﬂrz —|-)\7’4)“%—n (a+77’2 ~|~)\r4)% <

In all cases, the expression for the potential V is

16afn(l+mn)+r? [,32(3+16n+16n2)—4a/\(3+8n+4n2)]
- a+pBr:+ Art
L 5B =) -7 +3X(287y =37 +4ad)r?
Ala+yr2+ A7)
5(B—7)(4ad—9)(atyr?)

- Moty b Ar)? + 4y — 48 (14 2n)?,

4V

with 72 = 22 + y?. Since the potential is a function of 7 only, it is natural to look for
eigenfunctions of H which depend on r only. When this is done, it can be shown that one
ends up with an effective Hamiltonian on the line which is an element of the enveloping
algebra of the standard realization of 5[(2,R) in one dimension. Thus, no new quasi-exactly
solvable one-dimensional potentials are obtained by reduction of the above quasi-exactly
solvable 50(3,1) potential. This lends additional support to the observation of [6] that
reduction of two-dimensional quasi-exactly solvable Schrodinger operators does not lead
to any new one-dimensional quasi-exactly solvable operators. However, a full explanation
of this fact remains obscure.
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Table 1
Additional Primitive Lie Algebras of Vector Fields in R?2

Generators Dim Structure
9,,z0, +y0,, (z® —y*)9, + 2zy0, 3 sl(2)
Y9, — z9,,(1 + = —y*)o, + 2zy0,,
22y, + (1 —2* +4%)d, 3 50(3)
9,,0,,B(z0, +y0,) + yo, — 0, 3 R x R?
8,,0,,20, + 'yay,y@m —z9, 4 R? x R?
9,,0,,20, +y0,,y0, — «d,,

(2 —y*)d, + 2zy0,, 2zy0, + (v — mz)ay 6 50(3,1)
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