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Abstract The purpose of this communication is to report on some recent progress in
the problem of constructing quasi-exactly solvable Hamiltonians on two-dimensional Rie-
mannian manifolds, [5].

The spectral problems of non-relativistic quantum mechanics fall within two general cat-
egories. In the first one, we have the small number of so-called exactly solvable problems,
that is Schrodinger operators whose entire spectrum can be determined by algebraic meth-
ods. The simplest example of such a problem is given by the harmonic oscillator. In the
second category, we have the Schrodinger operators whose complete spectrum cannot be
computed exactly, but only approximated numerically at the very best.

Over the past decade, there has been a fair amount of interest in trying to construct
physically significant systems which may not be exactly solvable, but for which part of the
spectrum can be computed exactly by algebraic methods. In the early 1980’s, Alhassid,
Girsey, Iachello, Levine and collaborators, [1], [10], introduced the concept of a “spectrum
generating algebra” to construct models for complicated molecules whose point spectrum
could be analyzed algebraically. Independently, Turbiner, Ushveridze, Shifman and their
collaborators were led to define a class of spectral problems which they called “quasi-exactly
solvable”, [14], [16], [12], and which we now describe.

A Schrodinger operator (or Hamiltonian)
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(or, more generally, an arbitrary second-order linear differential operator) in d-dimensional
Euclidean space is said to be Lie-algebraic if it is expressible as a bilinear combination
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with constant coefficients Cyy, C,, Cp of first-order differential operators
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spanning a finite-dimensional Lie algebra g. If, in addition, g admits a finite-dimensional
module N of smooth functions, then H is said to be quasi-exactly solvable. Obviously,
if V' is k-dimensional then one can obtain & eigenvalues (counting multiplicities) of the
Schrodinger operator H with their corresponding linearly independent eigenfunctions by
computing the spectrum of the finite-dimensional linear operator obtained by restriction
of H to the k-dimensional vector space N. Finally, if the eigenfunctions of H obtainable
by the procedure just outlined turn out to be square integrable (i.e. if N'C L*(R™)), and
thus represent true bound states of the system, we shall say that H is normalizable. The
Lie algebra g is to be thought of as a “hidden” symmetry algebra for the quasi-exactly
solvable problem, whose presence underlies the partial solvability of the spectral problem.
Notice, however, that g is not a symmetry of H in the traditional sense, since H is not
required to commute with the generators J%, 1 < a <7, of g.

The class of all quasi-exactly solvable second-order linear differential operators T'(z)
in R? is easily seen to be invariant under the mapping

T(z) — T(z) = @ T(z) e=7®), z = ¢(z), (1)

where ¢ is a diffeomorphism. The transformation (1) has the key property of preserving the
spectral problem associated to the second-order differential operator T'(x), i.e. if ¢(z) is an
eigenfunction of T'(z) with eigenvalue A then the “rescaled” function t(z) = e®(®) ¢)(z) is
an eigenfunction of T'(z) with the same eigenvalue. Thus (1) defines a natural equivalence
relation amongst quasi-exactly solvable second-order differential operators. (However, that
¥(z) need not be square integrable; see [4] for a thorough discussion of this problem in the
one-dimensional case.)

The general procedure to be followed in order to classify all quasi-exactly solvable
Hamiltonians under the equivalence relation (1)—a refinement of Levine’s [10] original
problem of classifying Lie-algebraic Schrodinger operators, which, in view of the above
remarks, seems more interesting for the applications—is quite clear in principle, although
the difficulties involved in implementing it in practice are enormous. See [5], and references
therein, for an account of the present status of this problem.

The solution of the equivalence problem for second-order differential operators is rel-
atively straightforward, [9], [3], and it leads to an essential distinction between the one-
dimensional and the higher-dimensional cases. Indeed, in one dimension every second-order
differential operator is locally equivalent under (1) to a Schrédinger operator up to a sign,
whereas this is no longer true in more than one dimension. The conditions under which a
second-order differential operator is equivalent to a Schrodinger operator are quite strin-
gent, cf. [5], but they suggest a natural simplification which might still be of interest
for the applications, in view of recently uncovered connections with quantum chaos, [2],
conformal field theory, [11], [8], and the theory of orthogonal polynomials, [15]. Namely,
we can enlarge the focus of our study from Schrodinger operators in Euclidean space to
Schrodinger operators
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defined on arbitrary smooth Riemannian manifolds. Here, the functions ¢/ (z), 1 <4, <
d, are the contravariants components of a Riemannian metric g, V is the covariant deriva-
tive operator associated to the metric, and A is its corresponding Laplace—Beltrami oper-
ator.

A complete classification and list of normal forms for one-dimensional quasi-exactly
solvable spectral problems is available, [14], [16]. In contrast, only a few special examples
of quasi-exactly solvable problems in two dimensions have appeared in the literature to
date, [13], all of which are constructed using only the compact “hidden” symmetry algebras
su(3), su(2) @ su(2) or so(3). However, we know that there is a wide array of additional
equivalence classes of Lie algebras of differential operators in two variables (admitting a
finite-dimensional module of smooth functions), [6], [7], each of which can be used to
construct new examples of two-dimensional quasi-exactly solvable spectral problems. A
wide variety of interesting examples are given in [5], where particular emphasis is put
on using non-compact “hidden” symmetry algebras to obtain quasi-exactly solvable two-
dimensional Hamiltonians. We shall content ourselves here with presenting two examples of
new quasi-exactly solvable Hamiltonians in two dimensions, referring again the interested
reader to [5] for further examples and details.

Consider, in the first place, the Lie algebra g = s[(2) @ sl(2) spanned by the first-order
differential operators

J! = 8,, J2:8y, J3 =20,, J4:y8y, JS =220, —nuz, J6:y2(9y—my,

where the parameters n and m are restricted to taking positive integer values. The subspace
N of the polynomials of degree no higher than n in z and m in y is then a g-module. One
can then show that the Hamiltonian (2) with Riemannian metric and potential given by

gt =Q1+2%)(2+42%), ¢gP=0+2*)1+y%), ¢ =0+ 2+
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is normalizable and quasi-exactly solvable with respect to g.
Finally, let g be the Lie algebra spanned by the first-order differential operators

J = 0,, J2=3y, J3 =120, J4=ac3y, J5=y3y, J6=x28$+racy8y—na:,

and
Jott ="t 9,, 1<i<r-—1,

if » > 1, n being a positive integer. This non-compact Lie algebra, which is isomorphic to
the semidirect product of gl(2, R) with a (r+1)-dimensional abelian ideal, admits the finite-
dimensional module N spanned by the monomials z* ¢’ with 2+7 j < n. The Hamiltonian
(2) with

gt =A2>4+ B, ¢ =(14+m)Azy, g22:y(Ax2+B)m+(1+m)2Ay2;
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is shown in [5] to be normalizable and quasi-exactly solvable with respect to g, provided
that the parameter A is large enough. Let us remark that the metric g in this case
has constant negative Gaussian curvature x = —A. Furthermore, since the potential
V' does not depend on the cohomology parameter n, the above Hamiltonian is exactly
solvable in the sense of [14]. Notice, lastly, that the potential is also independent of . We
have thus constructed an exactly solvable Hamiltonian associated to an infinite number of
inequivalent Lie algebras of arbitrarily large dimension r + 5.
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