SYMMETRY GROUPS AND CONSERVATION LAWS

IN THE FORMAL VARIATIONAL CALCULUS

Peter J, Olver

Mathematical Institute
Oxford University -
‘ A Co:

Abstract: A formal algebraic machinery is developed for handling
questions about conservation laws of partial differential e,quétions.
This is appiied to find infinite series of conservation laws of linear
equations; including the Laplace and wave equations, In addition;
the relationship of the conservation laws to symmetry groups for
the Korteweg-deVries equation‘ and sine Gordon equation is expli-

cated, and an intruiging interrelationship between these two equations

is discovered.
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Introduction

The connection between symmetry groups and conservation laws
dates back to the fundamental theorem of E. Noether, [34], which states
that for each one-parameter symmetry group of a variational problem
there is a corresponding conservation law of the Euler equations
associated with that problem. Thus, for instance, conservation of
energy is a direct consequence of invariance under time translation
and conservation of momentum a result of invariance under spatial
translations. Noether's theorem was significantly generalized by
E. Bessel-Hagen, [2], by the admission of symmetry groups whose
transformations depend on the derivatives of the‘ dependent variables,
to be called "generalized symmetries" in this paper,‘ and also allow-
ing so~called divergence transformations. The resulting theorem‘,‘
which is restated here in Theorem 2,14; igives a one-to-one
correspondence between symmetries of the variational problem and
conservation laws of the Euler equations. Bessel-Hagen's approach
does not seem to have been fully exploited in subsequent research.

Much more recently; it has been found that a number of
physically interesting nonlinear problems',. such as the Korteweg-
deVries (KdV) equation and the sine-Gordon equation',' can be

interpreted as completely integrable Hamiltonian systems, and, as

N



such, possess an infinite series of conservation laws. Indeed, the
existence of infinitely many conservation laws of the KdV equation
was the first in an on going series of remarkable discoveries of
properties of these equations, which now include solitons, inverse
scattering, connections with algebraic geometry and so on. The
papers [25],[31] and [44] form a good survey of the current research
in this area.

The original motivation for this paper came in an attempt to
understand these conservation laws in light of Noether's theorem and
symmetry group theory. This problem was raised by Ovsjannikov in
a conference on symmetry groups in Calgary, Canada in 1974, [42].
It was soon realized that;v in the case of the KdV equation; the
generalized symmetries responsible for the conservation laws are
nothing but the higher order analogues of the Korteweg-deVries
equation: due originally to Lax.,‘ [23], and Gardner.,' [11]. In a pre-
vious paper; [3 5], the author showed how a generalization of a
recursion relation noticed by A. Lenard could be applied to find
symmetry groups of other equations. In the present paperl,‘ the
relétionship of these generalized symmetries to conservation laws
is explored in detail. In general;. whereas every symmetry of a

~ variational problem is also a symmetry of the Euler equation, the



converse is not necessarily true. Usually, an additional criterion,
such as that given in Proposition 3.1 for linear equations or in
Theorem 4.2 for evolution equations, is necessary for a symmetry of
the Euler equation to be a symmetry of the variational problem and,
hence, give rise to a conservation law. The primary reason for con-
sidering symmetries of the Euler equation is that they are amenable

to straightforward (albeit tedious) computation using the methods of

Lie and Ovsjannikov,[40]. Chapter 1 briefly recalls how to find the
symmetry group of a p.d.e.; the main tool is the formula of Theorem
1.4 for the prolongation of the infinitesimal generators. The generali-
zation of the symmetry group concept then follows in a straightforward
fashion, and is shown to be equivalent to the theory of flows defined by
evolution equations. Recursion operators were introduced in [35],
here it is shown that for linear p.d.e. 's',> each generalized symmetry
gives rise to a recursion operator.,‘ and hence an infinite family of
generalized symmetries. This confusion has resulted in two schools

of symmetry group theory: the followers of Ovsjannikov preferring

the geometric approach of vector fields;_ while the follows of W.Miller,
[28]',. favoring the algebraic approach of derivations (recursion

operators). Here we reconcile these two approaches.and expound on

their relationship.



The techniques employed in this paper are in the spirif of
Gel'fand and Diki;, [12], and its further developments by the author,
[37]. Using the generalized Euler operators, originally due to
Kruskal, et.al., [20], a number of important formulae for integration
by parts, an Euler product formula, generalized symmetries of
variational problems and Noether's theorem are systematically
established in the second chapter. This algebraic machinery forms
the basis for the applications in the last two chapters of the paper.

The third chapter is devoted to an exposition of the structure
of the conservation laws of self-adjoint linear partial differential
equations. The additional condition for a linear symmetry to give
rise to a conservation law is that the operator A D be skew-adjoint',‘
where A(u) = 0 is the equation and D is the recursion operator
arising from the symmetry. In this Way; every odd order symmetry','
by suitable modification.,u gives rise to a conservation law. This is
applied to the Laplace and wave equations, The conservation laws
arising from point transformational symmetries in the conformal
group have been used by Mo rawetz, [32], [33].,‘ in studies of properties
of nonlinear wave equations. The conservation laws arising from
generalized symmetries are;- to the authors knéwledge;. new and

deserving of further investigation.
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In the final chapter, the applications to evolution equations in
é, single spatial variable are discussed. The first section develops
some general results for these purpdses. For the Kofteweg—de Vries
equation, these symmetry group methods yield a new derivation of
the conservation laws and the Hamiltonian structure, all based on the
recursion operator of Lenérd. Some of the formulae ére new, such
as (4.14) and the expression in Corollary 4.12 for the conserved
densities of the conservation laws. Next, by application of Miura's
transformation ,[29], corresponding results and formulae are found
for the modified KdV equation, and also the potential version of the

modified KdV equation, which is

u 2 . (0.1)

Finally, we consider the sine-Gordon equatibn;. v, = sin(\u). There

is found to be a remarkable interrelationship between the sine-Gordon
’ - 3.2

and KdV equations. Namely, when V.= —7:)\ the potential

versions of the higher order analogues of the modified KdV equation

(of which (0.1) is the first in a series) are all symmetries and give

rise to conservation laws of the sine-Gordon equation. Vice versa;

the sine-Gordon (and cosine-Gordon) equations give rise to two new

conservation laws of (0.1). These in turn provide two new (nonlocal)



conserved quantities for the KdV equation itself. The formulae for
these two new quantities cannot be explicitly written down, since they
involve the inversion of Miurafs transformation. We defer the
application of these results to solitons and Backlund transformations

to a subsequent publication. (See also [51], [52] for related
approaches -to these questions.) - S S iy
I Wo,uwld' like to express my eistreme gratitude to Pro_f.
Jerry Bona for many st'i’mulating discussions about t.hese
re‘sul’té’. .I Wourlbél also like to thaink Prof. Wal t\er St'rauss

for éuggesting the arpplrica‘ffon' of these methods to the

conservation laws of linear differential equations.




1. Symmetries and Generalized Symmetries

Given a system of partial differential equations, the symmetry
group of the system is the "largest"” local group of transformations
acting on the independent and dependent variables leaving the solution
set invariant. It was Lie's pioneering observation that the continuous
(as opposed to discrete) symmetries could readily be computed via
infinitesimal methods. In the first section a brief review of the ele-
mentary theory of jet spaces and group prolongations is provided.
More detailed expositions can be found in [15] and [36]. The infini-
tesimal prolongation formulae motivate the generalization to groups
whose transformations depend on the derivatives of the dependent
variables.

The final section deals with one method for generating infinite

families of generalized symmetries, pased on the idea of a recursion

operator.



1.1 Jet Spaces and Prolongations

Throughout this paper we will work with the Euclidean spaces
X o~ RP  with coordinates x = (X'l’ e ,Xp) and U ~IR with
coordinate u. The variables Xysooos Xp should be thought of as the
independent variables and u as the single dependent variable.in a
given partial differential equation. (Generalizations to systems of
p.d.e.'s in many dependent variables are immediatef, but; will not be
needed in the applications considered here.) Multi-index notation will

be used throughout.
If o = {j i = 3 i
S J (31,.,..,Jp).) then (NR | Ji+°..+3p,

J =

. jp! ,and, whenever I < J (which means i < jv)

1 At
.],1'J2‘

(+) « i

Given a smooth (C®) function u = (x), the J-th partial derivative will

i1 joo.
o P

R and 8i=8/axi.

= BJf(x).,A where BJ = 9

be denoted by ug =

p+ k-1
Note that there are Py = < . > different partial derivatives

U of order k= 171,

Define the k-jet space J, = Jk(X X U) to be the Euclidean

space of dimension p+ 1+ Py ...t Py with coordinates

- k vem - - ..
(X’u( )) = (Xi,a.,xp;u; ce.u_...) for I k. Given

a smooth
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function u = f(x), there is an induced function u(k) = jkf(x), called

the k-jet or k-th prolongation of f, given by u = E)Jf(x). Thus J_

represents the total space of smooth functions together with all their
partial derivatives of order £ k., A smooth function P: Jk - R will

be called a partial differential function (or p.d.f. for short). This is

because the subvariety {(x, u(k)): P(x, u(k)) = 0} in Jy is a partial
differential equation.,‘ the solutions of which are those functions u = £(x)
such that P(x, jkf(x)) =0, or, ‘equivalently',l the graph of j f lies
entirely within the subvariety. We will occasionally find it convenient

to use the o-jet space J which is the direct limit of the k-th

© *
spaces Ji, . Thus for u= f(x) smooth, we can form the oco-jet
u(oo) = joof(x); which can be identified with the Taylor series of f
at =x.

Givena p.d.f. P:J ~R | | Qo the

total derivative‘,” Di‘,' of P with respect to X #s the p.d.f.
DiP:Jk—H - JR satisfying
D, P(x, i, ,f6) = 8,[P(x, ] f(x))]
for any smooth function f. It is easily seen that
D; = 81+ S uJ_.BJ s (1.1)
T i
where BJ 8/8113_ , J'i (_]1, ,Ji_i,Ji+1,Ji+1, ,Jp) and the

sum runs over all p-multi-indices (although for any fixed P only
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finitely many summands are needed). Given a p-multi-index K,

Kk 1% k -
abbreviate D = D1 DZ Dpp . Also, given a p-tuple

;Pp) of p.d.f. 's.,' define the total divergence

P=(P,...

i = . 1.
Div E Dipi + DZPZ + + DpPp (1.2)

Suppose G is a local Lie group of transformations acting on
the space XX U of independent and dependent Variables; as in [43]
or [38]. G acts locally on smooth functions u = f(x) via trans-
forming their graphs. There is therefore an induced local group

k
action pr( )G on Jy » called the k-th prolongation of G and given by

pr®g (5, 56) = (&G (& DED
where (%,g-£(%)) = g- (x,f(x)) (The reader should consult ['10]V,A
[38] or [40] for a detailed discussion of this construction. ) Similarlyv,'
by taking direct limits.,— we get the co-prolonged action” "p‘r(oo)G on Jfool,.
whose restriction to any Jj is just pr(k)G. The prolonged group
action in general is exceedingly complicated to analyze directly.

However, the infinitesimal generators of the prolonged action have a

relatively simple expression, as is proved in [36] and [38].
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Suppose

Theorem 1.1.

R P |
£ (X,u)é)l1 +... +§& (X,u)ap + o(x,u)d,

n<

is a vector field on X X U which generates a local one-parameter

The corresponding infinitesimal generator of the

group exp(tv).

co-prolongation of this group pr(oo)[exp(ty)] is the vector field

P .
J
pr(oo);’ = > gt 000 (1.3)
i=1 J
whose coefficient functions are given by
(1.4)

o= Do ety + gl
1

(Here u, 811/8Xi ,and J, s defined above. )
are found by truncating

pl,(k),i_,

The finite prolongations

the sum in (1.3) for Z J < k.

with

Given a p.d.f Q_(X,u(k)), define the "vector field"

characteristic Q on J'OO as

J
Yo © E D QBJ_.
J
For example‘,A k.
= D, - 81 s

where we are re-interpreting the total derivative (1.1) as a vector



Then formula (1.3) can be rewritten in the concise form

field.
B . .
() _ i
pr ¥_¥Q+_§:€Di’
i=1
P i
WhereQ—qo—z &ui.
i=1
Note that .

the prolongation preserves the Lie bracket:

pr(oo)[g:\g] = [pr(oo)x:r','pr(oo)gv]o

13-

(1.6)

(1.7)
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1.2 Symmetry Groups of Partial Differential Equations

| A. k-th order pid.e.
in p independent and one dependent variables can be thought of as the
subvariety {P(x, u(k)) = 0} of Jy given by the vanishing of some

p.d.f. P: Jk -~ R. A point transformational symmetry group of this

p.d.e. is a local transformation group G actingon X XU which
transforms solutions to other solutions. The following theorem gives
an infinitesimal criterion for a connected group to be the symmetry

group of a given p.d.e.

Theorem 1.2. Let G be a connected local group of trans-

formations acting on X X U. Let P:J;, — IR be a p. d.f. such that:

a) (Nondegeneracy) The gradient of P with respect to all

(k)y

the variables - (x, u never vanishes.

o (k
b) (Local Solvability) For every point (xo, uo( )) € Jp

such that P(XO; u (k)) = 0.,' there is a solution u = f(x) defined in a

0
neighborhood of h that j, f = (k)
g ood of x, such that j (Xo) = ug

, C(k
Then G is a symmetry'group of the p.d.e. P(x, u( )) =0

if and only if

or PG, ] = 0 (4.8)

H<

~ (k
whenever P(x, u( )) = 0, for every infinitesimal generator v of G.

(If assumption b) is dropped.,. then (1.8) is just a sufficient condition

for G to be a symmetry group.)




45

In practice, to find the symmetry group of a given p.d.e.,
condition (1.8) yields a large number of elementary p.d.e.'s in the
coefficient functions of the infinitesimal generator xzr., whose general
solution is the most general infinitesimal symmetry of the given p. d.e.
Examples of the célculation of symmetry groups, and proofs of this
theorem may be found in [4],[40] and [38]. ' Note also that formula
(1.7) implies that the space of all infinitesimal symmetries forms a
Lie algebra, hence we can exponentiate to find a corresponding Lie
group. (Here and elsewhere we will ignore deep theoretical
questions in the case that this algebra is infinite dimenstional, cf.[22].
Usually the integrability will be obvious from the explicit expressions

\

for the infinitesimal generators. )

The goal of this section is to suitably generalize the notion of
symmetry beyond the purely point—transforrna’cional symmetries
diécussed so far. Additional references for these generalized sym-
metries include [1].,'[2'1] and [50]. Essentially we will allow the
transformations to depend on the derivatives of the dependent variable

in addition to the values of the independent and dependent variables

themselves. ' Thus we formally write down a generalized infinitesimal
generator as P s - .
- i oK) (k)
g = iE_i £ (x,u )Bi + o(x,u )au ) (1.9)

where £ , . ,g and are arbitrar .d.f.'s. The prolongation
1 p 9 vy P p g
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of v will be given by Theorem 1.1, or, more concisely, by the exact

analogue of formula (1.6):

(=)

> giDi . (1.6%)

i<
n<

Q

where Q = ¢ - 2 glui . We will call v a generalized infinitesimal
symmetry of a p.d.e. P(X','u(k)) = 0 if pr(oo)y[P(x, u(k))] = 0
whenever P = 0. In practice this means that there exist nonvanishing

p.d.f.'s RJ_ such that

pr(oo)\__{(P) = Z RJDJP . (1.10)

Notice that by formula (1.6'); v as given by (1.9) is an infinitesimal
i .
= Q9 = (0 - >3 &ui)au is an

We will

symmetry of P =0 if and only if

n<?

infinitesimal symmetry.

call Q the characteristic of the vector field v, and two vector fields

will be called equivalent if they have the same characteristic. The

vector field Qau will be called the standard form of a vector field
with characteristic Q.  The above remark shows that we may
restrict our attention to vector fields in standard form.

What is the group action corresponding to a generalized
infinitesimal symmetry ? Now exp(tg) can no longer act on X X U
since the derivatives of functions must also be involved. In the case
lae]

(

= Q9 is in standard forml,“ we can let exp(tv) acton c® = ¢ (x),

i<

the space of smooth functions f:X - U.,i as follows. Consider the
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initial value problem

ou  _ - (k) _
30 = RExu™) ,  ulx0) = i) . (1.11)

Throughout this paper;. we will always assume that (1.11) has a unique
solution for t sufficiently small. (This may require shrinking the
space c® to require some decay properties of f at +co.) The solution
of (1.11) is then

u = f(x,t) = exp(tg)f(x),

which defines the group action generated by v . In other words,

v = Qau is the infinitesimal generator of the flow defined by the
evolution equation u, = Q. It is straightforwardly checked that this
definition of eXp(t;_r) gives rise to the correct prolongation formula
pr(oo)(Q Bu) = v . Moreover, if v is an infinitesimal symmetry
of a p.d. e. , then whenever u = £(x) is a solution, so is

¥ = exp(ty)f(x). (Interpretations of exp(ty) for nonstandard y's
can be foundl,” but si;'lce we will usually assume our vector fields are

in standard form',' we will not take the trouble to do this here.)

Example 1.3. Consider the case p = 2, and let G = IR be the group

of translations in the first coordinate!
G: (x,y,u) - (x+t,y,u), telR.
The infinitesimal generator of G is v = BX . A standard representa-

= -u Bu .  Indeed, to "exponentiate" ¥ , we must

tive of v is
= x

H<
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solve the evolution equation

The solution is

P,y t) = exp(t¥)i(y) = -t y)

n<?

On the other hand, using the definition of group action on functions

given in sectim 1.1,

exp(ty)f(x,y) = f(x-t,y) .

e . O
Therefore v and ¥ generate the same group action on C ,

thereby justifying the term equivalent.

Note that if Q= z RJDJP for some p.d.f.'s RJ_.,v then
QBu is trivially an infinitesimal symmetry of the p.d.e. P =0,
Such vector fields will be called trivial symmetries, and two
standard infinitesimal symmetries of P = 0 will be termed equiva-
lent modulo P if their difference is a trivial symmetry. Of course.,‘
we will mainly be interested in nontrivial symmetries of a given
p.d.e. , i. e, , in equivalence classes of symmetries.

(The reader should not confuée these generalized symmetries

with contact transformations, cf.[7]. -~ The two concepts are

different. )
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1.3 Recursion Operators

Given a partial differential equation',i we would like to describe
all possible generalized infinites:imal symmetries of it. One method
is to restrict our attention to symmetries whose characteristic Q
depends only on the derivatives of order < k Then equation (1.10)
yields a large number of p.d.e.'s in Q which are often solvable by
elementary methods, and so we obtain all possible symmetries of
order < k. Of course, this method is limited by having to choose
k finite before beginning. In this section, a different tactic is used,
and; through a device known as a recursion operator.,. ‘we show how to

find infinite families of symmetries.

Definition 1.4, A recursion operator for the p.d.e.

P(X','u(k)) = 0 is an operator 7 acting ‘on the space of p.d.f.'s such

that whenever Q is the characteristic of a symmetry of P = 0, then

Q) is also the characteristic of a symmetry.

The basic mechanics behind finding recursion operators; as
well as a number of examples;' is to be found in [35]. Given a p.d.f.
PI,‘ define the operator

_ - J
A = ;’ 8 P/ D" . | (1.12)

1<

Note that A_(Q) = Q(P) for any P;Q .
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Theorem 1.5. Suppose p is an operator on the space of

p.d.f.'s such that

A _D = D'AP (’1.'13)

for some operator p! of the form ! o= Z RJDJ. Then p is a

recursion operator for the p.d.e. P = 0.

The proof is immediate using (1.10) and the definition of A .
In the special case of linear equations, recursion operators are easy
to find. In fact, whenever we have a linear symmetry, we automatically

have a recursion operator.

Proposition 1.7.  Suppose A = Z a.J.(x)D‘I is a linear partial

differential operator. Suppose v = Qau is an infinitesimal symmetry

of the linear p.d.e. A(u)=0 suchthat Q= D(u) = z bJ(X)uJ.

Then p = Z bJ(x)DJ is a recursion operator for A(u) = 0.

Proof. Note first that éA(u) = AI,' so the symmetry condition

(1.10) implies

T
P>
D
———
c
S®
1
o

A(Q)
whenever A(u) = 0. Therefore if P is any p.d.f. , A P(P) =0
whenever A(P) = 0. (Just substitute P for u in the preceding. )
But this implies that if P is the characteristic of a symmetry; so 18

D (P)r,. which proves the proposition.
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Example 1.8. Consider the Laplace equation in ]Rp, S0
15 2
A= 9. . It is well known that the point transformational
i=1

symmetry group of A(u) = 0 contains the conformal group in RrP.
In case p 2> 3A,- the Lie algebra of the symmetry group is spanned by

1
the —2—(p+1)(p+2) vector fields in the conformal algebra

t = -9 i=4,...,p
=1 i ‘
.= -x,0, + x,0, i< .] = 1, s P
=1ij i’j ji

P (1.14)
@ = x
- i=1 1

2 P,

C e - =4,...,p.
i 2%, g:i xiai + (E %, )8k+(p 2.)xkuaUL k=1, , P

and also the trivial subalgebra spanned by

0
= ud and @
u

<

<

i
2
X
Q@

‘where o is any solution of the Laplace equation. (The superscripts
t,r,d,i stand for translation, rotation, dilation and inversion.) The

standard representative of the conformal symmetries are

T, = -, i=4,..., .
£y = 90 L= b s
T o= - <j=1
zij (xlu X Ui)a ’ i ] , s Ps
p (1.45)
da = ——‘, x.u,0 ,
= -3 i
T.= [2 = > %Yo, + (2-p)x, ul k=1
1, = X X1 . X, )ay, P)xy s ’ s P
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Therefore, according to Proposition 1.7, we have the following

-Z‘(p+1)(,pl+2.) recursion operators for the Laplace equation:

T = D i=1, 2 P s
i i
R__ = x D, - xD, 1<J:'1, s Ps
1) 1] J 1
p (1.15)
< 3
voo= ,24 XlDi
i=1
P _g
Ik= 23 ZixD + Z{i D +p2)x y k=1, )
i= =

1
Since there are q= E(p+1)(p+2) recursion operators,

kt+qg-1

there are (
k

) different linear symmetries where the

characteristic is of degree k, which may be obtained by applying
k-fold products of the recursion operators to u. HoWever; some of

these are trivial ; . for instance

In the case p =3 it can be shown;.[S];- that there are 55 different
second order symmetries; but there are 20 linear relations between
these, so there are actually only 35 nontrivial equivalence classes

of symmetries. I do not know how many nontrivial equivalence classes

of symmetries of degree k there are in genei'al, nor whether every
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symmetry is linear and can be obtained by using only these recursion
operators, although I strongly suspect this to be the case. The
reference [5] should be consulted for further details on this problem.
In my opinionl,i Proposition 1.7 fully delineates the difference
that exists between the two schools of symmetry group theory. On the
one hand, Ovsjannikov [40]; Bluman and Cole [4] and others have
viewed infinitesimal symmetries as vector fields on the space of inde-
pendent and dependent variables, as in the definition in section 1.2.
On the other hand, Miller, Kalnins',‘ Boyer [28] and others have
usually restricted their attention to linear equations; and have viewed
symmetries as linear partial differential operators. The key point is

that the operators of Miller's group are just the recursion operators

corresponding to the standard representatives of the symmetry groups
of Ovsjannikov.,k et. al. For linear equations',v Proposition 1.7 shows
that these two concepts coincide. Hovvever.,‘ for nonlinear equations','
as was shown in [35] and will be discussed in detail in Chapter 4V,A
there is a genuine distinction‘, and a symmetry does not necessarily
give rise to a recursion operator. (See also [37] for an equation with

symmetries but no recursion operators.)
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2. Formal Variational Calculus

The treatment of problems in the calculus of variations by
formal algebraic techniques has received new impetus from the
investigations of Kru..skal; Miura; Gard ner and Zabusky; [20]; and
Gel'fand and Dikii, [4 2], [43]. In this section‘,' we continue the sys-
tematic development of these methods for the genf;ral study of

conservation laws which was begun in [37]. .

The key algebraic step is the introduction of the
generalized Euler operators. These give a simplified presentation
of Gardner's Poisson Bracket, [11]; at the end of £he first section.
The second section introduces the symmetriesl,‘ generalized
symmetries and divergence transformations of Bessel-Hagen.
Noether's theorem then reduces to an exercise in integration by parts
once the infinitesimal criterion of invariance is established',v giving
a complete equivalence between symmetries and conservation laws.
The final section considers substitution maps‘," which are used when-

ever a change of variables for a p.d.e., such as the Miura trans-

formation, is needed.
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2.4 The Euler Operators

The most important operator occurring in the formal variational
calculus is the Euler operator or variational derivative. Given a
s (k) .
variational problem I{u) = L(x,u" ’)dx where L, the Lagrangian
, Q
of the problem, is a partial differential function and Q is an open
subset of IRP, the (sufficiently smooth) extremals of I satisfy the

well-known Euler equation’ E(L) = O; where E = §/6u is the Euler

operator. Integration by parts shows that

E = Z(—D)JEJ. (2.1)
7

For the present purposes; the most important property of E stems
from the following resolution. For technical reasons, we must
restrict our attention to the differentiai algebra Av consisting of
partial differential polynomials in u and its derivatives with arbitrary

smooth functions of x as coefficients. First, define the operators

F=Eu-41= > (-D)JuSJ. ) (2.2)

and

N

]

> ugdo . (2.3)

Note that N has the effect of multiplying each monomial by its degree.

Further define the " total exterior derivative "

D:A ®ANRP - 4 @ AAHRP (2.4)
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D(Pew = X DPOe b0, ‘
where ei; .,‘ep is the standard basis of ]Rp, and w. & AkIRp.
Theorem 2.1, The following sequence
0> A @NRP 2 Agh IRP S e a4 ®/§§§ap—l a2
-E—A F-N,_ 4 §+1: A E-N_ 4 F+i ...

is exact.

A proof of this result in the case p = 1;. along with ex?amples;
may be found in [39]. This more general case, and a further
generalization to differential algebras involving more than one dependent

variable may be found in C. Shakiban's thesis‘,' [45].

Corollary 2.2. Suppose L is a p.d.f. Then L = Div P

for some p-tuple P of p.d.f.'s if and only if E(L) = 0.

This corollary is well known;- cf. [13] or [ZO]V,V and holds in the

more general case of p. d. functions rather than just p.d. polynomials.
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Corollary 2.3. Suppose Q is ap.d.p. Then Q=0 isthe

Euler equation for some variational problem with Lagrangian L,

meaning Q= E(L), if and only if F(Q) = N(Q).

This second corollary is false for p.d. functions; see [45] for
a counterexample.

The remainder of this section contains some rather technical
formulae that will be needed in the sequel. 'The reader is advised to
just skim this material at first and then proceed to the more relevant
applications, |

Given a p-multi-index K, define the K-=generalized Euler

operator

J
g% . > (K> (-D)J"KaJ, (2.5)

K<L7J
These are the multi-dimensional analogues of the generalized Euler

operators introduced in [20] and [37]. Note first that for any other

p-multi-index J.,.

S(E-7)

gElpT (2. 6)

0 otherwise

Thus.,‘ using Corollary 2.2;' the Euler operators E<K) can be used to

investigate where a given p.d.f. is a higher order total derivative of
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some other p.d.f.; we leave the details of this to the reader. Our

immediate goal is to establish some general integration by parts

formulae.

Lemma 2.4, Given a multi-index J ,

ap’ P = > (;) bI[P(nD)J_IQ]o (2.7)
1< 7T |

for any p.d.f.'s P and Q.

The proof of (2.7) is a straightforward exercise in induction.

Consequently, we have

Lemma 2.5. For any p.d.f.'s P and Q
K K
:_zP(Q) = > D (PE(I)Q) : (2.8)
Moreover;
gP(Q) = PE(Q) + DivR (2.9)

where R = (Ry,...,R ), and

1 B
R=2;ED(PE

Kgy

the sum being over all multi-indices K with ki > 0, Here #K denotes the

number of nonzero entries in K,and Ki = (ki,..,,ki_i,ki—tl,ki_'_i,.,,.,kp) .
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The proof is self-evident from the definition of (1.5).

ip’

Next an important product formula for the Euler operators is established.

Proposition 2.6, Let K be a multi-index and P and Q be

p.d.f.'s. Then

J

2w 0= 3 (1) Erna + 2@ e (2..10)
K<J )

Proof. Note that by Leibnitz' rule, E(K)(PQ) is a sum of

two terms, one of which is

S (D Sane - 22 (D) o e e

J2K K<J L<£J-K

M

%(L:{K (—D)LQ Z < J )(—D)J-K=L8JP,

L+K<J VLK

The other term is found by interchanging the roles of P and Q. This
proves (2.10).

If we define the operator
B, = > @)t | (2.11)
=P
I
then formula (2.10);‘ in the case K = 0 can be written concisely as

E(PQ) = B (Q) + =BQ (P) . (2.107)
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Lemma 2.7. For any multi-index K,

KE'
LKL ‘E . (2.12)

The proof of (2.42) is very similar to the one-dimensional case,

which may be found in [37, Lemma 2. 7], and is omitted here for the

sake of brevity.

Corollary 2.8. Given a multi-index K, for any p.d.f. P in
the image of E
K|
B o (0 = (1) ¥ g (P (2.13)
DbTP DO

for any p.d.f. Q. In particular, for such P‘, EP = éP

Proof. Let P = E(L) for some L. Thenl, by (2. 6),

ZE (DVE(L))(-D p) o

c
i}

which proves the lemma.
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As a consequence of these considerations we have an elementary

proof of a generalization of a result of Gel'fand and Dikii, [13; Theorem 1],

Proposition 2.9. Suppose K is a multi-index and P and Q

are p.d.f. s in the image of E. Then

K iK{
E(QD"P) = v . (@) +(-1) " ¥ . (P).
"DP DQ
In particular; if IK| is odd;‘
K ' K-
{P,}" = [P,Q],
where {, } is the Gardner-Poisson bracket,
K K
{P,Q}" = E(QD"P)
and [ , ]K is the generalized Lie bracket;
[P’ Q] = X K (P) - ¥ K (Q) ?
D'Q D'P
which satisfies
- . - K -
[v o ¥ g 17 ¢ » R=[P,Q]",
“pEp ’DKQ “pER

(the last bracket being the ordinary Lie bracket of vector fields).

(2.14)

The Poisson bracket of Gardner; [11] , which leads to the com-

plete integrability of the KAV equation as a Hamiltonian system corres-

ponds to the special case p=1 and K=k=1, Proposition 2.9 therefore
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provides a whole family of "Poisson brackets® for p.d.f.'s corres-

ponding to each multi-index K with IKI odd.
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2.2 Symmetries of Variational Problems

Syppose I(u) = / L(x,ku(k)) dx 1is a variational problemg
o ,
A local Lie group

of transformations acting on X X U will be called a (point transforma-

tional) symmetry group of I if for every subdomain Q'C £, every

smooth function U = £(x) defined over ' and every group element g
such that u= g-£f(x) is a smooth function decfined over a domain
Qe D; then

f~ L(%, (g - (%)) % = f L(x, 5 H()ax

2! Qt

In other words the value of integral I over arbitrary subsets of £ is
unchanged by the group action of G. The following result is the
standard infinitesimal criterion of invariance for a variational problemv;v

see [14] or [18] for proofs.

Proposition 2.10, Suppose G is a connected local group of

transformations acting on X X U. A variational problem with

Lagrangian L is invariant under G if and only if

P .
oo i
pr( )g(L) + (> DENL = ¥o(L) + Div(IE) = 0 (2.15)
i=1 - -
for every infinitesimal generator v = z £18i+go8u of G. where
T i=l

P
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I

¢ - 32 glui is the characteristic of v, and

é = (E,l,,..,glg)g. o

For. the case of generalized symmetries, the infinitesimal

criterion (2.15) obviously generalizes to when the coefficient functions

of the infinitesimal generator v are p.d.f.'s. Moreover, in the case

= Qau is in standard form, then it is easy to check that YQ(L) =0

n<

if and only if I(u) is invariant under the one parameter group exp(tx’__{)
defined by the appropriate evolution equation, (1.11). However‘,- owing
to the presence of the divergence term in (2.15'), it is not necessarily
true that a vector field is a symmetry if and only if its standard form
is. To rectify this situation.,‘ we make the following generalization of

the notion of symmetry;- due to E. Bessel—Hagen; [2].

Definition 2.11. A (generalized) vector field v= >3 §18i+qo 8u

is an infinitesimal symmetry modulo- divergence of I = j L dx if

there is a p-tuple R = (Rl;. .. A,"Rp) of p.d.f.'s such that

v (L) = DivR , (2.16)

i
whi = ¢ - .
ere Q=¢ - § u,
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If we make use of the property of the Euler operator as given

in Corollary 2.2',' condition (2.16) is equivalent to
E(v (L)) =0. (2.47)

Moreover, the integration by parts formula of Lemma 2.5 shows that

this in turn is equivalent to

E(Q-E(L)) = o0. (2.18)

Thus finding the characters of infinitesimal symmetries (mod divergence)
of a variational problem with Lagrangian L is equivalent to finding the

kernel of the operator o -5 E(P.Q), where P = B(L):

Proposition 2.12. If a vector field v is an infinitesimal

symmetry modulo divergence of a variational problem with Lagrangian

L, then v is an infinitesimal symmetry of the associated Euler

equation P = E(L) = 0.
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Proof. Let Q be the character of v. We make use of the

Euler product formula (2.10%) and also formula (2.14)

(@]
1

E(QP)

This immediately implies that VQ(P) = 0 whenever P = 0, hence
Q is the character of a symmetry of P = 0.

Note that the converse to this proposition is not true.
In general, a symmetry of the Euler equation must satisfy some

additional restriction in order to be a symmetry of the associated

variational problem.

P2
Example 2.13. Consider the Lagrangian L = Z u, -
i=1
equation associated with L is the Laplace equation A(u) =0 in RP.

The Euler

Here we investigate which of the conformal symmetries (1.44)

. are also symmetries of the variational problem

I=dex. " ' : [ . First the

translations and rotations are (ordinary) symmetries of Ie
For the dilatation subgroup, ST e T o

{ , - . -
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Q= z x.u, and

H<

Q(L) + Div(L§g) =

N

(2-p)L .
Thus, except for the case p = 2; the

dilatations are not symmetries of I. However, if we consider

1 .
m = g+(5p-1)u8u,

1
. . . i — u + (=
then the new characteristic is Q E X, u, ( >

[E.

Yol =y (@) + 5lp-2)L,

hence m is a symmetry of I. Finally, in the case of inversions _i__k,

1<

(1) # Div(LE) = (2-p)un, = D(F(2-p)"),

—

hence these are symmetries mod divergence of I, but not

ordinary symmetries,
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2.3 Conservation Laws and Noether's Theorem

Given a partial differential equation P(x, u<k)) = 0,

a conservation law consists of a p-tuple R = (Ri’ co s Rp) of p.d.f. s

such that the equation

DivR = 0 (2.19)
is satisfied for all solutions u = f(x) of the original equation. Under
mild nondegeneracy assumptions on PV,4 this is equivalent to the

. . J

existence of p.d.f.'s SJ, such that Div R = 2 SJ_D P. In the
special case one of the independent variables is time t, so that (2.19)
is of the form DtT + > D’Ri = 0, then T is called the conserved

i —_—
density. A straightforward application of Stokes' theorem shows

0o
that the quantity /T(x,t,u(k))dx is independent of t whenever u = £(x)
-0

is a solution of P = 0, provided the solution u(x,t) decays.

sufficiently fast for large | x

0 holds identically is

A conservation law such that Div _I_l

I
N

R = (u ,-ux) gives

called trivial. For instance, in the case p v

rise to a trivial conservation law since Dx(uy) + Dy(-uX) = 0.

In general.,” according to Theorem 2.1.,“ the trivial (polynomial) con-

oy =)
JP. '?
servation laws are those in the image of D: AN RP -~ A ®N RP.
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A second s . type of triviality occurs when the entries of R
are in the "ideal" generated by P, i.e., Ri = Z SiJDJP for some
nonsingular p.d.f.'s SiJ . In general, we will only be interested in
nontrivial conservation laws.

From now on assume that the p.d.e. under consideration arises
from a variational problem, P = E{L)= 0. The main thrust of this
section is to find for such p.d.e.'s a relationship between symmetry
groups and conservation laws. The main theorem in this respect is

due to E.Noether, [34]. The generalization stated here is due to

E.Bessel-Hagen, [2].

Theorém 2.14. Suppose I= fL(X, u(k)) dx is a variational

problem with Euler equation P = E(L)=0. If v= Qo isa standard
- 0
infinitesimal symmetry mod divergence of I, so that v Q(L) = Div R
for some p-tuple _130, then the conservation law Div R = 0 holds for
the Fuler equation where
K, ‘
0 v 1 i,  (K) *
= —— . 2.20 ‘
R, =R, + > g D (QET(L) (2.20) |

5 |

Conversely, if we have a conservation law R of the Euler equation, so

DivR = > SJDJP

for some p.d.f.'s SJ , then = Qau is an infinitesimal symmetry

n<

mod divergence of I>,1 where

Q= > (-D)JrSJ . (2.21)
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The proof of this theorem is nothing more than an exercise in
integration by parts using the formula of Lemma 2.5. Note further

that as P is nondegenerate in the terminology of Gel'fand-Dikii

[12];. so that z SJDJP = 0 if and only if each S = 0, Theorem 2.14

giwe s a one-to-one correspondence between nontrivial conservation
laws and nontrivial infinitesimal symmetries modulo divergence. The
characteristic Q of the symmetry corresponding to a given conserva-

tion law will also be called the characteristic of that conservation law.

Thus we have reduced the problem of finding the conservation laws of
a given Euler equation to the problem of finding the symmetries of the
corresponding variational problem. Moreover; according to
Proposition 2.12‘,” these symmetries occur among the symmetries of
the Euler equation itself, It remains to find sufficient conditions for

a symmetry of the Euler equation to be one of the variational problem.
This will be done in two special cases -- linear equations and evolution

equations -- in the following two chapters.
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2.4. Substitution Maps

A useful device in the study of partial differential equations is
the finding of (nonlinear) substitutions or change of variables that
simplify the equation under consideration. Here we formalize this

concept under the name of a substitution map.

Definition 2.15. Suppose P is a p.d.f., then the substitution

map § associated with P is the map that replaces the variable u

in a p.d.f. by the expression P. In other words

. s . .. .- J .
S[Q(X,u,..,,uJ,”,)] = 0(x,P,..., D P,...).

Note first that S is a differential algebra morphism;. meaning
s(aroy) = s@+ se,
s(e-0Y) = s(@)- s(@), (2.24)
S(DiQ) = D;S (Q) .

As an example, consider the Hopf-Cole transformation relating non-

vanishing solutions of the heat equation to solutions of Burgers' equation,

v

e

cf. [9],[16].
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For our purposes‘,A the key observation is that if E(L) = 0
for some p.d.f. L,v then also .E(SL) = 0 for any substitution
map S . This is a trivial consequence of Corollary 2.3 and the
last identity in (2.21).,  We will, however; need to find "E(SL)

explicitly in terms of E(L) itself.

Proposition 2.46. Suppose P and L are p.d.f.‘s,A and S

is the substitution map associated with P. Then

E(SL) = B SE(L) , (2.23)

where EP is the operator defined in (2.11).

Proof. Note first that

I
S = E . S .
83_ L : SJ_DP SIL

Therefore
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[H

E( SL)

a

>
J
§J: IELS L I
- L
= §1—’ % ;( ;K>(- )LaL+KDIP s(-D) 8L
= > ZE(K)DIP-S(—D) 5 L
I K
- (K-I) K-I I
= Izl > E P(-D)" "8 (-D) 8;L

= B,SE(L)

We have made use of (2.6).

2
As an illustration, suppose P =u + pu . Then EP = 2u - uD,
so (2.23) says

E(s L) = (2u - pD) SE(L) .

This means that if we replace u by P ina variational problem, then
the new Euler equation is obtained by replacing u by P in the original

Euler equation and then applying the operator 2u - pD.
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3. Applications to Linear Equations

In the first chapter it was shown how every linear symmetry
of a linear p.d.e. gives rise to a recursion operator, and hence an
infinite family of symmetries. Here we restrict our attention to
self-adjoint linear p.d.e.'s, and find necessary and sufficient condi-
tions for a linear symmetry to give rise to a conservation law via
Noether's theorem. This in turn implies that the number of inde-
pendent nontrivial quadratic conservation laws is the same as the
number of independent nontrivial odd-order symmetries. In addition
for each recursion operator, there is also a recursion formula for
both linear and nonlinear conservation laws, given in Theorem 3. 3.
The second section of this chapter relates the theory to the Laplace
and wave equations; and displays some of the higher order conserva-

tion laws obtainable.
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3.4, Conservation Laws & Self-Adjoint Equations

In this chapter we will study linear p.d.e.'s in p independent

and one dependent variable, which will be written as

Au) = (z aJ_(x)DJ)u = z aJ_(:x)uJ = 0, (3.1)

It will always be assumed that (3. 1) arises as the Euler equation of a

variational problem with quadratic Lagrangian; equivalently, A is

a self-adjoint -, 1 differential operator.

Suppose that Q is the characteristic of a

conservation law of (3.1). Recall that this is equivalent to Q being

a solution of

E(QA(u)) = 0. (3.2)

For the moment, we restrict our attention to quadratic conservation
~laws, so Q = D (u) ° where 0 1is a linear partial

differential operator. By Proposition 2.12, (3 is the characteristic
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of a symmetry of (3.1). Moreover, Proposition 1.7 shows that this is

true only when D is a recursion operator for (3.1). Therefore D
A A

must satisfy AD = D A for some other p.d.o. D. The next

result gives the necessary and sufficient condition for a recursion

operator of (3.1) to give rise to a conservation law.

Proposition 3.4. A linear p.d.f. Q = p (u) is the

characterisitc of a conservation law of the self-adjoint linear p. d. e.

A(u) = 0 if and only if the operator AD is skew-adjoint, which means

AD =- D A . ' (3.3)
Proof. Using the Euler product formula (2.10%) and formula
(2.13), we have
B(QA@) = ¥ [A@)]+ B [AW] .

Now

v JAW)] = Ay (@) = A(Q) = AD (u).

On the other hand, if D = bjDJ , then

Bola] = 3 (D) @B ba))

This completes the proof.
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Corollary 3.2. If the operators p and A commute, and

A is self-adjoint, then Q= P (u) is the characteristic of a conserva-

tion law of A(u) = 0 if and only if D is skew-adjoint.

This gives a complete characterizationof the generalized linear
symmetries which give rise to conservation laws. The next theorem
shows that every recursion operator for the symmetries of (3.1) yields

also a recursion operator for conservation laws.,

Theorem 3.3. Suppose the linear partial differential operator

D is a recursion operator for the self-adjoint linear p.d.e. A(u) = 0,

A
This means that AD = D A for some linear partial differential

operator % Let S be the substitution map associated with D(u).

Then if Q is any (not necessarily linear) characteristic of a conserva-

) - L~ A :
tion law of A(u) = 0, then sois Q = 0 S Q. Inother words,
. A %k .
R = D S is a recursion operator for characteristics of

conservation laws. Inparticular; if D satisfies (3.3), thenm R = -0S .

Proof. First note that

S Alw) = A( Su) = AD (u)'= PA(a).

Therefore;_ using the remarks preceding Proposition 2.16 ,
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E[Sam)] = E[ 0" sQ-AW)]

= E[SQ- DA(w)]

= E[ s(Q- A(u))]

Theorem 3.3 implies that given a single conservation law,
and given a single linear symmetry D(u) of A(u) =0, we can con-
struct an infinite family of conservation laws by repeated application
of the recursion operator R associated with D to the characteristic
of the given law. For the case of quadratic conservation laws, much
more can be said. Let ( denote the algebra of all linear recursim
operators of A(u) =0, so

A
U.= {p :AD = DA}.

A .
Note that the operator D is uniquely determined. Furthermore, if

L A*
De U, thenalso D e U because

A~ Sk * % *
A0 = (DAY = (ap) = D A.
: 1 2 x - .
Moreover, the operator 3 (D - D ) satisfies the condition of Theorem
3.1 since
A K N * Ay
A(D - )= (D-0)A=-(D - D) A

Therefore to each operator De U there is a well-defined operator

1 A
D ¢ = B (P - D ) which gives rise to a conservation law of
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A(u) = 0. Examination of the highest order terms of these operators
shows that if D= Dn + lower order terms, and A = Am + lower

order terms, where n and m indicate the respective orders, then

ATD = A D/ '+ f,ot. = D A + L.o.t ,
m°~ n n_ m
Ak
hence 7 = p, * Lot . Moreover, D = (-1)n D, t Lot

hence D is an n-th order operator if and only if n is odd. This

proves the following.

Theorem 3.4. Let ( denote the symmetry algebra of the s

self-adjoint linear p.d.e. A(u) = 0, and let U¢ denote the subspace

of operators giving rise to conservation laws, i.e., satisfying (3.3).

c 1

sde
There is a well-defined map p —- 0D = —Z(D _— ) from

U - U, Let L denote the collection of all linearly independent

leading terms of operators in (] , and let L 0 denote the leading

terms of odd order. If B: L - U is a map that assigns to each

leading term a basis element f(D n) =p t Lot of U , then

0.
the map fSC: 17 = U°  defined by ﬁc(p n) = B(p n)c gives a basis

of U o and thus a complete set of independent quadratic conservation

laws of A(u) = 0.

In a less precise fashion, the "number" of different. odd order
leading terms of linear recursion operators of A(u) = 0 is the same
as the number of independent quadratic conservation laws. To further

rule out trivial conservation laws in which the characteristic is a
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function of A(u), D = D'A for some D‘, we let {A} denote
the left ideal of all differential operators of the form D'A, and con-
sider the coset space u/{A}. These correspond to nontrivial
recursion operators and each different odd order leading terms in
u/{Aa} will give rise to an independent, nontrivial conservation law.
It often turns out that U can be realized as the universal
enveloping algebra of the Lie algebra ? of point transformational
symmetries; cf. [19]I . In this case‘,‘ if we let D 1, ces D be a

basis of the first order recursion operators associated with a basis

of ZL , then by the Poincare-Birkhoff-Witt theorem a basis of U is

given by all the products Di Di D with i, i< .0 2y
1 2 k
Ak ,
We can assume that each D, satisfies 0, = - 0, (Otherwise
replace 0. by D.° Do Then according to Theorem 3.4,

a basis of u® is given by all the expressions

1 |
2t o, 0, cvvp, + D, D, e D] (3.4)
SRR K Yoo k-4 1

corresponding to ii< i € ++.+. < i and k odd.
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3.2. Applications to the Laplace and Wave Equations

To indicate the possible applications of the theory of the preceding
section, we show how to construct families of conservation laws of the
Laplace and wave equationg, These conservation laws have been used by
Morawetz, [32],[33] and Strauss, [46], to give existence theorems and
decay properties for solutions of certain nonlinear wave equations. The
author suspects that the conservation laws found here will
shed additional light into these questions.

For the Laplace equation, A = E Df , which is, of course,

i=1
self-adjoint. In Example 1.8, the syminetry group of the Laplace

equation was found. The standard forms of the infinitesimal generators

are given in (1.15) and the corresponding recursion operators in (1.16).

Now

AT, = TaA,

1 1
AR, = R-'_:;A;

1 i]

) (3.5)

AD = (D +2)a,
AIk = (1 o 4xk)A

The operators Ti and Rij are skew-adjoint and so; by Corollary

3.2, give rise to conservation laws. Next,
)*

(D +2 = -0 +2-p

so by the discussion preceding Theorem 3.4,” the operator
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M= D 4+ 1 1 = i D+ 2‘_ 1
) 2P70 T 2 K T 2P
i=1
gives rise to a conservation law. Finally, (Ik + 4xk) = - Ik ,

hence Tj satisfies condition (3.3) and yields another conservation law.

The characteristics of these conservation laws are

T, = u, s

i i
R,, = xu - xu. ,

1] 1] J 1

p (3.6)
M = ; x,u, + (Ep— 1)u,
L. <

L= 2%, %‘1 xu - (1% x )uk + (Z-p)xku

The actual forms of the conservation laws Z DiRi = 0 are rather
complicatedl; we refer the reader to [46] for details.

Since the‘symmetry algebra U of the Laplace equation is the
universal enveloping algebra of the conformal group; for each k-fold

product',' with k an odd integerv,‘ of the ¢ = %(p+1)(p+2) operators

T = . : i = .
; Di ' i=4,...,p
= D, - x D, s <j=4, s

Rij xi j xJ i i< P

3.7
Moo= Z x,D, + (Ep—i) , (5.7)

-1
P P
2

I, = 2% z xD. - (>, =)D, + (2-p)x, k=1,
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there is a conservation law of the Laplace equation, which are given by

expression (3.4). .

In the case p = 3, with independent variables x,y,z, we have
the following table of ¥representative" third-order operators giving rise
to characteristics of conservation laws. (To obtain all possible
characteristics, just permute the variables X, y', z in all possible ways. )
The first class of operators comes from the recursion Theorem 3.3, and
are of the form 7DD'D for each pair of operatoi‘s D, D' chosen
from the list (3.7). The second class arises from formula (3.4) and are

not obtainable by recursion.
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Class 1 Third-Order Recursion Operators for Conservation

Laws of the Laplace Equation in Three Dimensions

Xy Z

VII
Xy
VIII
Xy
VIIL
X

X

Vz

Operator

Xy z XY

M T M
x
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X Xy X

X yz X

I 11
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TABLE 2

Class 2 Third-Order Recursion Operators for Conservation

Laws of the Laplace Equation in Three Dimensions

Type Operator
T TTT
Xyz Xy z
1,.2 )
] - —
ny T, nyTy AL Ty)
1’ TR T - %T T
XY% X Xy z y z
111’ T MT
xy Xy
! TIT+R T -MT
Xy X Xy Xy X y
1
vayz T IYE + T RYZ+ T, Rey
V! R TR +HTR -TR )
Xyz Xy X yz Yy VZ X X2z
" 1
VXYZ Ry Ty Ryz= 7(TxRyy* T, Ryt Ty Ry )
1,,2 2 7
1 - -
VIxyz xy yszz Z(R y Ryz 4 sz )
vir' R MR - 2112 M
XyZ Xy vz XZ
v R IR +LR 1T -% 1)
Xyz Xy X yz yz vy X7 X
" _ I
vmxyz nyIyRYZ Z(RXYIZ+ Runlyt Reyly)
x1ir' I 771 +MI + R 1T
Xy X Xy y Xy X
! +
XInyz IxTy Iz * RXYIZ RYzI
X1v' I R I - l(IZ + Iz)
Xy X XYy 2" "x y
1
' — —
XIVXYZ IxnyIz -Z-IyIz
! T M1
XVXY <My
XVI' 1 1
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Type Operator
ti ‘ 1
XVI MR T + —=(R_ T + T M)
Xy Xy X 2 "xyx y
XVII! MR_ T+ R T
XyZ Xy % Xy =z
XVIIT IRT+RM+1(TI - T 1)
Xy X Xy X Xy 2 y'x Xy
xvii" 2 1
- IxnyTY + RXY Z(T IX+ Iy_Ty)
XV IR T+R R - 4171
xyz X Xy z xy xz Ly
XVIm" IR T +R_M
Xyz X yz X VZ
' m !
XVIIIXYZ Inysz + Ryszz' ny I,
xix' 1 MT +IT+M2+M
X X X X X
X1x' 1 MT + MR +%(IT+TI)
Xy Xy Xy Xy y X
xx* T MR +-;—(IR + MI )
Xy X Xy X Xy y
2! I WR_+ J1R
XYz X vz X yz
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Next, consider the wave equation

[ 1(w)

P

2 <
(Dt—A)u= utt_,ziuii = 0 , (3.8)

i=

in p spatial variables. Note that formally replacing t by N -1 Xp+1

changes the wave equation into the Laplace equation in pt+i dimensions.

Therefore the s.ymmetry algebra of (3.8) will be given by replacing Xp+1

by -N=1t in the symmetry algebra of the Laplace equation. The

recursion operators are

T

i

T
t

~R.,
1)

Rit

D, i=4,...,p

i

D

t

x.D. - x.D, i<j=4,...,p

ij ji

x.D + tD. i=4,...,p (3.9)
it i

1
2 XiDi + tD, + -Z(p—’l)

2z, ( >° x.D, + tD,) + (t2 ->0 xiZ)Dk + (4-p)xs

k=1,...,p

2t( inDi) + (t2 + > Xlz ), - (1 -pit

Again, recursion operators corresponding to conservation laws are

found by taking k-fold products of the operators in (3.9) and using

formula (3.4).

As examples we explicitly display some of the more

elementary conserved densities for the ase p = 3.
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TABLE 3

Some Conserved Densities of Conservation Laws with Third-Order

Characteristics of the Wave Equation in Three Spatial Dimensions

Type Characteristic - Density+ .
IX uXXX U’xx xt
I u u
Xy XXy Xy xt
1
I u u
Xyz Xyz xy =zt
1 2
Lt Yxxt 7 (e Ut
tx Uxtt : Pxt it
1 2
= +
L it 7 (O ¥ oy U Ty
- + -
ny Xuxxy YuXXX uxy uxt(xuxy Yuxx>
! xu - vyu P u_ (yu +1u)—u (xu  +=u)
Xy Xyy XXy 4 yy 2 XX xx'' Tyt 2t t 2t
I - -
Ixyz yuxxz Zuxxy uXX(yu t e t)
! 1 1
- + = - + =
nyz Xuxyz Wiz 2 uyz Yt (Xuxy Toex " 2 uy)
1 2 2 2 2
+ = +
th * et tuxxx ¥ Uxt Z.X(uxx+ qu ¥ uxz+ uxt) xxt
1 2 2 2
+ = +
nyt Wixt tuxxy 2 Y(uxt+ Pax * qu ° z) ¥ tU‘xyuxt

+This is the negative of the density.




xyzt

xytz

LI

IItX
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u  (xu  +tu

u t(yuzt - zu

1
+ — - —
u_ (ra +tu  +o u ) - 7y

uxt(yutt + tuyt)

)

u (Xuyt - yu

tt xt

1(2+2+2+2)+t .
ZEO T T T V) T Pk Tt
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4, Applications to Nonlinear Equations

For the most part, this section will be devoted to the study

IR

of evolution equations in a single spatial variable. o

.~ .. . The necessary and sufficient
condition for a symmetry of the equation to give rise to a conserva-
tion law is found. The remaining three sections show how to apply
these methods to the Korteweg-de Vries; modified KdV and sine-
Gordon equations. This finally results in the remarkable connection

among all three of these alluded to in the Introduction. The
exposition here is self-contained and constitutes an independent way
of arriving at many previously known formulae as well as some new

ones.
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4.1. Conservation Laws of Evolution Equations

Consider the evolution equation

u, = K(x, u,ux, v , (4.1)
where K is a p.d.f. in u and its derivatives with respect to a single
indpendent variable x. In this section;. the theory relating conservation
laws and symmetries of Chapter 2 will be applied to equations of this
special type. Note that by su;cessive substitutions using (4.1) and its
derivatives‘,- any p.d.f. in the derivatives of u with respect to both x
and t is equivalent to a p.d.f. in just the x derivatives of u; which

we call an x-p.d.f. for short. Therefore, every conservation law is

equivalent to an identity
— j — .
l)t'l + DX = E ]jl) (u_t K) ’ (4.2)

where D =D_, Tj = 8T/8L1j and u, = 8%u/ 0’ . Integrating (4.2) by

parts shows that

DT + DX' = Q(ut-K)',' (4.3)

, .
for some X', and Q= E(T) will be called the characteristic of the

conservation law..

" As . it stands, (4.1) can never be
the Euler equation of a variational problem since the term v, cannot
occur in such an equation. (When K is a polynomial, Corollary 2.3

can be invoked to show this.) There are two basic tricks available
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for transforming (4.1) into the Euler equation of some variational
problem:
a) If (4.1) is differentiated with respect to %, we obtain

= . 4
o DK (4.4)

Now if DK = E(L) for some x-p.d.f. L, then (4.4) is the Euler

: v 1
equation corresponding to the Lagrangian L = o b + L.

b) If the substitution map SO associated with v is applied

to (4.1), we obtain
u = K, = S"K = K(X’ux’uxx"")' (4.5)

Again, if KO = E(L), then (4.5) is the Euler equation corresponding

~ 1
to L = quut+L.

For example, the Korteweg-deVries equation is u, =u + vuu_,
t XXX X
where v is a constant., In this case, trick b) yields u_, = u +vu u__,
Xt XXXX XX

X
~ 1 1 2

v
. . : - = = -— f. [48].
which is the Euler equation for L > uXut + %% T 6 w,, cf. [ ]

3
X
Here trick a) would not work. On the other hand, trick a) can be used
for the "potential KdVH equgtlon L + > vu_ o, yielding the same
Lagrangian. Note that the x-derivative of a solution of the potential
Kdv e%uation is a solution of the KdV equation. The next proposition
shows that this is no accident; whenever an evolution equation is

amenable to trick b), there is a #potential version® of that equation, the

x-derivatives of whose solutions are solutions of the original equation.
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Proposition 4.4, Suppose P = E{L) is a p.d.f. in one inde-

pendent variable, Then P = DK for some K if and only if

P = SO% for some fI\{J In this case u, = K is called the potential

version of ut = K.

The proof may be found in [37]. Therefore, we will be con-

sidering equations of the form

w, = P = E(L) (4.6)

for some L, since these include evolution equations amenable to one
of the two tricks, (which correspond . to those P which do not
depend on u). Consider what happens to the conservation laws of (4.1)
under the two tricks. If trick a) is used, then (4.2) implies that

DT + D X = 0 is a conservation law of (4. 4) if and only if T, = O.,-
i, e,; T does not depend on u. Conversely;- any conservation law

of (4.4) is also one for (4.1). " As for trick b), if (4.2) gives a con-
servation law of (41), then DT, +D X = O;— where T = ST ,

0
X, = SOX; is a conservation law of (4.5). Vice versa, any conserva-
tion law of (4.5) in which the density does not depend on u comes from
a conservation law of (4.1) in this fashion. Thus we must consider

conservation laws of (4.6) in which the density and flux are x-p.d.f.'s

and the density is independent of u.
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Theorem 4.2, Anx-p.d.f. Q is the characteristic of a con-

servation law of (4.6) of the above type if and only if

i) The vector field v = Qau is an infinitesimal symmetry
of (4.6),
and i) . - . -DQ = E(T). (4.7)

[uRA———

Proof. The necessity of condition i) follows from Proposition

2.12. Now the conservation law must take the form
D,T + DX = >, 0 Hu_, - P) .
t - j %t
J

Integrating by parts with respect to x shows that the characteristic Q
satisfies Q = 2 (= D)‘]_JJ'Tj , hence (4.7) is also necessary.

Conversely, suppose (Q satisfies conditions i) and ii) for some
x-p.d.f. T . (It can be shown, [37], that T can be chosen so as not
to depend on u.) wi Then D,T " is the

x-derivative of some flux X » provided

(=]
il

E( > TJ,HDJP)

= E(P Q)

Q) + B (P)

]
;__rQ(P) - > D,PajHDQ ,
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where we have used (2.10%), (2.12) and (2.13). However, since by
Proposition 4.4, DQ does not depend on u, the infinitesimal

criterion of invariance of condition i) is
S'pips, Do = DDQ =¥
i+ £ z

which proves the result.

Corollary 4.3, Suppose u, = K is an evolution equation with

K
0

SOK = E(L) for some p.d.f. L. Then an x-p.d.f. Q is the

characteristic of a conservation law with density T if and only if

i) The flows u, = K and u = DQ commute.

i) Q = E(T).
Proof. Applying SO to (4.3) yields

, . .
DTy + DXy = Qolu, - Kp) s
hence QO = SOQ is the characteristic of the conservation law of

4.5) with density T. . Proposition 2.16 implies that
y T, p P

. = S = -

E(T) = D S;E(T) = DQg,

so condition ii) of the theorem is fulfilled. Also, the infinitesimal
criterion for i) is

(R) = DQ) .

HES

AE5Ye) K

Applying SO to this equation shows
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(9 j a
(K. = E DK
Q, 0 0 aujH

(DQ ) -

n<

This is precisely the infinitesimal criterion for condition i) of the

theo‘rern.

Corollary 4.4. Suppose u, = K 1is an evolution equation so

that DK = E(L) for some L. Then an x-p.d.f. Q is the

characteristic of a conservation law with density T depending only on

X, t, uX, uXX, ... if and only if

i) The flows ut = K and ut = D_iQ commute;

‘and  ii) Q = E(T).

Note that Proposition 4.4 implies the existence'of D~1Q., The
proof of Corollary 4.4 is similar to that of Corollary 4.3.

Actually‘,‘ the restriction that T doesn’t depend on u is not
vital. Note first that if DK = E(L), then by Proposition 4.4, K does

not depend on u.” Given Q, not necessarily in the image of D, we

-1 )
can interpret the "flow" u, = D Q@ as the solution of the integro-

f

differential equation u, = LX Qdx , where we must fix ut(a.,Et) =0
for some a (e.g. , a= -m). (Equivalently;_ it is the solution of

u_, = Q satisfying an appropriate boundary condition.) Now for K as
abovel,_ the infinitesimal criterion that the "flows® v, = K and

-1
ut =D ( commute is now




j-1.8 - e 89
> D Q-—DK = > DK,auj

j=1 j j=0

We couid also write thils as

(K) = ¥ o).

K

Under these generalizations,

tion on T.

-61¢(-

A Corollary 4.4 holds without the restric-
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4,2. The Korteweg-deVries Equation

The Korteweg-deVries equation is

ut = K:t = uxxx + vqu s <4°8)

and is well-known to possess an infinite family of conservation laws,
[30]. In this section we will reinterpret these conservation laws in

light of the group-theoretic methods developed in the preceding section,

Lax [23] and Gardner [11] discovered an infinite family of
higher order KdV equations.,v " which proved to be a set of mutually
commuting flows described by evolution equations. Subsequently;
A, Lenard noticed that the operator

2

2 1 -
D = D +—3 vu + —3qu

1 (4.9 )

is a recursion operator for this family of evolution equations;- so that
the j-th KAV equation is given by u, = Kj = D](ux) In [35].,- the author
gave another proof that D is a recursion operator for (48), by showing
that it formally satisfied the condition of Theorem 1.5. To be com-

pletely rigorous: the operator D—'1 must be explained. Note that

A -
D™ P is not well-defined for every p.d.f. P; it makes sense only
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when P e im D =ker E, Also D—iP is defined only up to an additive
constant. For the present purposes; since the p.d.f.'s under con-
sideration are always polynomial;- we can uniquely define D_1P for

P ¢ im D without constant term to be the polynomial Q without
constant term such that DQ = P, It is now necessary to show that

Kj = D](ux) is actually defined for each positive integer j. Thus we

must show that Kj ¢ im D for each j.
Lemma 4.5. If Kj € im D, then qu e im D,

Proof. Note first that the formal adjoint of the operator 0

satisfies

* -1 -1 '
D = D2+ EVu.—ivD u =D DPD., (4.10)
3 3 X

(The operator D—iuX takes a p.d.f. , multiplies it by U and then

-1 ' ] L
applies D ~.) Now by assumption, K, = Dl(ux) fpr i=1,...,k,

-1 *i

hence J'i=D Ki = D “(u) also exist for i= '1,,k Therefore.,k
E(uK,) = Ko 29w ))
*j
- B 0" )
= E(uXD Kj)
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the last step being a simple integration by parts. Thus E(qu) = 0,

hence by Corollary 2.2, uK, ¢ im D.
J

Lemma 4.6, If Kj and qu are both in. im D, then

Kj+1 e iIm D,

Proof, Note first that formally

- 1 -
g = D(D+%qu 1y FvD iu),
Therefore,
K = DK, = D[(D+iqu— +—VD_1U.)K] (4.11)
jt1 i 3 j .
which exists by hypothesis,
Theorem 4.7. For each positive integer j, Kj = DJ(uX) is
well-defined. Moreover;
-1 (4.12)

E(K,D" K, = 0
i j

for any i and j.

Proof. The first statement is proved by induction using the

preceding two lemmata. To show (4.’12); by (4.10)

E(KiD'in) = E( Di(u ) 0 (W)

i}

(s p ()

E(uKHj) = 0 .
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Note that if we let JJ. = D-in, then (4.12) becomes
E(JjDJi) =0 , (4.13)

hence the Ji's are in involution with respect to Gardner's Poisson
bracket, (2.14). They key result for the application of Corollary 4.3
to prove that the Kj' s give rise to generalized symmetries and to

conservation laws is the following.

Lemma 4.8. For each positive integer ], Kj e im DE.

(Equivalently, Jj € im E.)

The lemma can be inferred from the results of Lax [24], or
McKean & van Moerbeke, [27]. However, owing to the key position
of this result',. the author feels obligated to present an independent and
self-contained proof based on the machinery of this paper.
Unfortunately.,u the proof is rather technical; and borders on an
exercise in computational dexterity using the full power of our formal
calculus of variations. Therefore; we will first state and prove
the main consequences of Lemma 4.,8; and relegate its proof to the

end of this section.

Corollary 4.9. The flows u, = Ki and u, = Kj for any i and j

commute,
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Proof. Applying formula (2.44) to (4.13) show s

where v, = v Moreover, since the v's commute with D,

yi(K) = g.(Ky),

which is the infinitesimal criterion for commutation of flows.

Corollary 4.10., For each integer j,

B( - %v (25 + 3)7, (4.14)

Jj-l—'l)

Proof. Since D is the recursion operator for the J's

1 -1
E(.Tj+1) = g-vE[(Zu— D uX)J'.]

. 2 1 (1)
= —-vE(qu) -3 E M (uw 7J.).

w

To proceed; we need the following lemma.

Lemma 4.11. If P e im E,_i_:hg

1 e
B p) = (1-mp (4.15)
00
where M = z iui'B/aui is the operator that multiplies each monomial
i=1

by the number of x-derivatives in it,
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Proof. By Proposition 2.6 and (2.12),

E(i)(ux-.P) = i (-1)1_1‘iuiE(i)(P) + P
i=1
= -MP+P.

Returning to the proof of (4.,14)',7 by (2,2); and (4.15),

E(T = %v[ZN+M+1]JJ_

j+1)
It must therefore be shown that
(2N + M)Jj = (2§ + z);rj . (4.16)

| 1
(Note that N + EM is the operator that multiplies each monomial by
its rank, as defined in [20].) This follows by induction from the

easily established commutation formula
% *
aN+M) D = D (2N+ M+ 2), (4.17)

This proves (4.14).

- Combining Corollaries 4.9 and 4.40 with Corollary 4.3 yields

the result.

Corollary 4.12. For each pair of integers i and j,

v (2i+ 3)Ji is the characteristic of a conservation law of u, = Kj

W =

ith d i .
with density Ji+1
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We now turn to a proof of Lemma 4.8. This will be proved by

induction on j, so assume J, ¢ im E. By Corollary 2.3, we must

show that
= . 4,18
E(qu+1) (N + 1).Tj+1 - (4.18)
. *
Since Jj+1 = D J'j, integration by parts yields
2 2 1 -1
= - -— NI
E(qu+1) E[(uXX tyve -3 vuD uX) J]

Lemma 4.13. If P e im E, then:

2

i = 4.1

i) E(u_P) = (y,+D)P (4.19)
where ¥, =¥, :

XX
i) E(°P) = (y, + 2P , (4.20)
where ¥y =V 5
u

1
iii) D u P exists and

- -1
E(uD 1uXP) £ (u+D u - )P, (4.21)

where o is the operator

0 1=1 I 5
« 2 < > <k+1> “k"e-x ) Bu; (2.22)

L =1 k=0

Proof, These three statements are direct consequences of

the Euler product formula (2.10). Here we will prove (4.21), leaving

the other two to the reader. Now
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B} P) = D" p) + f‘ (-1)kukE(k+1)(uXp),

—

k=0

Moreover, again by (2. 10); and also (2,12);

(k+1) > kt1[ 4 b
5 py = s P S (-1) w 2
x KOy ktt | Lk Bu

Here &, . .is the Kronecker symbol. Combining these proves (4.21)
k0 Y P

Thus by Lemma 4‘,13.,'

*
= + J.
where
' 2
y = yz+ -;—v_u + g-v[?),
- (4.23)
1
B = ¥1+ "2—‘01 .

We are thus left with the task of proving

J -ND*J
Ty E

This we again do by induction,.'which amounts to proving that
v 1 =[No2, 0]

On the one hand;_

il
|
<
—
[\
o
1
w/
c
St
D

[N o, D]



T o compute the other commutator, we first show

Lemma 4.14. The following identities formally hold:
[X 2’ ul = Yxx
. -i _ _,1
[¥ 2’ D U'x] - XXX
[uHDZ] = -2uD-u
! x
- - -1
[u,D iu] = uD W oo uu_
C 2 1
[, D] = uD™ + su D
[B,u] = u
-1 -1
[8,D uX] = 2D “uu_ .
Proof. The first four are left to the reader. Note that

76

8 .
B = > ﬁjﬁ‘ , where the ﬁj’s are quadratic differential polynomials

J

which satisfy the recursion relation Dﬁj + > lltlj_l_i =

Therefore','

bDp

Pita

- Lo
= Z (Dﬁj + 5J,D) Buj

j
3]

-—;— uD + BD

(4.24)
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The fifth identity follows from a second application of (4. 24). The
2

seventh identity holds since ﬁo = u . Finally, from (4.24),
formally
- -1
p-1g = pp~? + 2D
Therefore
-1 -1 1 -1
gD o = D Bux - ED uu_
= D up + 2D uu_ ,
x
. _5
ecause Bi = Zua .

Now we use the lemma to compute

Lk 5 5
[Ya D] = [Y2+ gVU— + EVﬁ,:D + =yu - —vD U.X]
2 2 4 2 2
= Equ - ?’,_VU‘XD + -—vuXX + 9v u
- 1 2 -1
- —vDi( + wyuu ) - v uD u
XXX X 9 X

To complete the proof, upon comparison of the two commutators, we

need

However;. this is readily shown by applying D to both sides. This

firiishes the proof of Lemma 4.8,
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4.3. The Modified Korteweg-de Vries Equation

Next we apply the theory to study the symmetries and con-

servation laws of the Modified KAV (MKdV) equation

Y 2
u = K, = u __+t vu u_ . (4.25)

Miura, [2.9]; noticed a remarkable nonlinear transformation between
the solutions of the MKdV equation and those of the KdV equation,

Namely, if u = £(x) is a solution of (4.25); then

v = u2+puX, where p=V-6/v (4.26)

is a solution of (4.8). In fact, if S is the substitution map
associated with ut2 + Ha then
D K K.
(4D + 20)(a, - K)) = S (o~ K,) .

In [35] it was formally verified that

~e 2 2 2 2 -1
D = — - .27
D + s ve t yvuD u (4.27)
. ) - Ao "'"J o
is a recursion operator for (4.25), hence Kj = D (uX) for each j is
the characteristic of a symmetry of (4.25). Moreover;— each Kj is

formally derivable from the corresponding Kj via Miura's transforma-

tion -
(pD + Zu)KJ. = SKJ_ . (4.28)

In order to rigorously justify these observations, and in preparation

for subsequent applications to the sine-Gordon equation, we proceed
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. . . -1 %3 %
in a less direct fashion. Recall that ‘Tj =D Kj = D “(u), where p

is given in (4.11). Define

?'J.H = —gv(p.D - 20) ST, (4.29)
The claim is that
o~ o
DL'J';H_1 = Kj+1 . (4.30)
To see this',‘ let
’7\5* = D2 + %—vu‘2 - -:%VuD—iuX (4.31)

be the adjoint of 5 . A short computation shows that
Ak *
D (D - 2u) S = (wD - 2u)SD (4.32)

by virtue of the definition of w in (4.26), Therefore

%, J ~ K
’.\le+1 = ( P )‘](uXX + -;—Vu3) = (D )‘]+1(u)e From this we can
easily check (4.30); since Diﬁ*ﬂ"r = 7 D. Note that by this sub-

terfuge we avoided having to invert the operator (uD + 2u) to find EJ .
Next we discuss how the symmetries given by rf{j are related to

conservation laws.

Lemma 4.15, For each positive j.,

E[(uD - Zu)'i’fjﬂ] = %(23' - 1)'55j . (4.33)
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Proof. Using (4.29), (4.14) and Proposition 2.16

P

v
- = - S
v
= -7 (2u - pD)S E(JJ)
vZ
= - —(2i - - S
T8 (2j - 1)(2u - pD) J'j_1
v ~e
= —(2j -1
3 (25 - 1,
Theorem 4.16, For each pair of positive integers i and j,

(e ry 1 nt
the flows u =K, and u = K. commute. Moreover 7 (21 - 1)Ji is

~
the characteristic of a nontrivial conservation law of u,c = Kj with

conserved density (pD - 2.u.)_13'l‘].+1 = -— 87,

J

o=

Proof. The second statement follows directly from
Corollary 4.3. To prove the first; it suffices to show that the

Gardner-Poisson bracket of rfi and. Tj is zero. First; from (4.13),

E(SJ.- SDJ,) = 0 .
i J

Next note that
$+D.P " = -%(HD+ 2u)D(D - 2u)S . (4.34)

Therefore

E( s:rj - (uD + 2u)D(pD - 2u) S;rj_i) = 0,

Integrating by parts',A using (4‘,29);. and replacing it1 by 1, shows that
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E(J.DJ,) = 0. (4.35)
This in turn completes the proof of the theorem.

Finally, consider the potential versions of the modified KdV
equations. These will be used in the next section. According to the
definitions at the beginning of section 4.1, these are the evolution

equations

~
= 4,36
o~ ~ -1~
where P. = SJ,. = S D K.
J 0J 0 J

Thus if u = f(x,t) is a solution of (4.36), then u'= of/0x is a

solution of the corresponding MKdV equation u, = Kj . The Pj's

have a recursion operator

D =D +—§'—vu ——vuXD U 4 (4.37)

Theorem 4.17. For each pair of positive integers i and j

~ Vv ~s
the flows wu, = P, and u, = (]T:"j commute. Moreover ¥ (2i- ’.1)1:’i

~d
is the characteristic of a nontrivial conservation law of ut Pj

ith d densit D-2u0) B
with conserved density  (pD - uX) 1




Proof By Proposition 2.16.

-1 e -1~
- = S -

\

-1
= S Eff uD -
D O,E(( uD - 2u) JiH)

(21 -1)D So Ji

W<

(2i-1)D %‘i

W<

The commutation of flows then follows directly from {4.5). The
statement concerning conservation laws is a direct consequence of

Corollary 4.3.
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4,4, The Sine-Gordon Equation

As a final illustration of the possible applications of the theory,
consider the sine-Gordon equation, which will be written in

characteristic coordinates,

u . = sin \u . (4.38)
xt

Note that although the sine-Gordon is not an evolution equation, it
still fits into our general framework, and arises as the Euler equation

for the variational problem with Lagrangian

~ 1 1
L = —Zuxut - K cos \u .

The sine-Gordon equation is known to possess infinitely many
conservation laws; and infinitely many symmetries; which were
derived in [21] from the well-known Backlund transformation
associated with it. In [35] it was formally shown that these symmetries

have the recursion operator

2 2 -1
D = Dz + N L‘LZ - 2u D u . (4.39)
0 x X XX
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The remarkable thing to notice is that 90 is just the recursion
. . . 3.2
operator for the potential modified KdV equations, where V = > .

As a consequence of Theorem 4.'17.,. we find that the PMKdAV equations

provide conservation laws for the sine-Gordon equation.

Theorem 4.18. For each integer J, the potential modified

KdV equation defined by (4.36) is a symmetry group of the sine-

2 ~t
Gordon equation (4.38) provided v = %XZ .  Moreover, —;—)\ (Zj-—’l)Pj

is the characteristic of a nontrivial conservation law of the sine-

Gordon equation, with conserved density (pD - Zux) Pj+1 , where

o= Nog/v = )\_1'\/_——1

The proof follows directly from Theorem 4.2. Notice that

since D, is the characteristic of a conservation law of (4.38),
E(ﬁj sin Au) = O.

This reciprocally implies that -\sinlu is the characteristic of a
~

conservation law of each PMKdV equation u, = P} , with conserved

density cos Au. By the connection between the solutions of the

PMKAV equations and the corresponding MKdV equations;
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that ( 37 f udx) is a conserved density of each of the Modified
-0
KdV equations u, = K, (where we assume the solutions satisfy

appropriate decay properties at -00.) This further implies that if

v(x,t) is a solution of one of the KdV equations, and u is the solution
b4

2 < - @ Zo
of v= pu_ +u”, with u(~co0,t) = 0, then f cos(\/g-v f u dx)dx
- 00

~ Q0

is an additional conserved quantity of each of the KdV equations !
A second conserved quantity is found by reversing the roles of sin

and cos .

Furthermore',v since the flows determined by the sine-Gordon

equation and the PMKdV equations commute, we also have the flow

% .
) 2
u, = sm(/\/?)v f u dx)
-0

commuting with the MKdV equations. The existence of the Miura

determined by

transformation indicates a corresponding symmetry of the Kdv
equations. This symmetry, however, does not seem to arise from a
partial differential equation. For instance, if we apply the operator

.- .- 2 .
2u+ pD to the above equation, we obtain, setting \ = ‘\/5- v o,
2uu +pu = Zusin(x‘/‘udx) + )\.}.LUCOS()\]LI dx)
t xt

or, equivalently,

v, = Muexp[—@ [X udx ] (4.38)
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2
where v=u + pa_ will be the solution of the KdV equation., The
right-hand side of (4.38) does not seem to have a simple expression

in terms of v. If we let
VI - '
W= eXP["—f udx] , MEY—
n v
~00

then w satisfies

and 4.38 is

__.\ ——
Y -1
Vt—/\/?)(w)x— 3 Wy
Note the mysterious appearance of Hill's equation. These matters
certainly warrant further research. We will report on the connections
with the Backlund transformation and soliton solutions in a subsequent

publication.
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