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Abstract. Backlund’s Theorem, which characterizes contact transformations, is gen-
eralized to give an analogous characterization of “internal symmetries” of systems of dif-
ferential equations. For a wide class of systems of differential equations, every internal
symmetry comes from a first order generalized symmetry and, conversely, every first order
generalized symmetry satisfying certain explicit contact conditions determines an internal
symmetry. We analyze the contact conditions in detail, deducing powerful necessary condi-
tions for a system of differential equations admit “genuine” internal symmetries, i.e., ones
which do not come from classical “external” symmetries. Applications include a direct
proof that both the internal symmetry group and the first order generalized symmetries
of a remarkable differential equation due to Hilbert and Cartan are the noncompact real
form of the exceptional simple Lie group G,.

The work I will survey in this paper, which will appear in [1], was done in collabora-
tion with Ian Anderson, of Utah State University, and Niky Kamran, of McGill University.
Our research had its genesis in a series of lectures on the variational bicomplex given by
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Ian while visiting the University of North Carolina at Chapel Hill. Robert Bryant, who
was in the audience, asked him to compute the symmetry group of the innocent looking
underdetermined ordinary differential equation u’ = (v"")2. Robert knew well the history
of this equation, which we have decided to call the Hilbert—Cartan equation: Elie Cartan
had proved that the “symmetry group” of this equation is isomorphic to the exceptional
simple Lie group G,! Robert was suitably impressed when Ian came back with a four-
teen dimensional symmetry algebra for the equation. There matters rested until, during a
Conference on Symbolic Manipulation hosted by the I.M.A. in Minnesota, Robby Gardner
asked Fritz Schwarz to answer the same question using his computer algebra package for
computing symmetry groups in SCRATCHPAD (now renamed AXIOM). Fritz only found a
six-dimensional symmetry group. After Ian sent the results of his earlier (hand!) compu-
tations, we realized that the discrepancy was due to the fact that lan had computed the
first order generalized symmetries of the equation, whereas Fritz’ program was designed to
compute classical point symmetries, which is why he failed to detect the eight remaining
vector fields. However, upon reflection, it occurred to us that much more was at stake than
merely the difference between point symmetries and generalized symmetries. As far as we
know, Cartan was not aware of the concept of a generalized symmetry, and all his symme-
tries were realized as geometrical transformations of some finite-dimensional space, which
the generalized symmetries are not. Contact transformations fit into Cartan’s framework,
but these were not the objects Cartan had computed for this particular equation since,
according to Backlund’s Theorem, there are no contact transformations (beyond prolonged
point transformations) if the number of dependent variables is greater than one. What
Cartan had computed were what we will call “internal symmetries”, which are transforma-
tions which preserve the contact ideal only when restricted to the equation submanifold.
(These are also known as “dynamical symmetries” in the mathematical physics literature,
and have also received mention in the work of Vinogradov and his collaborators, cf. [10].)
The restrictions of Backlund’s Theorem no longer apply, and there are internal symmetries
which depend explicitly on higher order derivatives. Thus, a new question arose: for the
Hilbert—Cartan equation, why did the computed Lie algebra of generalized symmetries
coincide with Cartan’s Lie algebra of internal symmetries?

Our results answer this question in general, and can be summarized as follows. First,
and obvious, is the fact that every external symmetry restricts to an internal symmetry.
In many cases, including all normal systems of partial (not ordinary) differential equations
of order at least two, all internal symmetries arise in this way. Second, under a certain
condition on the system of differential equations, which we name the “descent property”,
every internal symmetry comes from a first order generalized symmetry, a result that
significantly ameliorates the computation of these symmetries. The systems covered by
this result include all second order systems of differential equations, all normal systems of
partial differential equations, and a wide class of higher order underdetermined ordinary
differential equations. Our theorem includes the classical Backlund Theorem as a particular
special case. Finally, every first order generalized symmetry which satisfies additional
contact conditions is equivalent to an internal symmetry. In certain cases, such as the
“codimension 1” ordinary differential equations, of which the Hilbert—Cartan equation
is a particular example, there are no contact restrictions, hence there is a one-to-one

2



correspondence between internal symmetries and first order generalized symmetries.

In order to keep the exposition as brief as possible, I will assume that the reader is
familiar with the standard theory of symmetry groups of differential equations as presented,
for instance, in [12]. We will work with local coordinates throughout, although all of
the results have analogous, more general, statements in the context of fiber bundles over
smooth manifolds. Consider a system of differential equations

R: A, (z,u™) =0, k=1,...,r, (1)
in p independent variables z = (z!,...,2P), and ¢ dependent variables u = (ul,..., u9).
Derivatives u% = 97u®/dx”’ of the dependent variables of order k = #.J are indexed by
symmetric multi-indices J = (jy,...,7), 1 < j, < p. We let u(™) denote the collection
of all such derivatives of orders k < n, which provide coordinates on the associated jet
space J", so that the system (1) determines a subvariety R C J". Let D, denotes the
total derivative with respect to z*, and D, = D, ---D,, the corresponding kth order total
derivative, so that u§ = D;u®. The k*h order prolongation of the nth order system of
differential equations (1) is the (n + k)t order system obtained by (totally) differentiating
the equations in R up to k times:

pr®) R : D; A, (z, umtR)) = 0, k=1,...,r, #J <k, (2)

so that pri*) R C J"** is a subvaritey of the (n+k)th order jet space. We will assume that
the system (1) and all its prolongations (2) satisfy the mild nondegeneracy conditions of
being locally solvable, cf. [12; §2.6], and that its Jacobian matrix with respect to the nth
order derivatives of u is of maximal rank; this implies that the system and its prolongations
define regular submanifolds pr(®) R c J*** of the jet space. The top order maximal rank
condition is slightly stronger than the standard maximal rank condition, [12].

In general, by a symmetry of the system of differential equations (1) we mean a
transformation which maps solutions to solutions. The most basic type of symmetry is a
point transformation, meaning a local diffeomorphism ®: (x,u) — (Z, ) on the space M
of independent and dependent variables. A connected local group of point transformations
G is generated, via the usual process of exponentiation, by a Lie algebra of vector fields

V=Y € ) o+ ) 3

on the space of independent and dependent variables. The group transformations g € G act
on functions u = f(z) by pointwise transforming their graphs, and hence they also act on
their derivatives. This action induces the prolonged group action pr(™ G on the jet space
J", whose explicit transformation rules are very complicated. However the corresponding
prolonged infinitesimal generators have a rather simple “prolongation formula”

p

. ) 4 " )
pr(”)v:zg(a:,u)&xi-i-z Z % (z,ul9) — (4)

)
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which is the vector field on the jet space J” whose coefficients ¢5 are determined via the
well-known recursive formula

p
05 =D;05 =Y D& us;. (5)
j=1

Theorem 1. Assume that the system of partial differential equations (1) is nonde-
generate. Then the vector field v in (3) will generate a one-parameter symmetry group of
the system (1) if and only if the classical infinitesimal symmetry criterion holds:

pr™ v(A ) =0, whenever A =0, v=1,...,71. (6)

The “determining equations” (6) form a large over-determined linear system of partial
differential equations for the coefficients &%, o® of v, and can, in practice, be explicitly
solved to determine the complete (connected) symmetry group of the system (1). There
are now a wide variety of computer algebra packages available which will automate most
of the routine steps in the calculation of the symmetry group of a given system of partial
differential equations. See [4], [5], for useful surveys of the different packages available,
including discussions of their strengths and weaknesses.

The theory of point symmetries of differential equations is classical, and, in more or
less the same form, dates back to the original work of Sophus Lie. After this theory is
well understood, a number of possible generalizations come to mind. The first direction,
originally taken by E. Noether, [11], is to allow generalized vector fields

P q
‘ 0 0
vV = Hz,uM) == + *(z, u®) — 7
Do) g+ 3o ) g 7)
whose coefficients can also depend on derivatives of u. The condition that v be a generalized
symmetry of the system of differential equations (1) is the same as before, (6), although
now one must also take into account the prolongations (2) of the system. Every generalized
symmetry is equivalent to one in evolutionary form

q
0

_ a Wy 2 ]

Vo ag_lQ (z,u >8u0" (8)

where the g-tuple of functions Q = (Q%,...,Q%), known as the characteristic of v, has
entries

(*) 0y N i g0y 2
@ = “ — t . =1,...,q. 9
Q°(,u) = ¢, u®) = € ) T a=1, )

=1

Replacing the generalized vector field v by its evolutionary form v, leads to a simpler
set of determining equations in that they only involve the ¢ unknown functions Q¢ rather
than the p + ¢ unknown coefficients £%, ¢® of v. (This technique even works for point
symmetries, where the associated characteristic depends linearly on first order derivatives.)
An evolutionary vector field v, is a trivial symmetry of the system (1) if the characteristic
(Q vanishes on all solutions. Two generalized symmetries v and w are equivalent if their
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respective evolutionary forms differ by a trivial evolutionary symmetry. The flow generated
by an evolutionary symmetry is nonlocal, being found by solving the system of evolution
equations u® = Q*(z,u™), a =1,...,q.

A kth order generalized vector field is will not usually prolong to a well-defined vector
field on any jet bundle J" since its nth prolongation will involve derivatives of orders up
to k 4+ n. Beyond point transformations, the only exceptions to this are the infinitesimal
contact transformations. Given a function u = f(z), let u(™ = pr(™ f(z) denote its n-jet

or ntt prolongation. The graph I‘Scn) of pr™ f is a p-dimensional submanifold of J*. A
one-form 6 on J" is called a contact form if it restricts to zero on every prolonged graph
chn)' It is not hard to prove that every contact form is a linear combination of the basic
contact one-forms

gzduﬁ—uiidaji, a=1,...,q, 0<#J<n, (10)

which generate the contact ideal Z(™ on J". Conversely, any p-dimensional submanifold
I' € J™ which is transversal to the vertical directions, and annihilates the contact ideal
T | T = 0, is (locally) the graph of prolonged function u(™ = pr(™ f(z). (Here | T
denotes the pull-back to the submanifold T, i.e., if ¢:T" — J" is the natural embedding,
then Z(" | T = /*(Z().) A (locally defined) transformation W:J” — J” on the jet space
will determine a contact transformation provided its pull-back ¥* maps contact forms to
contact forms, which means that it preserves the contact ideal:

o* (™) c ™. (11)
The infinitesimal version of this criterion is that a vector field
ey 0N~ N (n)y 9
X — ¥ n - (67 n - 12
;f(aj,u )&CZ—FO;#;O@J(:C,U )(%ﬁ’ (12)

on J" generates a one-parameter group of contact transformations provided the Lie deriva-
tive of any contact form is contained in the contact ideal:

q #K
X[0%] = Z Z N?{é 95, a=1,...,q, #K <n, (13)
B=1#J=0

for functions ui‘("g: J"” — R. These conditions are quite restrictive, as shown by the classical
theorem due to Backlund.

Theorem 2. If the number of dependent variables is more than one, ¢ > 1, then
every contact transformation on J" is the nth prolongation of a point transformation. If
there is a single dependent variable, ¢ = 1, then every contact transformation on J™ is the
(n — 1)st prolongation of a first order contact transformation on J*.

The projection
—~ i 1)y 9 - w9
W(X)ZZS(QZ,U )@‘l‘z(ﬂ (ZL’,U )8?7 (14)

i=1 a=1



of any contact vector field gives a first order generalized vector field, or, if ¢ > 1, of a point
vector field, as in (3). The next lemma is utilized to provide a characterization of which
generalized vector fields produce contact transformations. As such, it plays a key role in
the standard infinitesimal proof of Bécklund’s Theorem 2, cf. [7].

Lemma 3. An evolutionary vector field v, is equivalent to an infinitesimal contact
transformation if and only if its characteristic Q(x,u")) depends on at most first order

derivatives, and there exist functions £i(x,u(1)), it = 1,...,p, such that the following
contact conditions hold:
oQ” -
—— 4+ &0 =0, a,B=1,...,q, j=1,...,p. 15
oor HE (15)

Indeed, in this case, each &° will be the coefficient of 3/0xi in the projection v = 7(X),
cf. (14), and the coefficients of the 0/0u® will be defined by

p
Pr=Q+ ) &,  a=1,...,q (16)
i=1

The contact vector field X is then just the nth prolongation of its projection v = m(X).
Note that left hand sides of the contact conditions (15) appear in the prolongation formula
as the coefficients of the terms in pr(™ v which depend on derivatives of order n+ 1, hence
their vanishing is a necessary and sufficient condition that the prolongation pr(™ v of the
first order generalized vector field (16) define a genuine vector field on J™.

In the case of one dependent variable, ¢ = 1, there are no Greek indices in the contact
conditions (15), and so these equations serve to define the coefficients £¢. Thus, any
first order generalized symmetry will give rise to a contact transformation. Indeed, the
characteristic Q(x,u(")) can be identified with the negative of Lie’s characteristic function
(hence the name) which generates the one-parameter group of contact transformations.
For more than one dependent variable, ¢ > 1, the integrability conditions for the system
of partial differential equations (15) will require that £!, ¢* depend only on z, u, and so
every contact transformation reduces to a point transformation.

We shall call a group of contact transformations which preserves a given system of
differential equations an external symmetry group as the transformations are defined on
open subsets of the the jet space J”, and can thereby be used to transform arbitrary
functions u = f(x). Thus any external symmetry group of a system of differential equations
is characterized by two conditions: a) it leaves the equation submanifold R invariant, and
b) it preserves the contact ideal on J". Bécklund’s Theorem 2 implies that the second
condition is very restrictive and severely limits the possible geometrical symmetries beyond
point transformations. However, since we are only really interested in what the symmetry
group does to solutions of the system of differential equations, and thus in its restriction to
the equation submanifold R, it makes sense to relax the second condition and only require
that the group transformations preserve the contact ideal on R, rather than all of J".

Definition 4. An internal symmetry of a system of differential equations R C J" is
an invertible transformation ¥: R — R which maps R to itself and which preserves the
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restriction of the contact ideal on R :
(I | R) c I | R. (17)

An internal symmetry will, consequently, transform solutions of the system to so-
lutions. Clearly any external symmetry restricts to an internal symmetry, but it is not
necessarily true that an internal symmetry can be extended off the solution manifold to
a genuine contact transformation. Indeed, Backlund’s Theorem in its original form no
longer applies to internal symmetries, and, as we shall see, there are nt order internal
symmetries which are not the prolongation of any lower order contact map. However, ev-
ery internal symmetry can be viewed as a particular type of generalized symmetry, and so
internal symmetries are seen to occupy a position intermediate to external and generalized
symmetries. They form the widest possible class of symmetries which can be realized as
local geometrical transformations on a submanifold of jet space.

In the case of continuous groups of internal symmetries, we can again work infinitesi-
mally. Let X be a vector field on the submanifold R, which, in local coordinates, takes the
form (12) above, where the coefficients £, % are now only need be defined on R, although
we may always assume, without essential loss of generality, that we have extended the vec-
tor field off the submanifold, the precise extension not being important. The infinitesimal
symmetry condition is that X is tangent to R, which, in local coordinates, says

X(A,)) =0, v=1,...,r, whenever A =0, (18)
in direct analogy with (6). In addition, X must preserve the contact ideal on R:
X(ZM™ | R)cI™ | R. (19)

Note that the projection v = 7(X), cf. (14), of any internal symmetry determines an nth
order generalized vector field. (The coefficients £, ¢, are a priori only defined on R, but
the projections of two different extensions of X will differ only by a trivial generalized
symmetry.) It is not difficult to see that v is a generalized symmetry of the system whose
prolongation agrees with X when restricted to the system. Now, in general, X and v will
depend on nth order derivatives of the u’s. However, under certain conditions on the system
of differential equations, we can prove every internal symmetry X has a characteristic )
which depends on at most first order derivatives.

Definition 5. Let n > 3. An nth order system of differential equations R is said
to have the descent property if it satisfies the following: Suppose Q(z, u(”_l)) is a smooth
function of order n—1 such that all of its total derivatives D, (), ..., D,Q, when restricted

to the system, also have order n — 1. Then Q(x, u(”_z)) must have of order n — 2.

In other words, if R has the descent property, then the only functions whose total
derivatives, restricted to the system, have order n — 1 are those of order n — 2. First and
second order systems have the descent property by default. It is easy to see that open
subsets of J” have the descent property, as do normal (Kovalevskaya) systems of partial
differential equations in p > 1 independent variables. We can now state the main result
relating internal symmetries and generalized symmetries.
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Theorem 6. If R is a nondegenerate system of differential equations satisfying the
descent property, then every internal symmetry is equivalent to a first order generalized
symmetry in evolutionary form.

A normal system of ordinary differential equations has the standard form
u® = F(z,u™Y), a=1,...,q, (20)

in which there are the same number of equations as unknowns, and we have solved for the
top order derivatives. Successively differentiating (20), shows that we can re-express all
nt® and higher order derivatives of u in terms of those of order at most n — 1, and so the
descent property clearly does not hold if n > 3. This also immediately implies that every
generalized symmetry of (20) determines an internal symmetry, but there is no reason that
the generalized symmetry have order one. Indeed the trivial scalar equation u . = 0 has

T

second order internal symmetry u,,0, which clearly has no first order counterpart.

Let us now investigate the conditions that a first order generalized symmetry must
satisfy in order that it determine an internal symmetry. The contact conditions (19) take
the form

X[0%] =Y pih 05+ Y AgtdA,,  on R, a=1,....q #J<n, (21
B,J K

in analogy with (13). Here the ,u(f{"g, A" are functions on R, and by the phrase “on R”

we mean that the individual coefficients of the basis one-forms dz?, du$- must agree when
restricted to the submanifold R. (The fact that the pull-backs of these one-forms to R
are no longer linearly independent has been taken care of by the %", which play the role
of Lagrange multipliers.) Detailed analysis of (21) shows that the coefficients of X must
satisfy the prolongation formula (5) modulo the system and its derivatives:

p
05 = DG — Z Difj uy ; on pr™ R. (22)
j=1

Moreover, there is an additional set of “internal contact conditions” analogous to (15),
arising from the fact that, on the equation submanifold, the nt? order terms arising from
the restricted prolongation formula (22) cannot depend on (n + 1)st order derivatives. In
order to write them in a reasonably compact form, we introduce some additional auxiliary
(complex) variables ¢ = ((y,...,(,), and define the monomial (r = (; (y, - Cp, When
K = (ky,...,k,) is a symmetric multi-index. The 7 x ¢ matrix of homogeneous polynomials
of degree n in ( given by

A,
D(¢) = #Kz_n o k| (23)

plays a key role in the definition of the classical characteristic directions (not to be con-
fused with the characteristic Q!) for the system of partial differential equations (1). For
example, assume that r = ¢, so we have the same number of equations as unknowns. A
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complex direction ¢, which should be thought of as defining coordinates in the complex-
ified cotangent bundle T3 X = T*X e C of the independent variable space X, determines
a characteristic direction at the point (z,u(™) € R if and only if det D(¢) = 0. A system
is called normal if not every direction is characteristic, i.e., det D(¢) # 0; this is equiva-
lent to the existence of local coordinates in which the system assumes a form amenable
to the application of the Cauchy-Kovalevskaya existence theorem, cf. [12; Theorem 2.79].
Further, given the characteristic Q(z, (")) of a first order generalized symmetry, we define
the analogous ¢ X ¢ matrix of homogeneous linear polynomials

p a
RO=[>2%5 ¢ (24
Jj=1 J

Theorem 7. Let vy, be a first order generalized symmetry of a nondegenerate system
of partial differential equations R. Then there is an internal symmetry X with evolutionary
form v, if and only if there exist functions Wz, u™), ... &P(z,u™), defined on R, such
that, for every homogeneous scalar polynomial P(() of degree n, there exists an q X r
matrix of linear polynomials L ,(¢) (which can depend on both the polynomial P and the
point (z,u(™) € R) satisfying the internal contact conditions

P(O{R(Q) +(£-Q)I} =Lp(¢)-D(() on R. (25)
In this matrix equation, I denotes the q x q identity matrix, and £ - ¢ =Y "_, £%C,.

If the internal contact conditions (25) are satisfied, then the internal symmetry X
assoclated with the evolutionary symmetry v, is the nth prolongation of the equivalent
generalized vector field v as in (7), whose coefficients 7, p®, are related to @ via (16). The
internal contact conditions (25) guarantee that, on the equation submanifold R, the nth
prolongation of v does not depend on (n 4 1)t order derivatives, and so defines a genuine
internal symmetry; see the remarks following Lemma 3. Also note that, even though v
is a first order generalized vector field, the equivalent generalized vector field v can have
order n since the functions £° which satisfy (25) may depend on higher order derivatives.

In order to understand what these conditions mean more concretely, we discuss some
particular examples. First consider the extreme case in which there are no differential
equations, i.e., the equation submanifold R is an open subset of J”. In this degenerate
case, the right hand side of the contact conditions (25) is automatically zero, and so the
polynomial P(¢) can be ignored. The resulting condition

R(¢) + (§-OI=0, (26)

are easily seen to be the same as the contact conditions (15) for ordinary contact transfor-
mations — an “internal symmetry of J”” just means an ordinary contact transformation..
Thus, in this case, Theorem 6 reduces to the classical Theorem of Backlund that every
contact transformation comes from a first order contact transformation, and we are jus-
tified in labelling Theorem 6 as a generalization of Backlund’s Theorem 2 to systems of
differential equations.



In many cases, the contact conditions (25) will be so restrictive as to automatically
imply that the left hand side must vanish. Indeed, the ¢ x ¢ matrix

M(¢) = R(¢) + (£- O T, (27)

of linear functions of ( measures, in a sense, the “degree of internality” of the symmetry
V- More specifically, according to Lemma 3, an internal symmetry with first order char-
acteristic will extend to an external (contact) symmetry if and only if the corresponding
matrix M(¢) is identically zero for some choice of functions £, Many systems of partial
differential equations do not have any non-extendable internal symmetries, and the contact
conditions (25) are an effective means of detecting this. For example:

Theorem 8. If R is a normal system of partial differential equations in p > 2
independent variables, of order n > 2, then every internal symmetry extends to an external
symmetry.

For an nth order system of ordinary differential equations,
A, (z,u™) =0, k=1,...,r, (28)

the internal contact conditions (25) dramatically simplify. Since ( € C, the polynomial
P(() is a multiple of (", so ¢ can be eliminated entirely. Let

_[0A, _(0Q°
o=(Gi) ™= (), =

where u? = d"u®/dxz™, be, respectively, 7 x ¢ and ¢ x ¢ matrices depending on (x, u(™)
and (z,u™). The internal contact conditions (25) reduce to

R+¢I=L-D on R, (30)

for some ¢ x r matrix L. Writing (30) out in components, we require

o~ : 0A
—— +&£65 = An Al on R, a,B=1,...,q, 31

for some unspecified functions &, AjY. As before, the internal symmetry associated with v
is given by X = pr(") v, where coefficients of v are related to Q via (16).

It is not always necessary to verify all of the contact conditions (31), as some of
them are direct consequences of the symmetry conditions. A system (28) is said to be
of codimension ¢ = q — r if the ¢ x r Jacobian matrix D has maximal rank r < q. The
implicit function theorem assures us that we can locally solve (28) for r of the top order
derivatives, say ul,...,u”, which results in a system of ordinary differential equations of

the form
wt =Tz, u™ D Wm ), k=1,...,r (32)

With this choice, we will refer to the variables u', ..., u", as normal directions, and the
variables w1, ... u9, as tangential directions. Although normal systems of ordinary
differential equations of order n > 3 do not satisfy the descent property, most of the
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underdetermined systems (32) do. Let H denote the (¢ — r)(¢ — 7 + 1) X r tangential
Hessian matriz with entries 02T /Ou) Qut, with rows indexed by A\, u =17+ 1,...,q, and

columns indexed by kK = 1,...,r.

Proposition 9. The system (32) has the descent property if its tangential Hessian
matrix H has (maximal) rank r.

Theorem 10. Let R be an n't order system of ordinary differential equations of
codimension ¢ = q —r. A first order generalized symmetry v, is equivalent to an internal

symmetry X if and only if there exist functions &(z,u(™), and \*(x,u™), k = 1,...,r,
a=r1r+1,...,q, defined on R, satisfying the tangential contact conditions

aQ” : 0A

— 4 £65 = Ao At B=1,...,q, on R, a=r+1,....,r.  (33)

ou "’ ; oul)

Indeed, the remaining normal contact conditions — equations (31) for « = 1,..., 7,
B =1,...,q— are found to be direct consequences of the tangential contact conditions and

the symmetry conditions. In particular, if the system has the descent property, then The-
orem 10 provides a one-to-one correspondence between internal symmetries and first order
generalized symmetries which satisfy the contact conditions in the tangential directions.

If a system has codimension 1, then D has rank ¢ — 1. There is just one tangential
direction, say u?, and so the tangential contact conditions (33) for & = ¢ form a system
of g equations with precisely ¢ undetermined functions &, \{, ..., /\3_1. Therefore, for each
first order generalized symmetry, we can uniquely determine these functions so as to satisfy
the tangential contact conditions; the remaining normal contact conditions will then follow
automatically from the symmetry conditions. Thus for codimension 1 systems satisfying
the descent property, there is a one-to-one correspondence between first order generalized
symmetries and internal symmetries. More generally, for a system of codimension ¢ > 1,
the tangential contact conditions (33) form a system of gc equations involving ¢(q¢ —¢) + 1
undetermined functions, so there will be ¢ —1 additional equations a first order generalized
symmetry must satisfy in order that it correspond to an internal symmetry. For instance,
any first order generalized symmetry of a codimension 2 system must satisfy 3 additional
constraints for it to be an internal symmetry. For example, the codimension 2 equation
v,u,, = w has the first order generalized symmetry v = 229, + 2v,0,,, but there is no
internal counterpart, since it does not satisfy the tangential contact conditions (33).

The most important example of a codimension 1 system is the under-determined
ordinary differential equation

v, = (u,,)>. (34)

Equation (34) was introduced by Hilbert, [6], as an example of an under-determined
differential equation whose general solution could not be expressed in terms of an arbitrary
function and a finite number of its derivatives. Subsequently, Cartan, [2], [3], proved that
this equation has the 14 dimensional exceptional Lie group G, as an internal symmetry
group. Cartan’s result can be verified directly by computing the first order generalized
symmetries using the standard algorithm, and then invoking the preceding remarks to
determine the corresponding internal symmetries.
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Theorem 11. Every first order generalized symmetry of the Hilbert—Cartan equa-
tion is a linear constant coefficient combination of the following fourteen generalized vector
fields

v, =0,,

Vo = 62)7

vy =20,

v, =2%0, + 4u,0,,

vy = 2°0, + 12(zu, —u)d,,
vg = ud, + 2v0,,
v, = 300, + 43/%9,,

vy =u,0, +v,0,, (35)
vy = (2zu, — 3u)d, + 2zv,0,,
vy = (2%u, — 37u)d, + (v?v, — 4u2)0,,

3220 — 8zu? + 12uu,)d, + (12u,v + 12uv, + 42%v3/? — 16zu,0,)0,,
373y — 122%u2 + 36zuu, — 36u*)0, +

+(36zu,v — 36uv + 42°v3/? — 2420 v, + 36zUv, — 16u>)D,,
vy, = (Quww — 4u3)d, + (90° — 12030, + 12u03/2)0,.

= (

vy, = (3zv — 4u?)d, + (4xv®/? — 8u,v,)d,,
= (
= (

According to (16), (31), any first order generalized symmetry

vo = Qz,u,u,,v,v,)0, + R(z,u,u,,v,v,)0, (36)
of a codimension one system of the form
u,, = F(z,u,u,,v,v,,v,,), (37)

is equivalent to the internal symmetry X = pr(® v | R, where v = €0, + @0, + Y0, has
SZ _Ruvamx _R’Um’ SDZQ-i_Sum? ¢:R+§vm (38)

Thus, for example, the internal symmetry equivalent to v- is given by

X, = 60120, + (3v — 6u,vl/?)d, — 20320, — 3v,0, + 3v; Y202 0

T " Vgyg*

Note that, according to (38), the six symmetries v,, vy, V3, Vy, Vg, Vg are found to be
equivalent to point symmetries, while the remaining eight are true internal symmetries.
Since each of the vector fields in Theorem 11 corresponds to a unique internal symmetry, we
deduce that these vector fields close to form a Lie algebra when restricted to the equation.
Using standard Lie-algebraic techniques (Killing form, Cartan subalgebra, root diagrams,
etc.), it can be proven that this Lie algebra is isomorphic to the non-compact real form of
Lie algebra for the exceptional simple Lie group GG,. Therefore, we obtain Cartan’s explicit
realization of G5 as the group of internal symmetry transformations of the six-dimensional
manifold defined by the Hilbert—Cartan equation.
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Interestingly, there are additional higher order generalized symmetries of the Hilbert—
Cartan equation. An explicit example is the third order symmetry

v=u,,0,+ (2u,u —u? )0

rxrr-u rxr xTTxTrXT rxrx v

The full structure of the generalized symmetries of the Hilbert—Cartan equation and various
generalizations has been determined by P. Kersten, [8], [9].
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