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‘Introduction

The application of the theory of local transformation groups
to the study of differential equations has its origins in the
~ original work of Sophus Lie on the foundations of the theory of
continuous groups. One of Lie's primary motivations for introducing
the concept of a continuous group of transformations was the
incisive observation that many seemingly dispatate special methods
that had been devised for integrating ordinary differential equations
were in fact all special cases of his general method of integrating
ordinary differential equations invariant under one-parameter groups
of transformations acting on the space of independent and dependent
variables in the equations. Thus, the standard method used to
integrate by quadratures a homogeneous first order ordinary differ-
ential equation is a direct consequence of its invariance under the
scale group, which acts via multiplication of the independent and
dependent variables by the same arbitrary nonzero scalar. The above
observation alone, however, would be of negligible importance for
practical purposes, were it not for the fact that the invariance of
a specific equation under a transformation group can be readily
checked by the consideration of the infinitesimal generators of the
group, rather than the group per se. In fact, for a given equation,
the Lie algebra of all vector fields (i.e. infinitesimal generators
of lacal ane-parameter groups) which leave it invariant can be

straightforwardly found via the solution-of a number of auki]]ary
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differentia] equatiqns of an elementary nature, whereas the "symmetry
groupf of the equation cannqt itself he.found by any easy computational
methods; short of ekponentiating th_e'a1gebra.+

Lie further generalized the concept of group. invariance from
ordinary to partial differential equations, and could by similar
calculations construct the symmetry group of a given system of partial
differentia]yequations. Although these symmetry groups still possessed
the property of transforming .= solutions to other solutions, they
did not provﬁde much help towards the problem of constructing the
general solution, in contrast to the case of ordinary differential
equations. (A notable exception is the long neglected work of Vessiot
[VE] on the group fibering of an equation. This has been rarely
applied to any practical situations.) After the turn of the century,
the emphasis in Lie group theory shifted away from the local transfor-
mation group to the more abstract global theory, leaving behind the

results on differential equations, which are of an essentially local

+Throughout this thesis, systems of partial differential equations
will be viewed as subvarieties of extended jet bundles, which are fiber
bundles over a smooth manifold, and whose Tlocal coordinates are the
various partial derivatives of the dependent variables. The advantage
of this abstract point of view is that the arguments take on a
geometric flavor that allows us to apply the standard differential-
geometric results of transformation group theory.

The term "symmetry group" will be taken to mean the widest local
group of transformations acting on the manifold whose prolongation to
the extended jet bundle, i.e. whose action on the partial derivatives,
leaves the subvariety representing the equations invariant. It should
be noted that this group may be properly contained in the symmetry
group of the salution set -- the widest transformation group taking:
solutions of the equations to .other solutions, especially if the equa-
tions have very few solutions. However, these two groups are
necessarily equal if the equations have solutions passing through
every point of their corresponding subvariety.




character. The ear]y'inyestjgators.also failed to discover the
concept of a group invariant solution, and for these reasons the
applications of Lie group theory to partial differential equations
was neglected for almost half a century. Thus it was not until after
1940, beginning with the wark of L.1. Sedov [SE]; and 6. Birkhoff
[B], on a general theory of dimensional analysis with applications
.to the equations of continuum mechanics, and particularly hydro-

dynamics, that essentially new research into this area was started.

.1.

The concept of a group invariant or self-similar solution’ to a

system of partial differential equations, in:the special case of the
scale groups of dimensional analysis, was apparént1y first consciously
considered at this time. It was soon realized that group invariant
solutions could be found for arbitrary 1oca1 transformation groups,
and their construction inQo]ved the solution of partial differential
equations in fewer independent variables. (See, for instance, [MO]
for an early version of this theorem.) Finally, in the early 1960's
the fundamental work of L.V. Ovsjannikov on group invariant solutions
demonstrated the power and generality of these methods for the
construction of eXp]icit solutions to complicated systems of partial
differential equations. While only local in nature and not fully
rigorous in proof, Ovsjannikov's methods provided the theoretical

framework to commence a systematic study of the groups of well-known

TThe terms symmetric and automodel solutions have also been used
in the literature. I shall exclucively use the term group invariant
(of G invariant, if G is the particular group) to describe all of
these equivalent concepts.



partia] differentia] equations of mathﬁmatical physics. This work
is being pursued by~0vsjannikov,BTuman, Cq]e,Ames and others, and has
provided many new explicit solutions to important equations:

One of the primary purpases of this thesis is to provide a
rigorous foundation for the’theory of symmetry groups of differential
equations, and to demonstrate the global counterparts (and counter-
examples) to the Tocal results of Ovsjannikov. This will be accomplished
'primarily in the language of differential geometry, utilizing a new
theory of partial differential equations on arbitrary smooth manifolds
which generalizes the theory of differential equations for vector
bundles. To give some intuitive ideas of the relevant concepts, this
introduction contains a brief nonrigorous sketch of the theory, which
shall be illustrated by oné of the most important examples -- the heat
equation. For the heat equation, it should be noted that while the
general ideas were first developed in [B], the general similarity
solution was rigorously discussed onTy as recently as 1969 in [BC1].

A The main computational tool introduced by Lie group theory was the
reduction of questions of invariance to the infinitesimal or Lie

algebra level, making them amenable to algebraic techm'ques.+ Thus,

THe’r‘e the major problem with the previous definition of the symmetry
group of a system of equations becomes apparent; namely, that there may
be 1ittle carrespondence between the group and its infinitesimal genera-
tors. First, it should be remarked that we will not consider discrete
symmetries not contained in continuous subgroups, i.e. we will only
deal with the Tocal group. The second problem is that in the case that
the group is infinite dimentional, the introduction of the more
complicated concept of a Lie pseudogroup of transformations becomes
necessary to maintain any reasonable correspondence between the infini-
tesimal algebra and.the group -- see [SS] and [KU] for detailed
discussions of this.



8

a necessary and sufficient condition far the invariance of a subvariety
~given by the vanishihg of a smooth function is that the differential

of the function annihilate all the infinitesimal generators of the
group action: The concrete realization of a system of partial
differential equations as a subvafiety of some appropriate space of
partial derivatives todether with the formulas for the prolongation

of the transformation group and hence its infinitesimal generators

to this space reduces the guestion of invariance of the system of
differential equations to the invariance of the corresponding subvariety
under the prolonged group action. Here the infinitesimal criterion of
invariance becomes crucial inithat the prolonged vector fields are
readily computable, whereas the prolonged group action is much more
difficult to get a grasp on.

More specifically, let Z be a smooth manifold representing the
independent and dependent variables in the’equations under consideration.
In the classical case Z will be an open subset of the Euclidean space
RP x RY with coordinates (x,u) = (x],...,xp,u],...,uq), where the
x's are the independent variables and the u's the dependent variables.
Fibered over Z will be a fiber bundle Jz(Z,p) (p denoting the number
of 1ndependént variables) corresponding to the variéus partial
derivatives of the u's with respect to the x's of order sk. This
- bundle will be called. the extended jet bundle, and will, in the sbecia]
case that Z is a vector bundle, be the ?comp]etionf of the usual k-jet
bundle J,Z in the same sense that projective space is the "completion”

of affine'space, In this context, a system of partial differential
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equations qf k-th order will be. described by a closed subvariety
Ay of J;(Z;p). A solution of .4, will bg a p dimensional submanifold
ofgz;ftél1edva ﬁ;sectiongxwhoéecekfénded kijétiwahb?dimensibnaﬂ7
submanffo]d aof JE(Z;P) lying over the original submanifold of Z,
is entirely contained in By As a matter of fact, the fiber J:(Z,p)lz
over a point zeZ is given by the equivalence classes of p dimensional
submanifolds of Z passing through,é having k-th order contact. Ndw
suppose that G is a local Lie group of transformations acting smoothly
on Z. The transformations in G prolong to transformations on J:(Z,p)
under théf? action on p-sections. The corresponding prolongation of
the infinitesimal generators of G has a relatively simple expression
in local coordinates. We derive this expreSsion using the techniques
of symmetric algebra; it does not seem to have appeared previously in
“the literature. Its use allows a much more unified and straightforward
deriVation of the symmetry groups of higher order partjal differential
equations than has been done 1in other work in this subject.

pr suppose that G acts regularly on Z in the sense of Palais [P1]
(see the appendix for the correct definitions); this implies that there
is a natural manifold structure on the quotient space Z/G. The
resu1tin§ system of partial differential equations for the G invariant
so]utions to AQ will be a subvariety AQ/Gczdz(Z/G,p—z), where & is
the dimension of the orbits of G. The salutions of AO/G are -(p—z)—
sections Qf 7/G, which when lifted back ta Z praovide all the G
1nvar1ant solutions to the original system Ao: The important point

is that the number of indepehdent variables is reduced by %, making
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the reduced system A,/G 1in same sense easier to solve. (Although
this does not always hold true in practice; there are examples where
B, is, say, linear; whereas AO/G 1s a messy nonlinear equation.)
It is this fact that hakes the symmetry group methad so useful for
finding exact solutions to comp]icated‘differential equations;

To illustrate the application of these abstract concepts in a

concrete situation, consider the heat equation

Up = Uyy

where (x,t) ére the independent variables and u the dependent variable.
Therefore we take Z =IR2 x R with coordinates (x,t,u). The bundle
J;(Z,Z) will be a bundle of twice pralonged Grassmann manifolds, whose
structure we will not attempt to describe here. Suffice it to say

that the usual 2-jet bundle JZZ z(RZ x R le2 le3, with coordinates
(x,t;u;ui,uﬁ;uxx,uxt,utt), is an open dense subbundle of J;(Z,Z), o)

we are justified in restricting our attention to it. The heat equation

in our language is given by the closure of the subvariety

Byo= ug = U Fedyl
in J;(Z,Z). ‘Using the prolongation formula for the smooth vector
fields on Z and so]ving the auxilliary equations resu]ting from the
infinitesimal criterion of invariance of A, (a proqedure that will
be described in great detail in chapter III) it can be seen that the
infinitesimal symmetry algebra of the heat equation is spanned by the

vectorfields
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N
Vo = %

N

V3 % U9,

74 = X, + 28
-

v5 = ZtBk - xuau

> . 2 2

Ve = 4txa, + 4t7o, - (x +2t)uau
I

Vo = a(x,t)au

where a(x,t) s any solution of the heat equation. The vector fields
7]5 72, 73"7d merely reflect the fact that the heat equatibn is a
linear, constant coefficient partial differential equation. The other
three vector fields reflect more nontrivial symmetries.

Now consider some of the one-parameter subgroups generated by
single vector fields in the symmetry algebra. For example, the group

G1 generated by 7& is just translation in the g coordinate
G (xt,u) e (xka,t,u) . X eR

and is therefore a global, regular one-parameter group of transformations
on Z. The quotient manifold Z/G] =IR2 with coordinates (t,u), so

the reduced equation AO/G1 is Jjust

so the only Gy invariant solutions to the heat equation are the constants.
Secondly consider the one-parameter group generated by the vector field
-> ' :

Vg

G,: (X,t,u)l+ (exk, ezxt, u) A eR,
4 .
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In this case G4 acts regularly on Z' = Z - {(x,t,u): x=t=0} and
, . o

2'/Gy = s' xR since on any horizontal
plane ‘{u=cdnstant} the orbits Qf'G4

are the halves of parabolas passing

through the origin. In terms of the

local coordinates (g=k2/t,u) on Z‘/G4

the reduced equation AO/G4 is

Geu" + (2+g)u’ = 0

and therefore the G4 invariant solutions to the heat equation are

-1
Cq er'f(2 /2) + kg t>0

i

“ux,t) = cq t k]'= ¢y k2 t=0,x#0

1 -
€y erf(§x(-t) ]/?) + ko t <0

where erf is the error. function and c],k1,c2,k2 are arbitrary constants

subject to the constraint of the middle equation. Finally, the

vector field 76 can be seen to geherate only a local group
5
AX ) xeR

(x,t,u) » ( 4kt+1’ 4AE+]’ u/antrT &P e

GG:

where A 1s'restricted 50 that 4At+l > 0. The group G6 can be global-
ized, cf. [P1], but this does not seem to have any practical conseque-

invariant solutions to the heat equation are

t"3/2(ax+bt) exb(%%?kzt']) t>0

nces. The 66

u(x,t) = o N
(Qt)_S/Z(ax+bt) exp( %—xzt']) t <0
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where a and b are arbitrary constants.
One might reasonably ask whether there is anything to be gained

(or lost) by considering the equivalent first order system of equations

u f v Uy f vy
4rather than the second order heat equation; Here the new equations
fdrm a subvariety of JT(Z1,2), where Z] =IR2 le2 with coordinates
(x,t;u,v). In chapter III, we show that the group of the heat equation
is just the projection (along the v-axis) of the group of the above
system, and conversely, the group of the system is in some sense the
prolongation of the group of the heat equation. In general, the
symmetry groups of a higher order equation and the equivalent first
order system are isomorphic, barring the presence of symmetries that
depend on the derivatives ("higher order symmetries.") The main
difference is that the group is easier to compute for‘the single
higher order équation than for the first order system.

The various problems involved in putting Ovsjannikov's theory 1in
a rigorous, global setiing'now become more readily apparent.‘ The most
important is the presence of singular orbits in the group action. The
first.aspect of this problem concerns the algebra of infinitesimal
generators not having constant dimensianality over the whole manifold
Z. ‘Here we can invoke the theorem on the group invariance of the
sets of constant dimensionality ta break up the original manifold, 50
that the algebra can be considered to have constant dimenSion; Thus,
for instance; in the case of the group Gy of the heat equation, the

line'{k=t=0} where 74 vanishes must be discarded to construct the G4
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invariant solutions. This simplified approach, however, ignores the
more chp11cated question of how one patches together the group
invariant solutions on each set of constant dimensionality; in general
it seems that the solutions must have singularities, although this

is not neéesSari]y'true. The other aspect of irregular group action
is the presence of irregu]ar“orbits; the quintessential exahple of
this phenomenon being the irrational flow on the torus; Again, using
the fact that the regular orbits form an opeﬁ submanifold, one can
make the simplistic choice of discarding the irregular part of the
group action, but this again ignores the more subtle question of
describing group invariant solutions near irregular orbits. Both of
these problems do not have satisfactory answers at this time.

Less crucial in terms of theoretical difficulties, but still
important in the development of a global theory is the determination
of explicit group invariant solutions. If the manifold Z is given an
a priori distinction between the independent and the dependent
variables, (for instance, Z might be an open subset of IRP leq, or
more génera]1y an open submanifold of a vector bundle, where the base
manifold represents the independent vériabies) then one might
reasonably. ask when the group invariant sections actually give the
dependent variables as global single-valued smooth functions of the
independent variables. There are two aspects to this question: local
.and global. If the group action is transveksa] to the dependent
variable fibers, then there is an induced fibration on the quotient
manifold Z/G; By the implicit function theorem, any ekp1icit section

of Z/G will 1ift back to a locally eXp]icit section of Z. The
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~global counterpart is more subtle and involves a detailed analysis
of the orbits. This is perhaps best illustrated by the following

"spiral group" action on Z = (Rz;{O})le:
G:  (X.y,u) = (x.cos A -y sin A, X sin.X +y cos A, uta) aeR,,

with infinitesimal generator -ya, + X5 +ﬂ3u. The group action is

N
obviously transversal to the fibers {(x,y)=constant} and the orbits
are spirals sitting over the circles centered at the origin of the
(x,y)-p]ane; Theréfore the G invariant sections of Z are in general
locally éXp]icit sections, but the variable u will always be a
multiple valued function of x and y. Thus, for example, tHe G invariant

solutions of Laplace's equation

AU = uXX + uyy =0

are the multiple valued logarithmic potentials

u(x,y) = a 1og(x2+y2) + b tan'](y/x) + 2nmw

where a and b are constants and n is allowed to.assume any integral
value.

Now consider the important case in which Z is a fiber bundle over
a p-dimensional base manifold With q dimensional fiber, A diffeo-
morphism f: Z - Z will be called projectable if it preserves the

fibers of Z. In local coordinates, T must take the form
Fx,u) = (7 (x)sFp(xau))

A Tocal group of transformations acting on Z is projectable if all
of its transformations are. The projectable groups form the most

important and by far the commonest groups arising in the subject. Note
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that the symmetry group- of thg’heat equation is entirely projectable.
As an application of our theoky; we shall prove that any\1inear

partial differential equation of Qrder,aS has anly projectable
symmetries in its local symmetry Qroup, This result is a generalization
of a result of Ovsjannikov for second order linear equations; The
advantages of considering only projectable symmetries are great. The
prolongation fromula for projectable vector fields has a much simpler
expression, which makes the calculation of the projectable symmetry
group of an equation much more tractable; Moreover, the projectable
symmetries transform explicit sections to eip]icit sections. Using

the fact that the quotient manifold of a fiber bundle under a project-
able, regular group action which projects to a regular group action on
the base manifold X'is again a fiber bundle (with possibly different
fiber) over the quotient manifold of the base space, the preceding
formalism of extended jet bundles aver arbitrary manifolds can be

- dispensed with in favor of the more well-known theory of jet bundles

of fiber bundles. (Note that we still cannot just consider vector
bundles due to the possibility of change in the fibers.) This again

is overly restrictive, since it is easy to construct groups that act
regularly on the total space Z, but whose projections tb X contain
1rregu]ér orbits. For instance, consider Z = (R24{0})XIR and the
group with infinitesimal generator (in polar coordinates)

(l—r)ar + 9y * 9, . Here the circle  r = %&2+y2 =1 js an irregular
orbit of the projected group action: the that there are no group

invariant sections that extend continuously across the irregular orbit.
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The preceding discussion should indicate some of the results
that this global theory of symmetry groups of partial differential
equations will contain. Much of the Titerature up to the present
time has been written in the imprecise and local style of Lie's
original work, failing to utilize any modern terminology or results.
Ovsjannikov's works, [01], [02], are written in the language of the
classical differential geometers, cf. Eisenhart, [E1], [E2], with
A(unstated) concentration. on purely local results. Bluman and Cole's
latest béok, [BC2], is essentially a restatement of results known
at the turn of the century, cf. Cohen's monograph [€O0], together
with their more recent work on group invariant solutions and appli-
cations to many interesting equations. Ames, [AW], has also done some
work in this field using similar concepts, but with a slightly
more cumbersome fromalism. In all of the above works, the results
are strictly 1oca1 in nature; moreover, the proofs are oftem not
entirely rigorous -- all of which is indicative of the need for a
rigorous and global theory, which this thesis hopefully provides.

My main inspirations for developing such a theory came from
Palais' monograph [P1] on the global theory of Lie transformation
groups and the exposition in Federer's book [F] on symmetric algebra
and its applications to studying the differentials of smooth maps
between vector spaces. The relevant results from Palais have been
summarized in the appendix for convenient reference. The main
theorem from symmetric algebra is the Faa-di-Bruno formula for the

higher order differentials of the composition of smooth maps, which
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is quoted in section IL.2. This theorem'férms the basis of many of

the new theoretical tools that appear in the ensuing sections: In
particular it is used to derive a new natural explicit matrix represen-
tation of the prolongations of the general Tinear group; The

extended jet bundles and prolonged Grassmann manifolds are new ideas,
although they héve been developed in the spirit of Ehresmann's

original theory of jét bundles and frames of higher order contact, cf.
[EH] and [KO1]. The material on total derivatives is fairly standard,
but it is put here into the framework of symmetric algebra. The
definitions of systems of partial differential equations over arbitrary
manifolds form a straightforward generalization of the corresponding -
concepts in the category of vector bundles.

The first major application of these new theoretical concepts is
the derivation of a new local coordinate eXpression for the prolongation
of an infinitesimal generator of a aone-parameter group of transforma-
tions, given in theorem III.1.3. This is applied to derive results
on the symmethy groups of linear eauations and the relationship |
between symmetry groups of equivalent systems of partial differential
equations. The fundamental theorem of chapter IV is a rigorized and
globalized version of the basic theorem of Ovsjannikov on the
construction of group invariant solutions via the reduction of the
number of independent variables. As far as examples go, the results
on the heat equation are for the most part contained in the paper [BC1],

although their derivation here is considerably simplified. Most of

the results on the Korteweg-deVries equation and Burgers' equation and



19

the telegraph equation appear to he new, especié]]y as regards to
their group-theoretical interpretation.

A few brief comments on the organization of the material in this
thesis are in order; more complete discussions appear in the 1ntro-
ductory sections at the beginning of each chapter; Chapter I deals
with the special case of first order systems of equations, and develops
the theory from a somewhat different standpoint than is done in the
general higher order case. Here the main ideas are able to be presented
unencrusted by the computationa] details that complicate the general
case. Chapters II-IV treat the general case of systems of arbitrary
order, and form a unit independent of chapter I. The mathematical
machinery of symmetric algebra, extended jet bundies, prolongations
and total derivatives is developed in chapter II. Chapter III derives
the prolongation formula for vector fields and applies this to discuss
some specific examples of symmetry groups. Also included in this
chapter are discussions of the symmetry groups of linear equations
and the relationship between the symmetry group of a higher order
equation and its equivalent first order system.. In chapter IV, the
fundamental theorem relating the extended jet bundle of the quotient
manifold to the subbundle of extended jets of group invariant sections
is proven and used to find group invariant solutions to some specific
partial differential equations. The Tast section of this chapter
takes up the topic of explicit sections. The applications of the

general theory are mainly to be found in sections I.5, III.2 and IV.2.
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I. Symmétries of First Order Partial Differential Equations

The first chapter of this thesis provides a complete development
of the theory of symmétry groups and the method of construction of
group invariant solutions for the case of first order systems of
partial differential equations. This material is essentially
independent of the remaining three chapters of the thesis, and the
reader could just‘as well begin on the general case starting with
chapter 2 immediate]y; Howevér, there are two good reasons for the
inclusion of this first chapter. The first is that most of the
crucial ingredients needed to develop a rigoroué theory of symmetry
groups of partial differential equations already make their appearance
in the first order case, but there is a minimum of the complicated and
technical mathematical machinery, which only serves to obscure the
basic issues, that is needed to discuss the general, higher order caée,
It was therefore thought that an exposition of the first order case
would set the ideas for the general construction in their proper
perspective. The second purpose behind this chapter is that for the
first order case much of the theory can be based on the concept of
a graphic differential equation, an object of independent interest.
Basically, these are partial differential equations whose solutions
form implicit solutions to other partial differential equations. At
the present time there does nat seem to be any satisfactory general-
ization of this cancept to higher order partial differential equations.

Much of the discussion in this chapter is not of a completely precise
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or rigqrqus nature. The rigor will for the most part be deferred
until the general case js takgn up in thg‘subsequent chapters.
Section 1 begins with a heuristic discussion of sections of
vector bundles and the construction of the first jet bundles from a
-geometrica1 point of view. This serves to motfvate the the definition
of the extended first jet bundle aover an arbitrary smooth manifold
and the generalization of the concept of a system of first order
partial differential equations for a manifold. Section 2 discusses
graphic differential equations 1in preparation for their application
to the construction of group invariant solutions of first order
partial differential equations. "The prolongation of smooth Tocal
transformation group actions to the extended first jet bundle is
done in the next section. Here, the well-known formulé for the first
prolongation of a vector field is derived and applied to find the
symmetry group of a first order system which is equivalent to the
heat equation. In section 4 the relationship between the symmetry
groups of first order systems and their graphic equivalents is
described, and this is applied to construct the system-of equations
for the group invariant solutions. Section 5 discusses the examples
of the heat eqﬁation, the telegraph equation and a general system
of quasi-Tinear equations in one dependent variable. These serve to

illustrate the theory developed in the preceding four sections.



I.1 Extended First Jet Bundles

To provide some motivation for the concept of a system of first
order partial differential equations defined on an arbitrary smooth
manifold, this section will begin with a brief recapitulation of the
modern approach to differential operators and equations. Suppose
m: Z+ X is a vector bundle over the p-dimensional smooth manifold
X with g-dimensional fiber, which shall be denoted by U. In the
classical treatment of systems of partial differential equations in
p independent and q dependent variables, X = R and U = RY and
Z is the trivial bundle RP x R9. In general X will represent
the dependent variables; smooth solutions to differential equations on
Z will then be smooth sections s: X -~ Z. For our purposes, it
will be more natural to regard a section of Z not as a map
s: X = Z, but rather as a smooth p-dimensional submanifold scZ that
satisfies two additional conditions: firstly the submanifold s
must satisfy a local condition of transversality to the fibers of Z,
and secondly s must satisfy the global conditipn of intersecting
each fiber of Z 1in exactly one point. A local section s of Z
is a section that is defined-only over an open subset of X. It again
satisfies the local condition and the less restrictive global condition
of intersecting each fiber in at most one point. It is readily seen
that any p-dimension submanifold of Z satisfying the local transversality
condition and one of the two global conditions is a Tocal or global
section of Z, as the case may be.

The first jet bundle of a vector bundle Z - J]Z - is that

vector bundle over X whose fiber over a point x ¢ X 1is given by
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the equiya1ence classes of 1qca1 sections having first order contact
over x. In terms of our geometrical interpretation of sections, the
condition of first order contact translates into the cbndition of two
submanifolds having equal tangent spaces at a common.pointg The first
jet bundle has fiber dimension q + pqs the fiber coordinates
representing the dependent variables and their first order partial
derivatives with respect to the independent variables. Given a section
s of Z, there is a corresponding section j]s of J1Z, called the first
jet of s, whose value at a point x eX is prescribed by s(x) and the
tangent plane to s at x. In Tlocal coordinates, if s(x)=(x,f(x)), then
.j]s(x) = (x;f(x),df(x)), where df is the Jacobian matrix of f. A
first order differential operator on Z is a smooth map A: J]Z + W
where W is some other vector bundle over X; A cah be required to
have the‘propekty that it project to thé identity map on X. (Note
that since we are interested in 1inear equations, A is only required -
~to take fibers to fibers, not be a vector bundle morphism.) The
differentié] equation AO assbciated‘to A is the inversé image of the
zero section of W, i.e. AO=A—1{D}.+ A solution to Ao.is a smooth
section s of Z such that" j1s<:A0 or equivalently Aéjjs=0. Note
that an arbitrary closed subset of J]Z can be described as the differ-
ential equation associated wiﬁh,sqme first order differential operator.
The advantage of the preceding interpretation of,differentia] equations
is that they are rga]ized geometrically as subvariaties of vector

bundles, rather than some conditions on the derivatives of smooth

,TIn.genera1 Ay will be given in local coordinates as a system
of first order par@ia] differential equations.
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functions. This will be of importance when it comes time to apply the
conditions of invariance of subsets under the actions of local
groups of transformations;

Now consider what happens when G s a 1pca] Lie group of
transformatiéns acting smoathly on Z. The important point to keep
in mind is that in general G will not consist solely of transformations.:
ihat preserve the fibers of Z - the so-called projectable transformations.
Thus while the transformations of G will take p-dimensional sub-
manifolds of Z tb p~dimensional submanifolds, neither the local
nor the global conditions required for the submanifold to be a

section will necessarily be preserved.

Example 1.1 Consider the trivial line bundle Z = RxR with

coordinates (x,u). If G = S] is the rotation group

G: (x,u) = (x cose - u sine, x sing + u-¢ose6) . © eS]

then any constant section becomes a vertical line under a rotation
of g—. Even worse is the case in which

the rotations speedrup as- the radius ‘ /////’-—\j::)
r = sz + y2 approaches «; for example —\\ <:;4r—’;//,

G': (x,u) = (x cos ré - u sin re, x §in re +u cos ro).

In this case any global section of Z 1is transformed into a "spiral"
that has both vertical tangents and intersects each fiber infinitely.

many times.

In spite of all this, the transformations of G will still
Tocally carry local sections of Z to local sections of Z, i.e. the
condition of transversality to the fiber is maintained under transformations

sufficiently close to the identity. Moreover there is an induced local
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action of G on J;Z, denated by G(]) and called the first pro-
longation of G, since G preserves the condition of first ordér
contact. Giveﬁ“‘z el let G% denote the nucleus of e1ements Qf

G defined at z. If vé: JqZ > Z is the natural projéction and

j e (ﬂé)_]{z},_then the above discussion shows that G(}) < G, but
in general there is not equa}ity; If a differential equation

hg < J]Z is an invariant subset under the action of the first
prolongation of G, then the group G itself will (Tocally) transform
solutions of Ay to solutions of Ay . It will be shown that there
is a concise expression for the first prolongation of the infinitesimal
lgenerators of G, so that thé invariance of a differential equation
under a group can be readily checked by the standard 1nf1nitesima1
criteria of a subvariety of a manifold being invariant under a local
group of transformations. Indeed, the full symmetry group of a

system of partial differential equations can be determined via the
solution of a number of easy auxillary partial differential equations
involving the infinitesimal generatars.

The solutions of Ay that will be of greatest interest here

are those (local) sections of Z that are (locally) invariant under

the action of G. These will be called G-invariant or self-similar
solutions. The theorem we are driving towards is that the G-invariant
solutions of a system of partial differential equations A4 which 1is
invariant under the prolonged actjon of G can be all obtained by the
solution of a new system of partial differential equations AO/G

in a fewer number of independent variables. If G satisfies certain
mild regularity conditions so that the quotient space Z/G is a smooth

manifold, and % denotes the dimension of the leaves (orbits) of G,
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then the equation Ay/G. for the G-invariant solutions to Ay will
naturally live on Z/G. and wi]l'involve % fewer 1ndependént variables.
The main problem is that the quotient space’ Z/G is not necessarily
endowed with any bundle structure; which necessitates a definition
of a differential equation on an arbitrary smooth manifold that will
reduce to the above definition when the manifold happens to be a
vector bundle. (It should be remarked here that if G 1is a projectable
group of transformations, then Z/G has the structure of a fiber
bundle, so we must at least generalize the theory to include
fiber bundles.)

It should be clear from the préceding discussion what is needed' to
be done. The G-invariant p dimensional submanifolds of Z are
in one-to-one correspondence with the p-2 dimensional submanifolds of
Z/G via the projection T8 Z +~ Z/G. Furthermore, the condition
of first order contact is preserved under this correspondence. The
only conditions that have na analogues in Z/G-are the local and
global conditions on a submanifold for it to be a section. Keeping
this in mind, the generalization of the notion of a section to an

- arbitrary smooth manifold is straightforward.

Definition 1.2 Let Z be a:;smooth manifold and let p be a
positive integer less than the dimension of Z. A smooth p-section

of Z s an arbitrary smooth p dimensional submanifold of Z.

In the case of a bundle, we have enlarged the collection of
sections to include those with "vertical tangents." Given a point

z eZ, let C°°(Z,p)lZ denote the space of germs of smooth p-sections
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of Zat z.  In other words = C”(Z.p)I, 1is just the set of all
p-dimensional submanifolds of Z passing through z .modulo the

equivalence relation that two submanifolds define the same germ. at

of a p-section s eCm(Z,p)l is an embedding f: ¥*> Z, where

'z
Y < RP s an open nejghborhoad of the origin, f(0) = z ahd im f
agrees with s 1in some neighborhood of z. Iﬁ general, since most

of our considerations are of a strictly Tocal character, we will be

a bit sloppy notationally and write f: RP + Z even when * might
only be defined on an open subset of RP. We will also sometimes use
the shorthqnd notation f « C°°(Z,p)]Z to mean that f 1is a
parametrization of some p-section through z. Note that by the
~inverse function theorém, f and f' parametrize the same section of
Cm(Z,p)lZ iff  there exists a local diffeomorphism w:\Rp > RP such
that f’o = f'. (Again ¢ may be defined and the equation may hold

~only in a suitably small neighborhood of the origin in Rp.)

Definition 1.3 Given z. eZ, the extended first Jet bundle

if p-sections at z, JT (Z,p)1, is the quotient space of C"(Z,p)|

-y
&

modulo the equivalence relation of first order contact.

In other words, two p-dimensional submanifolds s, s' passing
through z define the same first jet at z iff Tsl, = Ts'!z.

o : . . *
For s e C(Z,p)], Tet: j?slz denote the image of s in J](z,p)lz.

Let .
nze) = U ol

z el
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be the extended first jet bundle of p-sections of Z. It has the
structure of a fiher bund]QaOyer.;Zgusugh;that'fqr‘any smooth  p-
section s of ‘Z;-j?i* js=azsmbotﬁ7 p-section bf JJT(Z;p):

Given a real vector space V, let Grass(v;p) denote the Grassmann
manifold of p-dimensional subspaces of V. Given a vector bundle
E -+ Z, let Grass (E,p) denote the associated bundle of Grassmannians
whose fiber at z ¢ Z 1is just Grass(E]Z,p). By the definition
of first order contact, there is an isomorphism

JT(Z,p) = Grass (T(Z),p)

‘which assigns to each section its tangent space. This can serve‘to

define the bundle structure of the first jet bundle.

Definition 1.4 Let W be an involutive q dimensional

T on Z, a smooth p+g-dimensional manifold.

differential system
A p-section scZ -is transversal to W if Ts|, n I, = {0}

for all z ¢ s.  Let C"(Z,p; U )|, denote the space of germs of

z
’ : *
p-sections passing through 2z transversal to @ and let J](Z,p,QA) be

the subbundle of the ‘extended first jets of transversal p-sections.

Note that if V 1is an n dimensional vector space and U <V
a g = nap dimensional subspace, then

Grass(V,p; U) = {A ¢ Grass{V,p): A: nU = {0}}
is a Euclidean space of dimension pq. Therefore

JT(Z,p; W) = Grass(T(z),p; W)

"This is sometimes called an involutive distribution on Z. It consists
of a smooth family of q dimensional subspaces W|,<T(Z)], for each

z «Z. Moreover for any smooth vector fields v,v' containad in ™, their
Lie bracket [v,v'] is also contained in AL . Frobenius' theorem implies
that such a differential system is integrable, so that there is a g
dimensional foliation of Z with 94 forming the tangent spaces to the
leaves, See [W]. '
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is a Euclidean bundle aver Z with fiber dimension pq. For this

reason,  this bundle will be Ca11ed'théff?%V{afiéed”G%aééﬁaﬁﬁ or

triviaTiZed'ekténded'f{rstfjet?bundle with respect'to ’b(.

Lemma 1.5 Let Z - X be a vector bundle over a smooth p
dimensional manifoid X and let WU denote the differential system

given by‘the tangent spdces to the fibers of Z. Then
*
VAR I (Zps W)

~This lemma shows that we have indeed generalized the notion of
the first jet bundle correctly. The proof is a direct consequence
of -the fact that any p-dimensional submanifold of‘ Z transversal to
U s Tocally a section of Z, and only local sections are needed to
construct J]Z. Therefore the extended first jet bundle can be
considered as the "completion" of the usual first jet bundle in the
same sense that projective space is the "completion" of affine space,
the completion being obtained by allowing sections with:fvertica1

tangents."

Given Tocal coordinates x: Zj i,JRp x RY for some open

c Z, so that x(z) = (x,u) = (x1;...,xp, u],...,uq), there is a

%
naturally defined g-dimensional involutive differential system U on
0 spanned by the vector fields d x-](é/éui). In this context, the
x's should be viewed as the local independent variables and the u's

as the local dependent variables.

' Definitioq;T;S Given Tlocal coordinates on: Z and the

corresponding differential system WU, then for any p-section ch0
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transversal toW, a normal parametrization -of = s 1is.a smooth

map f: R~ Z, with im.f.= s and x o T (x) = (x,f(x)) for some

~Q
functian f:lRP +qu.;
Note that the inverse function theorem assures‘the Tocal existence

of normal parametriZations for transversal sections.  Indeed, if

’a:IRp ~ 7 is any transversal section, so that in Tocal coordinates

x o G(x) = (g1(x), gz(x)) then 7 , the normalization of ‘E, is given
in these coordinates by yx o ?(x) = (X, gy o g]'](x)), the inverse

of 91 always existing locally. When using local coordinates, we

shall often suppress the map x and identify z with x(z).

Now if }:RP > Z is the normal parametrization of a transversal

p' -section. s, then Ts is spanned by the vector fields

A N J .

df('"éﬁ_')= _37_-+- @f%. ;j%f i=1,...
X ax J=1 8x" au

so we can regard the components ug = afJ/ax1 as local coordinates

*

in J](Z,p;QL ) corresponding to the Tocal coordinates (x,u)

on Z. Often the Jacobian matrix (u?) will be abbreviated by the
symbo1l u(1), Thus if a p-section s has j¥312'= (x,u,u(])) in

these local coordinates, then TslZ is spanned by the vector fields

i

8/ox  + Z u?a/auJ for i=1,..., p. In summary:
J

Lgmﬁg 1.7  Let yx: ZO’-XIRp x RY be a system of Tocal coordinates
on Z and let WU denote the differential system dwx;1[TRq],
then there is an induced local coordinate system
x(]): JT(ZO,p;1L)-; RP x R x Hom(®P,RY) such that

if §:|Rp - ZO is any parametrization of a p-section s with
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X °.§ =95 x g, then

x¢ )9313 = x(9p70 gy )x d(gp ey .

Note that in the case of a vector bundle, these coordinates
are the usual coordinates in Jq 2. (See, for instance, [P2; chapter 4]

for a fairly complete discussion of this:)

Definition 1.8 A first order"diffefentiaj'equéffOn for p-sections

of a smooth manifold Z 1is a closed subset Ag =Y (Z p) A

so]ut1on to A, s a p-section s < Z with J]S < Bge

The definition of differential operators and their relation to

differential equations will be deferred until section II.5. If
AT(x,u,u(])) =0 i=1T,...,a (*)

is any system of first order partial differential equations on

=RP x RY, then (¥) defines a subvariety of J;Z and the
first order differential equation corresponding to the above system‘
will just be the closure of this subvariety in JT(Z,p). In
other words, we are allowing solutions to (*) witﬁ vertical tangents
as long as these tangents are Timits of tangents that satisfy (*).

These concepts will be explored in more detail in section IT.5,



I.2° Graphic ’DifférentiaT ‘Equations

Given a system of f1rst order part1a1 d1fferent1a] equat1ons,

a graph1c equ1va1ent ta th1s system 1s another system of first order
partial differential equations whose solutions are the implicit.
solutions to the original system: IT the first system is on the
smooth manifold Z, the graphic equivalent is on the trivial bundle

19 = ZxRY  The advantage of considering the graphic equivalent
rather than the original system is thaf a transformation group

acting on Z will naturally carrespond to a group acting trivially

on the fibers. In addition any differential equatioh on 19 satisfying
certain symmetry conditions is the graphic equivalent of some equations
on Z (It is this last fact that does not have an analogue for higher -
order differential equations, and restricts the use of this technique
to first order equations.) These two properties will be used to
provide an easy proof of the theorem on the ekistence of symmetric
implicit solutions to a system of first order partial differential
equations.

Let Z be a smooth manifold of dimension. ptg and s ¢ Z a
p-dimensional submanifold. Locally s can be described either
parametrically as the image of a smooth embedding fiRP 57 or
impTicitly as a level set of a smooth submersion F: Z +qu. It
Will be more convenient to regard the implicit function F as a
section of the trivial bundle 1% = Z x R9, Let Homy (T2, 1) denote
the §ubbund]e of Hom(TZ,19) of 1inear maps of maximal rank. Consider

the jet bundle exact sequence’
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0+ Hom(Tz, 19) =13 J.19 > 19 > 0 (2.1)

which splits since 1 is.trivial. ‘Let (1), = #]" [Homy(1Z, 1.
Note that F is a submersion iff iqF c:J]("q)é since

m(J;Fl,) = dFl, . There is an action of GL(q) on Hom(T(Z),W9)

given by Teft matrix multiplication; the action is nonsingular on
HomO(T(Z),ﬂq). This corresponds to the action of diffeomorphisms of
RY on sections of 19. HNote that if G: RT - RY s a diffeomorphism

and F:Z +qu is a submersion, then F and G o'F dgefine the same

implicit sections of Z. This is reflected in the next lemma. Let

o725 W) = Hom (12, ¥7)/6L(q)

be the projection onto the quotient bundle.

I: Hom

Lemma 2.1 There is a natural f{somorphism
Grass(TZ,p) = Homy(1Z,1%)/6L(q)
such that if F:Z ~R9 1is a submersion and F(z) = c<RY, then
* - 0
37 FHe, = alm (3, (2))]. (2.2)

Let w: TRY) =R x R > RY be-projection pnto the second
factor. Then '
mo dF = ﬂ][j1F]
in HomO(TZ, Hq). Therefore it suffices to show that if F,F'
are submersions and z e F_]{c}.er"1'{c'} for c,c' ¢RY then
T F;l{c}lZ =T F‘-7{c'}lZ iff there exists a matrix A <GL (q) with
Avmo dF = 7o dF' .
This in turn follows strqightforwardTy'from the fact that |
TF71{b}IZ = ker[rw o dFlz] and the maximatlity of the rank of w o dF.



36

In other words the. 1somorphjsm of the 1emma identifies Be HomO(TZ lq)JZ

with ker'B which is a p- p1ane in. TZJ
Q.E.D.

Défiﬁffiéﬁ 2.2 Let AO *(Z p) be a d1fferent1a1 equation,

A (Tocal) i ‘*p11c1t so]ut1en to AO is a (local) submersion F: Z +RY

such that the level sets F~ {c}, ¢. - emq are all solutions to AO .

For the remainder of this chapter we will be just concerned
with implicit solutions to differential equations. There is a
small Toss in generality since such anomalous solutions as envelope
solutions do not lie in this class, but these will be covered when

We turn to the general case of higher order equations.

Definition 2.3 Let g < T(Z p) be a first order system of

partiaT differential equations. A graphlc equ1va]ent to Ag is a

first order differential equation AO c J]('Hq)O such that any

F: z+RY is a Tocal implicit solution to by iff it is a solution
to @b .

For a given differential equation Ay on Z there is an

essentially un1que graphic equ1va1ent to Ag» namely

By = [n (A )] | (2.3)

where @ 1s the projection in the exact sequence (2.1). KO is. not

unique since any differential equation in "q with an empty solution

set could be added to Xb . A'graphic differential equat1on will be

an equation in 19 that is the graphic equivalent of some equation Z.
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There is a natural action of RY on 19 given by translation

in the fibers. By the splitting of (2.1), we obtain.an action of the

group GL(q) x RY on J]IQ;"

Definition 2.4 A differential equation By < o1 s of

Eurely first order if @Q is invariant under RY. In other words,
2. does not depend on the dependent variables, only on their derivatives.
0 p

Lemma 2.5 . -Let ﬁb c J](]lq)O be a first order system of

partial differentia]lequations invariant under GL(q) leq, then
ﬁo' is a graphic equation. Conversely, if EO is a graphic
equation which possesses solutions whose first jets pass through

-1_-1

every point of '20 (or, alternately, ﬁb = m n Ag for some equation

* A . . q
By < J1(Z,p)) then "A; s invariant under GL(q) x R,

Proof
The first statement follows from lemma 2.1. Namely, let
by = How][ﬁo] ”qnd nqte“fhaﬁg' 30 = w;]n'][AO]

by the conditions on 30. The fact that ﬁo is a graphic equivalent
to ZO follows from equation (2.2). To show the converse, note
that if F 1is any solution to @b then so is G o F for any
diffeomorphism G :RY >R, Letting G be translation by a fixed
vector gives the fact that 20 is of purely first order.

Using the fact that

mdq(G e F) = d& - mJ;F

~gives the invarijance of "130 under GL(q).

Q.E.D.



38

To.see what is involved in.the.precéding construction, it

is helpful. ta:look at the local coOrdinate‘desCription: Let (x,u,w) =

(X];::;,xp,u],.,.,uq;w]':.:;wq) be.Tacal coordinates on 11 with

S

corresponding coordinates’ u(]) = (u}) on the fibers of 'JT(Z,p;?A )

and w(]) = (wﬂ})lw(;)) = (w§1w;) on Hom (T(Z); Hq), where the
w; 's correspond to partial derivatives in the x3 direction and

I

Q =, -2

W 's to derivatives in the u° direction. Then the map I is given

by the formula

W12 D)) < g

: )
whenever the square matrix w(;’ is invertible, and in fact

;l)ﬁ]w(}) (2.4)
H“][JT(Z,p;?i )1 is just the set of those (w(})lw(;)) with

w(;) ¢ GL(q). This follows directly from the identification of

H(w(])) with ker w(]) > as in the proof of Temma 2.1. Thus if an
* ,
equation Ag < J1(Z,p) s given by

AT(x,u,u(])) =0 i=T,..., 0

then the graphic equiva1ent is Jjust

Ai(x;u, - (w(}))'] w(;))= 0 i=1,i00, 0.
This procedure could be generalized to higher order equations, but
there would be no immediate analogue of proposition 2.5, which will
be crucial in what foldows.
Example 2.6  Here the graphic equivalent to the first order
syétem corresponding to the heat equation will be derjved. Consider

the equations

= -] *.
u v Ve = Uy (~)
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on Z =|R2 X RZ. Then .with w,w'  the fiber coordinates on HZ =7 X Rz

=1

(ux ut>:(wu wv WX. Wt
: ’ 1 1 3 1 1

X

1 - gl Ty o w!
1 (wvwX - wvw.X wth wth
d

by 1 A 1
- + - +
Wy Wy W W Wiy W

where d = wuw¢ - W&WV" hence a graphic equivalent to (*) is

LIV T = yfw w! = w!
Wy Wy = W Wy V(Wuwv Wuwv)
T owlw = w! ~owlw!
Wty = Wy T WG WM
This is not averly useful for practical purposes, of course, but
the theoretical implications are the main purpose behind the introduction

of these ideas.



I.3  Prolongation of Group Actions

In this section the prolonged action of a local group of
transformations on the extended first jet bundle wil] be discussed,
~In particular a useful formula for the proTonged infinitesimal
operators will be derived, which will be applied to find the symmetry
groups of some inferesting systems of first order partial differential:
equations in section I.5. Throughout this section the standard
results on local groups of transformations acting on smooth manifolds
will be assumed; consult the appendix or [P1] for the relevant
definitions and theorems.
Let G be a Tocal Lie group of transformations acting
smoothly on the manifold Z. For z «Z, GZ will denote the nucleus
of transformations defined at z. Correspondingly, fdr ge@, Zg
will denote the open submanifold of Z where the transformation g
is defined. For simplicity it will always be assumed that
Zo-1=9'Z, . Given g ¢ G and a p dimensional submanifold

9 g

S < Zg then gs s again a p-dimensional submanifold of Z. 1In

particular, for s ¢ C°°(Z,p)lZ a p-section, there is a well-
defined p-section gs « C°°(Z,p)fgZ for all ge 6, given by
QCang). This Tocal action of G on the space of p-sections

induces an action of G on J?(Z,p) since the transformations in

G preserve the condition of first order contact. This action of G

is called the first prolongation of G and will be denoted by pr(])G.

’ * - *
Note that for g e 6, Jj(Z,p), = () ][.z'g] where m) - I (Z.p) + Z

is the standard projection.
To see that pr(])G actually 1is a smooth local group action

*
on J](Z,p), the Tocal coordinate picture will be discussed. Let
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(x,u) and (X,Q) be Tocal coordinates near z eZg and gz respectively,

so that the transformation g 1is given by
(%,8) = glx,u) = (2a(x,u),¥(x,u)).

1) and ﬁ(]) (01) be the induced fiber coordinates

J
in J:(Z,p) and suppose J = (x,u,u(])) € J:(Z,p;QA ) is represented

]

Let u(]) = (u

by the normal parametrized section '?: lRp +~ 1, i.e. for XedRp,

A

T(x) = (x,f(x)) = (x,u) and u(1)= df(x). The transformed section
g? is given by |

gf: x b (20x,F(x)), ¥(xF(X) = (3(x),%(x)). Assuming
that ¢ 1sﬂa diffeomarphism (which can always be done by appropriate
choice of local coordinates (X,0)) the normalization of the parametrized
section gf is given by 2 H~(?,@c>%f](§)). For any function
vt RP xRI > RE Tet Dv: P x RY x Hom(RPRY) Hom(RP R¥) be the
total derivative given by
D¢(x,u,u(1)) = dp(x,u) + u(l)du¢(x,u) (3.1)

so that if f: iRP +qu is any smooth function, then

dxw(x,f(x)) = DU (x,f(x),df(x)). (This concept will be
discussed in greater detail in section 11.4). Then differentiating

N
the normal parametrization of gf gives

o Mgouu™) = (elxou)rixon) 0e(euul)ou,ul™H 17

(3.2)

which shows the smoothness of the prolonged group action.
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There is a corresponding prolongation of infinitesimal generators
of Tocal groups to JT(Z,p) given by
1 d 1 “
pr( )7 = Hf_wt=0 pr( ) (exp tv)
for ¥ a smooth vector field on Z. To see the formula for the

prolongation of a vector field in local coordinates (x,u,u(])), suppose

v = E & (x,u) 37+ (f 4>1-(x,u)—9—1— (3.3)
J=1 ax~  i=1 du
then
pr(1)7 =V + ] ¢J (x,u,u(]))4§v (3.4)
L j
1,J U5

Given z = (x,u) then for t sufficiently small exp tv(z) is still
in the same coordinate patch and is given by

exp t0 (x,u) = (2, (x.u)5 ¥y(x:u)).

If j= (x,u,u(l)) éJT(Z,p; QA,)IZ is represented by a p-section s,
then for t sufficiently small pr(1)(exp f;)‘ s 1is again a section

transverse to U . Let $'and.% " denote the column vectors

t(q)],.....,¢q) and t(gT,...,éJ) respectively. Then the coefficient
functions ¢g are the matrix entries in
Tl D‘Pt(xau,uv(]))‘[D@t(X=U~,u(])D]'] = 0% (xounul)) - umDé’(x,u,u(”)

which follows from (3.1), (3.2) and because DY, = u(1), Doy = Hp --

the identity map of RP. Therefore we get as

¢g(x,u,u(])) = Dj¢1(x,u,u(])) - E u; ngd(x,u,u(1)) (3.5)
o=1

first order prolongation formula for vector fields on Z.
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Now consider a system of first order partial differential
equations on Z gfven by a subvariety oncsz(Z,p). The equation
Ay is said to be invariant under G if the first prolongation pr(])G
leaves AO invariant. Explicitly, if Ay is given by the

equations

A1(x,u,u(])) = ... = Aa(x,u,u(]))= 0 (3.6)

then using the infinitesimal criterion, A is invariant under g
iff
pr(])v[AJ(x,u,u(]%ﬂ =0 j=1,...50 (3.7)

whenever (3.6) holds for all infinitesimal generators v of G.

Example 3.1 Consider the heat equation
ug = v Vy = Ug (3.8)

2 will coordinates (x,t,u,v). To calculate the symmetry

on Z =]R2 X R
group of (3.8) we look for all vector fields
N .
Vo= m o+ oTag oo, + e

whose first prolongation leave (3.8) infinitesimally invariant. Now

(s _ >, x t X t
=V + + +
prr ‘v = v + ¢ a“x ) 3ut y avx + vy avt where
X _
$" = D¢ - uD E-uDr
t_
¢7 = Dio - uDig - Uyt (3.9)
yX = D ¥ - v,D €= VDt

by formula (3.5). The equations to be satisfied are
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“whenever (3.8) holds. The first equation is. equivalent. to
2. . e . : o vlr =
gty Fugley - vE v ) b g vy - Ve T vy, = Y
where subscripts are used to denote partial derivatives. Hence, on

equating the coefficients of the various: powers of uy

7, = 0 ' (3.11)
b, =V, - %x - v{u =0 (3.12)
o T Vo, = VE - vzzu =¥ (3.13)

Similarly treating the second equation and equating the coefficients

of the various powers of uy and Vi gives

T, =0

gV = TU . (3.]4)
Ty = VT, = 9, <VE (3.15)
LR S (3.16)
Bt VY gy - VE (3.17)

Now equations (3.11), (3.712), (3.14) and (3.15) all imply

t, = £ = b, = 0. Then (3.16) gives ¥, =0, so (3.13)

-

1
N
1

It

0 and ¥ = ¢

shows g, MERICHER S

Together with (3.16) this shows t, = 2§ and hence £, = 0.
Finally (3.17) shows that byu = 0, 2%, = -& and ¢y, = by -
Let ¢ = a(x,t) + ug(x,t). L '

then Gyy = Ot and By = By ZBX = -& hence

Byxx = Bxt = Gt = Tett - O
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What this all shows is that the. algebra. of infinitesimal symmetries

of the heat equation is spanned by the six operators

RN

Ty = 9y

Vg = us, *+ Vo

Vg = xay 2t - VR,

Vg = 2ta, - xupy - (U f xv)a,

VG = 4txp, + 4t23t - (x2 + Zt)uau - (2xu + (x2 + 6t)v)aV

and the infinite dimensional subalgebra spanned by the operators

XX

+ : —
v, T a(x,t)au + ozx(x,t)av SOy T 04 (3.19)

This sy: mmetry group will be discussed in more detail in section I.5.

Lemma 3.2 If a system of first order partial differential
equations AO is invariant under a local group of transformationé G,

then G takes solutions of AO to solutions of AO .

The proof follows directly from the definition of the prolonged
group action. Next consider the action of a group of transformations
on implicit sections. If F: Z +RY s a submersion define gF: Z,_]

i g
by gF(z) = F(g"'z). Under this definition

gﬂF—]{c} = (gF)']{c} for ¢ eRY

so the action does indeed correspond to the action of G on p-sections.
Readopting the notation of section I1.2; the following Temma is

easy to prove.

+RY
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Lemma 3.3 Consider the bundles

3 () Ly Homy (17, 1) ===> 37(Z,p) .

There are natural actions of G on these bundles given respectively

by
i) 9°J1F = J19F - F: z >R
i1) gA(v) = Aldg™" (v)) A e Homy(TZ, nq)lz
voe T2y,
1i1) prillg

The actions of G commute with the two projections:
Cgm(3) = m(gd) ~9T(A) = n(gA)
Corollary 3.4 A system of first-order partial differential

equations Ay is invariant under a group G iff its graphic

equavalent ﬂi](n']AO) is invariant under G.




I.4 Group Invariant Solutions:

We now turn to a discussion Qf symmetric or group invariant
solutions of systems of first order partial differential equations.
Using the theorem of the invariance of sets of constant dimensionality
- of quasi-differential systemé ( theorem A.8. of the appendik) it is
possible to assume without Tocal loss of generality that G s a
Tocal group of transformations acting on Z all of whose orbits
are of the same dimension &. We further assume that G acts
regularly on Z so that the quotient space.Z/G can be‘given the
structure of a smooth manifold. (Here it should be remarked that
Z/G will not necessarily be Hausdorff: consider the example of
Z = R2 ~ {0} with G 'acting as translations in the first coordinate.
This does not add significant complications; the 1nfere§ted reader
should consult the appendik*fof a‘fullerlexplénatiOn.)

Suppose A0‘<:JT(Z,p) is a differential equation which is
invariant under the prolonged action of G. 'A‘ G-invariant solution
to AO is a p-section of Z which is invariant under the action of

G and which is a solution to AO' Define the invariant subbundle of

JT(.Z,p)

Inv(G,p)]Z = {A € Grass(TZ,p)IZ p Ao ogl b where R,
denotes the #-dimensional subspace of TZ]Z spanned by the algebra
of infinitesimal generators of. G at the point z. It is easy to
see that Inv(G,p) forms a smooth subbundle of J:(Z,p) and that
S. € C°°(Z,p)|Z is a G dnvariant section iff jTSciInv(G,p), which
is a direct consequence of the infinitesimal criterion of invariance.

Note that in particular p = & for there to exist G-invariant p-sections.



48

Thgre is a corresponding subvariety 1(:J1uq, giyen by the
first jets of G invariant functions F: 7 ~RY. It is obviously
invariant under the action of GL(g)x RY on J]Hq and its
prajection W]ICZHON(TZ;HQ) is just'thﬁ set of all matrices Ae
HDm(TZ,Bq)[Z‘which'vanish an ?}lz; Using lemma 2.1, we have

H?NT(I) = Ihv(G;p).

The following theorem in its local formulation is due to
Ovsjannikov [01], and shows that the G invariant solutions to a system
of first:order partial differential equations Aq can-all be found by
solving a system of partial differential equations AO/G in & fewer
independent variables. In this section, this will only be proven
for implicit solutions; the proof for the genefa1 theorem will be
deffered until section IV.1, when it will be proven for differential

equations of arbitrary order. Let mg: Z -~ Z/G be the projection.

Theorem 4.1 Let Aq be a system of partial differential
equations of first order in p independent variables on the manifold
Z. Lét G be a regular group of transformations acting on Z with 2
dimensional orbits. If Ag is invariant under the prolonged group
action pr(])G, then there exists a system of first order partial
differential equations AO/G in p-f independent variables on the
quotient manifold Z/G such that F: Z2/6 >RY is an implicit
solution to 4 /& iff Fomg: Z~RY is a G invariant fmplicit

solution to AO'
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Proof

Let 20 = v{]H—IAO c:J](H%)Q be thg graphic equivalent of

Ay~ By lemma 3.3;130 is invariant under the action of G on J](Hg).
Let I < J](ug) be the subbundle of G-invariant sections. There

A
is a one-to-one correspondence between G-invariant maps F:Z +IRY

LI

and maps F: 2/G »RY given by F = F o mg. This induces a map

i 1 9(0)

n

such that for any z eZ with z' HG(Z)

xpi 1, =38 61,
is an isomorphism of fibers. This follows from the fact that j1?12 is
uniquely determined by ?(z) and 'd?(z). Now ?(z) uniquely determines
F(z') and d?(z) vanishes on t?}z , hence df(z) uniquely determines
dF(z'). Moreover, ? 1s}a submersion iff F .is a submersion.
Note that x4 commutes with the action of GL(q) x RY on the

fibers of the two first jet bundles.

Now let ?b/a = X]Cﬁb‘h I). Since i;l,n I is G-invariant

N LN
AO n I|Z = AO/GlZ.

hence given F and F as above, 4iF e B 1 iff §F <By/6.
Now propositon 2.5 imples XO/G is a graphic equation, hence there
is an equation AO/G c:JT(Z/G, p-2) with graphic equivalent ﬁb/e.
The fact that AO/G satisfies the properties of the theorem is a
straightforward consequence of the properties of graphic equations

and of the map X7 Q.E.D.
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Note that the.theqrem.dqgs.not,guarantee the existence of group
invariant»solutions: 'Indeed'the.fdimensiqnality" of the space of these
solutions depends on the dimension of I6 KO’ or, equivalently, the
dimension of Inv(G,p)n Ao The following ekample demonstrates that
symmetric solutions do not necessarily exits, and gives a good
illustration of the process of finding the reduced equation AO/G.

More interesting examples will appear in section I.5.

Example 4.2 let Z =\R2 x R with coordinates (X,y,u)

and consider the equation

By KUy * oy T 1 (*)

which is invariant under the group G =R whose action on Z 1s

~given by
gx = ex
ay = ety A eR
gu = u
1

v

G acts regularly on Z' =Z ~{x=y =0} Then Z'/G = S xIR
and local coordinates on Z'/G are given by the functionally independent

invariants of G

o o<

Considering , &S a function of t., we have

z'(t)

X
-5 g(t)
y yZ

el
1l

el
1
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so the reduced system AQ/Q, is given by

T

<>

Xz =2
y .
or 0=1
which is vacuous. Indeed Inv(G,2) is given by the equation
xu, iy, = 0
50 Ay nInv (6,2) = @. Note that G still takes solutions of

(*) to solutions - it just Teaves no solution invariant.



1.5 Examples of Group Invariant Sotutions

The theory developed in the previous sections will now be applied
to finding some interesting group invariant solutions for the tele-
graph equation and the heat equation. The main step in the construc-
tion of the system AO/G for the G-invariant solutions to a system
of partial differential equations AO is finding local coordinates
for the quotient manifold Z/G . These will be provided by what are
classically known as a complete set of functionally independent in-
variants for the group G, which are functions of the coordinates (x,u)
on Z which are left invariant by the group action. Once these have
been determined, it is necessary to decide which of the invariants
will be the new dependent variables; this will often be determined
from a priori considerations. The system AO/G is then constructed
by substituting for the derivatives of u 1in terms of the invariants.
This process will be clearer in the examples that follow; see also
section IV.2. Finally, at the end of this section, we find the
symmetry group of a system of quasi-linear first order partial dif-
ferential equations in one dependent variable, which gives an applica-.

tion of the theory of graphic differential operators.

Example S.i The Telegraph Equation

Let Z =IR2 X RZ with coordinates (x,t,u,v) and consider the

system of partial differential equations

U, + u
Az bX (5.1)

1
<



53

which are equivalent to the telegraph equation, the function u being

the corresponding solution to the telegraph equation Up, = Uyy + U,

cf. [BL], [CH; p. 192]. If the variables x and t are interchanged
the resulting equation is known as the Klein-Gordon equation and is
important in particle physics, cf. [MF: p. 139]. This example will
compute the symmetry group of this system and demonstrate some inter-
ésting group invariant solutions.

To find the symmetry group, let

-
= e, Tt ey Uy

be an arbitrary vector field on 7 ,sothat £, 1, ¢, p areun-

known functions of (x,t,u,v). The prolongation of ¥ fis

(1) -7 . X t X t
ort Y =3+ ¢%s 4 9o, T TRy T YR
ux ut vx Vt

where the coefficients are given by the prolongation formula. Using
the infinitesimal criterion of group invariance of the subvariety of

* °
J](Z,Z) given by A, , we have

ot + % =

(5.2)
Wbt

whenever (5.1) holds. Substituting for uy ahd Vi according to

(5.1) in the prolongation formula, we see that

" = (¢X-VTX) + UX(¢U+TX-EX-VTU) + Ui(Tu-gu)

¥ Vx(¢v'VTv) * qux(Tv'gv)
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¢t = (¢t+V¢u+U¢V-VTt-VZTu~UVTV) +

+ ux(Tt+2VTU+UTV—¢U—Et-VEu-UEV)

* ui(gu'Tu) * Vx(¢v'VTv) ¥ uxvx(Tv—gv)
V= ymur,) *oug (B mury) v (g T muTy)

+'V>2<('Tv"£v) ¥ qux('gu'Tu)

2
= (wt+ku+uwv—urt—UVTu-u Tv)

<
1

tuy (pruty) o+ v (0 mEy Ve mUE, Ty -

2
-ovrp2ury) + v (g eTy) F u v, (g,%T,)

Substituting these expressions into (5.2) and equating the coefficients

of the various terms involving Uy and Vy to 0 , after some elemen-

tary manipulations we get

T, = & (5.3)
T, = -&y (5.4)
Ty ot 2VTu - &y - & = O‘ (5.5)
P, = Uy, (5.6)
9y = VT, (5.7)
Ty = Ty~ 2ut, t - &y = 0 (5.8)
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b, - VT, * b, + VO, - VT, - V2T =y (5.9)
X X t u t u )

(5.10)

i
=

2
wt + uwv - Uty - UT, - wx + ut,

By (5.3) and (5.4) we have T, = 0=¢g, SO differentiation of

(5.5) and (5.8) with respect to v and u respectively shows that

T, = BTy T &y

Now differentiating (5.9) and (5.10) with respect to v and u

respectively and adding the resulting equations shows that Ty = 0= gx R

which implies that

¥y
1

= Cy + c3t
(5.11)

=
I

—c2+ c3x

where Cq 5 Cp and cy are arbitrary constants. Furthermore, since

=0 = , again by (5.9) and (5.10). it is seen that

¢UU 1PVV

(5.12)

where ¢, is a constant and (a,B8) form an arbitrary solution to the
telegraph equation (5.1). The infinitesimal symmetry algebra of the

telegraph equation is therefore spanned by the four vector fields
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(5.13)

1 1
tBX + XBt + ?UBU - §V8

v

+
Uau VBV

and the infinite dimensional ideal given by

= +
Va,B aBu BBV

where (a,8) i$ an arbitrary solution to the telegraph equation. The

commutation table for the symmetry algebra is

V-] V2 V3 . . V4 V&,B
v 0 0 v 0 v
] 2 OLX:BX
v 0 0 v 0 Vv
2 1 @taBt
(5.14)

v3 -V —v] 0 0 Va',B'
Vg 0 0 0 0 'Va,B

Vu,B -v“x’Bx -v“t’Bt 'Va',B' Vd,B 0

where o' = t“x + Xy = %d

n
[l
™
>
+
>
w
t
+
T

B ]

In this table the entry in the row opposite Vs and the column under

vy is [Vi’vj] . Note that as an immediate consequence of the fact
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that the infinitesimal symmetries of any system of equations form a Lie
algebra, if (a,B) is a solution to the telegraph equation, so are
(ax,BX) . (dt,Bt) and (a',8') given by the expression in (5.14).

Note further that while the exponentiation of the infinitesimal sym-
metry group gives a connected neighborhood oflthe identity in the entire
symmetry group, it does not give all the symmetries of (5.1): for

instance the transformation
(X,t,U,V) —r (-X,t,V,U)

leaves (5.1) invariant, but is not in.the connected component of the
groupy whichy contains the identity.

We now construct some group invariant solutions corresponding to
one-parameter subgroups'of the symmetry group. As a first example,
consider the one-parameter group given by the vector field ca, + 3¢

for some constant c , i.e.
GC s (X,t,UsV) = (xFCA, tHA,U,V) »eR .,

3

Here. Z/G, = R> with coordinates given by (& = x-ct,u,v), which are

: : - iyt = yl = 't = eyl
the invariants of GC . Then u, = Ut vy Vi, Uy cut 5 vy cv
where the primes denote differentiation with respect to & , so the

system AO/GC for the Gc—invariant solutions is

1
<

(1-c)u'

-(T+c)v'

1l
[

If ¢=+1, the only Gc-invariant solution is u=v =0 . If
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c2 - 1>0 then let 82 = (cz—])'1 so the Gc—invariant solutions are

<
i

c]sinh c(x-ct) + czcosh S(x-ct)

v = c1€(]-c)sinh c(x-ct) + c28(1-c)cosh ¢(x-ct)

where Cq and c, are arbitrary constants. For c2 -1<0 Tlet

82 - —(c2—1)'] and the G_-invariant solutions are
u = c]sin c(x-ct) + C,COS ¢(x-ct)
v = C]8(1-C)COS ¢(x-ct) - c23(1-c)sin ¢(x-ct)

More generally consider the one-parameter subgroup corresponding to the

vector field ad, + bat + uy, + va, given by

: (X tyu,v) v (x+ax,t+bk,exu,ehv) A€ lR

Ga,b
Assume a # 0 , hence Ga b acts regularly on Z and Z/Ga b =IR3
5 b
RN

with coordinates (&,p,0) = (bx-at,e u,e v) . Then

1 ]
u, = (bp' ¥ )egX U, = -a 'eEX
X TP t P

1 1
v, = (bo' + ls)egx vV, = -ac'egX
X a t

and the equations Ao/Ga,b are
(b-a)p' +

m&-a Q_g—*

-(b+a)o' -

il
©
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Solving for p gives the second order ordinary differential equation

(b7-a%)p" "+ 22p + (5 + 1)p = 0
a

which has either hyperbolic or trigonometric solutions depending on the
discriminant. The remaining details are left to the reader.

Finally we consider the one parameter group corresponding to the

vector field V3 which is given by
A

3" (xst,u,V) — (x coshy + t sinhp,x sinha + ¢ coshx,e?h,e

| >

G 2v)

Here we must consider the submanifold Z' =Z ~ {(0,0,0,0)} to have

G, acting regularly. Local coordinates on Z‘/G3 are given by, for

3

instance, when x + t >0
1

(g,p50) = (x2-t%,uv,u(x+t) ©)

For these coordinates,

1 1

u, = %(X+t) 2 + 2(X+t)2Xol
21 1

u, = %(x+t) 20 - 2(x+t)2to'

= t -] - "2

v, = 2xp'u pUXU
-1 -2

Vi = 2tp'u - puU

hence the symmetry equations AO/G3 are, in these coordinates,
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02 + 2&og!

1)
o)

1)
qQ

20'p = 20p'
Differentiating the first of these and substituting in the second shows
that o satisfies the linear ordinary differential equation

4egg't + 66 + o =0

Now let o = 5"3/4'8, so o satisfies

4811 + (%g"z + g"-l)’o\, = 0

the solutions of which (see (9.1.50) in [NBS]) are half-integer order

Bessel functions, which are expressible in terms of elementary functions.

Thus for £ >0

N[ —

o= g

(c]sinVE'+ CZCOSVE)

for arbitrary constants CysCy - This gives the solutions

c]sim/xz-t2 + czcos/x2—t2

u(x,t) = o
x=-t x-t>0
x+t>0
C cos/xz-t2 -C sin;/xz—t2
_ 1 2
v(x,t) =
YX+t

Similar solutions are obtained for the other four quadrants of the (x,t)

plane.
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‘Example 5.2 The Heat Equation

Let Z =IR2><IR2 with coordinates (x,t,u,v) and consider the first

order system of equations

A2 : (5.15)
Vo = Ug :

It can be seen that this system is equivalent to the heat equation

Up, = Up in the sense that if (u(x,t) , v(x,t)) 1is any smooth solution
to (5.15), then u(k,t) is a solution to the heat equation and con-
versely, if u(x,t) s any smooth solution to the heat equation, then
(u(x,t) uX(x,t)) solves (5.15). It was shown in example 3.1

that the symmetry algebra of the heat equation is spanned by the vector

fields
Vi °© 3x
Vo = Bt
v3 = u‘au + VBV
(5.16)

= 2taX - XU, - (u+xv)av

2 2 2
btxy, + 4t73, - (x“+2t)us, - (2xu + (xX746t)v)3,,
and the infinite dimensional ideal given by
v, = oz(x,t)au + uX(X,t)BV Oyy = Ot

corresponding to solutions o of the heat equation. The commutator
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table for these vector fields is

v1 Vo V3 , v4 Vg Vg vy,
v] 0 0 0 v1 —v3 2v5 vdx
Vo 0 0 0 2v2 ‘2v1 4v4-2v3 vat
V3 0 0 0 0 0 0 -V
o
(5.17)
vy -V -2v2 0 0 -Vg -2v6 Vo
Ve, 'Vux -Vat va ’Vd' 'Va' "Vu" 0
| R—
where o' = Xo, + Ztat

2

2 . .
4thzx + 4t Oy + (x“+2t)o

Q
I

Note that for all the vector fields the cecefficient ¢ 1is the same as

¢

X Wwhen v is substituted for uy, -

Next, some interesting group-invariant solutions corresponding to
one-parameter subgroups of the symmetry group will be calculated. More
complete results in this direction can be found in [BC1], [BC2]. As a
first example, the "travelling wave" solutions correspond to the vector
field co, + 9, where c denotes the velocity of the wave having

one-parameter group

GC :(Xstyu,v) = (X+AC,t+A,U,V) A ER
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Thus Z/Gc :lR3 with natural coordinates (£ = x-ct,u,v) . Letting
primes denote derivatives with respect to . , then u, = u' o, Uy = -cu' ,

vy = v' , so the equations AO/Gc for Gc-invariant sojutions are

u' =v
vt = -cu'
hence u'' = -cu' and we have
rCTSin/E'(x-ct) + czcosVE(x-ct) c >0
u(x,t) = < cyx t+ ¢y c=0
Lc]sinh/:?(x-ct) + Czqosh%:E(x-ct) c <0

as the Gc invariant solutions, where C and ¢, are arbitrary constants.

Next consider the one parameter group generated by the vector field

Vg
A A

:(X,t,u,v) - (e x,ezxt,u,e' V) A €R

Gy

Here, for G4 to act regularly, we must consider the manifold

Z' =7 ~{(0,0,0,0)} . Local coordinates on Z' are given by &= xz/t ,
U, % =2xv, so that

1. 2.2
u ut = -X"t U

uX =‘2xt

2 1

— - = [}
Vy = X r+ 2t ¢

and the equations AO/G4 are, in this coordinate system,
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28U’ = ¢

-EZU|

2gr' - ¢
so u(g) must satisfy the ordinary differential equation
4gu'' + (2+g)u' =0
The solutions of this equation are

u(g) = c]erf(%/f) ¢y £>0

where erf denotes the error function. Thus the G4-1nvariant solu-

tions for t > 0 are

u(x,t) = c]erf Ay c, t >0
2/t

More generally, consider the vector field xd, + 2ty + aup + (a—])vaV

with group
G, ¢ (X,t,U,V) (exx,ezxt,eaku,e(a'1)kv)‘ A€ R
. . _ 2 _-a _ JI-a .
and invariants £=x/t,n=Xx "u,& =X "V . Solving for the

derivatives of u and v , it can be seen that the equations AO/Ga

are

an + 2&n' = ¢
(a-1)T + 2gC' = -gzn'

so that n must solve the Tinear equation
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4g%" + [(2a+4)E + E°Tn' + a(a-1)n = 0 .

|

]
+ —
Transforming £ = %{ , N =E 4e n , we see that 7 satisfies

™o
Go| —

A -g- G Pt 2R = 0

which is Whittaker's equation, cf. (13.1.31) in [NBS]. The solutions

are parabolic cylinder functions, [NBS; Chapter 19] or [MI], so for

£>0
1 11 1
et 5@ ottula s 520 axg
AE) =9 1 IR 1
¢ E(a + 5,(28)%) + ¢, EU(a + 5, (28)° 1
1 2’ 2 2205 ) a<y

The Ga—invariant solutions to the heat equation are therefore given by

2
u(x,t) = £3/247% /8t[c]U(a + %ax/V?E)+c2U(a + %3-x//§f)] t>0, a ;-l

nNo

and similarly for a < %—. Note that the parabolic cylinder functions

generalize the error function solution found for G, .

As an application of the theory of graphic differential opera-
tors, we consider the group classification problem for quasi-linear
systems of first order partial differential equations. Roughly speak-
ing, group classification means that one is given a system of partial
differential equations which involve some arbitrary elements - e.g.

functions and/or constants - and the problem is to determine which
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specific assignments of these arbitrary elements Tead to equivalent
symmetry groups - cf. [01], [02]. The main question is to determine
the values of the arbitrary elements that give the largest possible
symmetry groups, these in some sense being the most physically
interesting systems of equations.

In this example, consider the system of quasi-linear equations

A, J_E] Kg(x,u)uj tRAxu) =0 o=1,....m (5.18)
on Z=RPxR. Recall first that if W is a differential system
on a smooth manifold, then its involutive completion is the smallest
invo1utoﬁy differential system ii 2-U.

Proposition 5.3 The symmetry group of the system of equations
(5.18) is contained in the "group" of transformations on Z preserv-
ing the fibration given by the involutive completion of the dif-

ferential system

’u = {VG = ng(X,U) —'a—j'— KO(X,U) 2—)—3—: g = ]s...,m}

oX
and is equal to that group if W 1is itself involutive.
Proof
Let ZO denote the graphic equivalent to Ao . Then KO is
invariant under a group of transformations on Z iff A, is in-
variant under the group. If w denotes the fiber coordinate of
“Z » the trivial Tine bundle over Z , then Ko is given by the

equations



67

L K30 udws - K (xsu)w, = 0

and the solutions are w=const along the Teaves of fL, hence the
leaves of il must be preserved by G . In the case that WU is
itself involutive, choose Tocal coordinates (z],---,zp+]) so that
W 1is spanned by '{3/3215---,a/azm} . In these coordinates, KOA

is given by

and it is easy to see that these equations admit every transformation

leaving the leaves invariant. ' Q.E.D.

Example 5.3 To see that the full group is not always obtained,
consider the case p = 3 with coordinates (x,y,z,u) and the equations

u, =0
A M

0
+
yu, +u

I
()

z

so that T s spanned by ~ {9/9y.ys/ox + 3/9z} . This is not in-
volutive, the involutive completion being spanned by {5/0x,8/3y,8/5z}
so the infinitesimal symmetry group is given by all vector fields

of the form

2 2 2 :
E(%:¥52,u) ==+ n(x,y,2,u) 5+ Txy,2,u) 57+ o(u) 5

However, the symmetry equations for Ay give the restriction that
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Ey =¥z, = 0
e e - vz tr) =
so the full symmetry group is not obtdined. This is also an
illustration of the fact that the group that leaves the solution
set invariant may be different from the group of the system of

equations as we have defined 1tl



IL. Extended Jet Bundles

Now that an adequate theory of symmetry groups and group
invariant sotutions for first order partial differential equations
has been deve1oped; we direct our attention to higher order systems
of partial differential equations; This chapter is fairly technical
in nature; its purpose is to develop the appropriate mathematiba]
machinery, which includes symmetric algebra, higher order extended
jet bundles and total derivatives."This machinery will be applied
to the problems of symmetry groups and group invariant solutions in

~ chapters 3 and 4, respectively. A1though some of these ideas have
been touched upon in the first chapter, we shall recapitulate any
of the necessary material, sO that chapters o_4 can be read -
1ndependent1y of chapter 1.

Section wne is a brief discussion of the concept of a p-section
of a manifold, and recalls the definition of the k-th order tangent
bundle of a smooth manifold. Before being able to do any interesting’
computations, we need to have the tool of the symmetric algebra of
a vector space Fiprmly in hand. The second section recalls the
relevant parts of this theory, which is then applied to discuss the
higher order derivatives of smooth maps between yector spaces. The
most important result is the general Faa-di-Bruno formula for the
k-th order differential of the compositian of two functions. This

gives in particular an exblicit matrix representation of the k-th
order pralongation of the general linear group of a yector space.

Section 3 tackles the problem of local coordinate and fiber bundle
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descriptions of the extended jet bund]es Their fibers are
prolonged Grassmann manifolds, which are discussed in some deta1]

In section 4 the computational toql of the total derivative is
defined, and a expression for it der1ved. ThJs becomes of importance
in the Jeneral prolongation formula for vector fie]ds; to be derjved
in chapter III: The last section of this chapter shows how systems
of partial differential equations fit into the jet bundle scheme.

We define and discuss differential operators and equations, and theip

prolongations. Some of this material is not essential for the

remainder of the thesis, but was included for the sake of completeness.

The most important concept to be introduced here is the proTongat1on

of a diffeomorphism of g manifold to its extended Jet bundles,



1.1  Sections and Jet Bundles

The first step in the development of a comprehensive theory of
systems of partial differential equations QVer arbitrary smooth
manifolds representing botfi.the independent and dependent variables
is the construction of an appropr1ate fiber bund1e over the manifold
whose points represent the partial derivatives of the dependent
variables of order < K, calTed the extended k jet bundle of the
manjfold. Ta g1ve some motivation for the ddinitions to follow, the
construction of the jet bund]es of a vector bundle will be briefly
recalled following [GG]. Then some preliminary definitions for the
more general case will be made; the machinery needed to fully explore
these ideas will be developed in subsequent sections. Section I.1
should be read for édditiona] detail and more motivational material.

Suppose m: L X is a vector bundle over a p dimensional base
manifold X, representing the independent variables, with g dimensional
fiber U, representing the dependent variables. Sections of Z are
usually defined to be smooth maps ft X ~Z such that mf = “X’ the
identity map of X. It will be more convenient, however, to view
sections geometrically as p d1mens1ona1 sybmanifolds of Z that satisfy
a condition of transversality to the fibers of Z. In addition, for
the submanifold to truly be a sectian, it must satisfy a further global
condition of intersecting each fiber ekact1y once; in the construction
of the jet bundfes; this conditfon can be safely ignored, since only
local sections are needed; The k-jet bundle JkZ is given by the

equivalence classes of sections of Z agreeing up to k-th order. It



72

is a vector bundle With fiber

RIx @ (g, RY)

=1

where ()iaRp.qu) denotes the space of all j-linear symmetric maps
from RP to R9.T Note that

din O'(RP, BY) = 4 (7)),
which is the correct dimension for it tg represent the space of all
partial derivatives of order i of sectioné of Z; The following
geometric characterization of the condition of k-th order contact.

between sections will be useful. First, reca]] the definition of the

k-th order tangent bundle of g smooth man1f01d

Definition 1.1 Let M be a smooth man1fo]d and et meM. Let

Cw(M,IR)}m denate the algebra of germs of smooth real valued functions
on M at the point m. Let Im<:C (M,IR)]m be the ideal of germs of
functions which vanish at m, and let Ig dendte its k-th power, which
consists of all finite linear combinations of k-fold products of

elements of Im‘ The k-th order cotangent bundle of M at mis
* _ k+1
;‘kam = I/
The k-th order tangent bundle to M at m is the dual space
* *

Alternative]y, kM{ can be def1ned directly as the vector space of

all k-th arder 1inear. derlvatlves of the algebra C”(M, lR)Jm.

There are'natural>different1ab]e structures on the tangent and

—_——— ————

+See section II.2,
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cotangent bundles
- gt %
Ty U ngl R ‘HMQKM\m*

The interested reader is advised ta consult [W; 81.26] for the details

of this construction; ‘In terms of local caovrdinates,
k
*
Mg = Oy My = ;91 ;™M

where @V denates the i-th symmetric power of a vector space V. If
{995 n,,a } forms a basis of TM[g. with. 9; denoting the partial

derivative in the i-th coovrdinate d1rection, then

REI (11,...,1‘ ) B = ikt s K

forms a basis for :JkM]m, with 93y denoting the partial derivative

311322...3;n, Now if S and S' are sybmanifolds of M, then S and S'
have k-th order contact at meSinS' Iff J S] = :Jks'] . It can be
read11y checked that for the case of sections of a vector bundle this
definition of k-th order contact agrees with a1l the other definitions,
and has the advantage of an immediate geometrical interpretation.
Suppose M and M' are smooth manifolds and F: M->M' s a smooth
map. There is an 1nduced bundle morphism dkF- t]kM - :J M' given by
the formula dKF(v) (f) = v(feF) for v e!ﬂ M. and feC (M‘,lR). It

is readily verified that if G: M = MY s another smooth map, then
a6 o dF = d“(GeF) (1.1)
Th1s formula will be subsequently seen to contain the general Faa-di-

Bruno formula for the partial derivatives of the compos1t1on of smooth

maps. restated in the general context of smooth manifolds. It will be
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of primary 1mportance for what is to follow; unfortunate]y, to
proper]y understand 1ts 1mp11cat1ons, 1t is necessary to develop

the comp]ex machinery of symmetr1c algebra. .It should be remarked
here that the k-th order tangent and cotangent bundles are Vector
bundles of a special type, sincg their group is the k-th prolongation
of the general linear group, which will be defined and discussed in

the nekt section.

Definition 1.2 Given a smooth manifold Z and a point z-eZ,

8 E-sect1o of Z pass1ng through z 1s an arbitrary smooth p dimensional
submanifold of Z containing z. The space of germs of p—sections of

Z passing through z,. CW(Z;p)]Z’ 1s'the set of all smooth p-dimensional
submanifolds of Z passing through z modulo the equivalence relation
that s and s' define the same germ at z iff there is a neighborhood V

of z with s nV =stpy,

Definitidﬁ:1;3 - The space of extended k- -jets of p-sections of Z

at a point ze7z, Jk(Z,p)IZ is given by the space of germs of ... -
p-sections of Z passing through z modulo the equivalence relation of
k-th order contact. In ofher words, two P dimensional submanifolds s
and s’ define the same extended k-jet at z iff %J sl Iys'l,. Note
that J ( :P) = Z. Given a p-section s passing through z, let Jks]
denote’ the equivalence class in Jk(Z p)[ defined by s, which will

be called the exnended k Jet of s at z.

Alternately; a p-section of Z can be described lTocally parametric-

ally by a smoath embedding f: U = Z where U is an open subset of [RP.
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Such an embedding will be called a parametrization of the p-section
defined by its image. In general, since all considerations here are
of a Tocal nature, we shall be a bit sloppy notationally and write
£ RP > 7 even though f might only be defined on an open subset of
tRP; Note that two embeddings fvand g are parametrizations of the
same germ s C (Z, P)l " {ff there exists a (lbcal) diffeomorphism
UK RP > RP such that fo = g near the point z. The notation
jkf| will be takenfto mean the extended k-jet of the p-section
given by im f at z.

It will be shown in detail in section 11 3 that the extended

k-jet bundle

)2 UJkZp

Zel
has the structure of a smooth fiber bundle over 7 such that if s is

any smooth p dimensional submanifold of Z, then its extended k-jet

* *®
jkS - t') jks|z

is a smooth p dimensional submanifold of Jz(Z,p) which projects
back onto s. The fibers of the extended k-jet bundle will be
"prolonged Grassmann man1f01ds“ which shall be defined and described

in section IL.3.



IT.2 Symnetric Algebra and Derivatives

The first part of this section is essentially a recapitulation
of some notation and results to be found in [F; chapters 1,3] on
symmetric algebra, and its applications to discussing the higher
order derivatives of smooth functions between vector spaces. The
most important result is the general Faa-di-Bruno formula given 1in
theorem 2.2 for the higher order differentials of the composition of
functions. This sekVés to motivate the definition of the Faa-di-
Bruno injection, which is applied to giving an explicit matrix
representation of the k-th prolongation of the general 1inear
group. The reader is advised to consult Federer's book for a
much more complete exposition of these ideas.

~Let V be a real vector space. Let
O, - ® O
‘ i=0

denote the graded symmetric algebra based on V. It is realised as
- the tensor algebra of V modulo the two-sided ideal generated by all
elements of the form vev' - v'@v. The product in Q@ will be
denoted by the symbol @ ; thus if v'eC)iV and v EC:GV’ then their
symmetric product vevy! = v'OVeOHJ.V. If W is another real

vector space, then Tet

'GWM=§0WM

denote the graded vector space of W-valued symmetric 1inear forms

on V. In other words, C)T(V;W) is the vector space of all i-Tinear
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P
symmetric functions A: Vx..?iv + W, hence there is an identification
OT(VsW) = Hom(©®;V,H) -

This identification will be used extens1ve1y in what is to follow,
usually without further comment. (By convention we define () (V,W)=W.)
Before proceeding further, we have need of some multi-index notation,

which is collected together'in the following definition for conven-

jence.
Definition 2.1  Let
= (I = (igs. sl 08Ty cZom1,.. o0y 21 = dpkoatiy = K
be the set of n multi-indices of rank k=0, and let
= U s
k=0

be the set of all n multi-indices. Given I ESE, J esg let
I+d €Sk+2 be the multi- 1ndex with components 1G+jg. Introduce a
partial ordering on s" by defining 1<d iff 16sj6 for all

6=1,...,n. In case I<d let J-1 be the multiindex with components

j -i . Define
g )

IV = iy ligh gy Tes"
Jy . __J! n
() = oeEm 1=J €5

Let &7 eS? be the multi-index with components Gi, the second

being the Kronecker symbol.

Now suppose V -is a finite dimensional real vector space with
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basis '{gl,'..,en}, In this case CDkV has a corresponding basis
given by '

feq: Teshy where e, = e”o ...@ein,

I k I 1 n

(The powers are of course taken in the symmetric algebra of V.) If
W is a real algebra, then there is a naturally defined product on
C)#(V,w) making it into a graded commutative algebra. This product
can be reconstructed from the following fundamental formula:

touley) = T (Detep)ute, ) (2.1)
21 € p

for ¢eOp(V,w), P e@q(v,W), Je Sg+q' In the particular case that
W =R, suppose'{e15...,e”} forms a dual basis of V* = Hom(V, IR),
then {eI: I eSE} forms a basis of CDkV = C)k(V,)R) = ()kv*‘ These

two bases are dual to within a factor in the sense that
I'sy_fo 11
<e1’ € >"{I! I=I',

Now suppose that V and W are real normed vector spaces and
f: V> W is a smooth function. The k-th order differential of f at
a point x eV, which we shall denote by the symbo1 akf(x),+ is that
symmetric k-Tinear W-valued form on V‘whose matrix entries are just
the k-th order partial derivatives of . In other words, we have

o*F(x) e OK(V,M) and if legs.oase ) s a basis of V, then

EThe reason for the symbal akf rather than the more standard Dkf
or d™f will become clearer in what follows, Suffice it to say that
d*f will be reserved for the action of a smooth map on k-th order
tangent vectors to a manifaold, and DXf for the total derivative. The
relationship between these concepts will be made clear.
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k .
<eI,‘8 f(x))-f 2, F(x) IeSy
1.1 12 h 1.n
‘where 3 = 3y 99 ceed cF denoting the partial derivative in the
e, direction. Let
+ .
O (1) < 4O (V)

be the natural inclusion given by

{v, oy =&voevt, Wy Ve,V V' cO, v e@k%(V,N)
It can be seen that

S (a%F) (x) = 3TH(x) X eV
under this inclusion.
Theorem 2.2 (The Faa-di-Bruno formula) Let VW, and X be

normed real vector spaces. and let f: V=W and g: WX be

smooth maps. Given any wel, let y = f(x) eW. For any positive

integer k
o Toe eakein) K
, _ ( ...0
Bk(QOf)(X) - 2 aZIg(y) o of X) (o)) f(X) 9 f(X) (2.2)
Ied Il
where
k
, k .
Jkk = {leS: OZ o, = k}.

Note that in formula (2.2) the pawers and symmetric products of
*

the differentials of f are taken in the algebra O (v.OM). The

proof of this theorem can be found in [F; page 222]. "

Let us define the vector spaces
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k
O,V = q O,v
. 'l: ‘

n
D~
-

—~

=Z

-

=
S

Okw,m)

for notational convience; There js a natural projection
n: Ofv,0M) > Okw.n)

given by composition with the projection O » CD]w = |,

Definition 2.3  The Faa-di<Byuno injection is that map

) @XL) > QKO < Ky, L)
such that given a matrix Ae®X(V,W) with AlOV = A, then
K RPRAY! g ,
Ek(A) - z Z- A] QAZVG...OAJ, . (2.3)

Note that mee, = U, the identity map of @K(V,H).

‘EXamgle 2.4 To get some idea of what the matrix ek(A) looks
lTike in block format, consider the case k=4. Given A e()f(V,W),

fhen A has the block matrix form
A= ( A] A2 A3 A4).
Note that
* %
e (Al Qv O,
by the definition of the set of multi-indices J44¢ Using formula

(2.3), we see that ek(A) has block matrix form
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R B
- 0 7@ A AMOA,  MOA;+ A0R
' 0 0 —3—!—A]O A-[QA] ?’-\]OA]OAZ
»
0 0 0 1 A@A 0/ BN,

where the (i,j)th entry is the part taking Oiv to OJ.W.

Returning to our discussion of the differentials of smooth

functions between vector spaces, define

sKe(x) = af(x) + 026(x) + ... + 3F(x).
Then the Faa-di-Bruno formula (2.2) can be restated concisely as

ak( £ _ oK k

x\g° )(X) = B*Q(y)OEk[S*f‘(X)]. (2.4)
Define

d(x) = e, [akF(x)].

(The reason for this notation will become clear in the context of
higher order tangent vectors on manifolds, cf. lemma 3.1.) Applying
€1 to (2.4) yields

dK(go ) (x) = digly)ed“F(x). (2.5)

Definition 2.5 Let V be a real normed vector space of dimension

n and let k'be a positive integer. Let
Oiﬁ(v,v)o = .{Ae®§(v,v): AlV €GL(V)}

be the set of :all - polynomial functions from V to itself of order

<k which are invertible when restricted to C)1v = V. Define the
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ey = ¢ [@K(LV1

which is a matrix subgroup of GL(C)EV);

Note that this definition'coincides with that given in
[K02; page_139]; since GL(k)(V) can be realized as the set of
all matrices dkf(O) corresponding to all local diffeomorphisms
f of V with f(0)=0, the group multiplication being induced by
composition of diffeomorphisms according to (2.5). In addition
we have given an explicit matrix representation of GL(k)(V). In
fact, given A eGL(k)(V), Tet (A;) be the block matrix form of
A so that Ag: CDjV »—(Div. By the definition, A has the following

properties:

i) A is block -upper triangular; i.e. A} = 0 for i>J.

ii)  lLet
Jii = (Ieh,: 2l = i} = {I esd: 3l = i, Joi_ =3}
J J o
then i i. i
Ty 1 2 Ty k
Al = g (A)) '@ (A) “@...0(A)

J IGA} 1
ii1) 15 A el V), then for s<k, AIOTV el ().
In particutar, if A = dkf(x), then we will abbreviate
A} = a}f(k). This gives a}f(x) = ajf(x), which is a Tittle confusing,
but the symbol aj has been reserved for the partial derivative in

the x9 direction.




I1.3 Grassmann Manifolds and Bundles

The purpose of this section is to provide a detailed description
of the extended jet bundles of a smooth manifold, both in terms of
Tocal coordinateé and in terms of their structure as fiber bundles.
This will rely heavily on the symmetric algebra that was developed in
section II.2. The fibers of the extended jet bundles will be called,
in analogy with the first order case that was discussed in chabter I,
‘pro1onged Grassmann manifolds. In addition to the definition of these
manifolds as the.set of all k-th order tangent spaces to p dimensional
submanifolds passing through the origin of a vector space, two
additional useful characterizations will be discussed -- one being a
multiple of the standard quotient bundle over a regular Grassmann
manifold, the other being the quotient space of a set of matrices under
the action of a prolonged general linear group. These will then be
applied towards the local coordinate description of the extended jet
bundles.

Before proceeding to the prolonged Grassmannians, we need to show
that the two previously introduced notations dkF have the same meaning

when F happens to be a smooth function between vector spaces.

Lemma 3.1 Let F:V + W be a smooth map between finite dimensional

real vector spaces. Let %Y and w=F(x). Then the map
kep .
d F|x ':jkv

"
under the identification :JkVIX:=C>kV is the same as the map

x :]kw|w
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;dkF(x) = ek[BEF(x)] : CD;V ~ C)EW.

Proof
Let {eq,...,e ) bea basis of V and let {e],....e;} be a basis
for W. The identification ‘ka|x e @EV takes BIIX to ey for any multi-

index I. Now suppose T eC (W) then

d¥F(a4] )F = a5 (FoF)(x)

| Ke ()70
|f L LE *F
mém% (w):Ley2xF (x) 11

which follows from the Faa-di-Bruno identityT Therefore
k k J o
d F(BIlX) = 2 [gka*F(X)]I“aJIW

hence the lemma follows. Q.E.D.

Notice that BEF(X) has matrix entries aIFj(x) for j=1,...,m and
1<xI<k showing that dkF is uniquely determined by the partial derivatives
of F of order <k. If F:Z > Z' is a smooth map between smooth manifolds
then the Tocal coordinate descriptions of Z and Z' identify them with
open subsets of real vector spaces, SO the local coordinate description
of dkF is given by the Faa—di-Bruno formula. This will be important
in computations to come. Note that the matrix aEF provides Tocal
coordinates for Jk(Z,Z'), the space of k-jets of maps between Z and ',
hence we may identify ij = aiF.

Let V be a real n dimensional vector space and let O denote the

origin in V. Throughout this section, the identifications TV|0 =V,

*
For a matrix A:@f V ~ ()k W, A% is the matrix entry given by

A(eI) =7 A% e]
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] VIO kV will be used without further comment.

Definition 3.2 The k-th order prolonged Grassmann manifold

of prolonged p-planes in V is given by

k * w
Gv‘as.s( )(V,p) = { ’;7ks|O c OkV tsel (V,p)|0 }
where Cw(V,p)odenotes the set of smooth p dimensional submanifolds

of V passing through the origin.

It can therefore be seen that, assuming Jﬁ(Z,p) really is a
fiber bundle over Z, the fiber must be Grass(k)(n,p) where n is the
dimension of Z. (Here we have abbreviated Grass(k)GRn,p) by just

(k)

Grass n,p).)

Lemma 3.3 Let ()5(RP,V)O denote the open subset of ()5(Rp,v)
consisting of those maps A: G:!Rp + V whose restriction to O]IRP has
maximal rank equal to p. There is a natural action of GL(k)(p) on

C)iGRp,V)O given by right multiplication of matrices and
Grass(k) = O, K@®P,v) / GL(k)(P)
is the quotient space.

Proof

Given a p dimensional submanifold sc<V passing through 0, there
always exists a local embedding £:RP =~ V with im f = s and £(0)=0
Moreover, since f is an embedding

a“eL G ®P1g1 = Fyslg

oke(0) < OXE®P.V)g.
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Therefore, it suffices to show that if f and f' are smooth embeddings

of R into V with £(0)=f'(0)=0 then |

in akf], = im e (*)
iff there exists a matrix A.eGL(k)(p) satisfying

5Ke(0)-A = aK¢' (0).

First, given such a matrix A, (*) follows immediately since A is
invertible on O*k(Rp = QQRPIO. Conversely, given (*), let V'cV be an
n-p dimensional subspace such that in a neighborhood of the origin
T(im f)aV' = T(im £')nV" = {0}, Let m:V » V/V'= pre the projection,
so by the inverse function theorem both mef and mof' are invertible in
a neighborhood of the origin inRP. Now since (*) holds, there exists

a linear transformation A: O:iRp - OEﬁRP satisfying
ket a2 aker
d“p| oA = 4551

therefore

dkﬁ-dk

d*(ro )|

dbr-dks.a £

A

i

k -1
0 . d ('ﬂ'of) IO

oroving that A &L (p). Q.E.D.
For positive integers k>% there is a canonical projectibn
WE: Grass(k)(v,p) > Grass(z)(v,p)
given by
K[, slgl = Iysly

It will soon be shown that “E makes Grass(k)(v,p) into a Euclidean
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fiber bundle over Grass(z)(v,p). Suppose A.eGrass(k)(V,p) aﬁd
'{e],...,ep} is a basis for the p-plane A = w?(A) cGrass(V,p).
(Given A as an abstract subspace of C):V, A1 is the unique p-plane
inV such that @kA]‘ = AnOkV.) It is claimed that there is a
unique set of elements ej eV/A1 for each multi-index J ¢ SP with

1<zd=<k, such that for any representatives ej eV of the e, the vectors

Z_%%7e~ ~and €rs.v.st

(3.1)

4]

A
eJ p -

form a basis of A. In (3.1) the sum is taken over all unordered sets

of multi-indices J = {J],...,JZ} such that J1+J2+...+JZ = J,Aand

€3 eJOeJo,,,Qng,

1 72

]

dyb ol JQ!.

The proof of (3.1) follows from the Faa-di-Bruno formula. Let
fiRP + V be an embedding such that 37k(im f)lg = A. Note that from
equation (2.1) if ¢_: @, RP + OV for o=1,...,mand i=iy+...+i, then
g

for any,I'esg
I!

@by .. 04 (e) = ] - 01y )0 04 (e; ) (3.2)

1

!
J ‘Jm'

1ol

where the sum is taken over all ordered sets of multi-indices

: p . .
(J],...,Jm) with J,G eSio and J]+J2+...+Jm = I. From this formula,
we conclude that
A _ ok

from which (3.1) immediately follows.

Conversely, given a basis‘{e],...,ep} of a p-plane A]cV and elements
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ej eV/A] for J <SP with 1<zds<k, it is not hard to see that the subspace
spanned by'{éJ: 1<5J<k} as given by (3.1) is an element of Grass(k)(v,p).
In fact, if'{e1,...,sn} is a basis for V and e; = ) c34eJ, then the

polynomial fiRP v
| J

f?(x versxP) =7 e X
J g

satisfies ij(im f)|0 = A. Moreover A is uniquely determined by the

ey once e1,...,ep are prescrjbed. Let

| = i * p = ! p+] P+k“]
Ni,p dim @ R" = p * ( ) ) ot ( A (3.3)

We have thus proven the following:

Proposition 3.4 Let Q denote the standard quotient bundle over
Grass(V,p)*, then

arass{®) (v,p) = (N p—.p) Q (3.4)
are diffeomorphic as smooth manifolds.

In particular, this proposition shows that the bundle

”E: Grass(k)(v,p) > Grass(z)(V,P)

has Euclidean fiber of dimension Nk " N2 b’ These bundles are not

T 1f U denotes the universal bundle over Grass(V,p) whose fiber
over a p-plane A is just A itself, and I denotes the trivial bundle
V x Grass(V,p), then Q is given as the quotient bundle

0-+-U~+1-Q~>0

whose fiber over a p-plane A is the quatient space V/A. The notation
jQ for j an integer just means Q®...8Q j times.
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necessarily trivial. For instance
Grass(z)(z,i) + Grass(2,1) = 5!
is the MYbius line bundle over S].

For computational purposes, some natural coordinate charts on
Grass(k)(v,p) similar to the standard coordinate charts on Grass(V,p)
will be introduced. Introducing a basis, we may identify vR",

Given a matrix A e OF@PR"), Tet A = A|O P so that A has the
block matrix form
A= (AT[A%]LLL A

where each Ad is an n x(p+§'1) matrix. - Let‘{Al} denote the set of
all minors of the matrix A1, where for a=(u],...,&p) the minor Al,is
the p x p matrix consisting of rows I EERREL of A1. Similarly, let .
Ad and Ag denote the matrices consisting of rows d1,...,dp of A and A,
Let

I: C)&(Rp,an)o -+ Grass(k)(n,p)

be the projection as given in lemma 3.3, and let
U, = mA: det A #0)

(k)(n,p).

which is an open subset of Grass(k)(n,p). The Ud‘s cover Grass
Given Ae (DE(Rp,an)O with Al nonsingular, there is a unique

matrix K eGL(k)(p) such that the matrix B=AK is of the form

' B, = (np[0|o|...]o).
In fact, K is found by recursion as follows. Suppose

K = ek(K1|K2|...|Kk),
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then the Faa-di-Bruno formula shows that

1. -

¢ = ()

FUV RPN
o 2

-~
~N
]

K3 = ka2 klok? + Af;.l Klokl ok!]

|
. . (3.5)
¢k - —K]~'Z< Wy «Ha... oK)k

.'_ . J_
J—'z I GAk I!

(Note that no term on the right hand side of the last equation actually

contains Kk.) This procedure gives a well-defined map
. 2 mi
hOL. UCI +‘R k’p
where ha[HA] is the matrix §a consisting of the rows of B not 1in Ba.
Moreover, it is easy to see using (3.5) that the transition functions
hééh;] are smooth maps, so the Ua's do jndeed form a coordinate atlas

on Grass(k)(n,P).

The preceding construction of Tocal coordinates is just a special

case of the trivialization of the prolonged Grassmann manifolds.

Lemma 3.5 Let W<V be an n-p dimensional subspace. Then the

trivialized prolonged Grassmannian with respect to W is given by

Grass(k)(V,P;W) ='{:7ks[0: Tslg nW=1{0}}
‘ N
and is diffeomorphic to R k,p.

The trivialized Grassmannian Grass(k)(v,p;W) is just the space

of k-th order tangent spaces of sections transversal to W. For the
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k)(

above coordinate charts Uu = Grass( V,p;wu) where Wd is the

orthogonal complement to the subspace spanned by'{eu.,...,e&'}.
There is a natural action of the Lie group GL(k}(n) 1nd5ced by
the action of diffeomorphisms of R" on sections. Namely, if AezGL(k)(n)
and A eGrass(k)(n,p), then given any p-section s eCw«Rn,p)[O with
EJkslo = A and a Tocal diffeomorphism G: R" > R" with G(0)=0, de(O)=A
then
A = Qk[G(s)]lo.

This just corresponds to left matrix multiplication

Ak = T(A-B) = T(n(A-c,B)) B < OK(RP, R"),
~ where nk‘is;the projection inverse to the Faa-di-Bruno injection ek
and B is any matrix such that mB = A. (Note that the action of GL(k)(n)
commutes with the action of GL(k)(p) on C)EGRp,an).) GL(k)(n) acts
transitively on Grass(k)(n,p). |

Now suppose that Z is a smooth manifold and E -~ Z is a bundle
with fiber (3§Rn and group GL(k)(n). (See [ST] for the details on
fiber bundles.) By the general theory of fiber bundles, for O<p<n
there exists a unique bundle Grass(k)(E,p) + Z having fiber
Grass(k)(Elz,p) over zeZ such that if EjcE is any smooth (local)
subbundle of prolonged p-planes, the Eo defines a smooth (local) section
of Grass(k)(E,p). If the transition functions of E are given by
AuB eGL(k)(n), then the transition functions for Grass(k)(E,p) are
given by the images of the Aas in PGL(k)(n), the k-th prolongation
of the projective 1inear group, which is obtained as the quotient

group of GL(k)(n) by its center - the group consisting of all matrices
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A1 for A eR, where 1 1s the. identity map of ();Rn. Actually, to

do the preceding construction, we need the following lemma.

Lemma 3.6 The action of PGL(k>(n) on Grass(k)(n,p) for O<p<n
is effectives 1.e. if AcGLK)(n) is such that A.n = & for all

prolonged p-planes Ae Grass(k)(n,p), then A = A]l for some A eR.

The proof is a direct consequence of the corresponding statement
for ordinary Grassmannians and the following elementary Temma from

symmefric algebra.

Lemma 3.7 If V is a real finite dimensional vector space, then
'ste“.QVe@w:VEW

spans CDKV.

As a corollary of these more abstract considerations, we obtain
an alternate characterization of the extended jet bundles of a smooth
manifold as appropriate prolonged Grassmann bundles. This is perhaps
the most convenient characterization of the bundle structure of the

extended jet bundles.

Proposition 3.8 There is an identification

JE(Z,p) ~ Grass(k)(ZIKZ,p)
giving J:(Z,p) the structure of a fiber bundle over Z with fiber
Grass(k)(n,p) where n = dim Z and group PGL(k)(n), such that if
s < Z is any smooth p diménsiona1 submanifold, then j:s c J:(Z,p)

is also a smooth p dimensional submanifold.
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Proposition 3.9 Let k>2 be positive integers. Then

Ke g%(7.0) o 9"
NR- Jk(zsp) - Jg(z’p)
fs a fiber bundle with Euclidean Fiber of dimension Ny - N, “and

group PaL{K) (n)/pal (8 (n) .

Suppose that W is an involutive n-p dimensional differential
system on the n dimensional manifold Z. The trivialized extended

k-jet bundle of Z with respect to  is the open subbundle

JE(Z,p;‘lL) = Grass(k)(?kzsp;u)

consisting of the k-th order tangent spaces of sections transverse
to U. By lenma 3.5,1JE(Z,p;11) is a bundle with Euclidean fiber
of dimension Nk,p' We now propose to introduce "canonical" coord-
inates on JE(Z,p;%() associated with a coordinate system on Z that
is flat with respect to U.

Let x: Z +IRPﬂRq be a Tocal coordinate system on Z with the
coordinates on RPxRY denoted by (x,u) = (x],...,xp,u1,...,uq) S0
that the differential system 1is spanned by‘{a/au],...,a/auq}. The -
case to keep in mind is when Z »~ X is a vector bundle and % is the
differential system given by the tangent spaces to the fibers, so
that (x],...,xp) are the coordinates on the base manifold X (independent
variables) and (u1,...,uq) are the fiber coordinates (dependent
variables). In this case we can identify the trivialized jet bundle
with the ordinary jet bundle corresponding to the vector bundle Z,

since both are constructed by consideration of p-sections transverse

to the fibers.
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Proposition 3.10 Let Z - X be a fiber bundle over a p

dimensional manifold X and let U denote the involutive differential

system of tangent spaces‘to the fibers of Z, then

*
Jk(Z,p;u) = J,Z.

This shows that the extended jet bundle can be regarded as the
"completion" of the ordinary jet bundle in the same manner that
projective space is the completion of affine space. In this case the
completion is obtained by allowing sections with vertical tangents.

let s be a p-section of Z transverse to the differential system

94. Recall that the normal parametrization of s relative to the

coordinate system x is that map %:(Rp+ Z with im f = s and xo?'= npr

for some (uniquely determined) smooth f: RP ~RY. Then

K (xe ) (x) =( T, 0 ... 0 )
o oF(x) 92F(x) ... 3FF(x)

so that aif(x) can be regarded as the Tocal coordinates of the

extended k-jet of s at the point f(x).

Proposition 3.12 Let X:fZ+$Rp%R9 be.a.local coordinate.system

on the smooth manifold Z and-let U denote the local differential

system (dx)_TTRq, then there is an induced Tlocal coordinate system
* .
x(k): Jp (Z,psU) +RP x RY x O,Iﬁ(lRp, RY)
such that if %:IRp + 7 is the normal parametrization of a p-section

of Z with xof. = Bpr, then

*
(e gir = 1l
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If (x,u) are the local cqordinates on Z, then the local.
coordinates on 'JE(Z,‘p) will usually be denoted by (X,u,u(k)). Here
u('k)is a matrix with entries u?; for 1sisq and K  SP, 1<3K<k, so that
if ui=f1‘(x), then ug=aKf‘i(x). Note that if é: RP + 7 is any param-
etrization of a p-section of Z transversal to U so that X°§ = 9y X 9y
then 9 is Tocally invertible, so the normalized re.presentative of
img is given by X—1°(Rp X gzog]']) and

Lk - -
oK g9 = Iy x gzog.]] X 85(92°911).




1.4 Total Derivatives

Consider a function F(x;u) where the x's are vigwed as independent
and the u's as dependent variab]es:"Thgn for given u = f(x),
the various partial derivatives of F(x;f(x)) can be evaluated and
re-expressed in térms of the derivatives of u with respect to X.
This heuristic idea is called the total derivative, and will be
discussed with precision in this section.

Definition-4.1 Let X be a fixed real normed vector space.

Let U and W be normed vector spaces and let Z = X x U. Suppose

F:Z + W {s a smooth function, then the“K:th‘order'tOta]Adjffgﬁgntia]

of F is the unique map
DkF A ()E(X,U) +-C)k(X,W)
such that for any smoath F:X»U,
DM (x,F(x), 857 (x)) = a¥[Fe (Tyx £)1(x)
Existence and uniqueness of the total differential follows from the
Faa-di-Bruno formula. In fact |

K .
pKR(,F(x), 0K £(x)) = Z]akF(x,f(x))al,f(lef)(X)
. =1

where at(ﬂkf) are the matrix blocks in dk(DXf) and are thus expressed
in terms of aﬁf(x),
As in the case of the usual differentials, let

oKF = pVF +0%F + ...+ DF zx O (U)K
Lemma 4.2 Let k and & be positive integers, then

0* (D) 12 x @ KE* (x,u) = 0K*F
where Zka?‘ (X,U) is haturaﬂy a subspace of ZX@E(X,U)X @&‘(X,Ux G,-'E(X,U))-
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"PFOQf
Using thg'fact'that',
,O“xhwya<3&x®x@§XV)
and that C}kfz X;U) is already a subspace of C)*(XJ C)*(X UDT the embedding
described 1n the theorem is given by the map
(z, ak*z f) + (z,alff,a*f, oKEL )
for any smooth function f: X +.U.. Given such an f. and using the
faét that
o (aK) (x) = oK p(x)

we have

3 [DKFo (Ixfxaf) 1(x)

2 LK [Fo (1xF)1(x)

oK [Fo (IxF) 1(x)

DR (x, £ (x),05E (%))
Q.E.D.

D (DXF) (x,F(x), 3K £(x))

In the case that X and U are finite dimensional, with

respective bases'{e],...,ep} and‘{éi,...,éq}, the matrix elements of

DkF(z,u(k)) where z €Z, u(k) € C)E(X,U), are given by
, n

DIF(z,u(k) :‘<:e DkF (z u(k)):> , I €Sy
Given an element u (k) € C)*(X U) we will let u(g) e()f (X,U) denote

its restriction to C)zﬁx. The coordinates of u(k) are given by

él] uj ezv(eJ,u )> for k=2 )Jd .

+see section II.2.
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Lemma 4.3 . Let F: X x U~ W be smooth. Then the matrix entries

Dk+1

~of F are given recursively by

D i (xotou K1) = 0,10 F (o)

for LeS,, T<isp, x <X, ucl, KT U), where D, 15 the

total derivative operator in the e; direction which is given by

9 : 9 2 P
D. = — + g {u, —+ u -2}
I oad gB1 T adt o<res" 1wed fuf

Note that for any fixed k only finitely many terms in the expression
for Dj are necessary.

Proof

This will be demonstrated by induction on k. Let f: X » U be

any smooth function. In case k=0 we have

1]

3 (Fo (Ixf)) (x)
sF (x,F(x)) o a(WkF)(x)

DF(x,f(x),of(x))

n

hence

DjF(x,f(x),af(x))==<ej, 3F (x,F(x)) o a(WxF)(x)»

= EE? %F(x,f(x))-aj(ﬂxf)’L(X)

3.F(x,F(x)) + 21 574 (x) 2y F (x> F(x))

J 3

proving the lemma for k=0. Next, for k>0, by the previous Temma

poke|z x @FT(x,u) = DK*IF.
Therefore, given u(k+]), and using the k=0 case, it suffices to verify

that the coordinates

v o (kD)
| % uI+(s;i &y = <epeir U 7
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for u(kf]) are the same as the coordinates

I (up)y &y =Cep<eyn ulkiT)yy
L

But this is a direct consequence of the way the embedding

O xu) < ok, 01 (1,u))

was constructed in section IT.2. Q.E.D.

Example 4.4  Consider the case dim X = 1 = dim U. Then

DF(x,u,uX) = Fx(x,u) + uxFu(x,u)

1

DZF(x,u,U',u ) = D(DF)(x,u,u

x*Yxx x Uy )

2
+ + +
Fyx 2UyF UFuy ¥ UyFy

D3F(x,u,u

x’uxx’uxxx) D(DZF)(x,u,ux,u

xx’uxxx)
Fooo + 3uF  + 3ulF 4 o3
XXX X' XXU X' Xuu X uuu

+ + +
yxFyu UlexFuu * UeuF

u
It is easily checked that these are the correct expressions; i.e. if
f: X+U is smooth, then

glﬁ(mf(X)) = DR, F(), F1(x), P (X)), ... ).
. ‘




I1.5 Differential Operators and-Equations

The next step in our theory of extended jet bundles over
smooth manifolds is to describe how thé notions.of a differential
operator and equation become. reformulated. in this context. These
concepts .Will 1 be direct generalizations of the corresponding
objects for vector bundles and :will! include as special cases
what are classically meant by systems of partial differential
equations. First of all, a differential operator on an extended
jet bundle will be defined and some important properties described.
Next, we proceed to a discussion of differential equations,
which will be connected with the previously mentioned differential
operators. Recall that a differential operator in the category
of vector bundles is given by a smooth fiber preserving map from
a jet bundle to another vector bundle, cf. [P2; chapter 47. In
strict analogy we make the definition of a differential operator

on an arbitrary smooth manifold.

Definition 5.1 Let Z be a smooth manifold of dimension p*q.

A k-th order differential operator (for p-sections) is a fiber
bundle morphism (i.e. a fiber preserving map)

p: 3, (Z,p) > F,

where p: F ~ Z is a fiber bundle over Z, such that peA is the

*
projection wé: Jk(Z,p) + 7.

Proposition 5.2 let A: J:(Z,p) + F be a k-th order differen-

tial operator and let & be a nonnegative integer. Then there exists
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(k+2)-th order differential operator
% ¥ *o
pr®las oy, (2.p) = 3 (Fop)

called the 2-th E[p1ongatioﬁ of A, such that for any p-section

parametrized by f: RP > 7 the following diagram commutes:

In terms of local coordinates (x,u) on Z and (x,u,w) on F,

pr(g)A(xauau(k-M)) = (XausA(Xsusu(k))aDiA(XsU,U(k-FQI)))
for (x,u) €Z, (qu,u(k+2)) EJZHL(Z,p) with (x,u,u(k)) _ wt+z(x,u,u(k+£)).

Proof

Given zeZ and j eJ:+£(Z,p)|2, let f: RP + Z represent j so that
f(0) = z and j;+zf,z = j. Note that Apj:f: R ~ F is a p-section of
F since p°A°j:f = ngonf'= f, hence it makes- sense to define
prlMa(s) = 50003571, 40 it = ).
Now given Tocal coordinates (x,u) on Z that are compatible with a
Tocal q~dimensiona1.differentia] system U, and corresponding Tocal
coordinates (x,u,w) on F compatible with the q+r dimensional differen-

tial system 2(x??, where & denotes the tangents to the fibers of F

and r is the dimension of these fibers, there are induced identifications
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0 (Zps %) =R x &Y x OKERPRY)

JZ(FaP;UX?) «RP x RY x R" x Qi( RP, RIR")

In terms of these induced coordinates

n

* ¥
53R, a,’i[Ao(nprxaijf)](x)

1

0% [x,F(x),0K H¢(x)]

for f: RP + Z any normalized representative of j = (X,u,u(k+z))‘

. \
(Note that Ao J f is therefore a normal parametrization of the
corresponding p-section of f with respect to Ux'F.) The remainder

of the proposition follows directly from this formula. 'Q.E.D.

Corollary 5.3 Letting

* *
p= Wz d(Z,p) > J,(Z,p)
be the identity map, then for nonnegative integers 2 there is a

natural embedding

* L
jl|:+sa - orl®y Iy (Z5p) > 3, (3, (Z5p)p).

In terms of local coordinates (x,u) on Z and the induced coordinates

(XsUaU(k+Q,)) on JE+,Q,(Z,p) and (X:U,U(k),u(g),(,U<k))<g')) on
*og¥ * * % i
Jg(Jk(Z,P),p), Jk+z(2,p) is the subbundle of Jz(Jk(Z,p),p) given by

R (u})J =,(u}‘)d.: [+ = 1'+3', 1,d,1',d"eSP, 0szl,51'<k,
O<zd,rxd'<e, i=1,...,9 }
where ug denotes the coordinate u' and (u})O denotes the coordinate
i
Ug-
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Corollary 5.4 - If 4, k, £ are as in the proposition and 2' is

another nonnegative integer, then

1 ° pr

(&") pr(z) A = .§+z‘ (2+2") N

Corollary 5.5 If @: Z -+ Z' is a smooth diffeomorphism, then

there is a unique smooth diffeomorphism
orlMle: ¥ (z,0) > 0¥(21,p)

called the k-th prolongation of & such that for any parametrization

f: RP 5 7 of 4 p-section of Z, the following diagram commutes:

J.:f/,a;(z,m LN
RP< . l
\)z : y 2
Moreover
pr(k|) pr(k) ¢ = it+k'o pr(k+k') 2.

The last corollary will be especially important when the prolong-
ation of transformation group actions to extended Jjet bundles is
discussed in chapter III,

We now proceed to describe the concept of a system of partial
differential equations for an extended jet bundle. Recall that in
the category of veétor bundles a differential equation is usually given
as A'l{O} where A is a differenfia] operator and 0 denotes the zero
cross-section of the image bundle. In the case of fiber bundles, there
s no such intrinsically defined cross-section. (Indeed, the bundle

may have no smooth global sections.) Even if we restricted our
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attention to bundles with a distinguished cross-section, there would
be problems in relating the prolonged differential equation to the
prolonged differential operator. In view of these observations,

the following definition can be seen to give an appropriate general-

ization of the notion of a system of partial differential equations,

Definition 5.6 Let A: Jy(Z,p) + F be a smooth differential

operator and let FO¢ F be a subbundle over Z. Then the differential

equation corresponding to FO is the subvariety A']{Fo}c J:(Z,p).

Note that if by = A—]{O}C:J:(Z,p) is a subvariety of JE(Z,p)
given by the zero set of some smooth map A: JE(Z,p)<+iR°Ls then By
is the differential equation corresponding to the zero cross-section
of the trivial bundle ZxR® under the differential operator ngA.
Therefore any closed subvariety bf J:(Z,p) can be viewed as the
differential equation corresponding to some smooth differential

operator. Suppose
2 oKy = g i=1,...0

1s a system of partial differential equations in some coordinate
system on Z, then the closure of the subset of JZ(Z,p) given by

these equations (which are only defined on an appropriate triVia]ized
jet bundle) will be the differential equation corresponding to this
system. Thus all classical systems of partial differential equations
are included in our definition, with the added feature that solutions
with "vertical tangents" are allowed, provided these tangents are in

some sense the limits of "tangents" that satisfy the system of
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equations. In general, the interesting object will be the subvariety
in the extended Jet bundle and not the particular differential
operator used to define it. Therefore a k-th order system of partial
differential equations over a smooth manifold Z will be taken.to mzan
an arbitrary closed subset Aoc:J:(Z,p)n A solution to a system of
equations is a p-section scZ satisfying jEs: By

Given a subset ScZ, Jet J:(S,p)c:J:(Z,p) denote the subset of
all extended k-jets of p-sections of Z wholly contained in S.. Note

that this set will be empty if S contains no p-dimensional submanifolds.

- *
Definition 5.7 Let Aoc:Jk(Z,p) be a k-th order system of

partial differential equations. Then the 2-th prolongation of A

is the (k+2)-th order differential equation

('Q,) Lk *
% * % i
where Jk+2(Z,p)<:Jz(Jk(Z,p),p) via the injection given in corollary 5.2,
The next proposition shows that pr(Z)AO is indeed a differential
equation and corresponds to the prolongation of the differential

operator defining Ag» providing that this operator is in some sense

“irreducible".

*
Proposition 5.8 Let A: Jk(Z,p) +~ F be a smooth differential

operator and let Foc:F a subbundle such that A is transversal to FO'

Let a5 = A_]{FO} be the differential equation'corresponding to Fy.

Then
pr®) ag = (orl) ) TLa¥(F up)1.
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Recall that a smooth map f: M » N is transversal to a submanifold
Ng N if for any y ef(M)nmNoiwith_f(x)=y? TN[y = TNO|y+df[TM]X].
The transversality of A to FO is necessary for the proposition to hold.
For instance, if the differential equation u, =0 is defined by the
2 2 . .
X < Zuxuxx)’ so the equation in the
second jet bundle given by pr(])A is just u, =0, which is not the

operator A = u_, then pr(l)AA= (u

‘prolonged equation -- u, = 0= Uy g It can be seen that for polyno-
mial operators, transversality corresponds to irreducibility.

Given a fiber bundle F over Z, a p-section of F will be called
vertical at a point if its tangent space at that point has non-zero
intersection with the tangent space to the fiber of F. Define
VE%:JE(JE(Z,p),p) to be the subset given by all 2-jets of vertical

*
sections of Jk(ng).

Lemma 5.9 For each k, %,
*

k _
Jk+2(Z,p) nV, = ¢

Lemma 5.10 If s is a smooth p-section of J:(Z,p) such that

* * *

j25|j eJk+2(Z,p) for some je Jk(Z,p), then for any smooth differential
*

operator A: Jk(Z,P) -+ F

o) a(gysly) = dpes)ly ().

Lerma 5,11  Suppose F: Z ~ Z' is a smooth map between manifolds

and Zéc:Z' a submanifold transversal to F. Given z eZ with

F(z) = z! eZé and a p-section s eCm(Z,P)‘Z such that
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2 ' f

T sl 1= 9y2pl,0
then there exists another p-section s eCw(Z;p)IZ with :Jz;,z = :k;lz
and F(E.)czb,
Proof
Choose Tocal coordinates (x,y,t) around z such that s = {y=0, t=0}

and dF(a/ayi) form a basis for TZi]Z.'/,T26[Z.. Choose local

coordinates (&,n) around z' such that Zé = {=0}. Let
FOGYst) = (Fp(xy,t),Fy(xay,t)

in these coordinates and using the implicit function theorem let y = y(x)
be the smooth solution to the equation Fé(xgy(X),O) = 0 near z=(0,0,0).
Then s = {{x,y(x),0)} satisfies the criteria of the lemma. Indeed,
differentiating the equation that implicitly defines y(x) gives

oK g KoL 5

9 ] J A . . _
— F,(0,0,0) + S y (x) =5 F (0,0,0) + A, =0
BXK 2 BXK ByJ 2 K

where AK is a sum of terms involving derivatives of the yJ(x) of
orders <:K, hence by induction all derivatives of y(x) up to and

including k-th order vanish. Q.E.D.

Proof of 5.8

QRO

Let A( 2) . [pr( )A] z( O,p)}. To show that Aé
let s be a p-section contained in AO with jZSrw Vk g. This means
that (Tlocally) ng[s] is a smooth p—secfion of Z, hence A[s] is a
smooth p-section of FO since poals] = g[s] Therefore

* * :
J, Als]e Jz(FO’p)' In particular, if j s[ O k+2( ), then by

lemma 5.10
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pr (4] A(',J:s:‘ljo) = JE(A[S]HA(J’Q‘) E"JZ(F.O"D)‘

Now Temma 5.9 implies Ac(jz)- > pr(z) by '
(2) k+2

Conversely, suppose J € A3 and let T (j) = jO and

wgﬂ(j) = z. let se Cm(‘Z,P)IZ represent j so {.xpr(z)A(j) =

RS ¥ R '
JQ(A[Jks])lA(jO), hence dgA[ﬂJ&(Jks)'jO]C ngO‘ By Temma 5.71

with ‘J!Ls]jo =,fg£slj0 and s <.

Q.E.D.

, C
there exists seC (J, (Z.p),p)|,

J0
In addition jz;]j = j, hence jepr(z)

An.
0 0




L. Symmetry Groups of Differential Equations

Now that the exposition of the appropriate mathematical
machinery has been completed in chapter II; it is time to begin
the discussion of symmetry groups of higher order systems of partial
differential equations. The first item to be dealt with is the
derivation of the local coordinate formula for the k-th order
prolongation of a vector field. This is done 1in the first section
of this chapter, where we also prove that the prolongation operation
preserves the Lie algebra structure on the space of smooth vector
fields on a manifold. The prolongation fqrmu]a appears to be
new, although Eisenhart [EZ] gives a recursive relation fop calculating
the prolongations, that is derived here as a corollary of the general
formula. |

The remaining three sections of this chapter constitute different
applications of the pro]ongation formuTa. Section 2 gives concrete
derivations of the symmetry groups of some interesting partial
differential equations: ihe heat equation, Laplace's equation,
Burgers' equation and the Korteweg-deVries equation. Section 3 is a
discussion of the symmetry groups of linear partial differential
equations. The main result here is that for an equation of order >3
there are,né nonprojectable symmetries. The projectable symmetries
of a linear partial differential equaiion form a subgroup of the
conformal group of the top order symbol of the equation. Sectjon 4

considers the problem of when the symmetry groups of a higher order




110

equation and its equivalent first order system are the same. It

is shown that the group of the first qrdgr system is a prolongation

of the group of the hjghef order equation; eiéept possibly for the
presence of fhigher order symmetriesf which depend on the derivatives
as well as the function va]ues; An e#amp]e of an equation which
possesses higher order symmetries; the wave equation; will be discussed

in detai1:



IT1.1 The Prolongation Formila

We are finally in a position to derive the fundamental prolongation
formula for the infinitesimal generators for a local group of transformations
on a manifold Z. Since the action of each generator will be uniquely
determined by its corresponding one-parameter subgroup, it suffices to
consider the case where G s a local one parametervgroup of transformations
with generating vector field &: Z - T(Z), so that the Tocal transformations
of G are given by exp(tg).

Given any local p=section of*Z, 'f: [ Z, for t sufficieht1y small
exp(tg)ef will also be a local p-section hence there is a local prolongation
of exp(tg) to J:(Z,p), given by carollary II.5.4. The derivative of
pr(k)[exp t £] with respect to t evaluated at t= 0 will then give the

*
prolongation of £ on Jk(Z,p). More precisely:

Definition 1.1 Given a vector field & on Z, the k-th prolongation

of & 1s the vector field on J;(Z,p) given by

Pr(k)glj = H%4t=0 pr(k)[expntg](j) for je JZ(Z,p).

It is readily checked that pr(k)g is a smooth vector field on JE(Z,p)
since pr(k)[exp t £] is a family of smooth maps depending smoothly on the
parameter t.

Lemma 1.2 Let & and n be the vector fields on Z. Given 0 < k €Z
and constants a,b, then

pr(k)(ag + bn) = a pr(k) £+ b pr(k)n

(), oK)y |

pr(k)[e,n] = [pr'™ig, priin

Proof

By use of the projection
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*
I: Jk(lRp,Z) > 9, (Z,p)

given by lemma II.3.3, it suffices to show that

Sl dlexpltasn)lof) = ade]

J(exp(tgef) + bee| ) (exp(tn)of)

t=0

for any smooth f: RP + Z to prove the first formula. This, however is
a straightforward consequence of the composition rule dk(gof)'= dkgodkf
and the local coordinate expression for jkf, To prove the second
equation, recall that the Lie bracket is given by

[e.n]], = 113 d[exp(tg)]zjz, - ﬁ,z
-

®

for zeZ with z' = exp(tg)z. Therefore given j eJk(Z,p)

e, pe(k0i1), = 1 d[exp(t‘Pr(k)E)]pr(k)”lj' i p”(k)”lj
, 3 10 t
and it suffices to show that
arexp(t pri¥ )7pr*)y = pr(K)[d(exp te)n] (*)

since the formula follows from the smooth dependence of the prolongations

on parameters and the first formula in the Temma:

(k).

@P(k)g,pr(k)n]]. = ]1m.P”(k)[d(eXP tE)n]Ij. - pr"inl
J .

(k)‘11m d(exp t&n - n
t2>0

= pr(k)[a,n]lj.
To verify (*), choose local coordinates (z],...,zp+q) on Z such that

g = a/az] in these coordinates. Thus exp(tgz =z + te], where
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ey = (1,0,...,0), and therefore pr(k)(exp tg) acts trivially on the

fiber coordinates of J:(Z,p). Using the Tocal trivialization
JE(Z,p) = 7 X Grass(k)(p+q,p)

suppose zeZ, Ae Grass(k)(p+q,p) and F: JE(Z,p) +~IR is a smooth function.
Then

dlexp(t pr*) alpr(K)y F(z,n) = dlprexp telor (KD F(z,1)
pr(k)n F(z + tep,A).

1

Therefore

(k)

dEEXp(t pr(k)dpr(k)nl(z,A) = pr nI(Z + te'l QA).

On the other hand

dlexp teln|, = nl,, te,
hence
or ) d(exp teindl ;) = pr(k)nl(z +te,,h)
completing the proof of the Temma. Q.E.D.

The next step is to derive the explicit formula for the prolonged
vector field in Tocal coordinates. This could be used to provide an

alternate, computational proof of Temma 1.2.

Theorem 1.3 let x: Z +~RPxRY be a local coordinate chart on Z
with induced coordinates x(k): J:(Z,p;iL) +-Rpqux<3§(RpJRq)'on the

extended jet bundle. Let £ be a smooth vector field on Z given in Tocal

1

coordinates by £ = & (x,u)s : Fook Plxou)y  + ¢1(x,u)3u] +,00t
X

xP

¢q(x,u)auq, where (x,u) = (x1,...,xp,u1,...,uq) are the coordinates on

RPxRY. Then in the induced coordinates (x,u,...,uj,...)
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pr(k)g = pr(k"])g + ) ¢q(x,u,...,u&,...)a .
Jesp ! ul
k J
where
J ' J\ i
o8 = Dybs = ) E u D, & (1.1)
L T 4 Red =1 (K) J-K+69 “K

where the DK's denote total derivatives.

Proof
Let 5t: Z ~ Z denote the local transformation exp(tg) so that
in Tocal coordinates for t sufficiently small
@t(x,u) = (@t(x,u),wt(x,u))
with

d j i .
Eﬂ?'t:o @%(X,u) = EJ(Xau) J='|,...,p

gfwt=0 wi(x,u) = ¢i(x,u) i=1,.4.50.
Let j=(z,u(k))=(x,u,...,u3,...) eJ;(Z,p;QA) and let f: RP + Z be a
normalized parametrization of a section representing j. In local
coordinates %(x) = (x,f(x)) and u(k) = aif(x). Let ét = 5t°% for t
sufficiently small so that the sections given by ét are transversal to
U and Tet %t: RP > z, %t(x) = (X,ft(x)) be the renormalized param-
etrization of im at‘ It follows that

oy ot oy
fo = %o fc(.@to f)

for t sufficiently small so the inverse exists. Therefore
pr(k) 5t(z,u(k)) = (5t(z), ai[wto%o(ito%)"]](x)).

Taking the derivative of this expression with respect to t and setting
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t=0 and making use of the fact that

l

g%-A']( t) = -A“(t)-gtA(t)-A‘](t)

for any differentiable matrix valued function of t, we have

(k)

_d. (k) ¢
pr glj = dtlt=0p‘“ ®

Lzl

) k. d

k
- 3ufogrli=g

d
£+ qtli=pd* (¥ f

*(aof) (%)

since Woo% = f and @Oo% = “p' The second term in (*) is just the total
derivative matrix of $'= (¢],...,¢q) -- Dig(x,u,u(k)) -- since the
entries of 85(Wt°%) are just the various partial derivatives SK(WE°$)’

hence we are allowed to interchange the differentiations

d Ky o7) = ok(d

dtlo (v f) = 0(Gglig¥ee )
= 3*(-$° (“pr))
= ng(x,usu(k))

by the definition of total derivative. The third term requires more
careful analysis since the matrix entries do not depend linearly on
functions of t. Representing the matrix dkg in the usual block form

;
(ajg) then

[ogT o Tl d¥(e o)1 - T oole 4 ige.f)
* dt t=0% N N
. i1 K ik
d o Jips .8y = 4 - 9o of) ®...0) (cI> f)
atlt=0%n(2T) = qgle=o ] Iy 2%
GJ{m J!
_ il m-1+1+ (k)

9 <3 D E(X,UsU

where £ = (gl,...,gp). The proof of the Tast equality is a consequence
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=~ Q — 2 s} = = k o] -
2 f = Hp o) 3(@0 f) Np anq 9 (@O f)=...=3 (@O f) =0 and therefore
the only multi-indices J €¢4% contributing anything to the sum upon
evaluating the derivative at t=0 are (i-1)s' U and 16]. Now the

matrix entries of (*) are

J

. L
) o pg. - pd=#*1%
¢1 J¢1 [13;%7753

where we have abbreviated 2= 5L, J =12J. Now recall that

(**)

17! -

(2~ ”' p o JRP

J

hence by (II.2.1)

2-1
<eJ’ }31 T >= J5K e sP(K) J- K<e D m??

I

: JgK o—g](i) DKEOeJ_K+6G-

Substituting back into (**) we conclude that (1.1) is true. Q.E.D.

.Examgle 1.4 Consider the special case p=2, g=1 with coordinates

(x,y,u) and vector field gax+nay+¢au. The second prolongation of this

vector field is given by

X y XX Xy yy
E8, T mdy 43, + 7O, + g0 £ 47D, + g t 4770,
X Y XX Xy Yy

where

X
¢’ DX¢ - uXng - unyn

' 2
by T ugle, - &) - U & = Uy = Uty

L]

1]
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Y - _ -
¢ Dy¢ uXDy; uyDyn
2
= + - - - -

by uy(cbu n,) Uyny = Uy - uu g
o (1.2)
7" = Dqua - ZUXXDXE - Zuxny” - uXDXXF, - unyxn
™ =D ¢ - U, D E-u Dn-u.D -y Dyn - uD, &= upD. n

Xy XXy Xy Xy X Yy X X XYy yoXy
YY__ _ _ _ _
¢ Dyy¢ ZuxyDyg 2unyyn uxpyyg uyDyyn.

The next corollary can be found in [E2;p.706] and provides a

useful recursion formula to compute the functions ¢g.

Corollary 1.6 There is a recursion formula for the coefficient

functions ¢? given by

k ,
Jte" _ J i o



ITT.2 Calculating Groups of Differential Equations

Consider a k-th order system of partial differential equations
Ay < J:(Z,p) . The "symmetry group" of A, will be taken
to mean the Tocal group of all smooth local transformations of Z
whose k-th prolongation to J:(Z,p) Teaves A, invariant. The
algebra of infinitesimal symmetries of Ao will be the space of
smooth vector fields on Z whose k-th prolongations Jeave AO
infinitesimally invariant. Note that by Temma 1.2, the infinitesimal
symmetries form a Lie algebra. In general, it is to be expected
that the symmetry algebra exponentiates to form the connected compo-
hent of the identity of the symmetry group; a technical problem
arises in the case the symmetries form an infinite dimensional algebra:
some condition such as that of a Lie pseudogroup must be imposed to
provide the correspondence between the group and the algebra. It
shall be seen that the infinitesimal symmetries must satisfy a large
humber of partial differential equations so that under some appropri-
ate weak conditions on AO the Lie pseudogroup criteria will be satis-
fied. However, as these are rather technical in nature and shed Tittle

additional 1ight on the subject, they shall not be investigated here.

Besides, in practice we shall only be concerned with finite dimensional

subgroups of the symmetry group and problems of this nature will

not am’se.+

Tanother technical problem arises if the manifold is not Hausdorff,
so that a vector field might not generate any local one-parameter
group. See the appendix for a discussion of this phenomenon.
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0 will not be given as a subvariety of

*
Jk(Z,p) » but will be given, in local coordinates (x,u) on Z , as

In practice, A

a system of equations
AT(X,U,U(]),"',U(k)>=O i= ],"’,Oﬂ (2.])

where the Ai's are smooth real valued functions on J:(Z,p;QD .
Here U denotes the differential system spanned by '{a/au],...,a/auq}
~and the u(i) are the induced coordinates on the trivialized jet
bundle. (See section II.3 for the details.) 1In the classical case
Z =fPxR9 and equations (2.1) are given on Jk(Rp,Rq) = J:(Z,p;u) .
Then A, will denote the closure of the subvariety of J;(Z,p;%O
given by (2.1) in J;(Z,p) . Note that to check the invariance of
AO it suffices to check the Tocal invariance of the subvariety de-
fined by equations (2.1), so we can effectively restrict our atten-
tion to the trivialized jet bundle.

Let A : J:(Z,p;%O +R* denote the map with components A' .

If A is a submersion, then the infinitesimal criterion of invariance

gives that Ao is invariant under the group G iff

pr(k)V[A] = 0 whenever A =0 (2.2)

for all infinitesimal generators V of G . In the case that AO
is "irreducible" in the sense that any real valued function f
vanishing on A must be of the form f = ZAiAi where the A.'s
are smooth real valued functions on J:(Z,p) » then condition (2.2)

becomes
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pr(KITa7 - sal (2.3)

In practice (2.3) is the condition most frequently used - note that

a priori the Ai‘s can depend on all the derivatives as well as

the dependent and independent variables. To calculate the symmetry
group of such a system of equations, Vv is allowed to be an arbitrary
vector field so that

_ i ) J )
=) E(x,u) =%+ (x,u) ==
1E X ? ¢ sud

<¥

where the gi's and ¢j's are unknown functions of the variables
(x;u) . Using the prolongation formula of section III.1, the vector
field pr(k)7 is computed in terms of the gi s ¢j and their
derivatives. Then condition 2.3 provides a Targe system of partial
differential equations that these functions must satisfy, the general

solution of which is the desired (infinitesimal) symmetry group.

Example 2.1 Burgers' Equation

Let Z =ﬂ%2x¥R with coordinates (x,t,u) and consider the

'second order quasi-Tinear equation

up + uuy + Uy = 0 (2.4)

known as Burgers' equation. It is important in nonlinear wave
theory, being the simplest equation that contains both nonlinear

propagation and diffusion. See, for instance, [WH; chapter 4] for
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a fairly complete discussion of its properties. Let v =‘Eax + Tat

+ ¢au be a smooth vector field on Z , with second prolongation

R R N A T ALY
X t XX xt tt
where the coefficient functions are given at the end of section III.1.

Using criterion 2.3, we have that

¢t + ug® + ux¢ + ¢ = A(ut+uux+uxx) (2.5)

must be satisfied for some function A which might depend on

(x,t,u,ux,ut,uxx,uxt,utt) . However, as the second order derivatives

Uyy2 Uyt Uy Occur only Tinearly on both sides of (2.5), A can only

depend on (x,%;u,ux,ut) . The coefficient of Uy in (2.5) is

-2DXT =0

implying that Tt 1is a function t alone. The coefficient of Uy e is

¢u - ng - 3uxgu =) (2.6)

giving the form of A . The coefficient of Uy is, since A s

independent of Ug »

which implies that g =0, 1. =2 ,50 E, =0 and X depends
u t X XX

only on (t,u) . The coefficient of ui is now ¢uu = 0 , hence
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o(Xstou) = a(x,t) + ug(x,t) .
The coefficient of uy is now

"By T U(B-E)) ot Bu 28 = 2

hence using (2.6)

Finally, the terms in (2.5) not involving any derivatives are
¢t * Uq)x * ¢xx =0

hence oy = 0, By * o, = 0 , which implies et = 0 . Therefore

the general solution to (2.5) is given by

= c] + c3x + c4t + c5xt

['Aat
1

2
Co + 2c3t + c5t

)
]

¢ =cy4* CpX = (c3+c5t)u
A= -3c3 - 3c5t
where €1 5 Cp» C35 ¢y 5 G are arbitrary real constants. The

infinitesimal symmetry algebra of Burgers' equation is five dimensional

with basis consisting of the vector fields
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Vo o= )

V1 % 9%

+ —

Vp = 3

V, = X3, + 23, - ud (2.7)
3 X t u ’ )
+ =

v4 tax + au

Ve = xtd + t2y, + (x-tu)?

5 X t U

The commutation relations between these vector fields is given by
the following table, the entry at column i and row Jj representing

- >
[vi,ij X

> - - - >
V1 V2 V3 Yy V5

> - >

vi| 0 0 vy 0 Vg

—>: -+ > -

vy | O 0 2Vy vy Va

+ > > > -+ (2.8)

Vg | Vg -2v2 0 Vg 2v5

- - -

Vg 0 VY 0 0

Vg | Vg vy -2V 0 0

.—).
Let Gi denote the one-parameter local group associated with Vi

Then G; and G, are just translations in the x and t directions

1
respectively

2

Gy @ (X, t,u)e=> (x+2,t,u)

A eR (2.9a)
62 : (X, t,u)— (X, t+x,u)

and represent the fact that Burgers' equation has no dependence on x

or t . The group G3 is a scale transformation
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: (x,t,u)kﬂ-(eAx,eZAt,e'Au) xR (2.9b)

G3 :

The groups G4 and G5 represent Tess trivial symmetries:

d(X,t,u) e (x#At, t, u)

G4 :

, X elR (2-9(3)

65 ¢ (t,u) (i 5 T2, U A(x-tu))

These will be discussed in more detail in example IV.2.1.

In the next examples, some of the results to be proven in
section III.3 will imply that no nonprojectable transformations are
in the symmetry group, meaning that the functions Ei in the
expression for a vector field v do not depend on the dependent

variables u . This will help simplify the calculations.

Example 2.2 The Heat Equation.

As in the previous example Z=HR2xiR with coordinates (x,t,u) ;

we consider the second order linear equation

Up = U, (2.10)

Letting V and pr(2)3' be as in example 1, then the infinitesimal

invariance criterion is

6" 6% = Aluyu ) (2.11)

Using the results of section III.3, we have gu =T, = 0 and A
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depends only on (x,t,u) . The coefficient of Ut in (2.11) implies

Ty = 0 . The remaining coefficients of the various derivatives give

the equations

-
I
I\
yry
i
>

-
]
(—f-ﬂ
I
S

2d)xu " b T BT 0

bug = 0y =0 .

XX

A 1ittle work shows that the genera] solution to these equations is

Y
I

= C4 + 2c5t + CyX + 4c6xt

- 2
Cy + 2c4t + 4c6t

~
1

¢ = o{x,t) + (c3—2c6t—c5x-c6x2)u
A=C, - 2C, - 10c.t - CcpX - ¢C x2
3 4 6 5 6

where Cl1 » Cyp 5 C35Cp 5 Cp s Cg AT arbitrary real constants
and a(x,t) s an arbitrary solution of the heat equation. There-
fore the symmetry algebra of the heat equation is spanned by the

six vector fields



and the infinite dimensional abelian subalgebra

<¥
w
1

<¥
u I

1]
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X
%

uau

xax + 2t8t
ZtBX - xuau

dtxa, + 1t%5

t'(

x2+2t

)uau

(2.12)

-5
v, = a(x,t)au 0y = O
The commutator table is
> > - - -> > :
v 7 V3 vy Vg V6 Va
> > - > >
v] 0 0 0 v] -Vg -2v5 Vax
-+ - > > +> >
> >
Vs 0 0 0 0 0 0 Y,
> - - - > >
2 V1 -2v2 0 0 -V —2v6 vV,
> > . > >
> -+ > > >
Vg 2v5 2v3-4v4 0 2v6 0 0 Vo
P A A A SR A ST
o oy 0y Vo Vo ! o o'
’ ! = . .
where o X0 + Ztat

o'l = dtxg, + 4t2a, + (x%42t)a
X t

(2.13)
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Note that since the infinitesimal operators form a Lie algebra, if

o is any solution to the heat equation, so are o' and a'' . Note
that the symmetries given by 31 s 32 , 33 and 3@ merely reflect
the fact that the heat equation is a constant coefficient Tinear
partial differential equation., The well-known invariance under a
scale transformation in x and t 1is given by 34 . The one para-

meter groups are

Gy - (Xstsu) = (x+A,t,u)

GZI: (Xstsu) = (X,t4+A,u)

6y ¢ (X, Eau)i (x,t,eM) AR (2.14)
Gy (x,t,u)bﬁ-(eAx,eZAt,u)

Gy : (Xst,u) = (x=22t,t,u exp(xA—AZt)

2
) T ~AX
Gg (Xt u) 1 <§At+l g 4At+] » WAAEHD exp [4At+] ] )

Example 2.3 Laplace's Equation in the plane
Let Z =R?x¥R with coordinates (x,y,u) and consider the

equation
Au=u_+tu. =0, (2.15)

If v = £3, * nay + ¢au is an arbitrary infinitesimal symmetry of

(2.15), then

o7+ o = tu)
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As in example 2, we use the results of section III-3 to imply that
Eu =0, = 0 and X = A(X,y,u) . The relevant equations for g,
ns ¢ and A are

qbxx * ?yy =0.

The general solution to these equations gives the familiar conformal
group in the (x,y) - plane. Namely & , n form an arbitrary solution

to the Cauchy-Riemann equations and
¢ = B(Xst)u + @(Xﬁt)

where B = g, * Ny and o is an arbitrary solution to Laplace's

equation.

Example 2.4 The Korteweg-deVries Equation

Let Z =R2:K?R with coordinates (x,t,u) and consider the quasi-

linear evolution equation

ug *uu Fu, =0, (2.16)
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The equation is used to describe Tong waves in shallow water, and
exhibits many surprising phenomena; see [WH; chapter 17] for some

details. Criterion 2.3 gives

t X XXX _
" + ud” + ¢ux + ¢ = A(ut+uux+uxxx) ,

and the prolongation formula gives

) + 3ulp, + ulo

XXX _
¢ ¢ X Xuu X uuu

+ -
XXX uX_(3¢XXU EXXX

* Suxx(¢xu'€xx) t3u by - Uyt Tyy
¥ uxxx(¢u_3§x> " Ukxt®x

since the vector field V is projectable by section III.3. Solving
the resulting equations shows that the symmetry algebra of the

Korteweg-deVries equation is spanned by the four vector fields

+ p—1

V] 8x

+ —

\!2 - at

N (2.17)
v3 = tax + au

+ = —~—

Vg = xax + 3tat 2u8u

with commutator table
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n V3 7
vy 0 0 0 2
v, | 0 0 v 3, (2.18)
v, o -V, 0 -2y,
A A A A

The corresponding one parameter groups are

61 2 (X, tu) B (XA, t,u)

5 (X,t,u) = (X,t+2,u)
re R (2.19)

D (Xst,u) B> (XAt ubn)

3\

Gy : (x,t,u) +— (eAx,e t,e—ku)

In all the examples so far, the groups have been projectable,
meaning that thé transformations in the independent variables do not
depend on the dependent variables. To show that this isn't always
the case, and in preparation for the next section, we consider an

elementary example.

Example 2.5 Let Z =IR2>§IR with coordinates (x,y,u) and

consider the equation

Let v = gax + nay + ¢8u be an arbitrary vector field on Z , then
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-
the criterion for AO to be invariant under v is just

0= ¢XX ¥ uX(quXU-EXX) * u>2<(¢uu-2£xu)

3 2
- - +2 + u
uxEuu ut(Txx uxTxu xTuu)

* uxx(¢u'zgx'uxgu-utTu) - Zuxt(Tx+uxTu)

whenever ukx =0 . Therefore
Pyx =0
2%u = Exx
buu = 28
gy =0
T, =71, =0

so the 1nffnitesima1 symmetry group is given by all vector fields

of the form

3 5 . K
[c]+c4x+c5u] xSt [c3+c6x+(c7+2c4x)u] Sy

where Ci » i=1,...,7 are arbitrary functions of t .




ITI.3 Applications to Linear Equations

In this section the preceding theory will be applied to derive
some results on the symmetry group of a linear partial differential
equation in one dependent variable. It will be shown that for an
equation of order n=3 there are na nonprojectable symmetries. In the
course‘of deriving the defining equations for the infinitesimal
generators of the symmetry group, it will be explicitly shown that
the group is a subgréup of the group of conformal transformations of
the symbol of the equation. For the case of a second order equation,
invariance under a nonprojectable one-parameter group imﬁ]ies that
the equation is equivalent under a change of coordinates to a
parametrized ordinary differential equation, as was shown by Ovsjannikov,
[01;chapter 6]. These, however, can be invariant under nonprojectable
groups, as was demonstrated in example 2.5. Many of the results of
this section can be easily generalized to certain classes of quasi-
linear and even nonlinear equations with quasilinear top order terms.
Multi-index notation as given in definition II.2.1 will be used
throughout.

Consider the 1inear partial differential equation
L I

) p 2 (x)'aIu =0 (3.1)

au) =}
k=0 IeSk

where x=(x1,...,xp) and for I=(1],...,1p), ch denotes the partial
derivative 3}1822...81p, where 5. = 3/3x5. More abstractly, (3.1)

p J
*
can be viewed as defining a closed subvariety g < Jn(Z,p) where Z is



133

a smooth manifold of dimension p+1 where equation (3.1) is the local
coordinate expression for this subvariety. Here we are only concerned
with the local symmetries of (3.1) so we are justified in restricting
our attention to the case when Z is an open subset of RP x R, and
Tooking only at the trivialized jet bundle Jn(Rp,R)szMRxC)Q(RpJR).

In any case, the important expression is equation (3.1), the abstract
terminology being important only for thearetical considerations.

In order to derive the symmetry group of (3.1), the prolongation
formula (1.1) for the infinitesimal generators wii] Be used to derive
the defining equations of the symmetry algebra, which will in turn
be used to derive properties of the (local) symmetry group. Let

V= E £ (x,u)o . + ¢(x,u)o

| 21 x1 u

be the Tocal coordinate expression for a vector field on Z. The
prolonged vector field on J:(Z,p) is given by

n
pr(n)?'= ve LT ¢I(x,u,u(k))au
k=1 1P I
where the ¢I are given in theorem 1.3. The condition of invariance

of Aq under the one-parameter group generated by v is simply
pr M TTa(u)T = wa(u) (3.2)

for some multiplying factor u: J:(Z,p) +R, which may a priori depend

on all the derivatives of u of order <ti. However, since the.expressions
for the ¢I's are polynomials in the uJ‘s, u must be a polynomial in

the partial derivatives of u. Henceforth, we will use the symbol

Z.(k) to denote any polynomial expression in the uJ's for £J<k whose
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explicit form is not needed in an equation.
The first observation is that if y(x,u) is an arbitrary smooth

function, then its total derivatives have the form

Dyy = 2Ly + £(K) k=1 (3.3)

as can easily be verified using lemma II.4.3. (A more refined
expression giving the (k-1)st order terms will be given in lemma 3.6

to follow.) As a corollary of this and the prolongation formula,

for zI=m

e k Y
- k§1 021 [<1k ' %)%Ui et 1kzx_‘<]”1-ak+aq ' i§2?4)+

where 65 is the Kronecker 8. To see this, it suffices to note that
the only terms in the sum in (1.1) that contribute m-th order terms

are when K=I or K=6k.

Lemma 3.1 If A is invariant under the one parameter group

generated by the vector field vV with multiplying factor ﬁ, then

— [
u o= UO(XaU) + kg_] Uk(xsu)uk (3-3)
for some functions BgoH]see ol 7 = R. Moreover, if (x,u)eZ
8€k
L] uk(X,U) = (xk_— k=]’---5p (3.6)
ou

where;ake Zis given by

'ak = - sup{ jk: J esﬁ, aJ(x) #0131 -1, (3.6)

THere and elsewhere, any term in a sum involving a multi-index
expression that results in a multi-index with a negative entry shall
be ignored. Thus, in (3.4), if 1k=0,that term is ignored.
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Proof

When written out in further detail, equation (3.2) is

I .
JLalel+ Eﬁcd“a“'rl=u2a1“1.
[ =1 oax )
Using (3.4) the left hand side is
I o
op L] _ . 9&°
ISSP[ 2‘5 o) Ut kZ( +cS(7 —g—uau kﬂkaxk )ul-dkhsg]-'- £(n). (3.8)

This proves that u must take the form (3.5). Equating the coefficients of
uuy for J esg yields the following important equations:

: J-5%sK 2 g '
- OE] (Jk+1)a ET uka | (3.9)

for all T<ksp and J eSE. Now given k, let 2 = sup{ jk: Je Sg, aJ¢O .

Fpr this value of k and some J with jk = 2, aJ#O, (3.9) reduces to

k ‘
Jags _
- (&+1) a o T M

. J-6%%6K L . .
since a = 0 for o # k, but this immediately gives the lemma.
Q.E.D.
Combining equations (3.6) and (3.9) we have
E (3,+1+a, 65) aJ"SG“L‘Sk 8 _ (3.10)
O_='l Jk ak ag Bu ! :

for all 1s<ksp, J eSE.

Lemma 3.2 For each k = T,...,p and each (x,u) €Z, either

k
EEF(X u) = 0 or a8 #0.

Proof
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Assume first that o # -1, meaning that some derivatives in the
xk direction do actually appear in the highest order terms of A.
Assume further that ansk(x) = 0 and agk # 0. Suppose o = -2-1
with O<2<n so that a£6k+I(x) # 0 for some I esﬁ_z with 1,=0. Choose
Jj so that 1j#0 (this is possible since %<n) hence (3.10) in the case
J = (z+])ak P «v&nd j replacing k gives

iJ 6+I E)Ek(xu =

o,.d

since g% *¢ (x)=0 unless o=k, giving a contradiction. On the other

hand, if o, = -1, then (3.10) in the case J = s%+I for IesP ) with
1k=0 gives

k

(ij+1)aI+6J(x) gf (x,u) =0

for all j#k, showing that aJ(x) = 0 for all J ESE with jk=0. Finally
we use the continuity of the coefficients aJ and the gk to infer that

A is not an n-th order differential operator in some open set. Q.E.D.

Definition 3.3 An n-th order Tinear partial differential

operator A is partially degenerate if there is a coordinate system

(x],...,xp)'oanp such that

_ n f
A—an(x) a7 * 4

where A' is a Tinear partial differential operator of order n'sn-1.

A is strongly degenerate if there is a coordinate system such that

A = an(x) 3? + an_](x) 8?—] + o4 a](x) 3y * ao(x)

i.e. A is equivalent under a change of coordinates in the independent

variables to a parametrized ordinary differential operator.
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The next lemma gives a complete characterization of partially

degenerate differential operators.

Lemma 3.4 An n-th order linear partial differential opefator

is partially degenerate iff its n-th order coefficient functions are

of the form

-—

al(x) = OF o' (x)alx) B
for some real-valued functions p],...,pp,a.

Proof

Let x = ¢(§) he an arbitrary change of coordinates. Let

3; = a/ax1 and 3y = a/ax‘. Let

o1(x) = 3361067 (0]
so that
~ _ .i _ ~
3y = 1Z]p (x)81 at x = ¢(x).
It is a straightforward exercise to check by induction that
o n! I
N Zsp T e (Xop + A'
€“n

for some operator A' of order n-1. Conversely, given p1,...,pn

which do not all simultaneously vanish, it is easy to construct a

change of coordinates X = ¢(§) with 81¢1[¢'](x)] = o' (x). Q.E.D.
We are now in a position to prove our first main result.

Theorem 3.5  If A(u) = 0 is a linear partial differential
equation of order n=2, which is invariant under a nonprojectable

one parameter group of transformations, then A is strongly degenerate.
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Proof

First it-will be shown via the criteria given in the previous
lemma that A must be partially degenerate. Given (x,u), suppose
that the vector- field on Z generating the one parameter group is
nonprojectable at (x,u), which means that %fh(x,u) # 0 for at least

one integer k. Fix this k. It is now claimed that for 1 esg,

aI(x) = —f-pI(x,u)é(x,u) where: pj(X,U) = %5£(x,u) (3.11)

which in particular proves the partial degeneracy of A by letting
u assume any fixed value. Suppose I = (n-2)&? + J for J eSE with
jk=0. Equation (3.11) will be proven by induction on 2. For 2=0,
let

n6k k n o

a"® (x) = [p(x,u)] -alx,u).
By lemma 3.2 we know that o = -n-1 (so in particular a(x,u)#o),

hence (3.10) gives for 270

k k o) g
—zal(x)g%—-+ (n-2+1) A (n-#1)8% + J -6 (x)%fi- = 0.
a#k
Therefore, by induction
00ek = (o) ] nL___ oLk
otk (3-87)1(n-2+1)!
j#0
= (n-£+1)r4- ) %—- ol
ok
1470

|l
l:
Portr——
Q
“HI~1
=
—le
Q
| I
©
—t
o
=
I
Hl =
=
©
—
he)
-~
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where M is the multi-index with components m_ = 16-1 for 10f0, ofk,
m =0 for 1O=0 and m, = n-2+1. This proves the partial degeneracy of
A. To prove the strong degeneracy, we work in the coordinate system
(xl,...,xp) so that |

_ n n-1 '
A = an(x) 8y * an_](x) a7t . + a](x) 3y + A

where A' is a differential operator of order n'sn-1. By lemma 3.2,

in this coordinate system %ﬁi-= 0 for k=2,...,n, hence

. 1
n o= uo(x,u) +111(x,t1)u1 where “1("’”) = -(nH%‘E—(x,u).

Now it suffices to notice that in (3.2), the only terms containing

Uy Ug for k#1 are

- 1
J d

where the sum extends over all J eSﬁ. except n'61.> This immediately
implies aJ(x) = 0 for all such J, showing that A' is in reality of

order n'-1, proving the theorem. Q.E.D.

Lemma 3.6 Let ¢:|Rp « R + R be smooth and let J Esﬁ for

n>2, then

=y ; 29 ,
Dyé = Ugpy ¥ 021 Jg-s0 au T Ln-1)

where £ (n-1) denotes terms involving Uy for sl<n-1.
Proof

From lemma 1I1.4.3 we have

_ o, 09 4 89
Do = Uy +axk



]

DD

D6 = i o) ¢ D,o,(ﬂk‘\

“ke5u
L2
3}9_+ukuu+ ‘a__L-Fu_a_L-{-f(])

u u
keau lauz kaxzsu 2'é)ikau

39 99 9 ¢ )
Uomau T ukz”mauz * ”kmu£8u2 * uzmukauz
2 2 A

5
+uk___¢l_+ukm_§_§’__+u __QEE’__+£_(2)

sxMau ax¥ou MMax®ay

- “kzn%%’ ¥ ”ksz(28§ ¥ uksz(%%) * ukka(%%) + L(2)

proving the lemma for the case n=3. In general, by induction on n

Do
nNo

1]

+

(]

DszDk¢

p
= 3¢ 3% ; a¢
DkPat = Ugpskau ”JDk(au) ¥ 021 Joud_ao+6kDo(au) + o(n)

for zJ=n, which proves the formula for zd=n+1. Q.E.D.

Theorem 3.7 The symmetry group of a Tinear .partial differential

equation of order nz3 contains no nonprojectable symmetries.

Proof

By theorem 3.5, it only remains to consider the strongly
degenerate equations. Suppose
U P
a(u) = 7 a(x)squ
. i=0
and v = Zg1ai + ¢au is any infinitesimal symmetry of Alu)=0. Using

equation (1.1) and lemma 3.6, it can be seen that the only terms in

(3.2) involving u]]u(n_1)61 are

1 1
200 [ - (et - (M) ureEs gonyst ] = 0
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351 =

(This relies heavily on the fact that n>2.) Therefore ==—= 0, hence

V is projectable. ‘ Q.E.D.

The example uXX=O whose symmetry group was computed in section

3.2 shows that the previous theorem is not true for n=2.

Proposition 3.8  Suppose Ao'is an n-th order linear partial

differential equation which is invariant under the one parameter
projectable group with infinitesimal generator vV = Zgiai T 98,5 then
6(x,u) = a(x) + 8{x)u where o (and, if A has no zero order term, g)
is a solution of Ay

Proof

In the case n>2, lemma 3.6 implies that the only terms in the
equation (3.2) involving u Uy for &J = n-1 are

2

5 ESE 021 jOaJ(x)ga%-uGuJ_ac =0
since the multiplying factor-u depends only on (x,u) by theorem 3.4,

2
This implies é_%_= 0, hence d(x,u) = a(x) + 8(x)u. A similar
u

argument works for the cases n=1,2. (See the first and second
formulae in the proof of lemma 3.6.) The assertion about o and 8

follows from the following more general proposition. Q.E.D.

Proposition 3.9 If the linear partial differential equation

A(u)=0 is invariant under the one parameter group generated by the
vector field V = 25131 43, then ¢(-,0) 1is a solution to A. If A
contains no zero order term, then ¢(*,u) forms a one parameter

family of solutions to A.
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First consider the case where A has no zero order term. In terms
of local coordinates on Jz(Z,p), suppose u(n) eJ:(Z,p;1L)|(X,u) has
coordinates uy, and let u(n)(x) for A eR denote the jet over (x,u)

with coordinates Auy. Thus

(n)).

A(x,u,u(n)(x)) = xA(x,u;u

The n- -th prolongation of V at the point (X,u u(n)(x)) will have

coefficient functions ¢ (x u u(n)(x)) and

Pr(“)7[é(x,u,u(n)(X))] = ZaI(x)¢I(x,u,u(n)(k)) t XV(aI(X))A“I =0

whenever A(x,u,u(n)) = 0. Subtracting Apr(n)7[A(x,u,u(n))] from the

above equation yields
7 aloams ™)) - a6t ouut™) = 0

whenever A(x,u,u(n)) = 0. In particular, letting A=0 and noting
that ¢I(x,u,0) = BI¢(x,u) gives the result. The corresponding result
for the case that A has a zero order term follows by a similar

argument, replacing u by Au. ‘ Q.E.D.

The next stage is to give a geometric interpretation of the
projectable symmetry group of a linear partial differential equation
as a subgroup of the group of conformal transformations of its top
order symbol. For simplicity assume that Z is an open subset of the

trivial 1ine bundle ﬂx over a p dimensional manifold X.

Definition 3.10 Let X be a smooth manifold and a: X = CDnTX
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a n-Tinear symmetric form on T*X. A transformation f: X - X is

U)-I;-..,wk GT*X]_F(X)
al6F(w;)@ ...0 6F(0,), x) =u(x)-a(010 .. 0m, (X))

for some real-valued function ﬁ: X+ R.

A vector field V will be called an infinitesimal conformal
transformation if the local transformations exp(t@) are conformal.
The following lemma characterizes the infinitesimal conformal

transformations of a smooth p-linear symmetric form.

Lemma 3.11 Let x = (x],...,xp) be a local coordinate system
on X. The vector field 35 Zgi(x)ai is an infinitesimal conformal
transformation of a = ZaI(x)aI iff there is a function A: X =R such
that

T Key s T (54
§ [neltngtoo « I tipms

1-s3 46k

(X)ajak(X)] =

,.AKX)aI(X) + 5 akaI(x)ak(x) I esg.—
k=1

Proof
—).

_ > d =
Denote f, = exp tVso that Tele=g = V- Now

1l

5, (dx' ) .,g ajfl(x)de

1l

hence, recalling that de, aI I!, for I esﬁ,

(oK

d I 0 Troyad(s

n

THere, as usual, the terms in the sum over j with 1j=0 are omitted.
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-sd

o k
=] (x-53+6k)! 159 é<(><)al_cs (x)

sk

since ajfg(x) = 6ﬂ2¥(x). On the other hand, this expression must
equal -

4 et 00) = 1 Aot s 1 K)ol ().

Dividing both equations by I! gives the result. The converse follows

via exponentiation. Q.E.D.

Now let us look at the top order terms in the defining equations
for the symmetry group of A(u)=0. By lemma 3.6 and proposition 3.7,

we have for J esg, n>2

Dy = BUy + 021 1,35845-50 + L(n-1)

therefore

-
1

J . o . T

(8 -7 308 uy- L 38U + L(n).
g 6 0 J - 60 J_60+6T

Now, since u =110(x,u), the coefficient of uy in (3.2) is

)

(5-13,3,08°00) - ) (38,5500 + 0,700 € = wglxu)a’ (0.
(e} OFT (o}

Note that this imp]iesli = uo(x).~ Moreover, we have

Proposition 3.12 The group of prbjectab]e symmetries of a linear

partial differential equation in one dependent variable, when
projected onto the space X of independent variables is a subgroup of

the conformal group of the top order symbol of the equation.



III.4  Groups of Equivalent Systems

In previous sections, in examples I.3.1 and III.é.Z, the
symmetry groups for two equivalent forms of the heat equation,
namely the first order system Uy =Vs v =Uy and the single second
order equation u,,=u; were calculated. Looking back on these
examples, it can be noticed that the infinitesimal symmetries form
isomorphic Lie algebras. In fact, more than this is true; the
coefficient functions of av for all infinitesimal symmetries of
the first order system are just the coefficient functions of a”x
of the first prolongation of the corresponding infinitesimal
symmetry of the second order equation when v is substituted for Uy,
Thus, the symmetry group of the firét order system can be considered
as the first prolongation of the symmetry group of the second order
equation. It is the aim of this section to investigate in what
sense this phenomenon is true in general. It will be shown'that
barring the presence of"higher order symmetries" the symmetry group
of a first order system is the prolongation of the symmetry group
of an equivalent higher order equation (at least locally). The
higher order symmetries are groups whose transformations depend on
the derivatives as well as just the independent. and dependent
variables in the equation. This will all be made more precise in
what is to follow. At the end df this section, an example of an

equation which possesses higher order symmetries -- the wave equation

-- will be considered.




146
We first need to describe what exactly is meant by the

equivalent first order system to a partial differential equation
in the language of extended jet bundles. Suppose Ay © J;(Z,p)
is a k-th order system of partial differential equations. If
(u],...,uq) denote the dependent variables corresponding to some
coordinate system (x,u) on Z, then the dependent variables in the
equivalent first order system will be the induced coordinates on
the jet bund]e u for a]l multi-indices KeSP with 0szK<k. (Here
we identify u0 with ul ) In other words, we are considering AO
as a first order system of equations over the new manifold Jk ](Z,p),
i.e. as a subvariety of J](Jk_1(Z,p),p). Using the embedding 1t_]
given in corollary I1.5.3 it is not hard to see that this first

order system is nothing but
k ‘~k *
1k_](A0) cJ1(Jk_](Z,p),p).

Example 4.1 consider the manifold Z =IR2ﬂR with coordinates
(x,t,u) and let k=2. Suppose 4, ciJ;(Z,Z) is given by the equations

i .
A (X,t,u,uxgut;uxx Xt’utt) 0 1"13.-.3@.

The local coordinates of JT(Z,Z) will be denoted by (X,tsUsVsW)s
where v corrseponds to Uy and w to Uj. Then the local coordinates

* Kk
on J](J{(Z,Z),Z) are (X’t’u’V’W’ux’ut’vx’vt’wx’wt) and the subbundle

5%(2,2) (which we will henceforth identify with i2(05(2,2)) ) s

2
given by the equations

u, =V Uy = W Vi = Wy (4.1)

Therefore the first order system corresponding to A, is given by

equations (4.1) and the further equations
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AV(X,tsUsVsWs Vs x’Wt) = 0 §=1,. 0050

For instance, in this set-up the first arder system corresponding‘to

the heat equation Uy = Uy is

u, =V up = W Vi = Wy v, = W, (4.2)

This is not exactly the first arder system previously considered.

Some tedious calculations similar to those in eXamp1e I.3.1 shows

that the infinitesimal symmetry group of (4.2) is indeed the first
prolongation of the infinitesimal symmetry group of the heat equation.
It'is not difficult to extend the resultsoto be derived for equivalent
systems of the form (4.2) to the more abbreviated systems of the

form u, = Vi oV, = Uy the details are left to the reader.

More generally, we can replace a system of k-th order partial
differential equations by an equivalent system of (k-2)th order
equations for some 1<a<k. This is accomplished via the embedding

1§ from corollary II.5.3:

* *, *
by <3 (Z5p) < J,k-g(%(z’P) p).

Lemma 4.2  Suppose A, cd (Z p) is a system of k-th order
partial differential equations. Let 1<e<k and suppose s'< J (Z,p)
is a p-section such that jz_zs'<:A0, then locally s' = st for some
p-section sc<Z which is a solution to Aj.

Proof

The proof of this lemma follows from the fact that if s'is a

p-section of JZ(Z,p) with Jk_zs c Jk(Z,p), then locally s' =] s,
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' *
where s = ﬂg(s'), né being the prajection of JQ(Z,P) onto Z. To

prove this fact, we first use lemma I1.5.9 to get that wg(s‘) is

locally a p-section of Z. Then the local coordinate description of

s E.D
Jgs. Q.E.D.

j;_zs’ shows that s' =
Note that the prdjection né(s') is not necessarily a global

p-section of Z since there might be self-intersections. This lemma

justifies the use of the word equivalent, since the smooth solutions .,

of the higher and lower order equivalent systems are in one-to-one

correspondence via the extended jet map. Now wé are in a positfon

to consider the symmetry groups of the equivalent systems. Suppose

G is a local group of transformations acting on Z whose k-th

| prolongation Teaves Ag invariant. Using corollary I1.5.4 we see

*
that Jk(Z,p) is an invariant subvariety of the transformation group

pr(k'x)[pr(g)G] acting on J:_Q(JZ(Z,p),p) and
o pr (M) a5 (2p) = e,

We conclude that if G is a symmetry group of a k-th order system
of partial differential equations, then pr<l)G is a symmetry group
of the equivalent (k-2)-th order system.

Conversely, suppose G' is a Tocal group of transformations
acting on J;(Z,p) such that Ay is an invariant subvariety of the
prolonged action pr(k"g)G'. An obvious necessaryvcondition for G'
to satisfy in order to be the prolongation of some group G acting on
Z is that it be projectable, i.e; if wé(j) = wé(j') for j,Jj' eJZ(Z,p)

then nﬁ(gj) = wg(gj') for all g G} n G},. The non-projectable
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groups will be called higher order symmetries, since while they
do transform solutions of g to salutions of Ay, the transformations
depend on the derivatives of the solutions as well as the solution
values themselves. They can be considered a special case of non-
point transformations, cf. [02]. We have already seen that the heat
equation possesses no higher order symmetries (at least no first order
symmetries); example 4.4 will discuss an equation that possesses some
higher order symmetries.

A second criterion that the group G' must meet in order to be
a prolongation is that AO is really a k-th order equation. For
instance, if By = (wE)T][Aé] for some &-th order equation Aé, then
any transformation of J:(Z,p) Teaving Aé invariant will preserve Ag,
and the projectable ones are not expected to necessarily be prolonged

group actions. What can be proven is summarized in the next theorem.

Theorem 4.3 Let 1sa<k be integers, and let
* ® *
AO c Jk(Z,P) c JkiQ(Jz(Zsp) ,P)

be a k-th order system of partial differential equations, with the
equivalent (k-2)-th order system of equations. If G is a local group
of transformations acting on Z such that Ay is invariant under the
prolonged group action pr(k)G, then letting G' = pr(z)G, Ay is
invariant under pr(k'g)G'. Conversely, if G' is a local group of
transformations acting projectably on JZ(Z,p) such that A, is
invariant under pr(k'l)a', then letting G be the projected group

action on Z, pr(x)G agrees Jocally with G' on wi[AO]g which is a G'
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invariant subvar1ety of J*(Z;p).

Eﬁggﬁ

The first statement has already been demonstrated in the
remarks preceding the statement of the theorem. To prove the
converse, note that it suffices to show i}i’ the algebra of
infinitesimal geherators of G'; agrees with pr(z)z?, the 2-th
prolongation of the algebra of infinitesimal generators of G. To
do this, it suffices to check that if V' is any projectable
vector field on J (Z p) with projection V on Z such that Ay is

(k 2) » then pr( )v = V' on wi[AOJ.

invariant under pr
Choose local coordinates (x,u) on Z with induced Tocal
coordinates (x,u,u(k)) on JE(Z,p) and (x,u,u(z)) on JZ(Z,p) so that
wg(x,u,u(k)) = (x,u,u(z)). The induced local coordinates on
J:_Z(Jz(z,p),p) are given by (x,u, u( 2) (k 2) (u(z))(k-z)>, the
individual matrix entries given by (u )K for all 1<1<q, J,K eSp
with 0<xJs<p, 0<sK<k-2, where as usual we identify u with u and

(uJ)0 with uJ By corollary II.5.3, Jk( ,p) is given by the equations

(ul)g = (ug)y, 1=1,...0q, 04K = JHK',

Now let V' be given in local coardinates by

Vs e +Z¢1-—~+Z¢1
3X BUJ

so that
> ] 3 e
V = Z gJ"'_-‘ + Z (i).—-a—-
J You!
and
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1

okt 230 ) (¢g)K;;Ji__
| a(uyly

the (¢$)K being given by the prolongation formula. Note that since
v'is projectable, sj and ¢; are functions of (x,u) alone.

Now applying the infinitesimal criterion of invariance to A,
considered as a (k—z)-th order system, we must have

(6} G P21, a0, 04K = 31K

i) = (¢1
whenever 3 €8y In particular, letting K = §%, K' = 0 for some

1<osp, then the prolongation formula implies that

J J+s°
D ¢5 = Z (UJ)TDGET = ¢1
T
on 4, for all 0<zd<g-1. Note ﬁhat these are precisely the recursion
relations for the prolongation of vector fields as given in

corollary 1.3 since Aoc:J;(Z,p), which proves the theorem. Q.E.D.

Note that the theorem does not imply that G' and pr(g)G agree
everywhere on J;(Z,p) for instance, inithe coordinates given in
example 4.1, we could have an equation invariant under the
transformation (x,t,u,v,w) -+ (x,t,u,w,v), but this projects to

the identity transformation on Z =lR2mR, so is not a prolongation.

Example 4.4 The Wave Equatian.

let Z =lR2XR with coordinates (x,t,u) and consider the second
order equation A, < J;(Z,Z) given by

CUxx T Ut (4.3)
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The equivalent first order system for A is given by

ux =V

U, = w

t (4.4)
Vt = Wx

Vy T Wy

.

where (x,t,u,v,w) are local coordinates on J](Z,Z). In this example

the symmetry group of the first order system (4.4) will be computed.
>y ' . *

Let V' = g0, + T F 93, + 3, + X be a vector field on J](Z,Z)

with first prolongation

(Mg 23

pre 'y F 49, F 3ut+l[) avxhp I T

X t X t
The defining equations for the symmetry group of the wave equation

are therefore

8 =y

t_

¢ =X (4.5)
wt = "

=y F

which hold whenever (4.4) holds. Using the prolongation fromula and
substituting (4.4) into (4.5) gives rise to the following system of

equations for the coefficient functions:

b+ VO, - VE - VPR - wr - wer, = (4.6)
¢t + Wd)u - V«Et - \,/WEu - WT - W2Tu =y (4.7)
by - VE, - WT, = 0 (4.8)
by = VE, ~ WT, T 0 (4.9)
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otV = xy T oWy (4

byt Wb, T oy (4

Ey = Ty (4.

E, = Ty (4

by VR TR T T “
by T Tx T VT T Xyt By T Wh (4
e T P I Y (4
by T T M T Xy T B TV (4

Now (4.14-17) imply

by =Xy (4

y = Xy (4

g, T Ve, T Ty Wt (4.

£y tWg, =1, T, ‘ (4.

Let o = vHw, 8 = v-w, then by (4.12-13) we can represent

£ (a) + g'(8) (4
£1(a) - g'(8) + 2h(x,t,u) (4

g

T

where f and g further depend on (x,t,u) and the primes indicate

derivatives with respect to o or 8 as the case may be. Next, (4
show that
b = af'(a) - fla) +89'(8) - 9(g) + k(x,tou) (4
p o= =(F, +g,) - v(f, +g) + K * vk, - 2why - 2wihy
2
x = -(F, +g) - w(fy £ g,) + kg +wky - 2uhy - 207h,.

-
——d
—_—

.
-— ——
(o8] ™o

-
o

o -
—]

22)
.23)
.6-9)
.24)

(4.25)
(4.26)

Substituting these expressions into (4.18-19) and taking derivatives
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with respect to o and g gives

il
)

fi'lo) - f1'(a) + 87y (a)

gi'(8) + 94" (8) + ag' (8)

1
()

so that f and g are of the farm
Fr(nsa) + Fo(xotou)o? + FL(xtuua + £
2

f‘

1i

g = g*(z,8) + gz(x,t,u)s

X,t,u)

+ gl t,u)s + gO(xst,u)

(4.27)
(4.28)

where n = x+t and ¢z = x-t. Resubstituting into (4.18-19), after a

little algebra, we get

R R A (4.29)
fl=h o f=h (4.30) -
g =h, g =h. (4.31)
Now (4.29) imply that the fz and 92 terms 1in (4.27-28) can be incor-

porated into the f* and g* terms respectively. Moreover, by (4.30-31)

we can assume, again by incorporating excess terms into f* and g*, that

f1= -h and g] = h., Therefore f and g are of the form
f = f5(nsa) - h(xstst)a + FO(Xstsu)
g = g*(5,8) + h(x,t,u)p + O(x,t,u).

(4.32)
(4.33)

It is an easy matter to check that equations (4.11) and (4.20-21) are

now satisfied identically. Equation (4.10) gives

huu =0
0, 0 _ 0 , 0 _
fuu * 9 T kuu 'fcu * Iru 'k;u
0 0 0 0
+ = + = .
fou T %u = Koy e © 9 = K

By (4.34) we can represent

(4.34)

(4.35)
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= c(x,t)u + d(x,t) (4.36)

=
1

and (4.35) shows that
0., 0 _ ‘
f-+g =k - cou - a(n) - b(z) (4.37)

where co‘is a constant. Therefore, using (4.6-7,22-24) it can be
seen the the infinitesimal symmetry algebra of (4.4) is the space

of all vector fields gax + Tat + ¢au + wav + xaw with

£ = f](v+w,x+t) + g](v-w,x-t)
T = f](v+w,x+t) - g1(v—w,x-t)
¢ = (v+w)f](v+w,§+t) - Flvhsxtt) + (v-w)gq (v-w,x-t) -
- g(v-w,x-t) + cu + a(v+w) + b(v-w) (4.38)
p o= - fé(v+w,x+t) - gé(v-w,x-t) + cv
X = -‘fz(v+w,x+t) * go(v-wox-t) + cw

.where f and g are arbitrary functions of two variables (the'subscripts
indicating partial derivatives with respect to the variables), a and b |
arbitrary functions of a single variable and ¢ an arbitrary constant.

To see what is going on with these higher order symmetries, let

us consider a specific example. Let

flan) = yaf  g(Bz) =4 8%  a=b=c=0

so the vector field under consideration is

L 1,.2 2
Vg = Vo, twa ?(V + W )au.

The one parameter group generated by 36.15
sz)

Gy:  (xst,usvow) ~ (x + At,t + AW, u + Vo), vaw) A eR.
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What this means for the solutions of the wave equation is that if
u = F(X,t) s a solution to the wave equation Upy = Ugp = 05 iF we
solve the implicit equations
V= F (X +2v, t+aw) W= F(x+av, t o+ aw)
for v,w then the invariance under Gé implies thqt
u=F(x +av, t + aw) - %{vz + WZ)
gives é,one<parameter family of solutions. This may be verified

directly by taking derivatives.



IV,  Group Invariant Solutions

In the last chaptgr of this thgsis, we prove and make applications
of theorem 1.6 on the construction of the group invariant solutions
to higher order systems of partial differential equations. Let Z
be a manifold, G be a regular group of transformations acting on Z
and & a k-th order system of partial differential equations on Z,
which is invariant under the prolonged action of G. The first section
of this chapter gives a characterization of the subbundle of JE(Z,p)
given by the extended k-jets of G invariant p-sections of Z. It is
then shown that fiberwise this subbundle is ‘isomorphic to the
extended jet bundle JE(Z/G,p—z), where 2 is the dimension of the
orbits of G. This result is immediately applied to prove the
existence of a k-th order system of partial differential equations
AO/G for (p-2)-sections of Z/G, whose solutions provide the G
invariant solutions of Ay when pulled back to Z. In section 2 we
app]y'this theorem to construct interesting group invariant solutions
to the Korteweg-deVries equation and qugers' equation. Section 3
takes up the problem of explicit solutions in the context of symmetry
groups. Its purpose is to provide readily verifiable conditions on
the group action in the case Z is a vector bundle which a) take
explicit sections of the bundle to eXp]icit sections, and b) ensure
that the group invariant sections are explicit sections of the bundle.
Criterion a) is just the projectibility (or compatibility) criterion;
criterion b) is implied by the transversality of the group action

to the fibers:



IV.1 The Fundamental Theorem

Suppose Z is a smooth manifold of dimension p+q and that
G is a local group.of transformations acting regulariy on Z. If
G has ¢ dimensional orbits then the quotient space Z/G has the
structure of a smooth manifold of dimension p+g-%2. The appendix
should be consulted for more detail on this construction. Let
e L +~ 7/G denote the standard projection which associates to each

point of Z the G orbit that it lies in.

Definition 1.1 A locally G-invariant p-section of Z is a

p dimensional submanifold s< Z such that for each point ze s
there is a nucleus of G, Nzc GZ with the property that any

transformation g eNZ satisfies g ze s,

A globé] G-invarijant p-section is a p dimensional submanifold
scZ that is left invariant by all the transformations in G. TIfi:
Ny = 6, for all‘points-z s, then's 1§ a globally Geinvariaiit’ -
section. Since G acts regularly, any locally G-invariant p-section
‘can be extended to a global G-invariant p-section simply by taking
its saturation. Note that a necessary conditidn for G to admit
invariant p-sections is that p=& and in this case, the global
invariant p—sectioné are in oﬁe-to-one corrsepondence via the
projection e with the p-2 dimensional submanifolds of 7/G.

The main goal of this section is to provide an easy

characterization of the subbundle of J;(Z,p) given by the extended
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k-jets of G—invarianﬁ p~sections of Z and to show that it.is
isomorphic to the inverse image of the extended k-jet bundle
JE(Z/G,p-z) under the projection e This in turn will yield as

a direct corollary the fundamental theorem on the existence of
G-invariant solutions to a system-of partial differential equations
on Z that is invariant under the prolonged action of G.\ The

first step in this program is the following elementary lemma.

Lemma 1.2 If s<Z is a global G-invariant p-section, then
its projection s/G = nGZs) /G is a (p=t)-section of Z/G. Conver-
sely, if s/G<Z/G is a (p-2)-section of Z/G, then né](s/G) is
a gToba] G-invariant p-section of Z. Moreover, dka maps qkslz

onto @k(s/G) ,sz'

Given a section w of the k-th order tangent bundle Ukz, then
for each z eZ there is a well-defined map

*Ou] Uzzlz M gk’HLZ,z

g "
depending smoothly on z and given by the formula

voul,(f) = vu(f(z))] veYzl,, feC™(ZR).

In future, the dependen'ce of this map on z will be suppressed, so the
above formula is more succinctly written vOu(f) = vlw(f)]. If @ is

a k-prolonged differential system, i.e. a vector subbundle of ’sz,
and A a vector subspace of 'J(QZIZ; then A®q will denote the vector
subspace of ’Umzlz spanned by all A@uw for A eA and w a section of Q.

If @' is an 2-prolonged differential system, then ol dsta
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(k+2)-prolonged differential system. Note that gog' Fo'eq. let
%} denote the involutive differential system on Z spanned by the
infinitesimal generators of G. There is a simple characterization of

the k-th prolongation of 4 in the sense of [SS], namely

g1 g
?r'(k) 9+9 20
3(‘('” + TZo %(k‘”.

Il

Definition 1.3 The G-invariant k-jet subbundle of p-sections

of Z is defined by

Inv(k)(G,P) ='{A.eGrass(k>(:ijaP):. ST L hieg =l k1)
c:Grass(k)(:kasP) = J:(Z,P)~

Lemma 1.4  Suppose Ae Grass(k)(:]kz,p)lz‘and M is a submanifold
of Z passing through z with :7kM]Z;:A. Then there exists a submanifold

s of Z passing through z with Mes 1n‘some small neighborhood of z and

:jkslz = A,
Proof

Choase Tocal coordinates (z],...,zp+q) centered at z such that A
is spanned by {or: rlsk, 1p+]=...=ip+qf0} and thM{z by

=0}, Let wz(z)é(z],...,ZQ,Q,.;.,O,zp+1,.;.,zp+q)

{aI: Ik, 12+1="'=1p+q

and define s =‘{(z] ..,zp+q):w£(z],...,zp+q} eM}. Q.E,D.

3.

The next theorem shows that Inv(k)(G,p) actually does represent
the subbundle of G-invariant p-sections and gives its "identification"

with the extended k-jet bundle of (p-2)-sections of 2/G.
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Theorém 1.5 There is a natural map
n: v (a,p) - o (2/6,p-0)

with the following properties:
. k PV, oo . .
1) wé ): Inv(k)(e,p)lz - Jk(Z/G,p—z)]ﬁGZ gives an isomorphism
of fibers.
ii) Given a p-section scZ, then there exists a (p-2)-section
s/G<Z/G with nG(s) = s/G iff jESc:Inv(k)(G,p), in which case
-* .*
e igs) = gls/a).
Proof
. e ¥ (k) . o
First suppose that j,s< Inv (G,p). In particular this implies
that for each z es, Ts|, :>?JZ; which implies that s is Tocally
G-invariant.
Conversely, suppose s is a G-invariant p-section of Z with
image nG(s) = s/G a (p-2)-section of Z/G. Choose local coordinates
(z],...,zP+Q) centered at zes so that i} is spanned by'{a1,...,8£}
- and s is given by {z: zp+]=...=zp+q=0}. Thus :jislz is spanned by
{aI|Z: DIES I 1p+1=...=1p+q=0} and hence :Ji+1slzp.;7is|£32}for all 1.
Finally, given A eInv(k)(G,p)]z, by lemma 1.4 there exists a locally
G-invariant p-section s of Z with g]kslz = A. Define ﬂék)(A) = dknG(A)

* K
so that by lemma ]-2’,Wék)(jk5|2) = Jk(s/ﬁ)lﬂaz. | Q.E.D.

Theorem 1.6 Let A be a k-th order system of partial differential
equations on Z so that A' = An Inv(k)(G,p) is the corresponding system

of partial differential equations for G-invariant solutions to A. If
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A' s dnvahiant under the prolonged group action pr(k)G, then a
p-section s'of Z is a G-invariant solution to A iff s/G is a
solution to the reduced differential equation 4/G = ﬂék)(A'). ~In
particular, if A is G-invariant, then A’ is also G-invariant.

Proof

if S is a G-invariant solution to A, then jzs<: A nInv(k)(G,p)
by the previous theorem, and therefore wék)(j:s) = j;(s/G)c A/G.
Conversely, given s/G, a solution to A/G, then let s be the
corresponding G-invariant p-section of Z. By the isomorphism

0 [} - o* 0] -
given in i) of theovem 1.5, Jk(s/G)]WGZ EA/G!WGZ implies

* .
jkslz eA'lZc Al,» giving the result. Finally, the last statement of
the theorem follows from the fact that Inv(k)(G,p) is a pr(k)G

invariant subbundle of JZ(Z,p). Q.E.D.

To show that this theorem is the optimum result on the existence
of a system of partial differential equations A/G on Z/G whose solutions
give the G-invariant solutions to A, we briefly consider a few
elementary examples. On the manifold Z =IR3 with coordinates (x,y,u)
consider the fifst order equation A = {xuX + uy =0}. Let G be
the one parameter group of translations in the x-coordinate. The
equation A is not G-invariant, buth' =‘{ux=0, uy=0} is and admits
the G-invariant solutions u=constant. With G and Z the same,
consider the equation A =’{uy~xu-x2uX = 0}, which is again not G-invar-
iant. A’ is also not G-invariant, but it admits the solution u=0.

In this case A'|{u=0} is G-invariant, However, even this is not
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necessarily true as the example A ='{uy - Xu = xué} oan4 with G
being translation in the x-coordinate. shows.- Again u=0 1is a

G-invariant solution to a, but 4'|{u=0} is not G-invariant.



IV.2 Examples of Invariant Solutions

Given a differential equation A< J:(Z,p) and a group G
acting regularly on Z with £-dimensional leaves leaving AO in-
variant, the construction of the differential equation AO/G c J:(Z/G,
p-£) will be illustrated in this section with a couple of practical
examples: the Korteweg-deVries equation and Burgers' equation.
Further interesting examples may be found in [BC2] and [01]. The
first step in this construction is to find suitable local coordinates
on the quotient manifold Z/G . These will be provided by what are
classically known as "a complete set of functionally independent
invariants" of the group G. An fnvariant is a smooth (local) func-
tion f:Z — R such that T(gz) = F(z) forall z Z, ge@, .
‘The invariance property of such a function f means that it factors

through Z/G :

Z f > IR
Z/G

It is well known that for a group acting regularly with £ dimen-
sional Teaves on an n-dimensional manifold, then locally there are

n-£ functionally independent invariants, which form a local coordinate

systemon Z/G .
Let (E1,.-.,Ep'£,€],...,cq) = (£,2) local coordinates on

Z/G , so that E' = E1OWG and T = ;10”6 are the invariants on Z .
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Let (x,u) be Tocal coordinates on Z . It may be assumed without
Toss of generality that G acts transversally to the fibers

{x = const} since otherwise there are no G-invariant sections of
the form u = u(x) . Now suppose s/G is a (p-£) - section of
Z/G transversal to the fibers {& = const} with corresponding G-
invariant p-section s c Z which is assumed to be transversal to
the fibers {x = const} . Therefore we can write s = {(x,u(x))}

and s/G = {(£,%(¢))} for smooth functions u and z , so that

{(x,u(x) ,Biu(xm

K
Jis
dgls/8) = 1(eg(e),ake(e)))

Now the projection T gives & = &g(x,u) , £ = z(x,u) , so substitut-

ing in the equation ¢ = z(&) gives upon differentiation
iz Ceou,u®)) = oKee) e, Ioelx,u,u()7

Now, the transversality condition assures that this equation can be

solved for

u(k) = wi(x;gag)zsc(k)) (2.1)
Now suppose the G-invariant equation Ay is given by

Ai(x,u,u(k)) =0 i=1,...50

The equation AO/G is found by substituting the expressions (2.1)
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for the derivatives of u , giving

51(x,u,g,c,c(k)) =0 i=1,...,0 .

Now theorem 1.1 assures us that these equations can be written in

the form

e;(x) - Bged®) <0 a1,

hence the equation AO/G is given by

ﬁi(g,c,c(k)) =0 . i=1,..050

This process will become clearer in the following examples.

Example 2.1 The Korteweg-deVries Equation

We agdin consider the equation

Ay +oug + uu, *uy . =0 (2.2)

of example III. 2.4, the symmetry group of which is given by (III.2.16).
We shall investigate some of the one parameter subgroups of the sym-
metry group and construct the group invariant solutions corresponding
to these subgroups by solving the resulting ordinary differential
equations. As a first example consider the vector field co, + CcH

where ¢ 1is a real constant. The corresponding group is given by

G, : (Xst,u) b= (x+Ac,t+a,u) A eR
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which has independent invariants u and £ =X=~-ct . The invariant

solutions will be travelling waves moving with velocity c . We have

= - ] = 1! — pyttHl
Ut = CUu UX u uXXX u

where the primes mean derivatives with respect to & . The equation

AO/Gc on IR3/Gc =‘R2 for the Gc-invariant solutions is then
u''' + (u-c)u' =0

which integrates to

. 12 1, _
u'' + §u ~ cu + ?Lo 0.

Multiplying by 2u' and integrating again gjves

w2 . 1.3 2 _
(u')= + U~ - cu” + kou + k] =0
for constants k0 , k] . Thus the general Gc-solution will be an

elliptic function of the variable & . In the special case that
U, u, > u, =0 as |x| — «, then k, = ky =0 then we
obtain the so1iton solution for ¢ > 0 :

u(x,t) = 3¢ - sech? {Zgj(x—ct) + 6]

for ¢ an arbitrary phase shift. More generally, if we require

only that u be bounded, then the cnoidal wave solution results:

u(x,t) = 3¢ - cn? [zgz(x-ct) + 6]
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where the modulus of the Jacobian elliptic function is 1
(see [WH; §13.12]). The general G -invariant solution will be a
more complicated elliptic function.

Next consider the vector field 33 = tax * 9, whose one
parameter group is given in (III.2.17). Coordinates on lR3/G3 = R
are given by the invariants t and Z=u - x/t . Then
=gt - Xy =

1
2 X t XXX

u
t £

so the equation AO/G3 is just

]
[an]

tC o+

which is of first order. Therefore the general Gs-fnvariant solution
to A, is

X+
X k0

for some constant k0 . Similarly it can be shown that the invariant

solutions for the infinitesimal operator (a+t)aX t 9, are

x+k0
: U(X,t) = “Trg °
As an illustration of the unfortunate fact that while the
equation for a symmetric solution will involve fewer independent

variables, it does not necessarily have to be "simpler" than the

original equation, we attempt to construct the scale invariant solutions
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corresponding to the vector field 3& = xax + 3tat - 2u8u . The one
parameter group is denoted by Gy - (II1.2.17). To let G, act
regularly, we must restrict to the submanifold Z' =[RS ~ {0} . The
quotient manifold Z'/G4 is non-Hausdorff; it can be realized as

a cylinder S]xIR together with two exceptional points corresponding
to the vertical Teaves £, = {x=t=0,u>0} and £ = {x=t=0,u<0} .

If (8,h) are the coordinates on S «x R,

then a neighborhood basis of £+

(resp. £) s given by

{€.} v{(eh) : 0 <h<e} (resp.
e Y v {(e,h) : -e<h<0}) for

all positive numbers e . A G4—

invariant solution of the Korteweg-

deVries equation corresponds to a

curve 1in Z'/G4 that is a solution

to AO/G4 . Note that if the curve
passes through either of the exceptional points, the corresponding G4
invariant solution is not an explicit function of (x,t), so that we
may safely ignore the exceptional poinfs and concentrate on the
Hausdorff submanifold S1><!RCZ"/G4 . The equation AO/G4 » however,
becomesla highly non-linear third order ordinary differential equa-

tion. For instance, in the local coordinates

L = x2u £ = 3t~

treating & as the 1ndepéndent variable
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2

- - §
Ug = -Xt "¢
u, = —2x—3: + 3t—]c'
X
- ,‘5 '2'11 4“3|||
Uy = =28x77C + 28757+ 27%7E T,

hence in these coordinates AO/G4 is
27£3c"'+(24—g+3c)5c' - 2g(g+12) = 0

which is in some sense a considerably more complicated equation than
the Korteweg-deVries equation, even though it is an ordinary differen-
tial equation. Choosing other coordinates on Z‘/G4 only seems to
make matters worse. It would be interesting to try to solve this
equation numerically to get some idea of how the G4-1nvar1ant solu-

tions of AO evolve in time.

Example 2.2 Burgers' Equation

Consider the equation

By ® U *uuy Uy =0
whose symmetry group was calculated in example III.2.1, and given

in (II1.2.7). Various one-parameter subgroups of this group will

be considered and the invariant solutions corresponding to them will
be derived. As a first example, tﬁe travelling wave solutions will
be found. These correspond to the vector field Ca, + 3y where

¢ 1is the wave velocity. This exponéntiates to the group action
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GC : (Xst,u) = (x+Ac,t+A,u) A €lR

and has invariants u and &= x - ct . The equation AO/GC is

then

u' + (u-c)u' =0
which has a first integral

2 . =
- cu + kO =0 ,

C—
+
Né—'

Let d = 2k0 - c2 » then we get the Gc—invariant solutions

-
Vﬁ'tan[%vﬁlct-x+6)] + ¢ d>0

u(x,t) = < 2(x—ct+6)'] +c d=0

%ﬁftanh[%%gkx—ct+6)] + c d <0

\
where § 1is a constant. For the vector field (a+t)ax 9,5 an
argument simiTar to the one given for the Korteweg-deVries equation

gives the invariant solutions
u(x,t) = Xtk kelR .

A much more interesting case arises when the scale invariant
solutions are considered. The vector field is 33 = x3, + 2t3t - ug,
which corresponds to the group G3 given in (III.2.9b). As in the
Korteweg-deVries equation, the action of Gy 1s regular on Z' = g3 ~ {0}

and Z‘/G3 is the same non-Hausdorff manifold. Using local coordinates
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£ =1y W= Xu
it is checked through computation that the equation for the G3-

invariant solutions is

2

48"w'' + E(2w-2-E)w' + w(2-w) = 0

which on the surface Tooks intractable. However, substituting

w=48¢'/¢ where ¢ s a smooth positive function of £ , the

equation reduces to

4z [4&#” o' ZL'] - 0
or, upon intégration

4ge'! + (2-g)9' + ko = 0

for some constant k . In the special case that k = 0 , this equa-

tion is readily integrable to

8(8) = 4Lc E(VD) + k']

where k' s a constant and

Thus the GS-invariant soTution to Burgers' equation in this special

case is
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oy K78t
/EICE(X/ZVE)+k']

u(x,t) =

Finally, consider the vector field Vé = Xty + tzat + (x—tu)au
with one parameter group Gy which acts vegularly on z'' = g3 ~ {x=t=0} .
Then Z"/G5 = S]le, a Ccross section of the foliation given by the
line bundle over the circle '{u;O,x2+t2=]} that twists twice as the
circle is traversed, and is hence diffeomorphic to a cylinder. Con-

venient Tocal coordinates are given by the invariants

W=1u - x

yvy
H
o+

and the resulting equation AO/G5 is
W't wwt =0,

This gives the G5 invariant solutions

u(x,t) =:%[wn<b%$t>+xJ
u(x,t) = Xk

where k and k' are arbitrary real constants, Other G5 - invariant

solutions can be found by using different coordinate patches on Z"/G5 .




IV.3  Explicit Solutions

Given a local group of transformations acting on a smooth
manifold Z whase k-th prolongation leaves a k-th order system of
partial differential equations AO;:JZ(Z,p) invariant, we have
seen that G transforms salutions of A, to other solutions of A/
and, in the case that G acts regularly on Z, we have given a
procedure for the construction of G invariant solutions to Ay
In most concrete applications of this theory, Z will be an open
subset of RP x IRY (or a bit more generally an open subset of
a vector bundle over a p-dimensional base manifold X). In these
cases, the so]utions aof A, that warrant the most interest are the
"explicit" solutions, i.e. p-sections of Z which are honest sections
with respect to the bundle structure of Z. In this section some
conditions on the action of the transformation group G will be
found which ensure that explicit sections are transformed into
explicit sections, and others which ensure that the group invariant
sections are explicit sections. Most of these conditions can be
readily verified in practice by looking at the infinitesimal
generators of the group action.

These results will be proven in a bit more general context
for convenience. Namely, we shall assume that Z is a smooth manifold
of dimension pt+q together with a smoath q dimensional involutive
differential system W< TZ. In the vector bundle case, U denotes
the tangent spaces to the q dimensional fibers of the bundle. Note

that since W is involutive, it generates a foliation of Z with g
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dimensional leaves. Given a point zeZ, Jet Q}) denote the subspace

of TZ} spanned by the infinitesimal generators of G.

Défihftion'341 The transformation group G acts: transversa]]y

to U if %}I n?l] {0} forall zeZi G acts compat1b1z with

U if the action of G preserves the leaves of Y ; in other words, for
all ge G and any leaf U of U, ir z,2 €ZQI1U, then gz and gz' are
on the same leaf U of Y. ¢ acts comp?ete]y compatibly with U if

G acts compatibly and the intersection of any orbit of G and any leaf

of U consists of at most one point.

Lemma 3.2 The following ére equivalent
i) G acts compatibly with U,
i) For all ge G and zeZ, dg<u12> = U
1) Lo, UIU,

9z*

The proof of this lemma is a straightforward exerc1se in the
theory of transformation groups. In practice, the third criterion
is the most easy to verify, The next definition generalizes the

concept of an explicit section of a vector bundle,

Definition 3.3 A p-section s<Z is called a Tocal e explicit

section of Z with respect to U if for all zes, Tsl erLl = {0},
T.e. s is transversal to U. A Tocal explicit section s is called

an explicit section if s intersects each leaf of U in at most one

point. An explicit section s is called a,g1oba1'ékp1icit'Séction

if s intersects each leaf of U in ekact]y one point,
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Proposition 3.4  Suppose G acts compatibly with U, g <G and

sc:Zg is a (local) ekp]icit p-section, then gs = {gz: zes} is also
a (local) explicit p-section of z.
First suppose that s is just a local explicit section so that

Ts|2rw?llé‘='{0} for all zes. Then using condition i) of Jemma 3.2

1l

T(gs)] g, " Uy, = dolTs] Jn dg[U,]

1

dglTs|, 0 U[,1 = {03,

hence gs is a local ekp]icit section. Furthermore, since the
transformation g preserves the leaves of U, the statement about

global explicit sections follows immediately. Q.E.D.

A corresponding result is true about global explicit sections
providing the group action fis globally defined. In the case of
vector bundles, the condition of compatibility is the same as the
previous]y'discﬁssed condition of projectability. Thus, what we
have shown in proposition 3.4 is that a projectable group acting on

a vector bundle transforms sections to sections.

Example 3.5 This demonstrates that transversality of the
group action is not sufficient to transform explicit sections to
explicit sections. Let f:R R be any nonzero smooth function

and consider the additive group G =R acting oan2 by
G: (x,u) # ( X+Af(x—u), utaf(x-u))  reR, (x,u) cRZ.

The infinitesimal generator of this group action is
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Vo= flxoy) T 2o g B
v = f(x-u) [ ot o
which is transversal to the one dimensional differential system

spanned by 8/3u, but is not compatible with this differential

]

system for f nonconstant. Consider the ekp]icit l-section s = {(x,0)}.
Then the transformed section as ='{(X+Af(x), Af(x))} dis not
explicit if
X * AF(x) = x + Af(X) f(x) # £(x)
which can easily be arranged by suitable choices of f and A.

Moreover, As will not even be Tocally explicit if T+Af'(x) = 0

for some real x.

Note that if G acts regularly on Z and transversally to WU, then
U/G = dne(U) s an involutive q dimensional differential system

on the quotient manifold Z/G and that dweliL has rank q.

Proposition 3.6  Suppose G acts regularly on Z with & dimensional

leaves, If G acts transversally to U and s is a G invariant p-section
of Z such that s/G = WG(S) is a Tocal U/G explicit (p-2)-section
of Z/G, then s is a local ‘U explicit section of Z. Conversely,
if s is a Tocal WU explicit G invariant p-section of Z, then s/G is
a Tocal U /G explicit (p-2)-section of Z/G and G acts transversally
to U on some open neighborhood of s.
fet:Zzes with z' = nG(z).es/G. Since p(s/G)]Z, = dnG(Tslz)

we have
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0= T(s/G)| 0 nU/G] 0 = drglTs|,n U, 1.

Since dnG has maximal rank on U, we conclude that s is a Tocal G

invariant W explicit p-section of Z. Conversely, since s is G

invariant, Q}lz‘3T5|z' for all z es, hence 3}|zr111lz = {0} for all
z es. This is an open condition on %} which proves the proposition.

Q.E.D.

Coro]]dry'3.7 If G acts transversally, regularly and completely

compatibly, then.s is a G invariant (global) U ekp]icit'pnsection of

Z iff s/G is a (global) /G explicit (p-2)-section of Z/G.

1

s e

,Em) where m=p+tg-2 s a system of local

coordinates on Z/G and (x,u) = (x],..;,xp,u],...,uq) is a system of

Suppose £ = (&

local coordinates on Z that is flat with respect to U, so that the
connected components of the leaves of U are given by {x=constant}
in these coordinates. (Equivalently, we prescribe that U is
spanned by'{a/au],..;,a/auq}.) The projection map e is then given
by the equations

£ = 1 (x,u) i=1,....m.

The smooth functions I' are classically called a complete set of
functionally independent invariants of the group action on Z. The
preceding proposition then states that a necessary condition for the

existence of G invariant explicit sections is that the rank of the

sud

Jacobian matrix



179

which is classically called the "paower of comp]eteness” of these
1nvar1ants wwth.respect to the dependent variables u, must equal
9, the number of these var1ab1es. See [01; page 59] for a statement

and proof of this result in a classical cantext.

Examglé 3.8 Llet Z = S]QR with coordinates (e,u).and Tet
be the differential system spanned by the vector field a/su. Let

G=R act on Z via
G:  (8,u) e (8 + A mod 2n,~exu) , A eR.

The 1nffnitesima1vgenerator of G is ‘§E-+ ud— so that G acts

au
transversally and compatibly with Y. However, it can easily be seen
that any nonzero global G-invariant T-section must intersect each
Teaf of U in a countably infinite number of points of the form

: =27 27 4y ‘
e, e Ugs Ugs € Ups & uO,...}

and hence cannot be a global explicit section of Z.
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Appendix : Local Transformation Groups

For the sake of completeness, the fundamental results on Tocal
groups of transformations that have been referred to in the body of
the thesis have been collected together in an appendix. This material
will be of an ekpository nature. The main references are the monograph
of Palais [P1] and the book of Pontryagin [PO], which should be

consulted for the details of the proofs.

Definition A.1 A topological space G s g local group if there
exist open subsets Uoc GxG and Voc G and continuous maps m: Uo > G

and 1: Vo + G called multiplication and inversion respectively that

satisfy
0 If 91205003 6, (g,9,)< U, (95295) < Uys  (m(g7.9,),95)
€ an (g'l am(92993>) € UO’ then

m(m(gy.9,).95) = m(gy.m(9,,95)).

(This is just the associative law for the group multiplication.)

i1)  There is a distinguished element ec G called the identity
that satisfies {e}chvUO, Gx{e}c U, and m(e,y) = m(g,e) = g
for every geG.

ii1)  The open set V, satisfies Voxi(vo)c U, and T(Vo)xvoc u,

and m(g,1(g)) = m(i(g).9) = e for every g eV,

Definifion'A.Z If & s a local group, then a neighborhood of

the identity of G is called a nucleus of g,
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From now on the multiplication m(gj,gz) will be denoted simply
by 949, and the inversion 1i(g) by ‘g"]. For any-integer n there
is a nucleus U <V <G such that for any _91,;4;,ghé'un the product
g]gz..‘.'gn is well defined and does not depend upon the order in which
the multiplications are performed. - Subsequently, if any product of n
elements in a local group is displayed, it will always be tacitly
assumed that all these elements belong to the nucleus Un. Note that

any nucleus of a local group is itself a local group.

Definftfdﬁ'Agé A Tocal group G is called a local,(m-parameter)

Lie group if there exists a nucleus of G homeomorphic to an open
subset of Euclidean space R™ such that the multiplication and inversion

maps are smooth maps under this homeomorphism.

It is a celebrated result, cf. [MZ], that continuity of the
multiplication and inversion maps is enough to ensure their differen-
tiability.

Theorem A.4  [PO; page 435] If G is a local Lie group, then G

can be smoothly enbedded in a global Lie group G' of the same dimension.

The Lie algebra g} of a local Lie group G is the algebra of all
left invariant vector fields on G with the usual Lie bracket [-,*],
cf. [W; chapter 3] for the'globa1~case. Let Z be a smooth n

dimensional manifald.

Definition A.5 A Tocal Lie group ‘G s a'iééaf'éféﬁEféf

transformations acting on the mamifold Z when there is an open set
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Up With {e}xZ<UycGxZ and a smooth map o: U 7 which s

consistent with the graup structure on G.

In other words, let us define

Zg = {zeZ: (g,2)¢ Ué} for geG
GZ = {gef: (g;i) eUé} for zeZ
o Zg 4 ¢g(z) = @(g,z)
2,0 G, > Z @Z(g) = 9(g,z).

Suppose g],gé €G and ‘g]gé is well defined, then we prescribe that

) = ¢ ©°@ - on their common domains of definition. Furthermore
919, 9 9,

prescribe that % = "Z’ the identity map of Z, which implies that

® = o7l on @ [Z 1nZ .. Since we are mainly interested in the
g 9 g-7g7 " Tyl
Tocal behavior of G, we can assume without Toss of generality that

" @g[Zg] for all geG. Often the map o will be suppressed, so

o(g,x) will be denoted simply by gx.

Given a local group of transformations acting on a manifold 7,
there is a corresponding infinitesimal action of the Lie algebra
given by

$: i}xZ + TZ

0(0sz) = d@z(q}e.) eTZ]Z.
Thus, given a left invariant vector field o on G, there is an induced
vector field ¢(a) on Z, where ¢(d)[z = ¢(0sz). A]ternate]y; we can

define ¢(a) by the formula
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()], = $glpmg PlEXp(t0),2)

where ekp denates the eiponentia] mapping of G. The Lie bracket

is preserved under the map ¢,

oLo81 = [o(a) 0 (8)] a,se%;

Definition'A.G‘ The transformation group G acts nonsingularly

on Z if the dimension of the subspace of TZ|, spanned by all
infinitesimal generators of G, ¢(a), o < is independent of the

point zelZ.

Definitiar’A.7 A subset ScZ is invariant under the action of

a transformation group G iff @(g,z)eS for all zeS, geh,. S

is locally invariant iff for each zeS there is a nucleus Gé‘:Gz with

8(g,z) S for all g eGé.

Theorem A.8 Given a local group G, with Lie algebra Z}, acting

on a smooth manifold Z, for each integer k let

Z, = {zel: dim ¢(%?)|2 = k}

then Zk is invariant under G.

Proof

Suppose uoezi} gnd VO = ¢(uo) is the corresponding vector field

on Z. Choose aps...s0 1 which,tdgether with o span tr, and let

0

¥; = ¢la;). Now it suffices to show that 1f o [0,1] » Z is an

. -+ . ' .
integral curve of v, and dim ¢(t})lzb = 2 for some z, e 1m o, then
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dim ¢(g})lz-5 % for all zeim o, since using this, it is readily
seen that im o 1s wholly contained in some Zz‘

To prove this fact, assume volz # 0, since otherwise the
proof is trivial. Choose local coord?nates (21,;.;,zn) near z_

such that in terms of these coordinates’ VO = a/az”. Let

<y
il
I~

o
4 Mg Ty

in these coordinates, southat the functions ”ij(z) are smooth.

Since the map ¢ preserves the Lie bracket,
m“] > 3
VooVl = I cisl2) v, = Z c, (2)—¢
Q*'i je0 1 J Jk Zk
jj(z) are smooth real valued
functions. Evaluating the Lie bracket in the local coordinates gives

for each 1i=1,...,m-1, where the ¢

1 =i, ... ,m=1
cij(z)njk(z)

==

X _
L Z

92" j=0

Let n(t) =n(0,...,0,t) be the (n-1)x(n-1) matrix with entries
nij(O,..-,O,t) where we are restricting our attention just to im o.
Thus n(t) 1s a matrix solution to the ordinary differential

equation

where c(t) denotes the (m-1)x(m-1) matrix with entries
Cij(o""’o’t)‘ It is a well-known fact that the rank of the matrix
n(t) 1s nonincreasing, cf. [HA]. But we know that

dim¢(%})l(0;1:';0;t) = 1 + rank n(t)
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which proves the theorem. 0.E.D.

The last theorem shows that for most purposes G can be
assumed to have nonsingular action on Z; simply by Jjust considering
the invariant sets Zi for each i separate1y; Using this theorem,
and the Frobenius theorem [W;§1,60,64] it makes sense to define the
orbit of a point zeZ to be the maximal connected integral manifold
of the involutive quasi~d1fferentia] system ¢(%}). (Note that
since the dimension of ¢(t%)lz may vary from point to point, ¢(%r)

s not technically a differential system (distribution), hence the
use of the adjective"quasi.") The next theorem gives the infinitesimal
criterion for the local invariance of submanifolds of Z' under the

action of @G.

Theorem A.9 A submanifold ScZ is locally invariant under
the group action of G iff TSIZ: ¢(%})|2 for all zeS. A closed

submanifold Sc<Z 1{s invariant iff it is locally invariant.

Usually we shall be interested in the local invariance of
subvarieties of Z that are given by the vanishing of a smooth

function F: Z +|Rk‘ Recall that F s a submersion if dF has

maximal rank everywhere.
Theorem A.10 Let S = F']{O} for F: Z » Rk a smooth
submersion. Then S s invariant under G iff
AFLp(ap)],1 = 0

for all z eS;
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This theorem is usually what is meant by the infinitesimal
criterion for the invariance of a subvariety. In local coordinates

(z],..;,zn) on Z; suppose ¢(zr) is spanned by the vector fields

noos . L
Vo= ) () -i%f E T
' j=1 3z

If F(z) = (FY(2).....FK(2)), then S = FT1{0} is invariant

under G iff

whenever F](z) = .. = Fk(z) = Q.

Definition A.11 Let O be an orbit of G, then 0 s

reqular iff for each z <0 there exist arbitrarily small
neighborhoods V containing z with the property that for any orbit

0' of G, 0'nV is connected. The group G acts regularly on Z

iff it acts nonsingularly and every orbit is regular.

Definition A.12 Given a subset ScZ, the saturation of S is

the union of all the orbits passing through S.

Given a local group of transformations acting on a smooth
manifold Z, let Z/G denote the quotient set of all orbits of G, and

let : Z ~ Z/G be the projection that associates to each point in

T
G
7 the orbit of G passing through that point. There is a natural
topology on Z/G given by the images of saturated open subsets of

Z under the projection me.
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Theorem A.13  [P1; page 19] If G acts regularly on the
smooth manifold 7z, then the quotient space 7/G can be endowed
With the structure of a smooth manifold such that the projection
g ! L~7/G s a smooth map between manifo]ds; The null space of

dWGIZ is ?,Z -and the range is T(Z/G)‘WG(Z)

To find the coordinate charts on Z/G for this construction,
recall that since G acts regularly, its orbits have constant
dimension %, and there ekist regular coordinate systems '

x: V>R fop Ve Z open, such that any orbit of G intersects

=1, +1_
X

. . I”l:‘ ( >
V in only one slice {z SCopg e o2 cn}, the ci's being

constants. The induced coordinate chart V/G = WG(V) is given by

x/G: V/G »R""* x/6lng(2)1 = 1, ey
Let us 1ook at this construction from a more classical viewpoint.
Suppose (27,...,zn) is any local coordinate system on Z. A real
valued function F: Z +R is called an invariant of G if F(gz)=F(z)
for all zeZ, ge:GZ. By the existence of regular coordinate
systems on Z, we know that Tocally there a]ways exist n-g
functionally independent invariants of G, say F],...,Fn'g. Let
F = (F],.‘.,Fn'z): Z R, The functional fndependence of these
invariants.is another way of saying that the Jacobian map
dF: TZ + TR pas maximal rank. MWe conclude that these invariants
provide local coordinates an the quotient manifold Z/G. The reader
shou]d consult Qvsjannikav [01; chapter 31 for an exposition of

the subject from this viewpoint, although no explicit reference is

made to the quotient manifo]d:
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CIf 1:Z-W is any smooth G.dnvariant function, then there
is a cbrresponding smooth. function I/G: Z/G ~ W such that
I(z) = 1/G[rg(2)] ;1.
If ScZ is any smooth (lacally) G invariant submanifold of Z, then
5/6 = g[S] s a smooth submanifold of 7/, Conversely, if S/G
is any smooth submanifold of Z/G; then S = wéIES/G] is a smooth
G invariant submanifold of Z. Note that if dimS = p, and G has
& dimensional orbits; then dim S/G = p-2.
It shbu]d be remarked that the quotient manifold Z/G does not
. necessarily satisfy the Hausdorff topological axiom. For instance,
consider the case Z = RZ - {0} and let G =R be the group of

translations in the first coordinate:
G:  (x,u) w  (x+r,u) . A elR,

which is a local, regular group éction on Z. The quotient manifold
7/G can be realized a copy of the real line with two infinitely
close origins, which are given by the orbits {(x,0): x>0} and
{(x,0): x<0}. It is, however, entirely possible to develop a

theory of smooth manifolds that does not use the Hausdorff separation
axiom, with 1ittle change in the relevant results in the local theory.
It is assumed implicitly throughout this thesis that non-Hausdorff

manifolds might arise. The interested reader should consult [P1]

for details on this paint.
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| Symbol  Index

k-th symmetric power of a vector space V

K
= ® O,
i=1

symmetric algebra of a vector space V

space of W-valued k-symmetric linear functions on V
K .

= @] o' (v, k)
']:

space of symmetric W-valued linear functions on V
i) product in Qv

i1) product in (:T(v,w) when W is an algebra
k-th order tangent bundle of manifold M

k-th order cotangent bundle of pgnifold M
rank 6f multi-index I

set of n=multi-indices of rank k

set of all n-multi-indices

Kronecker multi-index -- (O,...,O,?,O,..,,O)
Factorial of multi-index I

Binomial coefficient for multi-indices I, J
k-Faa-di-Bruno set of multi-indices
k-Faa-di-Bruna set of multi-indices of rank j
dimension of C);IRP | |

k

partial derivative in x™~ direction

partial derivative corresponding to multi-index I

k-th order differential of map f between vector spaces

'bage
76
80

76

- 80

76
76
78
72
72
77
77
77
77
77
77
79
- 82
88
79
79



1,
:

oL (K) ()
oK) (n)

PGL(k)(n) k-th order prolonged projective 1inear group of R"

Grass(k)(

Grass(k)(
COQ(.M’P) ,m

*
Jk(M-:P)
J’k‘(;M,p;‘u.

*

ij
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= of + DPF b L oKe

Faa;di-Bruno injection

projection inverse to.eK

1) e Lokl

if) inddced'map on k-th order tangent bundles

matrix blocks of dkf

‘total derivative in kk direction

total derivative corresponding to multi-index I
k-th order total differential of function'f

= Df + D2F + ... + pKf

identity map of a space X

identity map of RP

trivial bundle RP x M over manifold M

k-th order prolonged general linear group of V

k-th order prolonged linear group of R"

V,p)  k-th order prolonged Grassmannian of prolonged

p-planes for vector space V

V,p;W) trivialized prolonged Grassmannian

space of germs of smooth p-sections of M passing

through m

k-th order extended jet bundle of pfsectiqns of M

) trivialized k-th order extended jet bundle

k-th order extended jet of a p-section

81
80
80
81
73
82
98
98
96
96

82
82

85

90

74

93
75



symbql
K

J

K
i
MON
O
pr(k)@
pr(k)v

194,

i) canqnica1 pralonged Grassmannian projection

1) canonical extended'jet bundle projection
canonical extended jet'bund]g injection

k-th prolangation of differential qperator A

k-th prolongation of differential equation Ay

k-th prolongation of diffeomorphism o

k-th prolongation of vector field V

polynomial ekpression involving partial derivatives

of order <k

-~ page

86

93
102
101
105
103
111

133

Inv(k)(G,p) bundle of extended k-jets of G invariant p-sections 160

projection to quotient space under action of G

induced projection on k-jet bundle level
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