CHAPTER XI

NONCLASSICAL AND CONDITIONAL SYMMETRIES

Peter J. Olver, Evgenit M. Vorob’ev

Lie’s classical theory of symmetries of differential equations is an inspiring source
for various generalizations aiming to find the ways for obtaining explicit solutions,
conservation laws, linearizing substitutions, etc. This Chapter describes one of
the possible extensions of the Lie theory of invariant solutions, first considered by
Bluman and Cole [1969] and named the “nonclassical method”. This method, and
its equivalence to direct reduction methods of Clarkson and Kruskal [1989] and
Galaktionov [1990], has become the focus of much research and many applications
to physically important partial differential equations. It is clear that other related
topics, such as partially invariant solutions, differentially partially invariant solu-
tions, group foliation, and so on, will give rise to efficient and elegant methods of
treating differential equations.

The material of the Chapter is split into two parts: theoretical background and
the most important results. The first part is written mainly on the basis of the
papers of Olver and Rosenau [1987], Olver [1994], and Vorob’ev [1986], [1989)],
[1991], [1992].

THEORY AND EXAMPLES

In order to discuss our subject, we will employ the standard geometric approach
to the theory of symmetries of differential equations. A k—th order system of differ-
ential equations is naturally treated as a submanifold E C J* of the k-th order jet
space on the space of independent and dependent variables. As described in the ear-
lier chapters of this book, the classical Lie symmetries of differential equations may
be characterized by the following features. Through the process of prolongation,
which requires the group transformations preserve the intrinsic contact structure
on the jet space, they define local groups of contact transformations on the k-th
order jet spaces J*. Such a transformation group will be a symmetry group of the
system of differential equations E C J* if the transformations of the symmetry
group leave E wnvariant. This implies that the group transformations map solu-
tions of F onto solutions of E. The classical Lie symmetries are sometimes called
external symmetries.

To date, several extensions of the classical Lie approach have been proposed.
Each of them relaxes one or more of the basic properties obeyed by classical sym-
metry groups. If we relax the restriction that the infinitesimal generators determine
geometrical transformations on a finite order jet space, then we are naturally led to
the class of generalized or Lie—Bdcklund symmetries, first used by E. Noether in her
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famous theorem relating symmetries and conservation laws, Noether [1918]. If we
only require that the symmetries preserve the restriction of the contact structure
on the system of differential equations F, then we find the internal symmetries
first discussed at length in the works of E. Cartan [1914], [1915]. Actually, for a
wide class of differential equations all internal symmetries are generated by external
symmetries — see Anderson, Kamran and Olver, [1993]. Lastly, if the symmetries
only leave invariant a certain submanifold of E, we find the class of conditional
symmetries, treated by Bluman and Cole [1969], Olver and Rosenau [1987] and,
subsequently, many others. The term “conditional” is explained by the fact that
the submanifold of E is determined by attaching additional differential equations
(called differential constraints) to the original system E. The theory of differen-
tial constraints has its origins in the work of Yanenko [1964] on gas dynamics; see
the book by Sidorov, Shapeev, and Yanenko [1984] for a survey of this method.
The most popular way is to append to F a system of first order differential equa-
tions defined by the invariant surface conditions associated with a group that is
not necessarily a symmetry group of the system, and to require that the resulting
overdetermined system admits the prescribed group as a symmetry group. Other
types of differential constraints give rise to partially invariant solutions, or sepa-
ration of variables — see Olver and Rosenau [1986]. They are also can be set up
so that the appended system admits a prior: fixed group of transformations — see
Fushchich, Serov, and Chopik [1988], Fushchich and Serov [1988]. Certainly, these
examples do not exhaust all possible interesting classes of differential constraints,
and the full applicability of the method remains unexplored.

11.1. THE NONCLASSICAL METHOD

We begin by presenting a version of the nonclassical symmetries first discussed
in Bluman and Cole [1969], in their treatment of generalized self-similar solutions
of the linear heat equation.

11.1.1. Theoretical background.
Consider a k-th order system FE of differential equations

A(z,u,u®)y=0 v=1,...,1, (11.1)

in n independent variables ¢ = (z1,... ,z,), and g dependent variables u =(u?,... ,u?),Jj
with «(®) denoting the derivatives of the u’s with respect to the z’s up to order k.
Suppose that v is a vector field on the space R™ x R? of independent and dependent
variables: .

v=>) &= u)i + Xq: 0% (z u)i. (11.2)

P T Bz — T Bue

(In what follows, the derivatives 8/9z;, 8/0u® and so on will be for short denoted
by Og;, Oy and so on.) The graph of a solution

u® = f¥z1,... , ), a=1,..,q, (11.3)

to the system defines an n-dimensional submanifold I'y C R™ x R? of the space of
independent and dependent variables. The solution will be invariant under the one-
parameter subgroup generated by v if and only if I'f is an invariant submanifold
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of this group. By applying the well known criterion of invariance of a submanifold
under a vector field we get that (11.3) is invariant under v if and only if f satisfies
the first order system E of partial differential equations:

n

: Ou”
o (1) N _ 7’ — =0 =1.... 11.4
Q) =) - Do) =0 a=Tia (14
known as the invariant surface conditions. The g-tuple @ = (Q*,... ,Q?) is known

as the characteristic of the vector field (11.3). Since all the solutions of (11.4) are
invariant under v, the first prolongation v(?) of v is tangent to Eq. Therefore, we
conclude that invariant solutions of the system (11.1) are in fact solutions of the
joint overdetermined system (11.1), (11.4). In what follows, the k-th prolongation
of the invariant surface conditions (11.4) will be denoted by Egc) , which is a kth
order system of partial differential equations obtained by appending to (11.4) its

partial derivatives with respect to the independent variables of orders 7 < k — 1.
For the system (11.1), (11.4) to be compatible, the kth prolongation v(*) of the

vector field v must be tangent to the intersection F N Egc):

vP(A,) y =0, wv=1,...,L (11.5)

|EmEg
If the equations (11.5) are satisfied, then the vector field (11.2) is called a nonclas-
steal infinitesimal symmetry of the system (11.1). The relations (11.5) are general-
izations of the relations

vi®(A ) g =0, v=1,...,1, (11.6)

for the vector fields of the infinitesimal classical symmetries. Inserting [ vari-
ables u(™ found from (11.1) into (11.6), taking the Taylor series of the functions
v(®(A,)|g with respect to the remaining variables and setting the coefficients of
these series equal to zero generate an overdetermined system of linear differential
equations of order not larger than k for the coefficients ¢i(z,u), p*(z,u) of the
vector field (11.2) of the infinitesimal classical symmetries. A similar procedure is
applicable to the case of the nonclassical infinitesimal symmetries with an evident
difference that in general one has fewer determining equations than in the classical
case. Therefore, we expect that nonclassical symmetries are much more numerous
than classical ones, since any classical symmetry is clearly a nonclassical one.

The important feature of determining equations for nonclassical symmetries is
that they are nonlinear. This implies that the space of nonclassical symmetries does
not, in general, form a vector space. Moreover, the Lie bracket of two nonclassical
symmetry vector fields is not, as a rule, a nonclassical symmetry. If A(z,u) is an
arbitrary function, then the prolongation formulae for vector fields imply that

(AV>(k)‘E(Qk) = Av(® Eg). (11.7)

Formula (11.7) means that if the vector field v is a nonclassical symmetry, then Av
is also a nonclassical symmetry yielding the same equations (11.4). This property
allows us to normalize any one nonvanishing coeflicient of the vector field (11.2) by
setting it equal to one when finding nonclassical symmetries.
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11.1.2. Nonclassical symmetries of Burgers’ equation.
As an example of finding the nonclassical symmetries, consider the system E of
first order equations

us +uv — vy, =0, Uy, —v =20 (11.8)

obtained from the well-known Burgers’ equation us + uu, — 4, = 0. If we assume
that the coefficient of 9; of the vector field (11.2) does not identically equal zero,
then for the vector field

v =0 +&(t, 2, u,v)0; + o(t,z,u,v)0, + Y(t,z,u,v)0,, (11.9)
the invariant surface conditions are
us + fu, = o, vy + v, = . (11.10)

The equations (11.5) take the form:

Diyp —u,Dié+vp+up — Dytp —v, D, =0,
D,p —u,D,6— =0, (11.11)

where Dy = 0; + w0y + v:0y, Dy = 85 + w0, + v,0,. The variables uy, u,, v¢, v,
found from (11.8), (11.10):

us = ¢ — €v, Uy =V, vy = @ — v + uv, ve =% — E(p — v + uv)

must be substituted into (11.11). After substituting, the latter becomes an un-
derdetermined system of two differential equations for three unknown functions
E(t,z,u,v), o(t,z,u,v), P(t,z,u,v). It is evident that this is a generic situation
for first order systems in two independent variables. It means that there is a rich
variety of nonclassical symmetries and the problem is how one can explicitly obtain
them.

We will restrict ourselves to finding nonclassical symmetries (11.9) for which
E=E(tz,u), p = o(t,z,u), ¥ = P(¢,2,u,v), which corresponds to the nonclassical
symmetries of Burgers’ equation itself. In that case the system (11.11) is written
as

1+ pulp — €0) — v (& + Eulp — €v)) + v+ uv —
1/)z - 1/)11,1) - 1/)1)(90 - év) + (€$ + vfu)(go - év + uv) = 07
0 + vy — V(€ +v€,) — ¢ =0. (11.12)
The second equation of (11.12) implies that the coefficient ¢ is at most a quadratic

function of v. After inserting % and its derivatives, as determined by the second
equation in (11.12), into the first equation we obtain the equation:

01+ pu(p — £v) — vl + ©v 4+ u(ps + vou — V(€ + vEu))—
Cow — VPus + V(o + v€uz) — v (Pou + v0uu — v(€ou +v€uu))—  (11.13)
(¢ — Ev)(pubs — 20€4) + E(p — Ev) = 0.
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The function in the left-hand side of (11.13) is a third order polynomial in v; its
coeflicients yield the equations:

206, + @1 + Uy — e = 0. (11.14)

iFrom the first two equations of (11.14), we find that

€ =a(t,z)u+b(t,z), o = @u?’—l—(az —abyu® +a(t,z)u+B(t,z), (11.15)

where a(t, ), b(t,z), a(t,z), 3(t,z) are arbitrary functions. After inserting (11.15)
into the third equation of (11.14) we get a third order polynomial in u with the
coefficient of u® equal to a(l — a)(1 4 2a). From this we deduce that the function
a(t,z) is constant and it can take three values: a =0, a =1, a = —1/2. The other
three coeflicients of this polynomial imply the equations:

ab(l + 2a) =0, (2a + 1)(a + b,) =0,
by + 2bb, — by + 20, — (1 4 2a)8 = 0, (11.16)

and the fourth equation of (11.14) yields the equations:
a(l+ 2a)b, =0, a(by + 2bb, — byy) — a, =0,
oy + Be — oy + 2ab, = 0, B¢ — Bew + 286, = 0. (11.17)
In the case a = 0 the functions b(¢, ), a(t,z), B(¢, ) satisfy the system:

a; =0, a+b, =0, by + 2bb, — 3 =0,
a4+ Be + 2ab, =0, Bt — Bus + 286, = 0,

which can easily be solved and produces the vector field
v = (At#? + 2Bt + C)8; + (Atz + Bz + Dt)d, + (Az — Atu — Bu + D)9,

with A, B, C, D parameters. This vector field belongs in fact to the five-dimensional
Lie algebra of the classical symmetries of Burgers’ equation. In the case a =1 the
equations (11.16), (11.17) yield b = 0, « = 0, 8 = 0 so there exists only the
nonclassical vector field v = 8; 4 u9,, with invariant solutions u = (z —zg)/(t — o).

Let a = —1/2, then the functions b(¢,z), a(¢,z), B(¢,z) are found as solutions
of the system:

bt + 2bbz - b:c:n + 20, = 07 oy + /811 — Ogy + 20[();5 = 07 /Bt - /B:Bz + 2bz/8 - 07

which admits solutions o = 0, 8 = 0, and b(¢, z) satisfying Burgers’ equation b; +
2bb, —b,, = 0. This allows us to successively generate solutions of Burgers’ equation
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from the solutions of the same equation. The process reminds one of the generation
of solutions to soliton equations by successive Béacklund transformations. Setting
b(t,z) = 0 we can get the family of vector fields of the nonclassical symmetries:

v =48, — 2ud, + (—u3 + (vt +8)u+ e —vz)o, (11.19)

with parameters v, 4, e.
Now assume that the coefficient of 9; in (11.2) equals zero and try to find the
infinitesimal nonclassical symmetries of the form

v =0, + ¢(t,z,u)0, + ¥(¢t,z,u,v)0,,
for which the invariant surface conditions are the following ones:
Uy = P, v, = 1. (11.20)

Relations (11.5) lead to the system of equations for the functions ¢, ¥:

b1+ uddy — Py + ¢ +bu—ty — ¢y —Pup =0, G+ dud—3 =0. (11.21)

These are not differential equations, since the arguments ¢, z, u, and v in (11.21)
are tied by the relation ¢(¢,z,u) — v = 0, which is a consequence of system (11.8),
(11.20). There are no established methods to solve such systems. Severely restrict-
ing the class of solutions, one can regard (11.21) as a system of differential equations.
Exact solutions of (11.21) yielding invariant solutions that are not invariant under
classical symmetries have not yet been obtained.

11.1.3. Nonclassical symmetries and direct reduction methods.

Clarkson and Kruskal [1989] proposed a direct method for determining anséatze
which reduce the partial differential equation to a single ordinary differential equa-
tion. This method was generalized by Galaktionov, [1990], who showed how to
effect reductions to two (or more) coupled ordinary differential equations, and was
applied to the study of blow-up of solutions to parabolic equations. In Arrigo,
Broadbridge and Hill [1993], and Olver, [1994], it was proved that these reduction
methods are equivalent to particular cases of the nonclassical symmetry method.

For simplicity, consider a partial differential equation (11.1) in two independent
variables z,t. The differential equation admits a direct reduction if there exist
functions z = {(=,t), v = U(=,t,w), such that the Clarkson—Kruskal ansatz

u(,t) = Uyt (=) = U (o8, w(((2,0) (11.22)
reduces (11.1) to a single ordinary differential equation for w = w(z). Let w =
7(2z,t)0; + {(z,t)0, be any vector field such that w({) =0, i.e. {(=z,?) is the unique

(up to functions thereof) invariant of the one-parameter group generated by w.
Applying w to the ansatz (11.22), we find

Tus + €uy = 7U + €U, = V (2, t,w). (11.23)
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On the other hand, assuming U,, # 0, we can solve (11.22) for w = W(z,t,u) using
the Implicit Function Theorem. (We avoid singular points, and note that if U,, = 0,
the ansatz would not explicitly depend on w.) Substituting this into the right hand

side of (11.23), we find that if v has the form (11.22), then it satisfies a first order
quasi-linear partial differential equation of the form

w(u) = 7(z, t)us + €(z, t)u, = p(z,t,u). (11.24)

Conversely, if u satisfies an equation of the form (11.24), then it can be shown that
u satisfies a direct reduction type ansatz (11.22). Therefore, there is a one-to-one
correspondence between ansatze of the direct reduction form (11.22) with U,, # 0
and quasi-linear first order differential constraints (11.24). Solutions v = f(z,t) to
(11.24) are just the functions which are invariant under the one-parameter group
generated by the vector field

v =1(2,t)0; + £(z,1)0, + p(z,t,u)d,. (11.25)

Note in particular that w generates a group of “fiber-preserving transformations”,
meaning that the transformations in z and ¢ do not depend on the coordinate u.

In the direct method, one requires that the ansatz (11.22) reduces the partial
differential equation (11.1) to an ordinary differential equation. In the nonclassical
method of Bluman and Cole, one requires that the differential constraint (11.24)
which requires the solution to be invariant under the group generated by w be
compatible with the original partial differential equation (11.1), in the sense that the
overdetermined system of partial differential equations defined by (11.1), (11.24),
has no integrability conditions. The following result demonstrates the equivalence
of the nonclassical method (with projectable symmetry generator) and the direct
method.

THEOREM. The ansatz (11.22) will reduce the partial differential equation (11.1)
to a single ordinary differential equation for w(z) tof and only tf the overdetermined
system of partial differential equations defined by (11.1), (11.24), is compatible.

The proof and generalizations to Galaktionov’s “nonlinear separation” are dis-
cussed in Olver [1994]. See also Arrigo, Broadbridge and Hill [1993], and Zidowitz
[1993].

As an example, the ansatz u = w(z) — t?, where z = z — %t2 reduces the
Boussinesq equation
Ugg + %(u2)fl:(l: + Upprs =0
to a fourth order ordinary differential equation
w//// _I_ ww// _I_ (w/)2 _ w/ _I_ 2‘
This reduction follows from the constraint tu, + uy; + 2¢ = 0 arising from the

nonclassical symmetry v = t9, + 0y — 2t0,.
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11.2 MULTIDIMENSIONAL MODULES
OF NONCLASSICAL SYMMETRIES

As was mentioned above, the Lie bracket [v, w] of two infinitesimal nonclassical
symmetries v and w is not in general a nonclassical infinitesimal symmetry. The
easiest way to be convinced of this fact is to consider the Lie bracket of two distinct
vector fields (11.19). For nonclassical symmetries the analog of multidimensional
Lie algebras of the classical symmetries is multidimensional module or differential
system. Let us consider the simplest case of the latter. Consider a two-dimensional
differential system g (or distribution) on the space of independent and dependent
variables, spanned by two independent vector fields v and w. Thus g is defined as
the set of all vector fields u which can be represented in the form u = f(z,u)v +
g(z,u)w. Suppose that g is involutive, i.e. closed under the Lie bracket: [v,w] C g.
In this case, Frobenius’ Theorem implies that we can find a new basis of g vector
fields of which have vanishing Lie bracket. Denote by Eg the union of the invariant
surface conditions (11.4) for v and w; the solutions of Eg are the g invariant
functions. As in the case of one-dimensional nonclassical modules, Eg is invariant
under g. For g to be a two-dimensional module of nonclassical symmetries it is
necessary that the basis vector fields v and w satisfy the equations (11.5) with

Egc) replaced by Eék).

11.2.1. Two-dimensional modules of nonclassical symmetries of non-
linear acoustics equations.
The following system of equations:

uty + uy + vy =0, Uy — vy =0 (11.26)

describes a sound beam propagating in a nonlinear medium. Consider the two-
dimensional involutive module g of vector fields with the basis

v =0 + &(u,v)0y, w =0, + ((u,v)d,.
The vector fields v and w commute, therefore the coefficients £(u,v), ((u,v) are
found from equations (11.5), and the system Eg is
uy + fuy =0, Uy + Cuy =0,
vy + vy =0, vy + (v, = 0. (11.27)

The system (11.26), (11.27) can be treated as a system of six linear homogeneous
algebraic equations for six first derivatives of the functions ¢, (. For this sytem to
admit nontrivial solutions, the equation

C(u,v) = —(1 + u§2(u,v))/§(u,v)

must hold. In this case all derivatives can be expressed through the derivative u, :

B 14 ug?
¢

1 2
vy = — z;"s uy, vy, = — L. (11.28)

uy = —Euy, Uy Uy, Vg = Uy
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Calculating V(l)(uut + Uy + vy), V(l)(uy — 1), W(l)(uut + Uy + vy), W(l)(uy )
and inserting (11.28), we find that they are identically zero. So the system (11.26)
admits the two-dimensional module of nonclassical symmetries with the basis vector
fields

L+ uf(w,0)”

v =0 + &(u,v)0y, w =20, £(u,0) -

where £(u,v) is an arbitrary function.

11.2.2. Backlund transformations and two-dimensional modules of
nonclassical symmetries for the sine-Gordon equation.
It is well known that if v = f(z,y) is any particular solution to the sine-Gordon
equation
2u gy = sin 2u, (11.29)

then the system of equations
uy = —fg + sin(u — f), uy = fy + sin(u + f) (11.30)

determines the Backlund transformation for the sine-Gordon equation (11.29). The
equation (11.29) can be treated as a compatibility condition for the system (11.30).
The function u(z,y) found from the system (11.30) is a solution of the equation
(11.29). From the point of view of the nonclassical symmetries this can be inter-
preted as follows.

Consider the vector fields

v =20, +(—fs +sin(u — ))Ou, w =0, + (fy +sin(u + £))0,.

Provided the function f(z,y) is a solution of (11.29) these vector fields have van-
ishing Lie bracket, so they give rise to a two-dimensional involutive module g with
Eg given by (11.30). In the case considered, the relation E N Eg) = Eg) holds,
hence g is a two-dimensional module of the nonclassical symmetries for the sine-

Gordon equation (11.29) with all invariant functions under g automatically satis-
fying (11.29).

11.3. PARTIAL SYMMETRIES

A further step towards generalization of the classical symmetries is consideration
of tangent transformations instead of point ones.

11.3.1. Contact transformations and modules of partial symmetries.

According to Backlund’s Theorem, in the case of one unknown function u(z),
transformations of J* that preserve the contact structure (contact transformations)
are prolongations of either point transformations or contact transformations on
J1. The infinitesimal contact transformations on the space J! are in one-to-one
correspondence with their characteristic functions Q(w,u,u(l)), which generates
the contact vector field

vQ = —Qu,, 0z +(Q — us;Qu,, )0 + (Qz; + s, Qu)0hu,, -
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This vector field is the first prolongation of a point transformation if and only if @ is
an affine function of the derivative coordinates u,,,... ,u,,. A function v = f(z) is
invariant with respect to vq if and only if it satisfies the invariant surface condition

Q(z,u,uP) = 0. (11.31)

Let Eq denote the submanifold of J! determined by equation (11.31), and Egc) its

prolongation to J*. The contact vector field v, is called a partial symmetry of the
differential equation

Az,u,u®) =0 (11.32)
if V(Qk) is tangent to the intersection E N Egc).

Partial symmetries admit the natural structure of a one-dimensional module.
Clearly, if Q) generates a partial symmetry, so does Q) = g@Q, where g is an arbitrary
function on J!, since

k k
v;Q)\Eg) _ gv(Q)\Eg). (11.33)

Relation (11.33) implies that, as long as it depends explictily on the derivative
coordinates, the characteristic function of the infinitesimal partial symmetry can
be chosen in the form Q = —u,; + gﬁ(w,u,ﬁ(l)) for some index j with @(Y) denoting
the set of first derivatives of u with the derivative u,; omitted.

Now consider the r-tuple Q@ = (Q1,...,@Q,) of functions on J! satisfying the

relation
rank [|0Q;/Ou,;|| =7 <n (11.34)

and r contact vector fields vg,,... ,vg,. Let Fg now denote the system of differ-
ential equations

Ql(w,u,u(l)) =0, ..., Qr(w,u,u(l)) =0 (11.35)

satisfied by functions v = f(z) invariant under all of the vector fields vg,,... ,vg,.
The system (11.35) is compatible iff the relations

(Qi,Qj)lE, =0, 1<i<j<r, (11.36)

hold true. Here (Q;,Q;) is the “Lagrange” bracket of the functions @; and @,
defined as the characteristic function of the Lie bracket [vq,,vq;], i.e.

Ve ve;l = Vg0 (11.37)

Since v, (Q;) = (Q:,Q;) + Q;0Q;/Ou, the submanifold E¢ is invariant under
VQys-..,VQ, provided (11.36) are satisfied.

Any smooth function R defined on J! which vanishes on E( can be represented
in the form R = a;Q; for functions ai(w,u,u(l)). Therefore, the restriction of the
vector field

VR = a;VQ, + inai — RO, (11.38)

to Eq equals a;vg;|g,. Relation (11.38) makes valid the following assertion. De-
note by I(Q) the ideal of the functions on J' vanishing on E¢ and by A(Q) the
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family of contact vector fields generated by the functions in I(Q). Then the restric-
tion of A(Q) to Eg is an r-dimensional module g of vector fields over the ring of
smooth functions on Eg. The basis of g consists of the restrictions of the vector
fields vg,,...,vg, to Eg. Moreover, relations (11.36)—(11.38) imply that g is an
involutive module: [g,g] C g.

It is easily deduced from (11.34), (11.35) that the same module g is generated
by the functions Q; = —Ug, + 1 (z,u,aM), ..., Q, = —Ug, + Yr(zyu, 7)),
where 21,...,7, are the indices of r linearly independent columns of the matrix
(11.34). The functions Q1,... ,Q, are obtained by solving (11.35) with respect to
the derivative coordinates u; ,...,us, . They generate the contact vector fields
Vo, Vo, which commute when restricted to Eg.

In the case the relations

VQi(A)|EﬂEQ :0, iZl,... 3 Ty (11.39)

are satisfied, the module g is called an r-dimensional module of infinitestmal partial
symmetries of (11.32).

11.3.2. Two-dimensional modules of partial symmetries for a family
of nonlinear heat equations.
Consider the family of nonlinear heat equations

we = (F(u)us)s + g(u) (11.40)

in one space variable z with f(u), g(u) smooth functions. We try to find two-
dimensional modules of partial symmetries of (11.40). The characteristic functions

Q1, Q- taken as
Q1 = —us + a(t, z,u), Q2 = —uy + b(t,z,u) (11.41)
imply the compatibility condition (11.36) in the form
a; +a,b—b; —ab, =0. (11.42)
The system F( in the case considered, precisely,
uy = a(t, z,u), u, = b(t,z,u), (11.43)

admits one-parameter family of solutions. One of the six equations determining
the system E N Eg), which is geometrically a two-dimensional surface in the eight-

dimensional space J2, looks like
a=(by +bb,)f +0*f +g. (11.44)

If this equation is not a differential consequence of (11.39), we have to solve func-
tional equations for the functions a(¢,z,u), b(¢,z,u) obtained by restricting (11.39)
to the two-dimensional surface given by (11.44) in the space R® having coordinates
t, z, u. To avoid this difficult problem, we treat (11.44) as a differential equation



12 CRC HANDBOOK OF LIE GROUP ANALYSIS, VOL. 3

satisfied by a(t,z,u), b(¢,z,u). In this approach relations (11.39) are automati-
cally satisfied, and in order that vg,, vg, generate the two-dimensional module g
of partial symmetries of (11.40) the functions a(t,z,u) and b(¢,z,u) must satisfy
differential equations (11.42), (11.44).

If we substitute the function a(¢,z,u) given by (11.44) into (11.42), we obtain
the equation

by = (byg + 2bbyy, + b2byy ) f 4 (3bb, + 26%b, ) f' + b f"' + bg' — gb, (11.45)

for the function b(¢,z,u). Let us try to find this function in the form: b(¢,z,u) =
8(t)h(u), i.e. independent of z and admitting the separation of variables ¢, u. After
substituting b(¢,u) = 6(¢)h(v) in (11.45) we obtain the relation

6(t) = 6°(t)h(u)(f(u)h(w))" + 6(t)h(u)(g(w)/h(w)) .

This equation has nontrivial solutions provided

h(w)(f(u)h(w)" =X, h(u)(g(u)/h(v)) = u, (11.46)

with A, u constant. Equations (11.46) contain three unknown functions, and they
can be treated from various points of view. For example, if we regard the function
h(u) as given, then (11.46) are equations for f(u) and g(u).

The function b(t,u) = 6(t)h(u) yields the invariant solutions

u(t,z) = F(8(t)z + 6(1)) (11.47)

to (11.40) as it can be seen from the second equation in (11.43). The function 6(¢)
satisfies the ordinary differential equation 6= \6® + p8 integrated explicitly, and
the function ¢(t) is a solution of the equation obtained after substituting (11.47)
either into (11.40) or into the first equation in (11. 41) If we take h(u) = u™?,
f(uw) = u?+u, g(u) = u/2, we obtain the family u(t,z) = 1/2((z + c)expt + exp 2t)
of invariant solutions to the equation u; = ((u? + u)uz)z u/2

11.3.3. Partial symmetries and multidimensional integrable differen-
tial
equations.

Consider the second order partial differential equation (11.32) in two indepen-
dent variables. In this case partial symmetries allow us to associate new differential
equations of the second order in four independent variables with equation (11.32).
The solutions of the Cauchy problem for these associated equations can be expressed
through solutions of the appropriately posed Cauchy problems for the original equa-
tion (11.32). In particular, each second order linear equation in two independent
variables gives rise to multidimensional nonlinear equations which are linearizable
in the sense described below. Let us consider the case of an evolution equation,
and suppose that the characteristic function of the partial symmetry is taken in the
form: @ = —ut + ¢(¢, %, u,u,). Then the relation

2
v(Q)(A)|EmEg) =0 (11.48)
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satisfied by the partial symmetry vq is actually a differential equation of the sec-
ond order for the function ¢(¢,z,u,u,). Indeed, by the prolongation formula, the
coefficients of the contact vector field v\> depend on the derivatives of the function
¢ at most of the second order. Moreover, the variables u;, u¢;, and u,, can be
found as functions of the variables ¢, z, u, u, from the equations determining Eg)
and from (11.32). (We leave aside the case when the equation u; = ¢(t,z,u,u,)
is an intermediate integral of (11.32).) For example, if (11.32) is the linear heat
equation u; = ug,, then equation (11.48) takes the form:

b1 = ¢’ dpp + 2pGGup + D’ bun + 2660 + 20buu + Soe, (11.49)

where p = u,. Suppose that the Cauchy problem :

¢li=0 = do(z, u,p), (11.50)
for (11.49) and the Cauchy problem :
U|t=0 = a(x) (11.51)

for (11.32) are both well-posed. Let us determine which Cauchy data a(z) generate
solutions of (11.32) invariant under the vector field v determined by the given
solution ¢ of equation (11.49). Since invariant solutions of equation (11.32) are
the common solutions to (11.32) and the equation u; — ¢(¢,z,u,u,;) = 0, we can
consider this joint system at ¢ = 0 and obtain the equation

a"(z) = ¢o(z,a(z),a' (z))

for the initial function a(z). The general solution of the latter equation depends
on two constants cj, c2, so there appears the two-parameter family u(t,z,cy,c2)
of invariant solutions of the Cauchy problem (11.32), (11.51). Suppose that the
system of equations

u(t,z,c1,c2) = v, ug(t,z,c1,02) =p

uniquely determines ¢; and cs as implicit functions of ¢,z, v, p, then

¢’(t7 C[371)71)) - u$(t7 L, C1 (t7 C[371)71))7 C2 (t7 w,v,p))

is a solution of the Cauchy problem (11.49), (11.50).

11.3.4. Induced classical symmetries.

Suppose w is a vector field of infinitesimal classical symmetries of system (11.1).
Denote by exp(ew) the one-parameter family of transformations of the space R™ x
R? of independent and dependent variables associated with w and by exp(ew). the
differential d(exp(ew)) of exp(ew) treated as a mapping of vector fields on R™ x RY.
Then if g is a module of the Bluman-Cole infinitesimal symmetries of (11.1), the
modules g, =exp(ew).(g) forms a one-parameter family of modules of nonclassical
symmetries for the same system.
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To see this, assume that vi,... ,Vv, is a basis of g. Generalizing the construction
of Section 11.2.1 we can state that these vector fields must satisfy the relations
vi,vileg, v (ENEY) 1<i<j<r, j=1,...,r
(11.52)
Let g = exp(ew).g, which is spanned by v.; = exp(ew).(v;). By the general
properties of the mapping exp(ew ), the module g, is also an r-dimensional module
of vector fields closed under the Lie bracket: [v¢;,V,;] € g. The only solutions of the

|EmEgk> =0,

system Fg are vector-valued functions ul® = fa(z), @ = 1,...q, invariant under
g. Indeed, if 'y is invariant under g, then exp(ew)(I's) is a graph of a solution
invariant under g, hence Eg, = exp(ew)(Eg). From these considerations it follows

that g. is tangent to the intersection £ N Eg:).

Modules of partial symmetries of equation (11.32) are treated quite similarly.
The basic property of the mapping exp(ew), allows us to define the concept of
vector fields of nonclassical symmetries invariant under w. Such invariant vector
field v satisfies the relation [w,v] = Av. Moreover, the flow exp(ew) determines
the symmetry transformations of the determining equations for the coefficients of
nonclassical infinitesimal symmetries.

11.3.5. Partial symmetries and differential substitutions.

The differential equations for the functions ¢ in Q = —us + ¢(¢,z,u,u,) and
¥ in Q = —uy + ¥(¢,z,u,u;) —more precisely, the equation (11.48) — inherit
the classical Lie symmetries of the original equation (11.32). If the Lie algebra of
infinitesimal symmetries of the equation (11.32) is at least two-dimensional, then
the quotient equation for solutions of the equation (11.48) invariant under two-
dimensional subalgebras is a differential equation in two independent variables just
as equation (11.32). There exists a differential substitution of the group nature
connecting these two equations.

We describe the origin of this differential substitution taking as an example the
linear heat equation

Ut = Ugg. (11.53)

The equation (11.53) admits the infinite dimensional Lie algebra g of the classical
Lie symmetries with the generators:

vy = O, vy = 2t8; + 28, vy = 4120, + 4120, — (x? + 2t)ud,,

vy = O, vy = —2t0, + zud,, v = ud,, Vo = a(t,z)0,,
(11.54)

where a(t,z) is an arbitrary solution of the equation (11.53). Consider the two-
dimensional subalgebra gs C g with the generators v = v¢ and w = 9,, and the
solutions ¢ of the equation (11.49) invariant under g,. In the space R° of the
variables ¢, ¢, u, p, ¢, where the first four are the arguments of the function ¢, the
vector fields v and w look as follows:

v = ud, + pd, + 90, w = 9,. (11.55)
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The solutions ¢ of (11.49) invariant under g, are common solutions of (11.46) and
the system of invariant surface conditions for the vector fields v, w given by (11.55):

¢’u == 07 ¢’tu == ¢’zu == ¢’uu == ¢’up — 07
Py = 9, PPty = Pty PPzp = Pu, $pp = 0. (11'56)

We restrict the system (11.49), (11.56) to the submanifold N in the space R’
determined by the equations v = 0, p = 1 and coordinatized by the variables ¢, x.
After expressing the outer derivatives ¢,y,, dup, Puu, Pop, Pz through the inner
derivatives ¢, ¢,, with the aid of (11.56) we obtain the quotient equation:

vy = 20V, + Vyp. (11.58)

This is Burgers’ equation for the restriction v(¢,z) of the function ¢(¢,z,u,u,) to
the submanifold N. If v(¢, z) is a solution of the quotient equation (11.57), then the
invariant solution of the equation (11.49) has the form ¢(¢,z,u,p) = pv(t,z). In
their turn, the solutions of the heat equation invariant under the partial symmetry
v of the heat equation with the characteristic function Q = —us + u,v(t,z) are
common solutions of the equation (11.53) and the equation

uy = ugv(t, z)

for invariant functions. The latter relation is a variant of the Hopf-Cole substitu-
tion linearizing Burgers’ equation (11.57). See also the work of Guthrie [1993] for
generalizations and additional applications of this method.

11.3.6. Partial symmetries and functionally invariant solutions.
Consider a linear differential equation of the second order:

n

Y aij(@)uae; + ) bi(@)ug, = 0. (11.58)
=1

1,7=1

A solution u(t,z) is called functionally invariant if v(¢t,z) = F(u(t,z)) is also
a solution of the equation (11.58) for an arbitrary function F(w). Functionally
invariant solutions are common solutions of the equation (11.58) and the equation

for its characteristics :
n

D aij()us s, =0. (11.59)

4,j=1
For the wave equation
Uy = Ugy + Uyy
equation (11.59) takes the form u? = w2 + uz By direct calculations it is demon-

strated that the vector field vg with the characteristic function Q = u;— /42 + uz

is a nonclassical partial symmetry of the wave equation. We see that functionally
invariant solutions are solutions invariant under the partial symmetries.
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11.3.7. Nonclassical symmetries and partially invariant solutions.

Let g be an r-dimensional involutive differential system on R™ x R?. A function
f:R™ — R%is called partially invariant under g if the orbit G - I'¢ of its graph has
dimension strictly less than n+min(r, ¢). The quantity § = dim(G-T'y) —n is called
the deficiency of a partially invariant function f. Evidently, 0 < § < min(¢g—1,r—1).
The partially invariant functions satisfy the following system PFEs of first order
differential equations:

5 — Z uy i
=1

The system PFEj; is invariant under g. Provided g is a Lie algebra of infinitesimal
classical symmetries of the system F, partially invariant solutions of the system F
are the common solutions of F and PE;s. See Ondich [1994] for applications of this
method.

rank < 6. (11.60)

11.3.8. Nonclassical symmetries of the second type for the equations
of nonlinear acoustics.

The preceding construction admits a natural generalization. A differential sys-
tem g is called a nonclassical symmetry of the second type of the system E if the
intersection £ N PEjs is invariant under g.

The system (11.26) contains two unknown functions, so the only possible value of
the deficiency index § of partially invariant solutions of (11.26) is one. Consider the
family of two-dimensional abelian Lie algebras g of vector fields with the generators:

vi = O, ve = O +E€(t, 2, y,u) 0, +1(t, 2, y,u) 0y +o(t, 2, y,u)0, +9(t, z,y,u)0%.

We prescribe the coefficients €, 1, ¢, ¥ so that the vector fields vy, v, are tangent
to the intersection ENPE;. The system PE; is determined by the equation (11.60)
which now looks like

0 ¢ —ur—&us —nu
det Y11=0
‘1 1/)_vt_€vz_77vy
or
o —uy — uy — nuy = 0. (11.61)

The vector field v; is a classical infinitesimal symmetry of the system (11.26) and
the coeflicients of the vector field vs are found from the relations:

vV (wuy 4wy + )| BopE, =0, Ve (uy — v¢)|BnpE, = 0. (11.62)

Finding the variables vy, vy, u¢ from the equations (11.26), (11.61) and substituting
the results into (11.62) yield the determining equations for the coefficients. One of
the particular solutions of these equations:

5207 n=0, Y=Y, 1/):t_y3/3
yields the following partially invariant solutions of (11.26):

y4 t2 y3
u(t,z,y) =ty — 5+ h(e)y +e(e),  o(tey) =5 —t (g - h(%’)) +

6 3 2

& —h(2)% — [e(@) + k()] 5 — ¢ (2)y + d(=)

with h(z), e(z), d(z) arbitrary functions.
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11.4. CONDITIONAL SYMMETRIES

Consider the system E of differential equations
A(zyu,uP)y=0 v=1,...,1 (11.1)
and append it with the system of differential constraints Fg:
O,(z,u,u™y=0, pu=1,...,m. (11.63)

Assume that the appended system E N Eg (11.1), (11.63) is compatible. A vector
field v is called a conditional infinitesimal symmetry of the system E if the system
E N Ep is invariant under v, i.e., v is a Lie classical infinitesimal symmetry of
E N Eg. Possible approaches to constructing the appended system (11.63) are
explained below, based on ideas contained in Fushchich, Serov, and Chopik [1988]
and Fushchich and Serov [1988].

11.4.1. Conditional symmetries of a nonlinear heat equation.
As a first example consider the nonlinear heat equation

A =up — Uy, —uZ =0, (11.64)

T

The Lie algebra of the classical symmetries of the equation (11.64) has the genera-
tors

Vi, = Bt, Vo = 8;“ V3 = t@t — u@u, V4 = wc‘?z + 2u3u (1165)

Comparison with that of the linear heat equation reveals the fact that (11.65) does
not contain an infinitesimal Galilean-like transformation

v =10, + zh(u)0,,

which is admissible by the linear heat equation u; = w,, when h(u) = —u/2.
Indeed, if we apply the prolonged vector field v(?) to the left-hand side of (11.64),
we obtain the function

0 = —v P (uy — g, — u?)

= u, +2uh + zurh — zuth, + 2uu h, + 2wuihu + zutpphy + uwuihuu
that does not vanish being restricted to E:
A = uO|g = zuth + vu, + 2uuh — wuih + 2ulughy, + wuuihu + wu2uihuu Z0

So append the equation
A=0 (11.66)

to (11.64). Let us check the compatibility of (11.64) and (11.66) later on and try to
find the function A(u) so that the vector field v(?) is tangent to the system (11.64),



18 CRC HANDBOOK OF LIE GROUP ANALYSIS, VOL. 3

(11.66). The function ¥ =v(!)(A) vanishes on the submanifold {A = 0,A = 0} if

and only if
1 ¢
h(u)=—=+ —
(=145,

with ¢ arbitrary constant. For checking the compatibility we apply the contact
vector field Vf) to A and find that the function Vf)(A) vanishes when restricted

to the submanifold {A = 0,A = 0}. Therefore the vector field v, is a partial
symmetry of equation (11.64) and the system

Up = U gy + U2, (—1 4 2¢c/u)us +u2 =0, (11.67)

is Galilean-invariant.

It is interesting to note that if ¢ # 0, then (11.67) admits only three-dimensional
subalgebra g5 = L(v1,Va,2vs +Vy) of the initially four-dimensional algebra (11.65)
of the classical Lie symmetries of (11.65). Taking the latter fact into account, one
can try to preserve the classical Lie symmetry group as a subgroup of the classical
symmetry group of the appended system. For a generic function f(u), the family
of nonlinear heat equations

wy = (f(w)ug)e (11.68)
admits the three-dimensional Lie algebra g3 generated by the vector fields

Vi, = Bt, Vo = 8;“ V3 = 2t8t + wc‘?z (1169)

The functions u and us/u? are first order differential invariants for gz. Thus, if we
append the equation
uy = g(u)u? (11.70)

x?

for g(u) arbitrary (for the moment), the combined system (11.68), (11.70) admits

8s3-
The compatibility condition for the system (11.68), (11.70) is the following or-
dinary differential equation connecting the functions f(u) and g(u):

29" + f(49 = 3f")g' + (LU(f')" = £f")g — 59'f* +24° = 0.

For f(u) given, the function g(u) = f(u)/u is a particular solution of the latter
equation, and we are led to the compatible system

fluw)us

U

ur = (f(u)ue)e,  ur=
admitting (11.69) as a subalgebra of the Lie algebra of its infinitesimal symmetries.

11.5. WEAK SYMMETRIES

In Olver and Rosenau [1987], a further generalization of the non-classical method
was proposed. Since the combined system (11.1), (11.4) is an overdetermined sys-
tem of partial differential equations, one should, in treating it, take into account any
integrability conditions given by equating mixed partials. (The Cartan—Kuranishi
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Theorem assures us that, under mild regularity conditions, the integrability con-
ditions can all be found in a finite number of steps; differential Grobner basis
methods, as in Pankrat’ev [1989], Topunov [1989], provide a practical means to
compute them.) Therefore, one should compute the symmetry group not of just
the system (11.1), (11.4) but also any associated integrability conditions. Thus, we
define a weak symmetry group of the system (11.1) to be any symmetry group of
the overdetermined system (11.1), (11.4) and all its integrability conditions.

11.5.1 An example of a weak symmetry group.
For the Boussinesq equation

2
Ut + UlUgy + u, + Uppes = 07

consider the scaling group generated by the vector field v = 29, +t9;. This is not a
symmetry of the Boussinesq equation, nor is it a symmetry of the combined system

Ut + Ul gy + U+ Upgps = O, Q = zu, + tuy = 0. (11.71)

Nevertheless, if we append the integrability conditions to (11.71), we do find that
v satisfies the weak symmetry conditions. To compute the invariant solutions, we
begin by introducing the invariants, y = z/¢, and w = u. Differentiating the formula
v = w(y) = w(z/t) and substituting the result into the Boussinesq equation, we
come to the following equation

" 1 t_2[(y2 + w)w” + (w')2 + 2yw'] = 0. (11.72)

At this point the crucial difference between the weak symmetries and the non-
classical (or classical) symmetries appears. In the latter case, any non-invariant
coordinate, e.g. the ¢ here, will factor out of the resulting equation and thereby
leave a single ordinary differential equation for the invariant function w(y). For
weak symmetries this is no longer true, since we have yet to incorporate the inte-
grability conditions for (11.67). However, we can separate out the coefficients of
the various powers of ¢ in the above equation (11.68), leading to an overdetermined
system of ordinary differential equations,

w//// — 0, (y2 _I_ w)w// _I_ (w/)2 _I_ 2yw/ — 0,

for the unknown function w. In this particular case, the resulting overdetermined
system does have solutions, namely w(y) = —y?, or w(y) = constant. The latter
are trivial, but the former yield a nontrivial similarity solution: u(z,t) = —z?/#%.

11.5.2. A particular case of the infinitesimal weak symmetries.

An explication of one possible approach to treating the weak symmetries (Dzhamaylj
and Vorob’ev, [1994]) is given below. We will restrict ourselves to the case of dif-
ferential equations in one unknown function such as equation (11.32):

Az, u,u®) = 0. (11.32)

Consider the contact vector field v, the function I'(z,u,u®)) = V(QIC)(A)(w, u,u®),
and the system W of differential equations

A=0, T=0 Q=0. (11.73)
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DEFINITION. A vector field vg s an infinitessmal weak symmetry of equation
(11.32) if
1) vo s a classical infinitesimal symmetry of system (11.73),
Q
(2) system (11.73) is compatible.

Property (1) can be reformulated by saying that v is a partial infinitesimal
symmetry of the system A = 0, I' = 0. Note that if we required that vy were
a classical infinitesimal symmetry of the latter system, we would have got a con-
ditional infinitesimal symmetry considered in Section 11.4. Property (2) means
that system (11.73) implies no extra conditions that may arise by cross differenti-
ation of the equations of system (11.73) and their differential consequences. Since

= V(Qk)(A)(w,u,u(k)) and vo(Q) = Q. Q, the criterion of tangency of v(F) to W
takes the form:

vo(T)w = 0. (11.74)

Relation (11.74) and the compatibility conditions for W imply the determining
equations for the characteristic function Q.
It is clear that relations (11.73) can be generalized by adding to W the functions

V(Qk)(f‘) and so on.

11.5.3. Weak symmetries of the nonlinear heat equation.
In this Section, the exact solutions of the equation

Ut = Upy + u> + u’ (11.75)

obtained by Galaktionov, [1990], are interpreted as invariant under the weak sym-
metries of (11.75). Consider the vector field v with the characteristic function
Q = —p; + a(t,z), where the function a(t,z) needs to be defined. Since the equa-

tions of the intersection Fa N Eg) are equivalent to the equations

AE—Pt+az+a2—|—u27 Pz = a, Pte = Qt, Pz = Gz,

the following formula is valid: T' = Vg)(A) = a; + azy + 2aa, + 2ua. Therefore,
if the function a is fixed a unique invariant solution u(¢,z) is obtained from the

equation I' = 0:
Ay — Qpp — 200,

u(t,z) = 5a . (11.76)

So we can conclude that the system W takes the form:

Ay — Ay — 2a0,
Pt = ag + a® +u?, ps = a(t,z), u(t,z) = i 5a . (11.77)

The compatibility conditions for system (11.77) are evident:

O (as — azy — 2aa, B
Oz 2a -

O [ar — azy — 2aa, a4+ a4+ at — Qpy — 200, 2
ot 2a —GeTd 2a '

(11.78)
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Equations (11.78) admit separation of variables, precisely, the first equation is sat-
isfied if a(t,z) = ¢(t) sin z with ¢(¢) arbitrary function. Hence, the second equation

implies the relation
d($+¢ $+8\°, .
——— )= — 11.79
#(5) = (57) + (1.79)
for the function ¢.

After the function ¢(t) is found from (11.79), we obtain the infinitesimal weak
symmetry v of equation (11.75) with the characteristic function Q = —p, +
¢(t)sin z and the invariant under v solution

u(t,z) = e sin .

2¢

Galaktionov obtained this solution by directly applying his method of generalized
separation of variables in the form u(¢,z) = 6(¢) — ¢(¢) sin z to equation (11.75).

11.5.4. Discussion.

Weak symmetry groups, while at the outset quite promising, have some critical
drawbacks. It can be shown that every group is a weak symmetry group of a given
system of partial differential equations, and, moreover, every solution to the system
can be derived from some weak symmetry group — see Olver and Rosenau [1987].
Therefore, the generalization is too severe. Nevertheless, it gives some hints as
to how to proceed in any practical analysis of such solution methods. What is
required is an appropriate theory of overdetermined systems of partial differential
equations which will allow one to write down reasonable classes of groups for which
the combined system (11.1), (11.4) is compatible, in the sense that is has solutions,
or, more restrictively, has solutions that can be algorithmically computed. For
example, restricting to scaling groups, or other elementary classes of groups, might
be a useful starting point.

A SURVEY OF RESULTS

The following preliminary comments will be helpful for the reader. First, to date
only particular solutions of the determining equations for the coefficients of infini-
tesimal nonclassical symmetries have been obtained and are therefore given below.
The reason is partly explained in Section 11.1.2. Second, we do not point out which
vector fields are obtained in what papers, so the results are a set theoretic union
of those in separate papers. Third, not all of the known results are given but only
important for applications or most completely investigated. And last, exact solu-
tions invariant under the nonclassical symmetries can give rise to multiparameter
families of solutions with the aid of the classical symmetry transformations.

11.7. BOUSSINESQ EQUATION

Ut + Ulgy + (uz)2 + Upprs =0
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Lie point symmetries.
(Clarkson and Kruskal [1989], Nishitani and Tajiri [1982], Rosenau and Schwarz-
meier [1986])

Xl :w3$—|—2t3t—2u3u, X2 :c%, X3 :8t.

Nonclassical conditional symmetries.
(Levi and Winternitz [1989], Fushchich and Serov [1989])

vy =0y + 10, — 2t9,,
vy =t38; 4 (B1t” — xt2)0, + (2t%u + 627 — 26:t°z — 482¢1°)9,,
(by dilations and coordinate reflections one can transform 3; into 8; =1 or 31 = 0),
vy =2t0; + (z + 2t*)9, — 2(u + 2z + 4t%)d,,
vs =2p(t)8; + (2 + Brw)pd, — [2pu + 6ppz” + Ba(1 + 12ppw)e + f3w + 655 ppuw’]

1
0, Foap'oc,  c—const  w(t)= [ p(s)/s(s) do,
0
vs =t28, + (t° — 22)0,,
v =0y + (A(t) — 3u(t)x)0y, ji = p?, A=),
vy =20, + 2u0,,
vy =228, + 2(w2u + 24)8,.

Nonclassical weak symmetries.
(Olver and Rosenau [1987])

w =z, + 10
Exact solutions invariant under nonclassical symmetries.
vi: u=¢(z) 12, z=z-12/2, +¢d—¢=2z+c,
vo:  u=¢(2)t —22/t:, z==ast—Bt%/6, ¢+ ¢*/2=crz+co
(Br=0), $+¢dp—5p=50z+c (B1=1),
ve:  u=¢(2)/t—(e/2t+1)°,  z=a/VI-207/3, ¢ +¢b+($)]+
32¢/4+3¢/2 = 922/8

—-1,.-1/2 t d
Vi um (et — (52t pawpjap), x 2P SRS s

3
b+ b+ ¢ —3cd/4—3ch/2 =957 /8,
vs:  u=¢(t) -zt + 1%z,  $—24/t2 +1° =0,
Ve : u=¢(t) — 2*p/6 + Az, $—2¢/t2 +1° == 0,
V7 u = z’¢(t), é+64> =0,
vs:  w=2'g(t) 12277, $+697 =0,
w u = —z°/t>. I
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11.8 BURGERS’ EQUATION

Ut + UUE = Ugy

Lie point symmetries.

Xl :a'h X2 :81:7 X3:t8z+8u7
Xy = 2t0; + 20, — ud,, X5 = 20, + tzd, + (z — tu)0,

Nonclassical conditional symmetries.
(Arrigo, Broadbridge, and Hill [1993], Pucci [1992], Vorob’ev [1986])

The following general expressions are valid for the vector fields of the nonclassical
infinitesimal symmetries:

v =0+ &, z,u)d; + ¢(t,z,u)d,, or w =0, + ¥(t,z,u)0,,

where the functions &, ¢, and ¢ satisfy the equations:

208y — &t — 2¢5u + ¢ = 0, Prz + 208, + udy + ¢+ = 0,

or

u"/}z - 1/)zz - 1/)21/}11,11, - 21/)1/}zu ‘|‘ 'l/)t ‘|— 1/)2 = 0.

Particular solutions of the first set of equations generate the infinitesimal nonclas-
sical symmetries:

Vi :at + ua(l:)
vy =8 + (— tu+ aot® + a1t + a2) 9, + (— 1u° + 2uP(aot® + asrt + az)—
(apt + %al)wu + (bot + b2 )u + %a0w2 —box + apt + a3)3u,

3

vs =0 — 1ud, — “Zau,

vy =0 — %uc‘?z — (iu?’ — %a%u)@u,

vs =0 + (as — 3u)8, + (— v’ + Jasu®)d,,
2
ve =0 — (bu+ 2 1)9, — (Lu® + ;‘—)au,
L
(

vy =0 + ( — %u + w(t,w))c‘?z + (— %u?’ + %w(t,w)'u?)@u,

with a, b parameters, and w(t, z) a solution of Burgers’ equation w;+2ww, —wg, =
0.

Solutions invariant under the nonclassical symmetries.
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A28 u=z/t,
4
"2 =
3 u z2 + 2t’
B ai(cy exp(aiz) — 1)
Vg U = — 2 ’
cirexp(aiz) + 1+ caexp(aiz/2 — ajt/4)
ve - " _21 + as exp(azz + ggt),
z + exp(azz + a3t)
12t + 62
Ve U= ———
6zt + =3

11.9. GENERALIZED KORTEWEG-DEVRIES EQUATION

us + f(u)u’mc + Ugpe = 0, k>0

Lie point symmetries.

k f(u)
arbitrary arbitrary X1 =0, Xo=20,

u” X1, X2y, Xs5=3t(k+n—-1)0:+az(k+n—1)0; + (k—3)ud,
exp u X1, X2, X4=3t0+ 20, + (k—3)0,

3 arbitrary X1, Xo, X7 =3t0;+ 20,
u”? X1, Xo, Xq, Xg=u0,
1 X1, X, Xe, Xy

1 u” + ¢ X1, X2, Xo=3ntd +n(2ct+ )0, —2ul,
u Xl, XQ, Xl() :3t8t—|—w8$ —2u3u, Xll :tc‘?z—l—c?u
expu + ¢ X1, X2, Xi12=3t0+ (2ct+ )0, — 28,
1 X1, Xo, Xs, Xi3=3t0;+ (2t+2)0,,

X, =g(t,2)0,, g(t,z) solves the generalized KdV equation

Nonclassical conditional symmetries.
(Fushchich, Serov, Ahmerov [1991])

v =t/%8, + F(u)d,

Flu) = cqur 7*? 4 cpu(17R/2, Flu) = (
F(u) = (cilogu+ea)(1 —u2)' ™k, F(u) = (

F(u) = (e1 arcsinu + eo)(1 — u?) M2 Fu) = (ker) v/ — w2
Fu) = (crsinh™ w4 e2)(1 +u2) M2 F(u) =(
flu)=ciu,  F(u)=(
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Exact solutions invariant under the nonclassical symmetries.

z  keqt k e\ 2
) =(FCEE) a2

k(kcl)_3/k 1-3/k

u(t,z) =exp (——17:75——t - —'g§'+ct_1/k4-(k¢¢)_l/kw>, k#2,

= exp
C1

—sin

— 4ot MVE (kclt)_l/kw>, k #£ 2,

C1

—sin

(¢
( kcl A
(-

log ¢
3/2 Ogt C2 + ct™ 1/2 + (201t)_1/2$>, k = 27
1

k /
u(t,z) =sinh (Ltl B2y kg (kclt)_l/kw>, k # 2,

k—2 C1
log ¢
u(t,z) =sinh ((201)_3/2% Z +et/2 4 (2clt)_1/2w>, k=2

u(t, z) —ct 1k w(kclt)_l/k

11.10. KADOMTSEV-PETVIASHVILI EQUATION
(Kadomtsev and Petviashvili [1970])

(ut + vy + Uggs)s + kuyy =0, k=41

Lie point symmetries.

(Tajiri, Nishitani, and Kawamoto [1982], David, Kamran, Levi and Winternitz

[1986])

Xo = 6a(t)0; + (226(t) — ky2a(t))0s + dya(t)d, + (—duc(t) + 22a(t) — ky>&(¢))dy,

Xp=B(t)0 +B(t)0u, Xy = —y¥(t)0: + 2kv(t)d, — yF(t)du,

where a(t), B(t), and y(¢) are arbitrary functions.

Nonclassical conditional symmetries.
(Clarkson and Winternitz [1991])

v =0, + [R(y,t)z + S(y,1)]0u, R # 0andS, # 0,
where the functions R(y,t) and S(y,t) are solutions of the system

kR,, + 3R*> = 0, kS,, + 3RS + R, = 0.

(2¢1)7%/%47 Y2 logt — = 2 peml2 (201t)_1/2$>, k=2,
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Exact solutions invariant under the nonclassical symmetries.

u(z,y,t) = w(y,t) + 2*y(y, 1) + zd(y, 1),

where

Y(y,t) = —kW(y + $0(t); 0

P(y,t) = W(y + ¢o(t); 0,9 ())( ) + Bt / W2z—|-¢>0, ,g)>

‘E+ y(o +9 y2g"5"> (y+ 0(8); 0,(1))

with ¢o(t), g(t), A(t), B(t) arbitrary functions, W(z;0,h) the Weierstrass elliptic

function.

11.11. KOLMOGOROV-PETROVSKII-PISKUNOV,
OR FITZHUGH-NAGUMO EQUATION

Uy = Uy + u(l — u)(u — a), —-1<a<1
Lie point symmetries.
X1 =0, X2 =0,
Nonclassical conditional symmetries.

(Nucci and Clarkson [1992], Vorob’ev [1986])

vy =0 + %(3’11, —a—1)0, + ;u(l —u)(u — a)0y,

3 1—|—exp\/_w
ve =0; + 8, — o O, = -1, =
2 =0 + a(z) a'(z)u a a(z) = \/_1—exp\/_w
3 1—|—expw/\/_
vy =0; + a(z)d, — o'(z)(u — 1/2)8,, a=1/2, alz
s =00+ ()0, — o'(z)(u ~ 1/2) 2ol = TR
3 1—|—exp\/_w
vy =0; + a(2)d, — o' (z)(u — 1), a =2, alz) =
s =00+ af2)0, — a(z)(u - 1) (3) = Sooe e
Exact solutions invariant under the nonclassical symmetries.
Viq @
" acy exp ((ﬂw + a?t)/2) + co exp ((ﬂaw +1)/2)

c1 exp ((ﬂw + a?t)/2) + ca exp ((ﬂaw +1)/2) + c3exp ((ﬂ(a + 1)z + at)/2) ’

w = (cr exp (Ve + 31)/2) — cs exp (—V3e + 31/2))Ju(z),
Z = c1 exp ((\/ﬁw + 3t)/2) 4+ ca exp ((—\/ﬁw +3t/2)) +cs3

u = (c1 exp ((2\/§w + 3t)/8) — caexp ((—2\/§w + 3t)/8))w(z),
Z = c1 exp ((2\/§w + 3t)/8) + ca exp ((—2\/§w + 3t)/8) + cs,

where w(z) is the Weierstass function satisfying the equation w'(z) = 2w(2)>.
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11.12. NONLINEAR WAVE EQUATION

Ut = UUgy

Lie point symmetries.
Xl :8t, X2 :c%, X3 :tat—|—$8$, X4 :tc‘?t—2u3u

Nonclassical conditional symmetries.
(Fushchich and Serov [1988])

vi =0, + a10,, vy = 0y + (azz + a3)0,,

vy =0; + (ast + a5)0; + 2a4(ast + a5)0,, vy = 0y + [w(t) + f(¢)]Ou,

vs =t0; + (v + arz + as)0,, ve = t0; + [t?’(agw + aig) — 2uld,,

vy =20, + (u + byt + b2)0,, vs = 20, + [u 4+ w(t)z? /2 — f()]0u,

ve =(t* — 1)8; + 220, + (t + 1)ud,, vig = t28; + (3t* — 1522 + by + by)0,,
vy =t220, + (t*u + 3z + byt® + b6 )0, viz = w(t)0; + w(t)ub,,

where a, b are arbitrary parameters, w(t) and f(¢) satisfy the ODE: @ = w?,

f=wf.
Exact solutions invariant under the nonclassical symmetries.

vy : u=¢(t) +arz, ¢ =0,

Vs : u = ¢(t) + t(azz + as), $=0,

V3 : u = ¢(2) + 2a4z, z = agt’ /2 + ast — z, (¢>—2a4z—a§)g¥>: asd,
ve:  u=w(t)?/24 f()z + ¢(t), ¢ =wd,

4z) -~ (ara tas), b0,
" u=1"2¢(z) + t*(agx + a10)/5, é=6,

vi:  u=zd(t)— (bt +by), =0,

i u=w(el 2 de 4 f1), 6 =w(t),

Vi w= (- D D/ -1),  $=0,

Vig : u = t>p(z) + 32%t % — (bsz + by)/5t7, $=0,
Vi1t u = x¢(t) + 3z /t* — bst® — bet 2, 26 = 64,

Vi u = w(t)p(z), ¢ =1.

o~

Vg & u =

11.13 ZABOLOTSKAYA-KHOKHLOV EQUATION

Uty — (UUg)g — Uyy =0
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The infinitesimal Lie point symmetry algebra of this equation contains the subal-
gebra with the generators:

Xl :8t, X2 :c%, X3 :ay, X4 :yc‘?z—|—2t8y,
X5 =10s + 20, + y9,, X¢ = 410y + 220, + 3y0, — 2u0,, X7 =19, — 9,

Nonclassical conditional symmetries.

(Extracted from Fushchich, Chopik and Mironiuk [1990] and adapted to the case
of three independent variables)

The equation considered attached by the first order equation:

Uty — uui — uz =0,
which is its characteristic equation, forms the compatible system while such a sys-
tem is incompatible in the case of four independent variables, i.e. for the equation
Uty — (Ug)g — Uyy — U, = 0. The system admits the infinite-dimensional Lie algebra
of classical infinitesimal symmetries whose vector fields can be presented as

X = Z a;(u)X;

with a;(u) smooth functions, X; for 1 < ¢ < 7 given above, and
Xs = y0; + 2(z + 2ut)d,.
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