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Chapter 1

Geometric Foundations

The study of symmetry groups and equivalence problems requires a variety of tools
and techniques, many of which have their origins in geometry. Even our study of differ-
ential equations and variational problems will be fundamentally geometric in nature, in
contrast to the analytical methods of importance in existence and uniqueness theory. We
therefore begin our exposition with a brief review of the basic prerequisites from differ-
ential geometry which will be essential to the proper development of our subject. These
include the definition and fundamental properties of manifolds and submanifolds, of vector
fields and flows, and of differential forms. Even though most of our concerns will be local,
nevertheless it will be extremely useful to adopt the coordinate-free language provided by
the geometric framework. The advantage of this approach is that it frees one from exces-
sive reliance on complicated local coordinate formulas. On the other hand, when explicit
computations need to be done in coordinates, one has the added advantage of being able
to choose a particular coordinate system adapted to the problem at hand.

Manifolds

A manifold is an object which, locally, just looks like an open subset of Euclidean
space, but whose global topology can be quite different. Although most of our manifolds are
realized as subsets of Euclidean space, the general definition is worth reviewing. Although
almost all the important examples and applications deal with analytic manifolds, many of
the constructions are valid for smooth, meaning infinitely differentiable (C∞), manifolds,
and it is this context that we take as our primary domain of exposition, restricting to the
analytic category only when necessary.

† Supported in part by NSF Grant DMS 11–08894.
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Definition 1.1. An m-dimensional manifold M is a topological space which is cov-
ered by a collection of open subsets Wα ⊂ M , called coordinate charts, and one-to-one
maps χα:Wα → Vα onto connected open subsets Vα ⊂ Rm, which serve to define local
coordinates on M . The manifold is smooth (respectively analytic) if the composite “over-
lap maps” χβα = χβ

◦χ−1
α are smooth (respectively analytic) where defined, i.e., from

χα[Wα ∩Wβ ] to χβ [Wα ∩Wβ ].

The topology of a manifold is induced by that of R
m. Thus, a subset V ⊂ M is

open if and only if its intersection V ∩ Wα with every coordinate chart maps it to an
open subset χα[V ∩Wα] ⊂ Rm, thereby making each χα a continuous invertible map. We
will always assume that our manifolds are separable, meaning that there is a countable
dense subset, and satisfy the Hausdorff topological separation axiom, meaning that any
two distinct points x 6= y in M can be separated by open subsets x ∈ V , y ∈ W , with
empty intersection, V ∩W = ∅. A manifold is connected if it cannot be written as the
disjoint union of two nonempty open subsets; many of our results will require connectivity
of the manifolds in question. More generally, every manifold is the union of a countable
number of disjoint connected components.

Besides the basic coordinate charts provided in the definition of a manifold, one can
always adjoin many additional coordinate charts χ:M → V ⊂ R

m subject to the condition
that, where defined, the corresponding overlap maps χα

◦χ−1 satisfy the same smoothness
or analyticity requirements as M itself. For instance, composing a given coordinate map
with any local diffeomorphism, meaning a smooth, one-to-one map defined on an open
subset of Rm, will give a new set of local coordinates. Often one expands the collection of
coordinate charts to include all possible compatible charts, the resulting maximal collection
defining an atlas on the manifold M . In practice, it is convenient to omit explicit reference
to the coordinate maps χα and identify a point of M with its image in Rm. Thus, the
points in the coordinate chart Wα are identified with their local coordinate expressions
x = (x1, . . . , xm) ∈ Vα. The changes of coordinates provided by the overlap maps are
then given by local diffeomorphisms y = η(x) defined on the overlap of the two coordinate
charts.

Objects defined on manifolds must be defined intrinsically, independent of any choice
of local coordinate. Consequently, manifolds provide us with the proper category in which
most efficaciously to develop a coordinate-free approach to the study of their intrinsic ge-
ometry. Of course, the explicit formulae for the object may change when one goes from
one set of coordinates to another. Thus, in one sense, any equivalence problem can be
viewed as the problem of determining whether two different local coordinate expressions
define the same intrinsic object on the manifold. In this language, the problem of deter-
mining canonical forms is that of finding local coordinates in which the object assumes
a particularly simple form. Explicit examples of this general, underlying philosophy will
appear throughout the book.

Example 1.2. The basic example of a manifold is, of course, Rm itself, or any open
subset thereof, which is covered by a single coordinate chart. Another simple example is
provided by the unit sphere Sm−1 = {|x| = 1} ⊂ Rm, which is an analytic manifold of
dimension m − 1. It can be covered by two coordinate charts, obtained by omitting the
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north and south poles respectively; the local coordinates are provided by stereographic
projection to Rm−1. Alternatively, one can use local spherical coordinates on Sm−1, which
are valid away from the poles.

Example 1.3. Another important example is provided by the projective space
RP

m−1 which is defined as the space of lines through the origin in R
m. Two nonzero

points x, y ∈ Rm determine the same point p ∈ RPm−1 if and only if they are scalar mul-
tiples of each other: x = λy, λ 6= 0. (Alternatively, we can realize RP

m−1 by identifying
antipodal points on the sphere Sm−1.) Coordinate charts on RPm−1 are constructed by
considering all lines with a given component, say xi, nonzero; the coordinates are then pro-
vided by ratios pk = xk/xi, k 6= i, which amounts to the choice of canonical representative
of such a line given by normalizing its ith component to unity. In particular, the one-
dimensional projective space RP1 can be identified with a circle, since each line through
the origin in R2 is uniquely specified by the angle 0 ≤ θ < π it makes with the horizontal.
The coordinate chart consisting of nonvertical lines, i.e., with y 6= 0, has local coordinate
p = x/y, and covers all but one point on the projective line; the horizontal x-axis is tradi-
tionally identified with the “point at infinity”. In this way one regards RP

1 = R∪ {∞} as
the completion of the real line R1. In a similar fashion RPm−1 is viewed as the completion
of Rm−1 obtained by adjoining all “directions at infinity”. Similar considerations apply
to the complex projective space CPm−1, which is defined as the space of all complex lines
through the origin in Cm. The complex projective line CP1 can be identified with the Rie-
mann sphere S2, which is obtained by adjoining a single point at infinity to the complex
plane C.

Exercise 1.4. Prove that if M and N are manifolds of respective dimensions m and
n, then their Cartesian product M ×N is an (m+ n)-dimensional manifold.

Example 1.5. Let M be a manifold. A vector bundle over M is a manifold E whose
local coordinate charts are of the form Wα × Rq, where Wα ⊂ M is a local coordinate
chart on M , so that the local coordinates have the form (x, u), where x ∈ Rm are referred
to as the base coordinates and u ∈ R

q the fiber coordinates. The overlap functions are
restricted to be linear in the fiber coordinates, (y, v) = (η(x), µ(x)u), where µ(x) is an
invertible q× q matrix of functions defined on the overlap Wα ∩Wβ of the two coordinate
charts. Thus, locally a vector bundle looks like the Cartesian product M × Rq, although
its global topology might be quite different. Every vector bundle comes with a natural
projection π:E → M to its base manifold, defined by π(x, u) = x in local coordinates.
Two simple examples are provided by a cylinder S1×R, and a Möbius band, both of which
are vector bundles with one-dimensional fiber (i.e., line bundles) over the circle S1.

Although it is useful to have the full vocabulary of manifold theory at our disposal,
many of our results will be local in nature. By the phrase “locally” we shall generally
mean in a neighborhood U , usually a coordinate neighborhood, of a point x0 ∈M . Many
of our maps F :M → N will only be defined locally, i.e., not on the entire manifold M
but rather on an open subset U ⊂M ; nevertheless, it is convenient to retain the notation
F :M → N even when the domain of F is a proper subset of M . In such cases, when we
write F (x) we are always implicitly assuming that x lies in the domain of F .
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Functions

A map F :M → N between smooth manifolds is called smooth if it is smooth in
local coordinates. In other words, given local coordinates x = (x1, . . . , xm) on M , and y =
(y1, . . . , yn) onN , the map has the form y = F (x), or, more explicitly, yi = F i(x1, . . . , xm),
i = 1, . . . , n, where F = (F 1, . . . , Fn) is a C∞ map from an open subset of Rm to Rn. The
definition readily extends to analytic maps between analytic manifolds.

Definition 1.6. The rank of a map F :M → N at a point x ∈ M is defined to be
the rank of the n ×m Jacobian matrix (∂F i/∂xj) of any local coordinate expression for
F at the point x. The map F is called regular if its rank is constant.

Standard transformation properties of the Jacobian matrix imply that the definition
of rank is independent of the choice of local coordinates. In particular, the set of points
where the rank of F is maximal is an open submanifold of the manifold M (which is dense
if F is analytic), and the restriction of F to this subset is regular.

The first of the equivalence problems which we encounter, then, is to determine
whether two different maps y = F (x) and ȳ = F (x̄) between manifolds of the same
dimension are locally the same, meaning that they can be transformed into each other by
appropriate changes of coordinates x̄ = χ(x), ȳ = ψ(y). In the regular case, the Implicit
Function Theorem solves the (local) equivalence problem, and, in fact, provides a canonical
form for regular maps.

Theorem 1.7. Let F :M → N be a regular map of rank r. Then there exist local

coordinates x = (x1, . . . , xm) on M and y = (y1, . . . , yn) on N such that F takes the

canonical form

y = F (x) = (x1, . . . , xr, 0, . . . , 0). (1.1)

Thus, all maps of constant rank are locally equivalent and can be linearized by the
introduction of appropriate local coordinates. The places where the rank of a map decreases
are singularities. The canonical forms at singularities are much more complicated — this
is the subject of singularity theory (a.k.a. catastrophe theory), cf. [1, 18]. In order to keep
the scope manageable, this book will be exclusively concerned with the regular cases —
in this instance meaning regular maps — and will steer away from the more complicated
(but perhaps even more interesting) investigation of singularities.

An important case occurs when M and N have the same dimension, and F :M → N
is a regular map of rank m = dimM = dimN . The Inverse Function Theorem (which is a
special case of Theorem 1.7) shows that F defines a local diffeomorphism between M and
N , hence the inverse image F−1{y} of any point y ∈ N is a discrete collection of points
in M . If F is defined on all of M = domain F , and, moreover, is onto N = range F ,
then we shall call F a covering map and say that M covers N . For example, the map
F (t) = (cos t, sin t) provides a covering map from the real line M = R to the circle N = S1.
The reader should be warned that our definition of covering map is more general than the
standard one, cf. [54; p. 98], in that N is not necessarily covered evenly by M — the
cardinality of the inverse image F−1{y} of y ∈ N , can vary from point to point. For
instance, according to our definition, the restriction of any covering map to any open
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subset M̃ ⊂ M remains a covering map; thus the preceding example remains a covering
map when restricted to any open interval of length at least 2π.

The notion of rank has a natural generalization to (infinite) families of smooth func-
tions. First recall that the differential of a smooth function f :M → R is given by the
expression

df =

m∑

i=1

∂f

∂xi
dxi. (1.2)

Definition 1.8. Let F be a family of smooth real-valued functions f :M → R. The
rank of F at a point x ∈ M is the dimension of the space spanned by their differentials.
The family is regular if its rank is constant on M .

Definition 1.9. A set {f1, . . . , fk} of smooth real-valued functions on a manifold M
having a common domain of definition is called functionally dependent if, for each x0 ∈M ,
there is neighborhood U and a smooth function H(z1, . . . , zk), not identically zero on any
subset of Rk, such that H(f1(x), . . . , fk(x)) = 0 for all x ∈ U . The functions are called
functionally independent if they are not functionally dependent when restricted to any
open subset of M .

For example f1(x, y) = x/y and f2(x, y) = xy/(x2 + y2) are functionally dependent
on the upper half plane {y > 0} since the second can be written as a function of the first:
f2 = f1/(1+f2

1 ). For a regular family of functions, the rank tells us how many functionally
independent functions it contains.

Theorem 1.10. If a family of functions F is regular of rank r, then, in a neigh-

borhood of any point, there exist r functionally independent functions f1, . . . , fr ∈ F
with the property that any other function f ∈ F can be expressed as a function thereof:

f = H(f1, . . . , fr).

Proof : Given x0 ∈ M , choose f1, . . . , fr ∈ F such that their differentials df1, . . . , dfr

are linearly independent at x0, and hence, by continuity, in a neighborhood of x0. Accord-
ing to Theorem 1.7, we can locally choose coordinates (y, z) near x0 such that fi(y, z) = yi,
i = 1, . . . , r. If f(y, z) is any other function in F , then, since the rank is r, its differen-
tial must be a linear combination of the differentials dfi, so that in the new coordinates
df =

∑r

i=1 hi(y, z)dy
i. We now invoke a simple lemma.

Lemma 1.11. Let U ⊂ Rm be a convex open set. A function f :U → R has

differential df =
∑r

i=1 hi(x) dx
i given as a linear combination of the first r coordinate

differentials if and only if f = f(x1, . . . , xr) is a function of the first r coordinates. In

particular, df = 0 if and only if f is constant.

Thus, by shrinking the neighborhood of x0 if necessary so that it is convex in the (y, z)-
coordinates, Lemma 1.11 implies that f(y1, . . . , yr) is a function of y alone. Reverting to
the original x coordinates completes the proof of the Theorem. Q.E.D.

Consequently, if f1, . . . , fr is a set of functions whose m×r Jacobian matrix (∂fi/∂x
k)

has maximal rank r at x0, then, by continuity, they also have rank r in a neighborhood of
x0, and hence are functionally independent near x0. Note also that Theorem 1.10 implies
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that, locally, there are at most m functionally independent functions on any m-dimensional
manifold M .

Submanifolds

Näıvely, a submanifold of a manifold M is a subset which is a manifold in its own
right. To be more precise, we need to parametrize the subset by a suitable map.

Definition 1.12. A smooth (analytic) n-dimensional immersed submanifold of a
manifold M is a subset N ⊂ M parametrized by a smooth (analytic), one-to-one map

F : Ñ → N ⊂ M , whose domain Ñ , the parameter space, is a smooth (analytic) n-
dimensional manifold, and such that F is everywhere regular, of maximal rank n.

A submanifold is regular if, in addition to the regularity of the parametrizing map,
at each point x ∈ N there exist arbitrarily small neighborhoods x ∈ U ⊂ M such that
F−1[U ∩N ] is a connected open subset of Ñ . The Implicit Function Theorem 1.7 provides
an immediate canonical form for regular submanifolds.

Theorem 1.13. An n-dimensional submanifold N ⊂ M of an m-dimensional man-

ifold M is regular if and only if for each x0 ∈ N there exist local coordinates x =
(x1, . . . , xm) defined on a neighborhood U of x0 such that

U ∩N =
{
x
∣∣ x1 = · · · = xm−n = 0

}
.

Thus, every regular n-dimensional submanifold of an m-dimensional manifold locally
looks like an n-dimensional subspace of Rm. We conclude that all regular n-dimensional
submanifolds are locally equivalent. The topology on M induces the manifold topology on
N , and so, in the regular case, we can effectively dispense with reference to the parameter
space Ñ . Irregular submanifolds are trickier, since the same subset can be parametrized
as a submanifold in several inequivalent ways — see Example 1.14 below.

It will occasionally be useful to enlarge our repertoire of submanifolds yet further
to include submanifolds which have self-intersections. Consider an arbitrary regular map
F : Ñ → N ⊂ M of maximal rank n, which is the dimension of the parameter space Ñ .
We will call the image N = F (Ñ) a submanifold with self-intersections of M . According
to Theorem 1.7, the image N of such a map F is, locally, a regular submanifold, but if F
is not one-to-one, the submanifold N will intersect itself.

A curve in a manifold M is defined by a smooth map φ: I → M , where I ⊂ R is an
open subinterval. The curve C = φ(I) defines a one-dimensional submanifold, with self-
intersections, provided the regularity condition φ′(t) 6= 0 holds. (Points at which the deriva-
tive of φ vanishes will, in general, be singularities of the curve.) If φ is one-to-one, then
C is an ordinary one-dimensional submanifold, and is regular provided lim

i→∞
φ(ti) = φ(t) if

and only if lim
i→∞

ti = t.

Example 1.14. The curve φ0(t) =
(
sin t, 2 sin(2t)

)
describes a figure eight in the

plane, which is a one-dimensional manifold with self-intersections. The map φ1(t) =(
sin(2 arctan t), 2 sin(4 arctan t)

)
parametrizes the same figure eight, but is now one-to-

one, and so describes an immersed submanifold, which, however, is not regular since
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limt→∞ φ(t) = 0 = φ(0). Note further that the alternative one-to-one map φ2(t) =(
− sin(2 arctan t), 2 sin(4 arctan t)

)
defines an inequivalent means of parametrizing the fig-

ure eight. Thus, in the irregular case, a given subset can be parametrized as a submanifold
in fundamentally different ways.

Exercise 1.15. Prove the map φ(t) = (e−t cos t, e−t sin t) describes a regular one-
dimensional submanifold N ⊂ R

2. Draw a picture of N .

Example 1.16. A torus is defined as the Cartesian product of circles. Consider the
two-dimensional torus T 2 = S1 × S1, with angular coordinates (θ, ϕ) with 0 ≤ θ, ϕ < 2π.
The curve φ(t) = (t, κ t) mod2π is closed if κ/π is a rational number, and hence defines a
regular submanifold of T 2, with parameter space S1. On the other hand, if κ/π is irrational,
then the curve forms a dense subset of T 2 and hence is not a regular submanifold.

Exercise 1.17. Let M and N be smooth manifolds of respective dimensions m and
n. Prove that the graph Γ = {(x, F (x))} of a smooth map F :M → N (which might only
be defined on an open subset of M) forms a regular m-dimensional submanifold of the
Cartesian product manifold M ×N .

Example 1.18. The preceding construction is generalized by the concept of a section
of a vector bundle π:E →M . A map F :M → E is called a section of E if π ◦F = 11 is the
identity map on M , and, in the local coordinates (x, u) ∈Wα × Rq of Example 1.5, it has
the form u = F (x) where F :Wα → Rq is a smooth function. The image F (M) of a section
is a smooth m-dimensional submanifold of E that intersects each fiber E|x = π−1{x} in
only one point. (Exercise: Is every submanifold having the latter property a section?)

Since manifolds are modeled on Euclidean space, it is not hard to see that every
connected manifold is pathwise connected meaning that any two points can be joined by
a smooth curve. A manifold is simply connected if every smooth curve can be smoothly
contracted to a point. For example, the circle S1 and the punctured plane R2 \ {0} are
not simply connected, whereas the sphere S2 is simply connected.

An alternative to the parametric approach to submanifolds is to define them implicitly

as a common level set of a collection of functions. In general, the variety SF determined by
a family of real-valued functions F is defined to be the subset where they simultaneously
vanish:

SF = { x | f(x) = 0 for all f ∈ F } .

In particular, given F :M → Rr, the variety SF = {F (x) = 0} is just the set of solutions to
the simultaneous system of equations F 1(x) = · · · = F r(x) = 0 defined by the components
of F . We will call the variety (or system of equations) regular if SF is not empty, and the
rank of F is constant in a neighborhood of SF ; the latter condition clearly holds if F itself
is a regular family. In particular, regularity holds if the variety is defined by the vanishing
of a map F :M → Rr which has maximal rank r at each point x ∈ SF , i.e., at each solution
x to the system of equations F (x) = 0. The Implicit Function Theorem 1.10, coupled with
Theorem 1.13, shows that a regular variety is a regular submanifold.
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Theorem 1.19. Suppose F is a family of functions defined on an m-dimensional

manifold M . If the associated variety SF ⊂ M is regular, then it defines a regular sub-

manifold of dimension m− r.

For example, the function F (x, y, z) = x2+y2 +z2−1 has rank one everywhere except
at the origin, and hence its variety — the unit sphere — is a regular two-dimensional
submanifold of R3. On the other hand, the function F (x, y, z) = x2 + y2 has rank zero
on its variety — the z-axis — but rank one elsewhere; thus Theorem 1.19 does not apply
(even though its variety is a submanifold, albeit of the “wrong” dimension). Finally, the
function F (x, y, z) = xyz is also not regular, and, in this case, its variety — the three
coordinate planes — is not a submanifold.

Vector Fields

A tangent vector to a manifold M at a point x ∈ M is geometrically defined by the
tangent to a (smooth) curve passing through x. In local coordinates, the tangent vector
v|x to the parametrized curve x = φ(t) is determined by the derivative: v|x = φ′(t). The
collection of all such tangent vectors forms the tangent space to M at x. Each tangent
space TM |x is a vector space of the same dimension as M ; they are “sewn” together in the
obvious manner to form the tangent bundle TM =

S

x∈M TM |x, which is a 2m-dimensional
manifold, and forms a vector bundle over the m-dimensional manifold M .

Exercise 1.20. Prove that the tangent bundle TS1 ≃ S1×R to a circle is a cylinder.
On the other hand, the tangent bundle to a sphere is not a trivial Cartesian product:
TS2 6= S2 × R

2.

A vector field v is a smoothly (or analytically) varying assignment of tangent vectors
v|x ∈ TM |x, i.e., a section of the tangent bundle TM . We write the local coordinate
formula for a vector field in the form

v =

m∑

i=1

ξi(x)
∂

∂xi
, (1.3)

where the coefficients ξi(x) are smooth (analytic) functions. The motivation for adopting
the standard derivational notation in (1.3) will appear presently. In particular, the tangent
vectors to the coordinate axes are denoted by ∂/∂xi = ∂xi , and form a basis for the tangent
space TM |x at each point in the coordinate chart. If y = η(x) is any change of coordinates,
then the vector field (1.3) is, in the y coordinates, re-expressed using the basic change of
variables formula

v =

m∑

j=1

(
m∑

i=1

ξi(x)
∂ηj

∂xi

)
∂

∂yj
, (1.4)

where the coefficients are evaluated at x = η−1(y). Equation (1.4) is a direct consequence
of the chain rule applied to the original definition of tangent vectors to curves.

A parametrized curve φ: R → M is called an integral curve of the vector field v if
its tangent vector coincides with the vector field v at each point; this requires that its
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parametrization x = φ(t) satisfy the first order system of ordinary differential equations

dxi

dt
= ξi(x), i = 1, . . . , m. (1.5)

Standard existence and uniqueness theorems for systems of ordinary differential equations
imply that, through each point x ∈M , there passes a unique, maximal integral curve. We
shall employ the suggestive notation φ(t) = exp(tv)x to denote the maximal integral curve
passing through x = exp(0v)x at t = 0; the curve exp(tv)x may or may not be defined for
all t.

Motivated by fluid mechanics, where v is the fluid velocity vector field, the family of
(locally defined) maps exp(tv) is known as the flow generated by the vector field v, which
is classically referred to as the infinitesimal generator of the flow. The flow obeys standard
exponential rules:

exp(tv) exp(sv)x = exp
[
(t+ s)v

]
x, exp(0v)x = x,

exp(tv)−1x = exp(−tv)x,
d

dt
exp(tv)x = v

∣∣
exp(tv)x

,
(1.6)

the first and third equations holding where defined. Conversely, given a flow obeying the
first two equations in (1.6), we can reconstruct its generating vector field by differentiation:

v|x =
d

dt
exp(tv)x

∣∣∣∣
t=0

, x ∈M. (1.7)

In other words, identifying tangent vectors in Euclidean space with ordinary vectors, we
have the local coordinate expansion

exp(tv)x = x+ tv|x + O(t2), (1.8)

for the flow. Thus, the theory of first order systems of autonomous ordinary differential
equations (1.5) is the same as the theory of flows of vector fields.

A point x where the vector field vanishes, v|x = 0, determines a singularity or equilib-

rium point . In this case, x is a fixed point under the induced flow: exp(tv)x = x, for all t.
Points at which v is not zero are called regular . The existence of flows implies that, away
from singularities, all vector fields look essentially the same. Indeed, as with regular maps
and submanifolds, there is a simple canonical form for a vector field in a neighborhood of
any regular point.

Theorem 1.21. Let v be a vector field defined on M . If x0 is not a singularity of

v, so v|x0
6= 0, then there exist local rectifying coordinates y = (y1, . . . , ym) near x0 such

that v = ∂/∂y1 generates the translational flow exp(tv)y = (y1 + t, y2, . . . , ym).

Theorem 1.21 provides a solution to the basic equivalence problem for systems of
autonomous first order systems of ordinary differential equations. This result states that,
away from equilibrium points, all such systems are locally equivalent, since they can all be
mapped to the elementary system dy1/dt = 1, dy2/dt = · · · = dym/dt = 0 by a suitable
change of variables. Indeed, if ξ1(x0) 6= 0, then the rectifying y coordinates are defined so
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that x0 = 0, and each x = exp(ty1)(0, y2, . . . , ym) lies on a unique integral curve emanating
from the hyperplane {y1 = 0}. However, Theorem 1.21 is of little practical use for actually
solving the system of ordinary differential equations governing the flow, since finding the
change of variables required to place the system in canonical form is essentially the same
problem as solving it in the first place.

Example 1.22. Consider the following three vector fields on M = R. First, the
vector field ∂x generates the translation flow exp(t∂x)x = x + t. The vector field x∂x

generates the scaling flow exp(tx∂x)x = etx. In this case, away from the singularity at
x = 0, the rectifying coordinate is given by y = log |x|, in terms of which the vector field
takes the form v = ∂y. Finally, the vector field x2∂x generates the “inversional” flow

exp(tx2∂x)x = x/(1 − tx). Note that this vector field only generates a local flow on R. In
this case, the rectifying coordinate is y = 1 − 1/x.

Exercise 1.23. Prove that the three vector fields in Proposition 2.48 can be extended
to the projective line RP1 and, in fact, define global flows there. (See [37, 47] for general
results on globalizing flows and group actions.)

The problem of equivalence of vector fields at singularities is much more delicate.
There is a large body of literature on the determination of normal forms for vector fields
near equilibrium points; see, for instance, [17], [19]. The global equivalence problem is
also of interest, but again more delicate since topological data come into play. For example,
unless the Euler characteristic of M is trivial, every smooth vector field must have at least
one singularity; see [51; Chapter 11].

Applying a vector field v to a function f :M → R determines the infinitesimal change
in f under the induced flow:

v(f(x)) =

n∑

i=1

ξi(x)
∂f

∂xi
=

d

dt
f(exp(tv)x)

∣∣∣∣
t=0

.

In this way, vector fields act as derivations on the smooth functions, meaning that they
are linear and satisfy a Leibniz Rule:

v(f + g) = v(f) + v(g), v(fg) = fv(g) + gv(f). (1.9)

In particular, vector fields annihilate constant functions: v(c) = 0. Indeed, an alternative
definition of the tangent space TM |x is as the space of derivations on the smooth functions
defined in a neighborhood of x, cf. [51; Chapter 3]. The action of the flow on a function
can be reconstructed from its generating vector field using the Lie series expansion

f(exp(tv)x) = f(x) + tv(f(x)) + 1
2 t

2v(v(f(x))) + · · · , (1.10)

which, in the analytic case, converges for t near 0.

Lie Brackets

The most important operation on vector fields is the Lie bracket or commutator.
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Definition 1.24. Given vector fields v and w on a manifold M , their Lie bracket is
the vector field [v,w] which satisfies [v,w]f = v(w(f))−w(v(f)) for any smooth function
f :M → R.

The fact that the Lie bracket is a well-defined vector field rests on the readily verified
fact that the commutator of two derivations is itself a derivation. In local coordinates, if

v =

m∑

i=1

ξi(x)
∂

∂xi
, w =

m∑

i=1

ηi(x)
∂

∂xi
,

then

[v,w] =
m∑

i=1

{
v(ηi) − w(ξi)

} ∂

∂xi
=

m∑

i=1

m∑

j=1

{
ξj ∂η

i

∂xj
− ηj ∂ξ

i

∂xj

}
∂

∂xi
. (1.11)

The Lie bracket is anti-symmetric, [v,w] = −[w,v], and bilinear; moreover it satisfies the
important Jacobi identity

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0, (1.12)

for any triple of vector fields u,v,w.

The Lie bracket between two vector fields can be identified as the infinitesimal gen-
erator of the commutator of the two associated flows. This interpretation is based on the
local coordinate expansion (see (1.8))

exp(−tw) exp(−tv) exp(tw) exp(tv)x = x+ t2[v,w]|x + O(t3), (1.13)

which follows directly from (1.10). For example, the Lie bracket of the scaling and transla-
tion vector fields on R is [∂x, x∂x] = ∂x, reflecting the non-commutativity of the operations
of translation and scaling. In particular, if the two flows commute, then the Lie bracket of
their infinitesimal generators is necessarily zero. This statement admits an important con-
verse, which is a consequence of the basic existence and uniqueness theorems for ordinary
differential equations — see [43; Theorem 1.34].

Theorem 1.25. Let v, w be vector fields on a manifold M . Then [v,w] = 0 if and

only if exp(tv) exp(sw)x = exp(sw) exp(tv)x for all x ∈M all t, s ∈ V where V ⊂ R2 is a

connected open subset of the (t, s) plane containing (0, 0) and such that both sides of the

preceding equation are defined at all (t, s) ∈ V .

The Differential

A smooth map F :M → N between manifolds will map smooth curves on M to smooth
curves on N , and thus induce a map between their tangent vectors. The result is a linear
map dF :TM |x → TN |F (x) between the tangent spaces of the two manifolds, called the
differential of F . More specifically, if the parametrized curve φ(t) has tangent vector
v|x = φ′(t) at x = φ(t), then the image curve ψ(t) = F [φ(t)] will have tangent vector
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w|y = dF (v|x) = ψ′(t) at the image point y = F (x). Alternatively, if we regard tangent
vectors as derivations, then we can define the differential by the chain rule formula

dF (v|x) [h(y)] = v[h ◦F (x)] for any h:N → R. (1.14)

In terms of local coordinates,

dF (v|x) = dF

(
m∑

i=1

ξi ∂

∂xi

)
=

n∑

j=1

(
m∑

i=1

ξi ∂F
j

∂xi

)
∂

∂yj
. (1.15)

(Note that the change of variables formula (1.4) is a special case of (1.15).) Consequently,
the differential dF defines a linear map from TM |x to TN |F (x), whose local coordinate

matrix expression is just the n×m Jacobian matrix
(
∂F j/∂xi

)
of F at x. In particular,

the rank of the map F can now be defined intrinsically as the rank of the linear map
determined by its differential dF . Note that the differential of the composition of two
maps F :M → N , and H:N → P , is just the linear composition of the two differentials:
d(H ◦F ) = dH ◦dF ; this fact is merely the coordinate-free version of the usual chain rule
for Jacobian matrices.

An important remark is that, in general, unless F is one-to-one, its differential dF
does not map vector fields to vector fields. Indeed if v is a vector field on M and x and
x̃ are two points in M with the same image F (x) = F (x̃) in N , there is no reason why
dF (v|x) should necessarily agree with dF (v|x̃). However, if v is mapped to a well-defined
vector field dF (v) on N , then the two flows match up, meaning

F [exp(tv)x] = exp(t dF (v)) F (x), (1.16)

where defined. Moreover, the differential dF respects the Lie bracket operation:

dF
(
[v,w]

)
= [dF (v), dF (w)], (1.17)

whenever dF (v) and dF (w) are well-defined vector fields onN . This is a consequence of the
commutator formulation; it can also be verified directly from (1.11), (1.15). A particular
consequence is that the Lie bracket preserves tangent vector fields to submanifolds.

Proposition 1.26. Suppose v and w are vector fields which are tangent to a sub-

manifold N ⊂M . Then their Lie bracket [v,w] is also tangent to N .

Example 1.27. The vector fields v = x∂y − y∂x, w = y∂z − z∂y , generate the
rotational flows around the z- and the x-axis respectively. They are both tangent to the
unit sphere S2 ⊂ R3, hence their Lie bracket [v,w] = x∂z − z∂x, which generates the
rotational flow around the y-axis, is also tangent to S2.

Vector Field Systems

In general, by a vector field system we mean a set V of vector fields on a manifold M
which forms a linear space under the operations of addition and multiplication by smooth
functions. Therefore, we require that if v,w ∈ V, and f, h ∈ C∞(M), then fv + hw ∈ V.
In most applications, V is finitely generated by vector fields v1, . . . ,vr, and so consists
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of all linear combinations
∑

i fivi with arbitrary smooth functions fi for coefficients. We
define V|x to be the subspace of TM |x spanned by the tangent vectors v|x for all v ∈ V;
in the finitely generated case V|x = Span{v1|x, . . . ,vr|x}.

Definition 1.28. A submanifold N ⊂ M is called an integral submanifold of the
vector field system V if and only if its tangent space TN |x is contained in the subspace
V|x for each x ∈ N .

The rank of the vector field system at a point x ∈M is, by definition, the dimension
of the subspace V|x. The dimension of any integral submanifold passing through x, then,
is bounded by the rank of the system at x. In the standard approach, one looks exclusively
for integral submanifolds of maximal dimension, meaning ones whose dimension equals the
rank of a vector field system at each of its points. However, we have chosen to keep the more
general definition so as to correspond more closely to the differential form case. Often the
rank of the vector field system is assumed to be constant, and so all the maximal integral
submanifolds have the same dimension, but the general vector field version of Frobenius’
Theorem does not require this extra hypothesis.

Definition 1.29. A system of vector fields V is called integrable if through every
point x ∈M there passes an integral submanifold of dimension n = dimV|x.

Note that if a vector field system V is integrable, and v is a vector field having the
property that it is tangent to every n-dimensional integral submanifold, then v necessarily
belongs to V. Consequently, an immediate necessary condition for the integrability of a
vector field system is provided by the fact that the Lie bracket of any two vector fields
tangent to a submanifold is also tangent to the submanifold, cf. Proposition 1.26. Thus,
if v,w are any two vector fields in the system, their Lie bracket [v,w] must be tangent to
each integral submanifold, and hence belong to the system. With this in mind, we make
the following definition.

Definition 1.30. A system of vector fields V is involutive if, whenever v,w ∈ V are
any two vector fields in V, their Lie bracket [v,w] also belongs to V.

In the case that V is finitely generated, the basic properties (1.9) of the Lie bracket
imply that we need only check the involutivity condition on a basis for the system. There-
fore, a vector field system generated by v1, . . . ,vr is involutive if and only if there exist
smooth functions ak

ij(x), i, j, k = 1, . . . r, such that

[vi,vj] =

r∑

k=1

ak
ij vk, i, j = 1, . . . , r. (1.18)

Note that the vector fields vi generating the system need not span a Lie algebra of vector
fields since we are not necessarily requiring that the coefficients ak

ij in (1.18) be constant.

Frobenius’ Theorem

Frobenius’ Theorem for vector field systems states that a regular system is integrable
if and only if it is involutive. The precise statement and proof will be given at the beginning
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of the following chapter. A simple example, though, is provided by a vector field system
generated by a single vector field. Such a system is automatically involutive. On the other
hand, the basic existence theorem for systems of ordinary differential equations provides
the required integral curves (and equilibrium points) of the vector field. Therefore the
system is also automatically integrable. Thus, for a vector field system generated by a
single vector field, Frobenius’ Theorem reduces to the usual existence theorem for systems
of ordinary differential equations.

Let M be a smooth manifold of dimension m and consider a regular vector field
system V of constant rank n. In this case, any integral submanifold N of the system can
have dimension at most n. Frobenius’ Theorem says that, for constant rank systems in
involution, this dimension is actually attained, and the vector field system is integrable.

Theorem 1.31. Let V be a system of smooth vector fields on a manifold M of

constant rank n. Then V is integrable if and only if it is involutive.

Remark : If the vector field system is finitely generated, or consists of analytic vector
fields, then the theorem remains true even if the rank varies: If V has rank n = n(x)
at x then there exists an n-dimensional integral submanifold N passing through x, and,
moreover, at every point of N the rank of the vector field system is the same, namely n;
see [23].

Proof : Let x0 ∈M . We introduce local coordinates

x = (y, z) = (y1, . . . , yn, z1, . . . , zm−n)

by first translating x0 to the origin, and then applying a linear transformation so that the
subspace V|0 ⊂ TM |0 corresponding to the vector field system at x0 = 0 is spanned by
the first n coordinate tangent vectors ∂/∂y1, . . . , ∂/∂yn. By continuity, for x = (y, z) in a
neighborhood of x0 = 0, the subspace V|x ⊂ TM |x is spanned by vector fields of the form

v̂i =
∂

∂yi
+

m−n∑

l=1

ξl
i(y, z)

∂

∂zl
, i = 1, . . . , n, (1.19)

where, at x0 = (0, 0), the coefficients satisfy ξl
i(0, 0) = 0 for all i, l. The Lie bracket of any

two of these vector fields has the form

[ v̂i, v̂j ] =

m−n∑

l=1

ηl
ij(y, z)

∂

∂zl
, i, j = 1, . . . , n. (1.20)

In order that the system be involutive, each vector field (1.20) must be a linear combination
of the vector fields (1.19). However, owing to the form of the vector fields v̂i, this can only
happen if all the coefficients are 0, so ηl

ij(y, z) ≡ 0 for all i, j, l. Therefore the vector fields
pairwise commute: [ v̂i, v̂j ] = 0.

Let exp(t v̂i) denote the flow of the ith vector field. According to Theorem 1.25,
commutativity of the vector fields implies that the flows commute, so that, where defined,

exp(t v̂i) ◦ exp(s v̂j) = exp(s v̂j) ◦ exp(t v̂i). (1.21)
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Our desired integral submanifolds will be found by starting at a given point and successively
flowing in all directions prescribed by the vector fields (1.19). More explicitly, for (t, s) =
(t1, . . . , tn, s1, . . . , sm−n) in a neighborhood U of the origin in Rm, we define the map
Φ:U →M by

x = Φ(t, s) = exp(t1v̂1) ◦ exp(t2v̂2) ◦ · · · ◦ exp(tnv̂n)(0, s), (1.22)

i.e., we start at the point x = (0, s) and flow an amount tj by the vector field v̂j . Note that,
by commutativity, the order in which we perform the flows is immaterial. The integral
submanifolds will be the images, under the map Φ, of the slices Hs = { (y, s) | y ∈ R

n } ⊂
Rm, for s ∈ Rm−n sufficiently near 0, which implies that (t, s) are the desired rectifying
coordinates. More specifically, I claim that a) the map Φ:V →M is a diffeomorphism in
a neighborhood 0 ∈ V ⊂ U , and b) for each s ∈ Rm−n, the submanifold Ns = Φ[V ∩Hs]
is an n-dimensional integral submanifold of V. The two claims will suffice to prove the
Theorem of Frobenius.

According to the Inverse Function Theorem, the first claim will follow if we show that
the differential (Jacobian matrix) of the map Φ is nonsingular at the origin. To compute
the t-derivatives of (1.22), we use the commutativity of the flows:

dΦ

(
∂

∂ti

∣∣∣∣
(t,s)

)
=

∂

∂ti

[
exp(t1v̂1) ◦ exp(t2v̂2) ◦ · · · ◦ exp(tnv̂n)(0, s)

]

=
∂

∂ti
exp(tiv̂i)

[
exp(t1v̂1) ◦ · · · ◦ exp(ti−1v̂i−1) ◦

◦ exp(ti+1v̂i+1) ◦ · · · ◦ exp(tnv̂n)(0, s)
]

= v̂i

∣∣
Φ(t,s)

,

the latter equality following from equation (1.6). Therefore,

dΦ

(
∂

∂ti

)
= v̂i, i = 1, . . . , n. (1.23)

On the other hand, Φ(0, s) = (0, s) by definition, so

dΦ

(
∂

∂sj

∣∣∣∣∣
(0,s)

)
=

∂

∂sj

∣∣∣∣∣
(0,s)

, j = 1, . . . , m− n. (1.24)

In particular, at the origin, v̂i = ∂/∂yi, and hence equations (1.23, 24) imply that the
differential dΦ(0, 0) is the identity matrix, which proves the first claim. To prove the
second claim, we note that (1.23) implies that the tangent space to the submanifold is
spanned by the vector fields v̂i, so TNs = dΦ(THs) = V. This suffices to prove that Ns is
an integral submanifold (of maximal dimension). Q.E.D.

Theorem 1.31 and its proof demonstrate the existence of local integral submanifolds
for an involutive vector field system. Moreover, just as the integral curves of a single
vector field can be extended to maximal integral curves, so can we extend the integral
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submanifolds to be maximal. In the sequel, the term “integral submanifold” will always
refer to the maximal, connected integral submanifolds of the given differential system. The
integral submanifolds of a constant rank vector field system V provide a foliation of the
manifold M by n-dimensional submanifolds — see [39; §2.11], [54] for the details.

Example 1.32. Consider the three vector fields v1 = ∂x, v2 = ∂y, v3 = x∂x + zy∂y,

which act on M = R3. Since [v1,v2] = 0, [v1,v3] = v1, [v2,v3] = zv2, the system
spanned by v1,v2,v3 is involutive. Indeed, the integral submanifolds are just the planes
Nc = {z = c} for c constant. Restricted to the integral submanifolds, the vector fields
generate nonisomorphic three-parameter planar group actions, (x, y) 7→ (λx+ δ, λzy + ε),
corresponding to Case 1.7 with k = 1, z = α in our tables. Therefore, v1,v2,v3 do
not generate a three-parameter group of transformations on R3. Moreover, one cannot
include these vector fields in a finite-dimensional Lie algebra, since [v2,v3] = v4 = z∂y,

[v4,v3] = v5 = z2∂y, and so on, hence the successive commutators span an infinite-
dimensional Lie algebra of vector fields.

Exercise 1.33. Suppose V is a commutative vector field system, so [v,w] = 0
for all v,w ∈ V. Prove that if V has constant rank n, then there exist local coordinates
(t1, . . . , tn, s1, . . . , sm−n) such that every vector field v ∈ V has the form v =

∑n

i=1 η
i(s) ∂ti

.

Exercise 1.34. Let M = R
2 and let V denote the vector field system spanned by the

horizontal vector field ∂x and all vertical vector fields of the form f(x)∂y where f is any

smooth scalar function such that it and all of its derivatives vanish at x = 0, so f (n)(0) = 0,
n = 0, 1, 2, . . .. Prove that V has rank one on the y-axis and rank two elsewhere. Prove
that any point on the y-axis is contained in a (nonunique) integral curve C transverse to
the y-axis. Therefore the rank of V at any other point in C is strictly greater than one.
This example shows that, for infinitely generated vector field systems of variable rank, one
must allow integral submanifolds of nonmaximal dimension. See [38] for more details.

Differential Forms

The dual objects to vector fields are differential forms. Given a point x ∈ M , a real-
valued linear function ω:TM |x → R on the tangent space is said to define a one-form at
x. The evaluation of ω on a tangent vector v will be indicated by the bilinear pairing
〈ω ;v 〉. The space of one-forms is the dual vector space to the tangent space TM |x, and
is called the cotangent space, denoted T∗M |x. The cotangent spaces are sewn together to
form the cotangent bundle T∗M =

S

x∈M T∗M |x, which, like the tangent bundle, forms an
m-dimensional vector bundle over the m-dimensional manifold M . A differential one-form

or Pfaffian form, then, is just a (smooth or analytic) section of T∗M , i.e., a smoothly
varying assignment of linear maps on the tangent spaces TM |x. Given a smooth real-
valued function f :M → R, its differential df , as given in (1.2), determines a one-form
whose evaluation on any tangent vector (vector field) v is defined by 〈 df ;v 〉 = v(f). In
local coordinates x = (x1, . . . , xm), the differentials dxi of the coordinate functions provide
a basis of the cotangent space at each point of the coordinate chart, which forms the dual
to the coordinate basis ∂xj of the tangent space; thus 〈 dxi ; ∂xj 〉 = δi

j , where δi
j denotes

10/22/12 16 c© 2012 Peter J. Olver



the Kronecker delta, which is 1 if i = j and 0 otherwise. In terms of this basis, a general
one-form takes the local coordinate form

ω =
m∑

i=1

hi(x)dx
i, so that 〈ω ;v 〉 =

m∑

i=1

hi(x)ξ
i(x) (1.25)

defines its evaluation on the vector field (1.3).

Exercise 1.35. Let SF = {F1(x) = · · · = Fk(x) = 0} ⊂ M be a regular vari-
ety. Prove that its tangent space is the common kernel of the differentials of its defining
functions:

TSF |x = { v ∈ TM |x | 〈 dFν(x) ;v 〉 = 0, ν = 1, . . . , k } .

Differential forms of higher degree are defined as alternating multi-linear maps on the
tangent space. Thus a differential k-form Ω at a point x ∈M is a k-linear map

Ω :

k times︷ ︸︸ ︷
TM |x × · · · × TM |x −→ R,

which is anti-symmetric in its arguments, meaning that

〈Ω ;vπ1, . . . ,vπk 〉 = (signπ) 〈Ω ;v1, . . . ,vk 〉,

for any permutation π of the indices {1, . . . , k}. We refer to k as the degree of the differential
form Ω. A real-valued function is considered as a form of degree 0. The space of all k-forms
at x is the k-fold exterior power of the cotangent space at x, denoted by

Vk
T∗M |x, and

forms a vector space of dimension
(
m
k

)
. In particular, the only differential form whose

degree is greater than the dimension of the underlying manifold is the trivial one Ω = 0.
These spaces are sewn together to form the kth exterior tangent bundle

Vk
T∗M .

If ω1, . . . , ωk are one-forms at x, their wedge product defines a decomposable k-form
ω1 ∧ · · · ∧ ωk, which is defined by the determinantal formula

〈ω1 ∧ · · · ∧ ωk ;v1, . . . ,vk 〉 = det
(
〈ωi ;vj 〉

)
.

In particular, the one-forms ω1, . . . , ωk are linearly dependent if and only if their wedge
product vanishes: ω1 ∧ · · · ∧ ωk = 0. Not every k-form is decomposable, although they
can all be written as linear combinations of decomposable forms. In local coordinates
x = (x1, . . . , xm), the

(
m
k

)
coordinate k-forms dxI = dxi1 ∧ · · · ∧ dxik corresponding to all

strictly increasing multi-indices 1 ≤ i1 < i2 < · · · < ik ≤ m form a basis for the exterior

tangent space
Vk
T∗M |x. A general differential k-form, then, is a section of

Vk
T∗M , and,

in local coordinates, can be written as a sum

Ω =
∑

I

hI(x) dx
I , (1.26)

over the basis k-forms with smoothly varying coefficients hI(x). For example, every m-
form on the m-dimensional manifold M is a multiple h(x) dx of the standard volume form
dx = dx1 ∧ · · · ∧ dxm on Rm.
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If f1, . . . , fk are smooth, real-valued functions on M , then the wedge product df1 ∧
· · ·∧dfk of their differentials forms a decomposable k-form on M , which vanishes at a point
x if and only if the differentials are linearly dependent there. If we expand this form in
terms of the coordinate differentials, as in (1.26), then the coefficient of the basis k-form
dxI is the Jacobian determinant

∂(f1, . . . , fk)

∂(xi1 , . . . , xik)
= det

(
∂Fj

∂xil

)
.

Thus, Theorem 1.10 implies the following simple test for functional independence.†

Proposition 1.36. If f1, . . . , fk satisfy df1 ∧· · ·∧dfk 6= 0, then they are functionally
independent. On the other hand, if df1 ∧ · · · ∧ dfk ≡ 0 for all x ∈ M , then f1, . . . , fk are

functionally dependent.

If Ω = ω1∧· · ·∧ωk and Θ = θ1∧· · ·∧θl are decomposable k- and l-forms, we define their
wedge product to be the decomposable (k+ l)-form Ω∧Θ = ω1∧· · ·∧ωk ∧θ1∧· · ·∧θl; this
definition extends by linearity to arbitrary differential forms. The resulting wedge product
between differential forms is bilinear and “super-symmetric”: Ω ∧ Θ = (−1)klΘ ∧ Ω. In
particular, the wedge product of a 0-form f , otherwise known as a smooth function, and
a k-form Ω is the k-form f Ω obtained by multiplying Ω by f .

Remark : We shall always assume that our differential forms are of homogeneous de-
gree. This means that, although we are allowed to take the wedge product of any pair of
differential forms, we are only allowed to sum differential forms of the same degree.

Exercise 1.37. Let ω1, . . . , ωk be a set of linearly independent one-forms, so ω1 ∧
· · · ∧ ωk 6= 0. Prove Cartan’s Lemma, which states that the one-forms θ1, . . . , θk satisfy∑

i θ
i ∧ ωi = 0 if and only if θi =

∑
j A

i
j ω

j for some symmetric matrix of functions:

Ai
j = Aj

i .

If F :M → N is a smooth map, then there is an induced map on differential forms,
called the pull-back of F and denoted F∗, which maps a differential form on N back to a
differential form onM . (Warning : The direction of the pull-back is reversed from that of F
and its differential dF .) If θ ∈ T∗N |y is a one-form at y = F (x), then ω = F∗θ ∈ T∗M |x
is a one-form on M defined so that 〈ω ;v 〉 = 〈F∗θ ;v 〉 = 〈 θ ; dF (v) 〉 for any tangent
vector v ∈ TM |x. In local coordinates, the pull-back of a one-form θ on N is the one-form

F∗θ = F∗




n∑

j=1

hj(y) dy
j


 =

n∑

j=1

hj(F (x)) dF j(x) =

m∑

i=1




n∑

j=1

hj(F (x))
∂F j

∂xi


 dxi.

(1.27)

† Actually, Theorem 1.10 only applies if the rank of f1, . . . , fk is constant. The proof of the
second statement in Proposition 1.36 in the more general case when the rank is < k, but not
necessarily constant, can be found in [39; Theorem 1.4.14].
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Thus, in local coordinates the pull-back is represented by the transpose of the Jacobian
matrix of F . The pull-back extends to arbitrary differential forms by requiring that it
commute with addition and the wedge product:

F∗(Ω + Θ) = F∗(Ω) + F∗(Θ), F∗(Ω ∧ Θ) = F∗(Ω) ∧ F∗(Θ). (1.28)

In particular, the pull-back of a smooth function h:N → R (0-form) is given by compo-
sition, F∗(h) = h ◦F . In contrast to the behavior of vector fields under the differential,
the pull-back of a differential k-form on N is always a well-defined smooth k-form on M .
Note that the pull-back reverses the order of composition of maps: If F :M → N and
H:N → P , then (H ◦F )∗ = F∗ ◦H∗.

Exercise 1.38. Prove that the pull-back action of a smooth map F : Rm → Rm on the
volume form dx = dx1∧· · ·∧dxm is given by F∗(dx) = (det J) dx where J =

(
∂F i/∂xj

)
is

the Jacobian matrix of F . Conclude that F is volume-preserving if and only if its Jacobian
determinant has value ±1.

The differential (1.2) of a smooth function has an important and natural extension to
differential forms of higher degree. In general, the differential or exterior derivative of a
k-form is the (k + 1)-form defined in local coordinates by

dΩ =
∑

I

dhI(x) ∧ dx
I =

∑

I,j

∂hI

∂xj
dxj ∧ dxI , (1.29)

for Ω given by (1.26). For example, if ω =
∑
hi dx

i is a one-form, its differential is the
two-form

dω =
m∑

i=1

dhi ∧ dx
i =

∑

i<j

(
∂hj

∂xi
−
∂hi

∂xj

)
dxi ∧ dxj. (1.30)

The differential satisfies the generalized (“super”) derivational property

d(Ω ∧ Θ) = dΩ ∧ Θ + (−1)k Ω ∧ dΘ, (1.31)

whenever Ω is a k-form.

The fact that the differential is coordinate free is perhaps not so clear from the local
coordinate definition (1.29). An alternative, intrinsic definition in the case of one-form is
via the useful formula

〈 dω ;v,w 〉 = v〈ω ;w 〉 − w〈ω ;v 〉 − 〈ω ; [v,w] 〉, (1.32)

valid for any pair of vector fields v,w. In (1.32), the first term on the right hand side is
the result of applying the vector field v to the function defined by the evaluation of the
one-form ω on the vector field w, cf. (1.25). Formula (1.32) has the implication that, in a
certain sense, the Lie bracket and the differential are dual operations.

Exercise 1.39. Prove that formula (1.32) agrees with the local coordinate version
(1.30). Find a generalization of (1.32) valid for arbitrary k-forms, cf. [54].
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A crucial property of the differential is its invariance under smooth maps. The proof
is straightforward, using either local coordinates or the intrinsic approach.

Theorem 1.40. Let F :M → N be a smooth map with pull-back F∗. If Ω is any

differential form on N , then

d[F∗Ω] = F∗[dΩ]. (1.33)

Suppose F : Ñ → M parametrizes a submanifold N ⊂ M . We will call the pull-back
F∗Ω of a differential form Ω on M the restriction of Ω to the submanifold N , and denote
it by Ω |N . Actually, we should call this the restriction of Ω to the parameter space Ñ ,
but the notation should not cause any confusion; besides, if N is a regular submanifold,
we can, as remarked earlier, unambiguously identify N with Ñ .

Corollary 1.41. Let N ⊂ M be a submanifold. If Ω is any differential form which

vanishes when restricted to N , so Ω |N = 0, then so does its differential, d(Ω |N) = 0.

Finally, the anti-symmetry of the wedge product, coupled with the equality of mixed
partial derivatives, implies that applying the differential twice in a row always produces
zero; see, for instance, (1.30).

Theorem 1.42. If Ω is any differential form, then

d(dΩ) = 0. (1.34)

This final property provides the foundation of a remarkable, deep connection between
the structure of the space of differential forms and the global topology of the underlying
manifold. A differential form Ω is said to be closed if it has zero differential, dΩ =
0. A k-form Ω is said to be exact if it is the differential of a (k − 1)-form: Ω = dΘ.
Theorem 1.42 implies that every exact form is closed, but the converse may not hold.
Indeed, (1.34) implies that the differential defines a “complex”, the deRham complex of
the manifold M , whose cohomology, meaning, very roughly, the extent to which closed
forms fail to be exact, depends, remarkably, only on the global topological character of M .
For example, the Poincaré Lemma states that convex subdomains of Euclidean space have
trivial cohomology.

Theorem 1.43. Let k > 0. If M ⊂ Rm is a convex open subset, and Ω is any closed

k-form defined on all of M , then Ω is exact, so that there exists a (k − 1) form Θ on M
such that Ω = dΘ. A closed 0-form, i.e., a function satisfying df = 0, is constant.

Thus, on a general manifold M , every closed form is locally, but perhaps not glob-
ally, exact. As our subsequent considerations are primarily local, we will not pursue this
fascinating aspect of the theory of differential forms any further, but refer the interested
reader to [10].

Example 1.44. Let M = R2 \ {0}. An easy calculation shows that the one-form
ω = (x2 + y2)−1 (y dx − x dy) is closed, so dω = 0. However, there is no globally defined
smooth function f(x, y) satisfying df = ω, so that ω is not exact. Indeed, locally ω = dθ
is the differential of the polar angle θ = tan−1(y/x), but, of course, θ is not a globally
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defined single-valued function on M . It is not hard to show that ω is essentially the unique
closed one-form with this property; any closed one-form η can be written as η = c ω + df
for some constant c and some smooth, globally defined function f . This result reflects the
fact that M is a topological surface with a single hole.
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