
Chapter 2

Lie Groups and Lie Algebras

The symmetry groups that arise most often in the applications to geometry and differ-
ential equations are Lie groups of transformations acting on a finite-dimensional manifold.
Since Lie groups will be one of the cornerstones of our investigations, it is essential that
we gain a basic familiarity with these fundamental mathematical objects. The present
chapter is devoted to a survey of a number of fundamental facts concerning Lie groups and
Lie algebras, and their actions on manifolds. More detailed presentations can be found in
a variety of references, including [43, 48, 54].

Recall first that a group is a set G that has an associative (but not necessarily commu-
tative) multiplication operation, denoted g ·h for group elements g, h ∈ G. The group must
also contain a (necessarily unique) identity element, denoted e, and each group element g
has an inverse g−1 satisfying g · g−1 = g−1 · g = e.

The continuous nature of Lie groups is formalized by the requirement that, in addition
to satisfying the basic group axioms, they are also endowed with the structure of a smooth
manifold.

Definition 2.1. A Lie group G is a smooth manifold which is also a group, such
that the group multiplication (g, h) 7→ g · h and inversion g 7→ g−1 define smooth maps.

Analytic Lie groups are defined by analytic manifolds, with analytic multiplication
and inversion maps. Most of our examples are, in fact, analytic; indeed, any smooth Lie
group can be endowed with an analytic structure, [48]. Often, an r-dimensional Lie group
is referred to as an r parameter group, the “group parameters” referring to a choice of
local coordinates on the group manifold.

Example 2.2. The simplest example of an r parameter Lie group is the abelian
(meaning commutative) Lie group R

r. The group operation is given by vector addition.
The identity element is the zero vector, and the inverse of a vector x is the vector −x.

Example 2.3. The prototypical example of a real Lie group is the general linear
group GL(n,R) consisting of all invertible n× n real matrices, with matrix multiplication
defining the group multiplication, and matrix inversion defining the inverse. Equivalently,
GL(n,R) can be regarded as the group of all invertible linear transformations on R

n, where
composition serves to define the group operation. Note that GL(n,R) is an n2-dimensional
manifold, simply because it is an open subset (namely, where the determinant is nonzero)

of the space of all n× n matrices, which is itself isomorphic to Rn2

. The group operations
are clearly analytic. Similarly, the prototypical complex Lie group is the group GL(n,C)
of invertible n × n complex matrices. We will often employ the notation GL(n) to mean
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either the real or complex general linear group — in such usage, the precise version will
either be irrelevant or clear from the context.

A subset H ⊂ G of a group is a subgroup provided the multiplication and inversion
operations restrict to it. The subgroup H is called a Lie subgroup if it is also an (immersed)

submanifold parametrized by a smooth group homomorphism F : H̃ → H ⊂ G. The term
“homomorphism” means that F respects the group operations: F (g · h) = F (g) · F (h),

F (e) = e, F (g−1) = F (g)−1, so the parameter space H̃ is a Lie group isomorphic to
H. Most (but not all!) Lie groups can be realized as Lie subgroups of the general linear
group GL(n); these are the so-called “matrix Lie groups”. The following result is useful
for analyzing matrix (and other) subgroups; see [54; Theorem 3.42] for a proof.

Proposition 2.4. If H ⊂ G is a subgroup of a Lie group G, which is also a (topo-
logically) closed subset, then H is a Lie subgroup of G.

In particular, if G is a Lie group, then the connected component of G containing the
identity element, denoted G+, is itself a Lie group. For example, the real general linear
group consists of two disconnected components, indexed by the sign of the determinant.
The subgroup GL(n,R)+ = {A ∈ GL(n,R) | detA > 0 }, consisting of orientation-preser-
ving linear transformations, is the connected component containing the identity matrix.
On the other hand, the complex general linear group GL(n,C) is connected. The other
connected components of a general Lie group are recovered by multiplying the connected
component G+ by a single group element lying therein. For example, every orientation-
reversing matrix in GL(n,R) can be obtained by multiplying an orientation-preserving
matrix by a fixed matrix with negative determinant, e.g., the diagonal matrix with entries
−1,+1, . . . ,+1.

Example 2.5. The most important Lie groups are the three families of “classical
groups”. The special linear or unimodular group is SL(n) = {A ∈ GL(n) | detA = 1 }
consisting of all volume-preserving linear transformations. In other words, SL(n) is the
group of linear symmetries of the standard volume form dx = dx1 ∧ · · · ∧ dxn. Both the
real and complex versions are connected, and have dimension n2−1. The orthogonal group
O(n) = {A ∈ GL(n) |ATA = 11 } is the group of norm-preserving linear transformations
— rotations and reflections — and forms the group of linear symmetries of the Euclidean
metric ds2 = (dx1)2 + · · ·+ (dxn)2 on Rn. The component containing the identity forms
the special orthogonal group SO(n) = O(n) ∩ SL(n), consisting of just the rotations. As
we shall see, O(n) and SO(n) have dimension 1

2n(n − 1). The symplectic group is the
r(2r + 1)-dimensional Lie group

Sp(2r) =
{
A ∈ GL(2r,R)

∣∣ ATJA = J
}
, (2.1)

consisting of linear transformations which preserve the canonical nonsingular skew-sym-

metric matrix J =

(
0 −11
11 0

)
. In particular, Sp(2) ≃ SL(2). We remark that a linear

transformation L: x 7→ Ax lies in Sp(2r) if and only if it is a canonical transformation, in
the sense of Hamiltonian mechanics, hence Sp(2r) forms the group of linear symmetries of
the canonical symplectic form Ω = dx1 ∧ dx2 + · · ·+ dx2r−1 ∧ dx2r.
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Exercise 2.6. Let G be a group. If H ⊂ G is a subgroup, then the quotient space

G/H is defined as the set of all left cosets g ·H = { g · h | h ∈ H }, for g ∈ G. Show that if
H is a normal subgroup, meaning that it equals its conjugate subgroups: gHg−1 = H for
all g ∈ G, then G/H can be given the structure of a group. If H is an s-dimensional closed
subgroup of an r-dimensional Lie group G, then G/H can be endowed with the structure
of a smooth manifold of dimension r − s, which is a Lie group provided H is a normal
closed subgroup.

At the other extreme, a discrete subgroup Γ ⊂ G of a Lie group is a subgroup whose
intersection with some neighborhood {e} ⊂ U ⊂ G of the identity element consists only of
the identity: Γ ∩ U = {e}. Examples include the integer lattices Zr ⊂ R

r, and the group
SL(n,Z) of integer matrices of determinant 1. Although discrete groups can be regarded
as zero-dimensional Lie groups, they are totally disconnected, and so cannot be handled
by any of the wonderful tools associated with connected Lie groups. The quotient group
G/Γ by a discrete normal subgroup, then, is a Lie group which is locally isomorphic to G
itself; see Theorem 2.52 below for more details.

Transformation Groups

In most instances, groups are not given to us in the abstract, but, rather, concretely as
a family of transformations acting on a space. In the case of Lie groups, the most natural
setting is as groups of transformations acting smoothly on a manifold.

Definition 2.7. A transformation group acting on a smooth manifold M is deter-
mined by a Lie group G and smooth map Φ:G × M → M , denoted by Φ(g, x) = g · x,
which satisfies

e · x = x, g · (h · x) = (g · h) · x, for all x ∈ M, g ∈ G. (2.2)

Condition (2.2) implies that the inverse group element g−1 determines the inverse to
the transformation defined by the group element g, so that each group element g induces
a diffeomorphism from M to itself. Definition 2.7 assumes that the group action is global ,
meaning that g · x is defined for every g ∈ G and every x ∈ M . In applications, though,
a group action may only be defined “locally”, meaning that, for a given x ∈ M , the
transformation g · x is only defined for group elements g sufficiently near the identity.
Thus, for a local transformation group, the map Φ is defined on an open subset {e}×M ⊂
V ⊂ G×M , and the conditions (2.2) are imposed wherever they make sense.

Example 2.8. An obvious example is provided by the usual linear action of the
general linear group GL(n,R), acting by matrix multiplication on column vectors x ∈ Rn.
This action clearly induces a linear action of any subgroup of GL(n,R) on Rn. Since
linear transformations map lines to lines, there is an induced action of GL(n,R), and its
subgroups, on the projective space RPn−1. Of particular importance is the planar case,
n = 2, so we discuss this in some detail. The linear action of GL(2,R) on R2 is

(x, y) 7−→ (αx+ βy, γx+ δy), A =

(
α β
γ δ

)
∈ GL(2). (2.3)
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Now, as in Example 1.3, we can identify the projective line RP1 with a circle S1. If we use
the projective coordinate p = x/y, the induced action is given by the linear fractional or
Möbius transformations

p 7−→ αp+ β

γp+ δ
, A =

(
α β
γ δ

)
∈ GL(2). (2.4)

In this coordinate chart, the x–axis in R2 is identified with the point p = ∞ in RP1,
and the linear fractional transformations (2.4) have a well-defined extension to include the
point at infinity. Alternatively, we can regard (2.4) as defining a local action of GL(2,R)
on the real line R, defined on the subset V = { (A, p) | γp+ δ 6= 0 } ⊂ GL(2,R)× R.

Similarly, the complex general linear group GL(n,C) acts linearly on C
n, and there

is an induced action on the complex projective space CPn−1. In particular, the action
(2.3) of GL(2,C) on C

2 induces an action on complex projective space CP1 ≃ S2, given by
complex linear fractional transformations (2.4). As in the real case, it restricts to define a
local action of GL(2,C) on the complex plane C.

Example 2.9. An important, but almost tautological example, is provided by the
action of a Lie group on itself by multiplication. In this case, the manifold M coincides
with G itself, and the map Φ:G× G 7→ G is given by left multiplication: Φ(g, h) = g · h.
Alternatively, we can let G act on itself by right multiplication via Φ̃(g, h) = h · g−1; in
this case, the inverse ensures that the composition laws (2.2) remain valid.

Example 2.10. Let v be a vector field on a manifold M . The properties (1.6) imply
that the flow exp(tv) defines a (local) action of the one-parameter group R, parametrized
by the “time” t, on the manifold M . For example, if M = R, with coordinate x, then the
vector fields ∂x, x∂x and x2∂x generate flows, given explicitly in Example 1.22, which form
one-parameter subgroups of the projective group (2.4) (identifying p with x). In fact, these
three particular subgroups — translations, scalings, and inversions — serve to generate the
full projective group, a fact that will become clear from the Lie algebra methods discussed
below.

Example 2.11. The (real) affine group A(n) is defined as the group of affine trans-
formations x 7→ Ax + a in Rn. Thus, the affine group is parametrized by a pair (A, a)
consisting of an invertible matrix A ∈ GL(n) and a vector a ∈ Rn. The affine group A(n)
has dimension n(n + 1), being isomorphic, as a manifold, to the Cartesian product space
GL(n) × Rn. However, A(n) is not the Cartesian product of the groups GL(n) and Rn

since the group multiplication law is given by (A, a) · (B, b) = (AB, a + Ab). The affine
group can be realized as a subgroup of GL(n+ 1) by identifying the group element (A, a)

with the (n+ 1)× (n+ 1) matrix

(
A a
0 1

)
.

The affine group provides an example of a general construction known as the “semi-
direct product”. In general, if G and H are, respectively, r- and s-dimensional Lie groups,
their Cartesian product G×H is an (r+s)-dimensional Lie group with the group operation
being defined in the obvious manner: (g, h) · (g̃, h̃) = (g · g̃, h · h̃). If, in addition, G
acts as a group of transformations on the Lie group H, satisfying g · (h · h̃) = (g · h) ·
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(g · h̃), then the semi-direct product G ⋉ H is the (r + s)-dimensional Lie group which,
as a manifold just looks like the Cartesian product G × H, but whose multiplication is
given by (g, h) · (g̃, h̃) = (g · g̃, h · (g · h̃)). In particular, the affine group is the semi-
direct product of the general linear group GL(n) acting on the abelian group Rn, written
A(n) = GL(n) ⋉ Rn. Another important example is provided by the Euclidean group

E(n) = O(n) ⋉ Rn, which is generated by the groups of orthogonal transformations and
translations, and thus forms a subgroup of the full affine group. Its connected component is
SE(n) = SO(n)⋉Rn. The Euclidean group has as alternative characterization as the group
of isometries, meaning norm-preserving transformations, of Euclidean space, and thus,
according to Klein’s characterization of geometry based on groups, lies at the foundation
of Euclidean geometry. We also define the equi-affine subgroup SA(n) = SL(n) ⋉ Rn,
which consists of volume-preserving affine transformations, and forms the basis of affine
geometry, cf. [20].

Given an action of the Lie group G on a manifold M , the isotropy subgroup of a
point x ∈ M is Gx = { g | g · x = x } ⊂ G consisting of all group elements g which fix
x. Proposition 2.4 demonstrates that Gx is a Lie subgroup, and can be viewed as the
symmetry subgroup for the point x. For example, the isotropy subgroup of the projective
group (2.4) fixing the origin p = 0 is the group of invertible lower triangular matrices. In
particular, Gx = G if and only if x is a fixed point of the group action. If g · x = y,
then the isotropy group at y is conjugate to that at x, meaning Gy = g · Gx · g−1. A
transformation group acts freely if the isotropy subgroups are all trivial, Gx = {e} for all
x ∈ M , which means that, for e 6= g ∈ G, we have g · x 6= x for any x ∈ M . The action
is locally free if this holds for all g 6= e in a neighborhood of the identity; equivalently, the
isotropy subgroups are discrete subgroups of G. A transformation group acts effectively if
different group elements have different actions, so that g · x = h · x for all x ∈ M if and
only if g = h; this is equivalent to the statement that the only group element acting as the
identity transformation is the identity element of G. The effectiveness of a group action is
measured by its global isotropy subgroup GM =

⋂
x∈M Gx = { g | g · x = x for all x ∈ M },

so that G acts effectively if and only if GM = {e}. Clearly, a free group action is effective,
although the converse is certainly not true. Slightly more generally, a Lie group G is said
to act locally effectively if GM is a discrete subgroup of G, which is equivalent to the
existence of a neighborhood U of the identity e such that GM ∩ U = {e}.

Proposition 2.12. Suppose G is a transformation group acting on a manifold M .

Then the global isotropy subgroup GM is a normal Lie subgroup of G. Moreover, there is

a well-defined effective action of the quotient group G/GM on M , which “coincides” with

that of G in the sense that two group elements g and g̃ have the same action on M , so

g · x = g̃ · x for all x ∈ M , if and only if they have the same image in Ĝ, so g̃ = g · h for

some h ∈ GM .

Thus, if a transformation group G does not act effectively, we can, without any sig-
nificant loss of information or generality, replace it by the quotient group G/GM , which
does act effectively, and in the same manner as G does. For a locally effective action,
the quotient group G/GM is a Lie group having the same dimension, and the same local
structure, as G itself. A group acts effectively freely if and only if G/GM acts freely; this is
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equivalent to the statement that every local isotropy subgroup equals the global isotropy
subgroup: Gx = GM , x ∈ M .

Example 2.13. The general linear group GL(n,R) acts effectively on Rn. The
isotropy group of a nonzero point 0 6= x ∈ Rn can be identified with the affine group
A(n− 1) of Example 2.11; the isotropy group of 0 is all of GL(n,R). The induced action
on projective space RPn−1 is no longer effective since the diagonal matrices λ11 act trivially
on lines through the origin. The quotient subgroup PGL(n,R) = GL(n,R)/{λ11} is called
the projective group. Note that if n is odd, we can identify PGL(n,R) ≃ SL(n,R) with the
special linear group. However, if n is even, SL(n,R) only acts locally effectively on RP

n−1

since −11 ∈ SL(n,R), and hence PSL(n,R) = SL(n,R)/{± 11} is equal to the connected
component of PGL(n,R) containing the identity.

Exercise 2.14. Discuss the corresponding action of GL(n,C) on complex projective
space CPn−1.

Example 2.15. Consider the action of GL(n,R) on the space of all real n × n
matrices given by X 7→ AXAT for A ∈ GL(n). The orthogonal Lie group is the isotropy
group for the identity matrix 11. Similarly, if n = 2r is even, the isotropy subgroup of the
canonical nondegenerate skew-symmetric matrix J given in (2.1) is the symplectic group
Sp(2r). The isotropy group of the diagonal matrix with p entries equaling +1 and m− p
entries equaling −1 is the pseudo-orthogonal group O(p,m− p); for example O(1, 1) is the

one-dimensional group of hyperbolic rotations

(
cosh t sinh t
sinh t cosh t

)
.

Invariant Subsets and Equations

Let G be a (local) group of transformations acting on the manifold M . A subset
S ⊂ M is called G–invariant if it is unchanged by the group transformations, meaning
g · x ∈ S whenever g ∈ G and x ∈ S (provided g · x is defined if the action is only local).
The most important classes of invariant subsets are the varieties defined by the vanishing
of one or more functions. A group G is called a symmetry group of a system of equations

F1(x) = · · · = Fk(x) = 0, (2.5)

if and only if the variety SF = { x |F1(x) = · · · = Fk(x) = 0 } is a G-invariant subset of
M . Thus, a symmetry group of a system of equations maps solutions to other solutions:
If x ∈ M satisfies (2.5) and g ∈ G is any group element such that g · x is defined, then the
transformed point g ·x is also a solution to the system. Knowledge of a symmetry group of
a system of equations allows us to construct new solutions from old ones, a fact that will
be particularly useful when we apply these methods to systems of differential equations.

An orbit of a transformation group is a minimal (nonempty) invariant subset. For
a global action, the orbit through a point x ∈ M is just the set of all images of x under
arbitrary group transformations: Ox = { g · x | g ∈ G }. More generally, for a local group
action, the orbit is the set of all images of x under arbitrary finite sequences of group
transformations: Ox = { g1 · g2 · · · gn · x | gi ∈ G, n ≥ 0 }. If G is connected, its orbits are
connected. Clearly, a subset S ⊂ M is G-invariant if and only if it is the union of orbits.
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The group action is called transitive if there is only one orbit, so (assuming the group acts
globally), for every x, y ∈ M there exists at least one g ∈ G such that g · x = y. At the
other extreme, a fixed point is a zero-dimensional orbit; for connected group actions, the
converse holds: Any zero-dimensional orbit is a fixed point.

Example 2.16. For the usual linear action of GL(n) on Rn, there are two orbits:
The origin {0} and the remainder Rn \ {0}. The same holds for SL(n) since we can still
map any nonzero vector in Rn to any other nonzero vector by a matrix of determinant 1.
The orthogonal group O(n) is a bit different: The orbits are spheres {|x| = constant} (and
the origin), and any other invariant subset is the union of spheres. The induced projective
actions of each of these three groups on RPn−1 are all transitive.

A particularly important class of transitive group actions is provided by the homoge-

neous spaces , defined as the quotient space G/H of a Lie group G by a closed subgroup;
see Exercise 2.6. The left multiplication of G induces a corresponding globally defined,
transitive action of the group G on the homogeneous space G/H. For example, the left
multiplication action of the three-dimensional rotation group SO(3) on itself induces the
standard action on the two-dimensional sphere S2 = SO(3)/SO(2) realized as the quotient
space by any of the (non-normal) two-dimensional rotation subgroups. In fact, every global
transitive group action can be identified with a homogeneous space.

Theorem 2.17. A Lie group G acts globally and transitively on a manifold M if

and only if M ≃ G/H is isomorphic to the homogeneous space obtained by quotienting G
by the isotropy subgroup H = Gx of any designated point x ∈ M .

Example 2.18. Consider the action of GL(n) on M = Rn \{0}. The isotropy group
of the point e1 = (1, 0, . . . , 0) is the subgroup of matrices whose first column equals e1,
which can be identified with the affine group A(n− 1), as in Example 2.11. Theorem 2.17
implies that we can identify Rn \ {0} with the homogeneous space GL(n)/A(n− 1).

Exercise 2.19. Determine the homogeneous space structures of the sphere Sn−1,
and of the projective space RPn−1, induced by the transitive group actions of GL(n),
SL(n), and SO(n).

In general, the orbits of a Lie group of transformations are all submanifolds of the
manifold M . A group action is called semi-regular if all its orbits have the same dimension.
The action is called regular if, in addition, each point x ∈ M has arbitrarily small neigh-
borhoods whose intersection with each orbit is a connected subset thereof. The condition
that each orbit be a regular submanifold is necessary, but not sufficient, for the regularity
of the group action.

Example 2.20. Let T = S1 × S1 be the two-dimensional torus, with angular co-
ordinates (θ, ϕ), 0 ≤ θ, ϕ < 2π. Consider the one-parameter group action (θ, ϕ) 7−→
(θ + t, ϕ + κt) mod2π, t ∈ R, where 0 6= κ ∈ R. If κ/π is a rational number, then the
orbits of this action are closed curves, diffeomorphic to the circle S1, and the action is
regular. On the other hand, if κ/π is irrational, then the orbits never close, and, in fact,
each orbit is a dense subset of the torus. The action in the latter case is semi-regular, but
not regular.
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Example 2.21. Consider the one-parameter group action,

(r, θ) 7−→
(

ret

1 + r(et − 1)
, θ + t

)
,

defined in terms of polar coordinates, on the punctured plane M = R2 \ {0}. The orbits
of this group action are all regular one-dimensional submanifolds of M — they consist of
the unit circle r = 1 and two families of spirals. However, the group action is not regular
— indeed, all the spiral orbits intersect any small neighborhood of each point on the unit
circle in infinitely many disconnected components.

Proposition 2.22. An r-dimensional Lie group G acts locally freely on a manifold

M if and only if its orbits have the same dimension r as G itself. The group acts effectively
freely if and only if its orbits have dimension s = dimG− dimGM .

The orbits of regular and semi-regular group actions have a particularly simple lo-
cal canonical form, generalizing the rectifying coordinates for a one-parameter group of
transformations in Theorem 1.21.

Theorem 2.23. Let G be a Lie group acting regularly on a manifold M with s-
dimensional orbits. Then, near every point of M , there exist rectifying local coordinates

(y, z) = (y1, . . . , ys, z1, . . . , zm−s) having the property that any orbit intersects the co-

ordinate chart in at most one slice Nc = {z1 = c1, . . . , z
m−s = cm−s}, for constants

c = (c1, . . . , cm−s). If the action is semi-regular, the same statement holds except that an

orbit may intersect the chart in more than one such slice.

This fundamental result is a direct consequence of Frobenius’ Theorem 1.31. The-
orem 2.23 demonstrates that the orbits form a foliation of the underlying manifold. In
practice, the rectifying coordinates are most readily constructed using the infinitesimal
methods to be discussed below.

Example 2.24. For the orthogonal group O(3) acting on R
3 \ {0}, the orbits are

the two-dimensional spheres, and rectifying coordinates are given by spherical coordinates,
with the angular coordinates θ, ϕ playing the role of y, and the radius r the role of z in
Theorem 2.23.

Invariant Functions

An invariant of a transformation group is defined as a real-valued function whose
values are unaffected by the group transformations. The determination of a complete set
of invariants of a given group action is a problem of supreme importance for the study of
equivalence and canonical forms. In the regular case, the orbits, and hence the canonical
forms, for a group action are completely characterized by its invariants.

Definition 2.25. Let G be a transformation group acting on a manifold M . An
invariant of G is a real-valued function I:M → R which satisfies I(g · x) = I(x) for all
transformations g ∈ G.
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Proposition 2.26. Let I:M → R. The following conditions are equivalent:

• I is a G-invariant function.

• I is constant on the orbits of G.

• The level sets {I(x) = c} of I are G-invariant subsets of M .

For example, in the case of the orthogonal group O(n) acting on R
n, the orbits are

spheres r = |x| = constant, and hence any orthogonal invariant is a function of the radius:
I = F (r). If G acts transitively on the manifold M , then there are no nonconstant
invariants. If G acts transitively on a dense subset M0 ⊂ M , then the only continuous

invariants are the constants. For instance, the only continuous global invariants of the
irrational flow on the torus, cf. Example 2.20, are the constants, since every orbit is dense
in this case. Similarly, the only continuous invariants of the standard action of GL(n,R)
on Rn are the constant functions, since the group acts transitively on Rn \ {0}.

Note that the canonical form x0 of any element x ∈ M must have the same invariants:
I(x0) = I(x); this condition is also sufficient if there are enough invariants to distinguish
the orbits, i.e., x and y lie in the same orbit if and only if I(x) = I(y) for every invariant
I, which, according to Theorem 2.30 below, is the case for regular group actions. How-
ever, singular orbits are often not completely distinguished by invariants alone, and more
sophisticated algebraic features must be utilized.

Example 2.27. Consider the action X 7→ AXAT of GL(n,R) on the space of
symmetric matrices. Since the group orbits are discrete, the only invariant functions are
the matrix signatures, which serve to characterize the canonical forms. Restricting to the
orthogonal subgroup O(n) ⊂ GL(n), we see that any symmetric function of the eigenvalues
of the matrix provides an invariant; again these are sufficient to completely characterize its
canonical diagonal form. (An alternative system of invariants is provided by the traces of
the powers of the matrix: trAk, k = 1, . . . , n.) On the other hand, consider the conjugation
action X 7→ AXA−1 of GL(n,C) on the space of n × n matrices. Again, the symmetric
functions of the eigenvalues provide invariants of the action, but, if the eigenvalues are
repeated, these are not sufficient to distinguish the different canonical forms, and one
must introduce additional discrete invariants to properly characterize the Jordan block
structure.

A fundamental problem is the determination of all the invariants of a group of trans-
formations. Note that if I1(x), . . . , Ik(x) are invariants, and H(y1, . . . , yk) is any function,
then I(x) = H(I1(x), . . . , Ik(x)) is also invariant. Therefore, we need only find a complete
set of functionally independent invariants, cf. Definition 1.9, having the property that any
other invariant can be written as a function of these fundamental invariants. In many
cases, globally defined invariants are not so readily available or easy to find, and so we will
often have to be content with the description of locally defined invariants.

Definition 2.28. Let G be a Lie group acting on a manifold M . A function I:M →
R defined on an open subset U ⊂ M is called a local invariant of G if I(g · x) = I(x) for
all x ∈ U and all group transformations g ∈ Vx in some neighborhood Vx ⊂ G (possibly
depending on x) of the identity element. If I(g · x) = I(x) for all x ∈ U and all g ∈ G
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such that g · x ∈ U , then I is called a global invariant (even though it is only defined on
an open subset of M).

Example 2.29. Consider the one-parameter group acting on the torus as discussed
in Example 2.20. If κ is irrational, then, on the open subset 0 < θ, ϕ < 2π, the difference
ϕ− κ θ is a local invariant of the group action that is clearly not globally invariant.

According to Theorem 2.23, the number of independent local invariants of a regular
transformation group is completely determined by the orbit dimension. Indeed, in terms of
the rectifying coordinates (y, z), the coordinate functions z1, . . . , zm−s, and any function
thereof, provide a complete set of local invariants for the group action. Thus, Theorem 2.23
implies the basic classification result for the invariants of regular group actions.

Theorem 2.30. Let G be a Lie group acting semi-regularly on the m-dimensional

manifold M with s-dimensional orbits. At each x ∈ M , there exist m − s functionally

independent local invariants I1, . . . , Im−s, defined on a neighborhood U of x, with the

property that any other local invariant I defined on U can be written as a function of the

fundamental invariants: I = H(I1, . . . , Im−s). If G acts regularly, then we can choose the

Iν ’s to be global invariants on U . Moreover, in the regular case, two points y, z ∈ U lie in

the same orbit of G if and only if the invariants all have the same value, Iν(y) = Iν(x),
ν = 1, . . . , m− s.

Theorem 2.30 provides a complete answer to the question of local invariants of group
actions. Global considerations are more delicate. For example, consider the elementary
one-parameter scaling group (x, y) 7→ (λx, λy), λ ∈ R+. Locally, away from the origin,
the ratio x/y, or y/x, or any function thereof (e.g., θ = tan−1(y/x)) provides the only
independent invariant. However, if we include the origin, then there are no nonconstant
continuous invariants. (A discontinuous invariant is provided by the function which is 1
at the origin and 0 elsewhere.) On the other hand, the scaling group (x, y) 7→ (λx, λ−1y)
does have a global invariant: xy.

Example 2.31. Consider the projective action of SL(2,C) on the n-fold Cartesian
product CP1 × · · · × CP1

(p1, . . . , pn) 7→
(
αp1 + β

γp1 + δ
, . . . ,

αpn + β

γpn + δ

)
,

(
α β
γ δ

)
∈ SL(2,C).

Let us concentrate on the open subset M = {pi 6= pj , i 6= j} consisting of distinct n-tuples
of points. For n ≤ 3, the action is transitive onM , and there are no nonconstant invariants.
Indeed, we can map any three distinct points (p1, p2, p3) on the Riemann sphere to any
desired canonical form, e.g., (0, 1,∞), by a suitable linear fractional transformation. For
n = 4, the cross-ratio

[ p1, p2, p3, p4 ] =
(p1 − p2)(p3 − p4)

(p1 − p3)(p2 − p4)
, (2.6)

is invariant, as can be verified directly. (If one of the points is infinite, (2.6) is computed
in a consistent way.) Now only the first three points can be fixed, so a canonical form
could be (0, 1,∞, z) where z can be any other point, whose value is fixed by the cross-ratio
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1/(z − 1). An alternative choice is (s,−s, s−1,−s−1), which is unique if we restrict s > 1;
the cross-ratio is now −4/(s− s−1)2. For n > 4, it can be proved that every invariant can
be written as a function of the cross-ratios of the points pj , taken four at a time. According
to Theorem 2.30, only n− 3 of these cross-ratios are functionally independent, and we can
clearly take [ p1, p2, p3, pk ], k = 4, . . . , n, as our fundamental invariants.

Exercise 2.32. Determine how to express other cross-ratios, e.g., [ p1, p3, p4, p5 ], in
terms of the fundamental cross-ratios.

Exercise 2.33. Discuss the action of SL(2,R) on RP1 × · · · × RP1, and on CP1 ×
· · · × CP1, viewed as a real manifold of dimension 2n.

The cross-ratios are a special case of the general concept of a joint invariant. If G
acts simultaneously on the manifolds M1, . . . ,Mn, then by a joint invariant we mean an
ordinary invariant I(x1, . . . , xn) of the Cartesian product group action of G on M1 × · · ·×
Mn; in other words, I(g · x1, . . . , g · xn) = I(x1, . . . , xn) for all g ∈ G. In most cases of
interest, the manifolds Mκ = M are identical, with identical actions of G.

The invariants of a regular group action can be used to completely characterize the
invariant submanifolds. First, if G acts on M , and I1, . . . , Ik are any invariants, then
Proposition 2.26 implies that their common level set {I1(x) = c1, . . . , Ik(x) = ck} is an
invariant subset of M . Conversely, if the group action is regular, Theorem 2.23 implies
that any invariant submanifold can be expressed (locally) as the vanishing set for some
collection of invariant functions.

Theorem 2.34. Let G act regularly on an m-dimensional manifold M . A regular

n-dimensional submanifold N ⊂ M is G-invariant if and only if at each point x ∈ N there

exists a neighborhood U and invariants I1, . . . , Im−n such that N ∩ U = {I1(x) = · · · =
Im−n(x) = 0}.

Proof : Choose rectifying local coordinates (y, z) as in Theorem 2.23. Since any in-
variant submanifold must be a collection of orbits, which, in the given coordinate chart,
are just the slices where the invariant coordinates z are constant, we can characterize its
intersection with the coordinate chart by the vanishing of one or more functions depending
on z1, . . . , zm−s. But any function of the z’s is a (local) invariant of the group action, so
the result follows immediately. Q.E.D.

Lie Algebras

Besides invariant functions, there are many other important invariant objects asso-
ciated with a transformation group, including vector fields, differential forms, differential
operators, etc. The most important of these are the invariant vector fields, since they serve
as the “infinitesimal generators” of the group action.

Definition 2.35. Let G be a group acting on the manifold M . A vector field v on
M is called G-invariant if it is unchanged by the action of any group element, meaning
that dg(v|x) = v|g·x for all g ∈ G, and all x ∈ M such that g · x is defined.
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The most important example is provided by the action of a Lie group G on itself by
left or right multiplication, as described in Example 2.9. Here, the invariant vector fields
determine the Lie algebra or “infinitesimal” Lie group, which plays an absolutely crucial
role in both the general theory of Lie groups and its many applications. Given g ∈ G,
we let Lg: h 7→ g · h and Rg: h 7→ h · g denote the associated left and right multiplication
maps. A vector field v on G is called left-invariant if dLg(v) = v, and right-invariant if
dRg(v) = v, for all g ∈ G.

Definition 2.36. The left (respectively right) Lie algebra of a Lie group G is the
space of all left-invariant (respectively right-invariant) vector fields on G.

Thus, associated to any Lie group, there are two different Lie algebras, which we
denote by gL and gR respectively. Traditionally, one refers to “the” Lie algebra associated
with a Lie group, and denotes it by g, but this requires the adoption of either a left or
a right convention. The more common is to use left-invariant vector fields for the Lie
algebra, although some authors do prefer the right-invariant ones. Both Lie algebras play
a role, although the right-invariant one is by far the more useful of the two, due, perhaps
surprisingly, to our convention that Lie groups act on the left on manifolds; the reason
for this apparent switch will become clear below. Therefore, in the sequel, when we talk
about the Lie algebra associated with a Lie group, we shall mean the right-invariant Lie
algebra, and use g = gR to denote it.

Every right-invariant vector field v is uniquely determined by its value at the identity
e, because v|g = dRg(v|e). Thus we can identify the right Lie algebra with the tangent
space to G at the identity element, gR ≃ TG|e, so gR is a finite-dimensional vector space
having the same dimension as G. A similar statement holds for left-invariant vector fields,
providing a similar isomorphism gL ≃ TG|e. Thus, a given tangent vector v|e ∈ TG|e
determines both a left- and a right-invariant vector field on the Lie group, which are
(usually) different.

Each Lie algebra associated with a Lie group comes equipped with a natural bracket,
induced by the Lie bracket of vector fields. This follows immediately from the invariance
(1.17) of the Lie bracket under diffeomorphisms, which implies that if both v and w are
right-invariant vector fields, so is their Lie bracket [v,w]. The basic properties of the Lie
bracket translate into the defining properties of an (abstract) Lie algebra.

Definition 2.37. A Lie algebra g is a vector space equipped with a bracket operation
[ · , · ] : g × g → g which is bilinear, anti-symmetric, [v,w] = −[w,v], and satisfies the
Jacobi identity

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0. (2.7)

Example 2.38. The Lie algebra gl(n) of the general linear group GL(n) can be
identified with the space of all n×n matrices. In terms of the coordinates provided by the
matrix entries X = (xij) ∈ GL(n), the left-invariant vector field associated with a matrix
A = (aij) ∈ gl(n) has the explicit formula

v̂A =
n∑

i,j,k=1

xikakj
∂

∂xij

. (2.8)
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The Lie bracket of two such vector fields is [v̂A, v̂B] = v̂C , where C = AB − BA, so the
left-invariant Lie bracket on GL(n) can be identified with the standard matrix commutator
[A,B] = AB − BA. On the other hand, the right-invariant vector field associated with a
matrix A ∈ gl(n) is given by

vA =

n∑

i,j,k=1

aikxkj

∂

∂xij

. (2.9)

Now the Lie bracket is [vA,vB] = v
Ĉ
, where Ĉ = −C = BA − AB is the negative of

the matrix commutator. Thus, the matrix formula for the Lie algebra bracket on gl(n)
depends on whether we are dealing with its left-invariant or right-invariant version!

Exercise 2.39. Prove that the right and left Lie algebras for the abelian Lie group
G = R

r are identical, each isomorphic to the abelian Lie algebra g = R
r with trivial Lie

bracket: [v,w] = 0 for all v, w.

The right and left Lie algebras associated with a Lie group are, in fact, isomorphic
as abstract Lie algebras. The inversion map ι(g) = g−1 provides the explicit isomorphism
since it interchanges the roles of left and right. Thus, its differential dιmaps right-invariant
vector fields to left-invariant ones, and vice versa, while preserving the Lie bracket.

Proposition 2.40. If G is a Lie group, then the differential of the inversion map

defines a Lie algebra isomorphism between its associated left and right Lie algebras dι: gL ≃
gR.

As above, we identify an invariant vector field vR or vL with its value v = vR|e = vL|e
at the identity. Since dι|e = −11, the differential dι maps the right-invariant vector field
vR to minus its left-invariant counterpart vL = −dι(vR). Consequently, the left and right
Lie brackets on a Lie group always have opposite signs: [v,w]L = −[v,w]R. This explains
the observation in Example 2.38.

The operations of right and left multiplication commute: Lg
◦Rh = Rh

◦Lg for all
g, h ∈ G. Therefore, according to Theorem 1.25, the corresponding infinitesimal generators
commute: [vL,wR] = 0 for all vL ∈ gL, wR ∈ gR. In fact, it is not hard to see that the
two Lie algebras are uniquely characterized in terms of each other in this manner.

Proposition 2.41. The right Lie algebra gR of a Lie group G can be characterized

as the set of vector fields on G which commute with all left-invariant vector fields:

gR = {w | [vL,w] = 0 for all vL ∈ gL } .

The same result holds with left and right interchanged.

Example 2.42. Consider the two parameter group A(1) of affine transformations
x 7→ ax+ b on the line x ∈ R, as in Example 2.11. The group multiplication law is given
by (a, b) · (c, d) = (ac, ad + b), and the identity element is e = (1, 0). The right and left
multiplication maps are therefore given by

R(a,b)(c, d) = (c, d) · (a, b) = (ac, bc+ d), L(a,b)(c, d) = (a, b) · (c, d) = (ac, ad+ b).
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A basis for the right Lie algebra a(1)R, corresponding to the coordinate basis ∂a|e, ∂b|e of
TA(1)|e, is provided by the pair of right-invariant vector fields

v1 = dR(a,b)

[
∂a|e

]
= a∂a + b∂b, v2 = dR(a,b)

[
∂b|e

]
= ∂b. (2.10)

These satisfy the commutation relation [v1,v2] = −v2. A similar basis for the left Lie
algebra a(1)L is provided by the pair of left-invariant vector fields

v̂1 = dL(a,b)

[
∂a|e

]
= a∂a, v̂2 = dL(a,b)

[
∂b|e

]
= a∂b, (2.11)

satisfying the negative commutation relation [v̂1, v̂2] = v̂2. Note that the vector fields
(2.10) commute with those in (2.11): [vi, v̂j ] = 0, confirming Proposition 2.41. Finally,

the inversion map is given by ι(a, b) = (a, b)−1 = (1/a,−b/a), and, in accordance with the
above remarks, its action on the two Lie algebras is dι(v1) = −v̂1, dι(v2) = −v̂2, as can
be checked by an explicit computation.

Exercise 2.43. Define the semi-direct product of Lie algebras, and show that a(1) =
R⋉ R can be identified as a semi-direct product of two one-dimensional Lie algebras.

Exercise 2.44. Prove that every two-dimensional Lie algebra is isomorphic to either
the abelian algebra R2 or the affine algebra a(1).

Structure Constants

Let v1, . . . ,vr be a basis of a Lie algebra g. We define the associated structure con-

stants Ck
ij by the bracket relations

[vi,vj] =

r∑

k=1

Ck
ijvk. (2.12)

Anti-symmetry of the Lie bracket and the Jacobi identity imply the basic identities

Ck
ji = −Ck

ij ,
r∑

l=1

(
Cl

ijC
m
lk + Cl

kiC
m
lj + Cl

jkC
m
li

)
= 0, (2.13)

which must be satisfied by the structure constants of any Lie algebra. Conversely, given
1
2
r2(r − 1) constants satisfying the identities (2.13), we can reconstruct the Lie algebra

g by introducing a basis v1, . . . ,vr, and then imposing the bracket relations (2.12). In
turn, as stated in Theorem 2.52 below, one can always construct an associated Lie group
whose right (or left) Lie algebra coincides with g. Thus (from an admittedly reductionist
standpoint) the theory of Lie groups can be essentially reduced to the study of its structure
constants. This fact plays a key role in the detailed structure theory of Lie groups, cf. [25].

Exercise 2.45. Find a formula showing how the structure constants change under
a change of basis of the Lie algebra g.

Exercise 2.46. Show that, relative to a fixed basis of the tangent space TG|e, the
structure constants for the left and right Lie algebras of a Lie group differ by an overall
sign.
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The Exponential Map

Given a right-invariant vector field v ∈ gR on the Lie group G, we let exp(tv):G → G
denote the associated flow. An easy continuation argument can be used to prove that this
flow is globally defined for all t ∈ R. Applying the flow to the identity element e serves
to define the one-parameter subgroup exp(tv) ≡ exp(tv)e; the vector field v is known as
the infinitesimal generator of the subgroup. The notation is not ambiguous, since the flow
through any g ∈ G is the same as left multiplication by the elements of the subgroup,
so exp(tv)g can be interpreted either as a flow or as a group multiplication. This fact is
a consequence of the invariance of the flow, as in (1.16), under the right multiplication
map Rh. Therefore, the right-invariant vector fields form the infinitesimal generators of
the action of G on itself by left multiplication. Vice versa, the infinitesimal generators
of the action of G on itself by right multiplication is the Lie algebra gL of left-invariant
vector fields. This interchange of the role of infinitesimal generators and invariant vector
fields is one of the interesting peculiarities of Lie group theory. Finally, note that although
the left- and right-invariant vector fields associated with a given tangent vector v ∈ TG|e
are (usually) different, and have different flows, nevertheless the associated one-parameter
groups coincide: exp(tvR) = exp(tvL).

Example 2.47. Consider the general linear group GL(n) discussed in Example 2.38.
The flow corresponding to the right-invariant vector field vA given by (2.9) is given by
left multiplication by the usual matrix exponential: exp(tvA)X = etAX . Conversely,
the flow corresponding to the left-invariant vector field v̂A given by (2.8) is given by
right multiplication exp(tv̂A)X = XetA. In either case, the one-parameter subgroup
generated by the vector field associated with a matrix A ∈ gl(n) is the matrix exponential
exp(tvA) = exp(tv̂A) = etA.

From now on, in view of subsequent applications, we shall restrict our attention to
the right-invariant vector fields, so that g will always denote the right Lie algebra of the
Lie group G. Evaluation of the flow exp(tv) at t = 1 for each v ∈ g serves to define
the exponential map exp: g → G. Since exp(0) = e, d exp(0) = 11, the exponential map
defines a local diffeomorphism in a neighborhood of 0 ∈ g. Consequently, all Lie groups
having the same Lie algebra look locally the same in a neighborhood of the identity; only
their global topological properties are different. (Indeed, in Lie’s day, one only considered
“local Lie groups”, the global version being a more recent introduction, cf. [12].) Globally,
the exponential map is not necessarily one-to-one nor onto. However, if a Lie group is
connected, it can be completely recovered by successive exponentiations.

Proposition 2.48. Let G be a connected Lie group with Lie algebra g. Every group

element can be written as a product of exponentials: g = exp(v1) exp(v2) · · · exp(vk), for
v1, . . . ,vk ∈ g.

This result forms the basis of the infinitesimal or Lie algebraic approach to symmetry
groups and invariants. It is proved by first noting that the set of all group elements
g ∈ G of the indicated form forms an open and closed subgroup of G, and then invoking
connectivity, cf. [54].
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Subgroups and Subalgebras

By definition, a subalgebra of a Lie algebra is a subspace h ⊂ g which is invariant
under the Lie bracket. Every one-dimensional subspace forms a subalgebra, and generates
an associated one-parameter subgroup of the associated Lie group via exponentiation.
More generally, each subalgebra h ⊂ g generates a unique connected Lie subgroup H ⊂ G,
satisfying h ≃ TH|e ⊂ TG|e ≃ g.

Theorem 2.49. Let G be a Lie group with Lie algebra g. There is a one-to-one

correspondence between connected s-dimensional Lie subgroups H ⊂ G and s-dimensional

Lie subalgebras h ⊂ g.

Example 2.50. In particular, every matrix Lie group G ⊂ GL(n) will correspond
to a subalgebra of g ⊂ gl(n) the Lie algebra of n × n matrices, cf. Example 2.38. To
determine the subalgebra, we need only find the tangent space to the subgroup at the
identity matrix. For instance, the standard formula det exp(tA) = exp(t trA) implies that
the Lie algebra sl(n) of the unimodular subgroup SL(n) consists of all matrices with trace
0. The orthogonal groups O(n) and SO(n) have the same Lie algebra, so(n), consisting of
all skew-symmetric n × n matrices. This result proves our earlier claim that SO(n) and
O(n) have dimension 1

2
n(n−1). The reader should verify that the indicated subspaces are

indeed subalgebras under the matrix commutator.

Exercise 2.51. Determine the Lie algebra sp(2r) of the symplectic group Sp(2r).

Ado’s Theorem, cf. [28], says that any finite-dimensional Lie algebra g is isomorphic
to a subalgebra of gl(n) for some n. Consequently, g is realized as the Lie algebra of the
associated matrix Lie group G ⊂ GL(n). The full connection between Lie groups and Lie
algebras is stated in the following fundamental theorem, whose proof can be found in [48].

Theorem 2.52. Each finite-dimensional Lie algebra g corresponds to a unique con-
nected, simply connected Lie group G̃. Moreover, any other connected Lie group G having

the same Lie algebra g is isomorphic to the quotient group of G̃ by a discrete normal
subgroup Γ, so that G ≃ G̃/Γ.

Note that the projection π: G̃ → G defined in Theorem 2.52 defines a (uniform)

covering map, so that G̃ is as a covering group for any other connected Lie group G having
the same Lie algebra. Consequently, any two Lie groups having the same Lie algebra g are
not only locally isomorphic, but are in fact both covered by a common Lie group.

Exercise 2.53. The subgroup C = { g ∈ G | ghg−1 = h, forall h ∈ G } consisting of
all group elements which commute with every element in a group G is known as the center
of G. Prove that the Lie algebra associated with the center of a Lie group G is the abelian
subalgebra {v ∈ g | [v,w] = 0 for all w ∈ g }, known as the center of g.

Exercise 2.54. Let G be a Lie group. Prove that a vector field v on G lies in the
intersection gL ∩ gR of the left and right Lie algebras, and so is both left- and right-
invariant, if and only if it lies in the center of both gL and gR.
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Exercise 2.55. Let H ⊂ G be a Lie subgroup with Lie subalgebra h ⊂ g. Prove that
the normalizer subgroup GH = { g | gHg−1 ⊂ H } is a normal subgroup with Lie algebra
gH = {v ∈ g | [v,w] ∈ h, for all w ∈ h }.

Exercise 2.56. A subspace i ⊂ g of a Lie algebra g is an ideal if [v, i] ⊂ i for every
v ⊂ g. Prove that an ideal is a subalgebra, but the converse is not necessarily true. Show
that ideals in g are in one-to-one correspondence with connected normal Lie subgroups of
the Lie group G.

A Lie algebra of dimension greater than 1 is called simple if it contains no proper
nonzero ideals. Each of the classical Lie algebras sl(n), n ≥ 2, so(n), 3 ≤ n 6= 4, and
sp(2r), r ≥ 2, is known to be simple, although so(4) ≃ so(3) ⊕so(3) is the direct sum of
two simple algebras. In fact, besides the three infinite families of “classical” complex Lie
groups, there exist just five additional “exceptional” simple Lie groups. See [25] for the
precise classification theorem, due to Killing and Cartan.

Exercise 2.57. The derived algebra g′ of a Lie algebra g is defined as the subalgebra
spanned by all Lie brackets [v,w] for all v,w ∈ g. Prove that g′ is an ideal in g, hence, if
g is simple, then g′ = g. Prove that the derived algebra of gl(n) is sl(n). Show that the
corresponding subgroup of the associated Lie group G is the derived subgroup G′, generated
by all commutators ghg−1h−1 for g, h ∈ G. (A subtle point : G′ is not equal to the set of
all commutators, as this may not even be a subgroup.)

Infinitesimal Group Actions

Just as a one-parameter group of transformations is generated as the flow of a vector
field, so a general Lie group of transformations G acting on a manifold M will be generated
by a set of vector fields on M , known as the infinitesimal generators of the group action.
Each infinitesimal generator’s flow coincides with the action of the corresponding one-
parameter subgroup of G. Specifically, if v ∈ g generates the one-parameter subgroup
{ exp(tv) | t ∈ R } ⊂ G, then we identify v with the infinitesimal generator v̂ of the one-
parameter group of transformations or flow x 7→ exp(tv) · x. According to (1.13) the
infinitesimal generators of the group action are found by differentiation:

v̂|x =
d

dt
exp(tv)x

∣∣∣∣
t=0

, x ∈ M, v ∈ g. (2.14)

Consequently, v̂|x = dΦx(v|e), where Φx:G → M is given by Φx(g) = g ·x. Since Φx
◦Rh =

Φh·x, if v ∈ g = gR is any right-invariant vector field on G, then dΦx(v|g) = v̂|g·x, where
defined. The differential dΦx preserves the Lie bracket between vector fields; therefore the
resulting vector fields form a finite-dimensional Lie algebra of vector fields on the manifold
M , satisfying the same commutation relations as the right Lie algebra g of G (and hence
the negative of the commutation relations of the left Lie algebra — a fact that reflects our
convention that group elements act on the left). The infinitesimal generators of the group
action are not quite isomorphic to the Lie algebra g since some of the nonzero Lie algebra
elements may map to the trivial (zero) vector field on M . It is not hard to prove that
this possibility is directly connected to the effectiveness of the group action, leading to an
infinitesimal test for the local effectiveness of group actions.
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Theorem 2.58. Let G be a transformation group acting on a manifold M . The

linear map σ taking an element v ∈ g = gR to the corresponding vector field v̂ = σ(v) on
M defines a Lie algebra homomorphism: σ([v,w]) = [σ(v), σ(w)]. Moreover, the image

ĝ = σ(g) forms a finite-dimensional Lie algebra of vector fields on M which is isomorphic

to the Lie algebra of the effectively acting quotient group G/GM , where GM denotes the

global isotropy subgroup of G. In particular, G acts locally effectively on M if and only if

σ is injective, i.e., kerσ = {0}.

Thus, if v1, . . . ,vr forms a basis for g, the condition for local effectiveness is that the
corresponding vector fields v̂i = σ(vi) be linearly independent over R, i.e.,

∑
i civ̂i = 0 on

M for constant ci ∈ R if and only if c1 = · · · = cr = 0. Usually, we will not distinguish
between an element v ∈ g in the Lie algebra and the associated infinitesimal generator
v̂ = σ(v) of the group action of G, which we also denote as v from now on. When the
action is locally effective, which, according to Proposition 2.12, can always be assumed,
this identification does not result in any ambiguities.

Just as every Lie algebra generates a corresponding Lie group, given a finite-dimen-
sional Lie algebra of vector fields on a manifold M , we can always reconstruct a (local)
action of the corresponding Lie group via the exponentiation process. See [48; Theorem
98] for a proof.

Theorem 2.59. Let g be a finite-dimensional Lie algebra of vector fields on a man-

ifold M . Let G denote a Lie group having Lie algebra g. Then there is a local action of G
whose infinitesimal generators coincide with the given Lie algebra.

Example 2.60. Consider the action of the group SL(2) acting by linear fractional
transformations (2.4) on RP1. Its Lie algebra sl(2) consists of all 2 × 2 matrices of trace
0, and hence is spanned by the three matrices

J− =

(
0 1
0 0

)
, J0 =

(
1 0
0 −1

)
, J+ =

(
0 0
1 0

)
, (2.15)

having the commutation relations

[J−, J0] = −2J−, [J+, J0] = 2J+, [J−, J+] = J0.

The corresponding one-parameter subgroups and their infinitesimal generators are

Translations: p 7−→ p+ t v
−
= ∂p,

Scalings: p 7−→ e2tp v0 = 2p∂p,

Inversions: p 7−→ p

tp+ 1
v+ = −p2∂p.

The vector fields v
−
, v0, v+, obey the same commutation relations as the matrices J−,

J0, J+, except for an overall sign:

[v
−
,v0] = 2v

−
, [v+,v0] = −2v+, [v

−
,v+] = −v0,

since the right Lie algebra bracket is the negative of the matrix commutator, cf. Exam-
ple 2.38. Although the three infinitesimal generators v

−
, v0, v+ are pointwise linearly
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dependent (since the underlying manifold is merely one-dimensional), there is no non-
trivial constant coefficient linear combination c

−
v
−
+ c0v0 + c+v+ = 0 which vanishes

identically. Therefore, Theorem 2.58 reconfirms the fact that SL(2) acts locally effectively
on RP1. On the other hand, if we extend the linear fractional action to all of GL(2), the
generator 11 ∈ gl(2) of the scaling subgroup maps to the trivial (zero) vector field, reflecting
the ineffectiveness of this action.

The infinitesimal generators also determine the tangent space to, and hence the di-
mension of, the orbits of a group action.

Proposition 2.61. Let G be a Lie group acting on a manifold M with Lie algebra

g of G. Then, for each x ∈ M , the tangent space to the orbit through x is the subspace

spanned by the infinitesimal generators: g|x = { v̂|x |v ∈ g } ⊂ TM |x. In particular, the

dimension of the orbit equals the dimension of g|x.

Corollary 2.62. A Lie group acts transitively on a connected manifold M if and

only if g|x = TM |x for all x ∈ M .

There is an important connection between the dimension of the isotropy subgroup at
a point and the dimension of the orbit through that point.

Proposition 2.63. If G is an r-dimensional Lie group acting onM , then the isotropy

subgroup Gx of any point x ∈ M has dimension r − s, where s is the dimension of the

orbit of G through x. In particular, G acts semi-regularly if and only if all its isotropy

subgroups have the same dimension.

Exercise 2.64. Prove that if x ∈ M , then the isotropy subgroup Gx has Lie algebra
gx = ker dΦx ⊂ g. Use this to prove Proposition 2.63.

Exercise 2.65. Prove that a group acts locally freely if and only if its infinitesimal
generators are pointwise linearly independent: for each x ∈ M ,

∑
i civ̂i|x = 0 if and only

if c1 = · · · = cr = 0.

Infinitesimal Invariance

The fundamental feature of (connected) Lie groups is the ability to work infinitesi-
mally, thereby effectively linearizing complicated invariance criteria. Indeed, the practical
applications of Lie groups all ultimately rely on this basic method, and its importance
cannot be overestimated. We begin by stating the infinitesimal criterion for the invariance
of a real-valued function.

Theorem 2.66. Let G be a connected group of transformations acting on a manifold

M . A function I:M → R is invariant under G if and only if

v[I] = 0, (2.16)

for all x ∈ M and every infinitesimal generator v ∈ g of G.
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Proof : Let v ∈ g be fixed. We differentiate the invariance condition I[exp(tv)x] =
I(x) with respect to t and set t = 0 to deduce the infinitesimal condition (2.16). Conversely,
if (2.16) holds, then d(I[exp(tv)x])/dt = 0 where defined, and hence I[exp(tv)x] = I(x) = c
is constant for t in the connected interval containing 0 in { t ∈ R | exp(tv) ∈ Gx }, where
Gx ⊂ G is the set of group elements such that g · x is defined. (If the action is global,
Gx = G.) Using the fact that the exponential map is a local diffeomorphism from a
neighborhood of 0 ∈ g to a neighborhood of e ∈ Gx, we conclude that I(g · x) = c for all

g in an open neighborhood of the identity in Gx. Now, set G̃x = { g ∈ Gx | I(g · x) = c }.
Applying the preceding argument at the point g ·x for any g ∈ G̃x proves that G̃x is open,
while continuity proves that it is closed in Gx. Thus, by connectivity, G̃x = Gx, and the
result follows. Q.E.D.

Thus, according to Theorem 2.66, the invariants u = I(x) of a one-parameter group
with infinitesimal generator v =

∑
i ξ

i(x)∂xi satisfy the first order, linear, homogeneous
partial differential equation

m∑

i=1

ξi(x)
∂u

∂xi
= 0. (2.17)

The solutions of (2.17) are effectively found by the method of characteristics. We re-
place the partial differential equation by the characteristic system of ordinary differential
equations

dx1

ξ1(x)
=

dx2

ξ2(x)
= · · · = dxm

ξm(x)
. (2.18)

The general solution to (2.18) can be (locally) written in the form I1(x) = c1, . . .,
Im−1(x) = cm−1, where the ci are constants of integration. It is not hard to prove that the
resulting functions I1, . . . , Im−1 form a complete set of functionally independent invariants
of the one-parameter group generated by v.

Example 2.67. Consider the (local) one-parameter group generated by the vector
field

v = −y
∂

∂x
+ x

∂

∂y
+ (1 + z2)

∂

∂z
.

The group transformations (or flow) are

(x, y, z) 7−→
(
x cos t− y sin t, x sin t+ y cos t,

sin t+ z cos t

cos t− z sin t

)
. (2.19)

Note that if we fix a point (x, y, z), then (2.19) parametrizes the integral curve passing
through the point. The characteristic system (2.18) for this vector field is

dx

−y
=

dy

x
=

dz

1 + z2
.

The first equation reduces to a simple separable ordinary differential equation dy/dx =
−x/y, with general solution x2 + y2 = c1, for c1 a constant of integration; therefore the

cylindrical radius r =
√
x2 + y2 provides one invariant. To solve the second characteristic
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equation, we replace x by
√

r2 − y2, and treat r as constant. The solution is tan−1 z −
sin−1(y/r) = tan−1 z− tan−1(y/x) = c2, hence tan−1 z− tan−1(y/x) is a second invariant.
A more convenient choice is provided by the tangent of this invariant. We deduce that, for
yz+ x 6= 0, the functions r =

√
x2 + y2, w = (xz− y)/(yz+ x) form a complete system of

functionally independent invariants, whose common level sets describe the integral curves.

Exercise 2.68. Let v be a nonvanishing vector field on a manifoldM . Prove that the
rectifying coordinates y = η(x) of Theorem 1.21 satisfy the partial differential equations
v(η1) = 1, v(ηi) = 0, i > 1. Thus the coordinates yi = ηi(x), i = 2, . . . , m, are the
functionally independent invariants of the one-parameter group generated by v.

For multi-parameter groups, the invariants are simultaneous solutions to an overde-
termined system of linear, homogeneous, first order partial differential equations. One
solution method is to look for invariants of each generator in turn and try to re-express
subsequent generators in terms of the invariants. However, this can become quite compli-
cated to implement in practice. We illustrate the technique with a simple example.

Example 2.69. Consider the action of the unimodular group SL(2,R) on R3 gener-
ated by the three vector fields

v
−
= 2y∂x + z∂y , v0 = −2x∂x + 2z∂z, v+ = x∂y + 2y∂z. (2.20)

Away from the origin x = y = z = 0, the vector fields (2.20) span a two-dimensional space,
and hence, according to Proposition 2.61, the orbits of the group action are (except for
the origin) all two-dimensional. Therefore, we expect to find one independent invariant.
Solving first the characteristic system for v0, which is dx/(2x) = dy/0 = dz/(−2z), we
derive invariants w = xz and y. Thus, our desired invariant must have the form I =
F (w, y) = F (xz, y). Applying v+ to I, we find 2xyFw + xFy = 0, hence the desired

invariant is I = y2 − xz. (Why don’t we need to check the invariance of I under v
−
?)

Infinitesimal techniques are also effective for the determination of invariant subman-
ifolds and invariant systems of equations. The starting point is the following basic result
on the invariance of submanifolds.

Theorem 2.70. A closed submanifold N ⊂ M is G-invariant if and only if the space

g of infinitesimal generators is tangent to N everywhere, i.e., g|x ⊂ TN |x for every x ∈ N .

The proof of Theorem 2.70 follows immediately from the uniqueness of the flow, which
implies that if v is tangent to N , then exp(tv)N ⊂ N . If the submanifold N ⊂ M is not
closed, then the infinitesimal criterion of Theorem 2.70 implies that N is merely locally

G-invariant, meaning that for every x ∈ N and every g ∈ Gx in a neighborhood of the
identity, possibly depending on x, we have g · x ∈ N . For example, if G is the group of
translations (x, y) 7→ (x+ t, y), then any horizontal line segment, e.g., { (x, 0) | 0 < x < 1 }
is locally, but not globally, translationally invariant.

An important consequence of Theorem 2.70 is the following crucially important char-
acterization of symmetry groups of regular systems of equations — see Theorem 1.19.
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Theorem 2.71. A connected Lie group G is a symmetry group of the regular system

of equations F1(x) = · · · = Fk(x) = 0 if and only if

v[Fν(x)] = 0, ν = 1, . . . , k, whenever F1(x) = · · · = Fk(x) = 0, (2.21)

for every infinitesimal generator v ∈ g of G.

Using the formula v(F ) = 〈 dF ;v 〉, we see that Theorem 2.71 follows directly from
Theorem 2.70 and Exercise 1.35. The following example provides a simple illustration of
how the infinitesimal criterion (2.21) is verified in practice. However, the real power of
Theorem 2.71 must await our applications to symmetry groups of differential equations,
which is the subject of Chapter 4.

Example 2.72. The equation x2 + y2 = 1 defines a circle, which is rotationally
invariant. To check the infinitesimal condition, we apply the generator v = −y∂x + x∂y
to the defining function F (x, y) = x2 + y2 − 1. We find v(F ) = 0 everywhere (since F
is an invariant). Since dF is nonzero on the circle, the equation is regular, and hence
its solution set is rotationally invariant. A more complicated example is provided by
H(x, y) = x4 + x2y2 + y2 − 1. Now, v(H) = −2xy(x2 + 1)−1H, hence v(H) = 0 whenever
H = 0, hence the set of solutions to H(x, y) = 0 is rotationally invariant. (What is this
set?) To see the importance of the regularity condition, consider the function K(x, y) = y2.
The solution set is the x-axis, which is clearly not rotationally invariant, even though
v(K) = 2xy = 0 vanishes when y = 0, and so the infinitesimal condition (2.21) is satisfied.

Lie Derivatives and Invariant Differential Forms

A differential form Ω on M is called G-invariant if it is unchanged under the pull-back
action of the group: g∗

(
Ω|g·x

)
= Ω|x for all g ∈ G, x ∈ M . In particular, an invariant 0-

form is just an ordinary invariant function. Formulae (1.28) demonstrate that the sum and
wedge product of invariant forms are also invariant; in particular, multiplying an invariant
k-form by an invariant function produces another invariant k-form. Furthermore, the
fundamental invariance property (1.33) of the exterior derivative proves that the differential
dΩ of any invariant k-form is an invariant (k + 1)-form. In particular, we find:

Proposition 2.73. If I is an invariant function, its differential dI is an invariant

one-form.

There is, of course, an infinitesimal criterion for the invariance of a differential form
under a connected group of transformations. This condition is formalized by the definition
of the Lie derivative of a differential form with respect to a vector field v, which indicates
how the form varies infinitesimally under the associated flow exp(tv).

Definition 2.74. Let v be a vector field on the manifold M with flow exp(tv). The
Lie derivative v(Ω) of a differential form Ω with respect to v is defined as

v(Ω)|x =
d

dt
exp(tv)∗

(
Ω|exp(tv)x

)∣∣∣∣
t=0

. (2.22)
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Note that the pull-back exp(tv)∗ moves the form at the point exp(tv)x back to the
point x, enabling us to compute the derivative consistently. Thus, we find the series
expansion

exp(tv)∗
(
Ω|exp(tv)x

)
= Ω|x + t v(Ω)|x + · · · , (2.23)

the higher order terms being provided by higher order Lie derivatives of Ω. In particular,
the Lie derivative v(f) of a function f :M → R (or 0-form) coincides with the action of
the vector field on f , and (2.23) reduces to the earlier expansion (1.10).

Exercise 2.75. Define the Lie derivative of a vector field w with respect to the
vector field v. Prove that the Lie derivative coincides with the Lie bracket [v,w].

The explicit local coordinate formula for the Lie derivative are most readily deduced
from its basic linearity, derivation, and commutation properties:

v(Ω + Θ) = v(Ω) + v(Θ),

v(Ω ∧Θ) = v(Ω) ∧Θ+ Ω ∧ v(Θ),

v(dΩ) = dv(Ω).

(2.24)

These all follow directly from the basic definition (2.22) using the properties of the pull-back
map. In fact, the properties (2.24) along with the action on functions serve to uniquely
define the Lie derivative operation. For example, the Lie derivative of a one-form (1.25)
with respect to the vector field (1.3) is given by

v(ω) =

m∑

i=1

[
v(hi) dx

i + hi dξ
i
]
, v =

m∑

i=1

ξi(x)
∂

∂xi
, ω =

m∑

i=1

hi(x)dx
i.

Exercise 2.76. Prove that the exterior derivative of a differential form can be written
in local coordinates (x1, . . . , xm) as

dΩ =

m∑

i=1

dxi ∧ ∂Ω

∂xi
, (2.25)

the latter term being the Lie derivative of Ω with respect to the coordinate frame vector
fields ∂/∂xi. Can this formula be generalized to other frames?

Exercise 2.77. Given a k-form Ω, its interior product with a vector field v is the
(k − 1)-form v Ω defined so that

〈v Ω ;w1, . . . ,wk−1 〉 = 〈Ω ;v,w1, . . . ,wk−1 〉, (2.26)

for any set of k − 1 vector fields w1, . . . ,wk−1. Using this, prove the following important
formula relating the Lie derivative and the exterior derivative of a differential form:

v(Ω) = v (dΩ) + d(v Ω). (2.27)

Theorem 2.78. A differential form Ω is invariant under a connected Lie group

of transformations G if and only if its Lie derivative with respect to every infinitesimal

generator v ∈ g vanishes: v(Ω) = 0 .
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Example 2.79. Let dx = dx1 ∧ · · · ∧ dxm denote the volume form on R
m. The

Lie derivative of dx with respect to a vector field v =
∑p

i=1 ξ
i(x)∂xi is given as v(dx) =

(div ξ) dx, where div ξ =
∑

i ∂ξ
i/∂xi is the divergence of the coefficients of v. Therefore,

a transformation group is volume-preserving on Rm if and only if each of its infinitesimal
generators is divergence free: div ξ = 0. (See also Exercise 1.38.)

The existence of invariant forms for general transformation groups parallels that of
invariant vector fields. Only when the group acts freely are we guaranteed a (complete)
collection of invariant one-forms.

Theorem 2.80. Let G be an r-dimensional Lie group acting effectively freely on the

m-dimensional manifold M . Then, locally, there exist m pointwise linearly independent

G-invariant one-forms ω1, . . . , ωm.

At each point x ∈ M , the one-forms ω1, . . . , ωm form a basis for the cotangent space
T∗M |x, and so form a G-invariant coframe. Their wedge product ω1∧· · ·∧ωm 6= 0 defines
a nonvanishing G-invariant volume form on M .

Example 2.81. Consider the action of the connected component of the Euclidean
group SE(2) on M = R3, which is generated by the vector fields

v1 = ∂x, v2 = ∂y, v3 = −y∂x + x∂y + (1 + z2)∂z. (2.28)

Therefore, the general invariant vector field is a constant coefficient linear combination of

w1 =
∂x + z∂y√
1 + z2

, w2 =
z∂x − ∂y√
1 + z2

, w3 = (1 + z2)∂z. (2.29)

The invariant one-forms are dual to the invariant vector fields (2.29), and hence are given
by

ω1 =
dx+ z dy√

1 + z2
, ω2 =

dy − z dx√
1 + z2

, ω3 =
dz

1 + z2
.

Alternatively, one could directly construct the invariant one-forms by analyzing the Lie
derivative condition of Theorem 2.78.

The Maurer–Cartan Forms

Of particular importance in the theory of Lie groups are the invariant differential
forms associated with the right (and left) actions of the Lie group on itself. By definition,
a differential form Ω on a Lie group G is right-invariant if it is unaffected by right multi-
plication by group elements: (Rg)

∗Ω = Ω for all g ∈ G. In particular, the right-invariant
one-forms on G are known as the (right-invariant) Maurer–Cartan forms . The space of
Maurer–Cartan forms is naturally dual to the Lie algebra of G, and hence forms a vector
space of the same dimension as the Lie group. If we choose a basis v1, . . . ,vr of the Lie
algebra g, then there is a dual basis (or coframe) α1, . . . , αr, consisting of Maurer–Cartan
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forms, satisfying 〈αi ;vj 〉 = δij . As a direct consequence of formula (1.32), and duality,
the Maurer–Cartan forms are seen to satisfy the fundamental structure equations

dαk = −1

2

r∑

i,j=1

Ck
ij α

i ∧ αj = −
r∑

i,j=1
i<j

Ck
ij α

i ∧ αj , k = 1, . . . , r. (2.30)

The coefficients Ck
ij are the same as the structure constants (2.12) corresponding to our

choice of basis of the Lie algebra g.

If the group G is given as a parametrized matrix Lie group, then a basis for the space
of Maurer–Cartan forms can be found among the entries of the matrix of one-forms

γ = dg · g−1, or γi
j =

r∑

k=1

dgik(g
−1)kj . (2.31)

Each entry γi
j is clearly a right-invariant one-form since if h is any fixed group element,

then

(Rh)
∗
γ = d(g · h) · (g · h)−1 = dg · g−1 = γ.

It is also not hard to see that the number of linearly independent entries of γ is the same
as the dimension of the group, and hence the entries provide a complete basis for the space
of Maurer–Cartan forms.

Of course, one can also define left-invariant Maurer–Cartan forms on a Lie group, dual
to the Lie algebra of left-invariant vector fields. The construction goes through word for
word. Note that the structure constants appearing in the left-invariant structure equations
are those corresponding to the left-invariant Lie algebra, and so have the opposite sign to
the right-invariant structure constants. Replacing formula (2.31) is the matrix γ̂ = g−1 ·dg
whose entries provide a basis for the left-invariant Maurer–Cartan forms.

Example 2.82. As in Example 2.11, the two-dimensional affine group A(1) can be

identified with the group of 2× 2 matrices of the form g =

(
a b
0 1

)
. According to (2.31),

the right-invariant Maurer–Cartan forms on A(1) are provided by the independent entries
of the matrix

dg · g−1 =

(
da db
0 0

)(
a−1 −ba−1

0 1

)
=

(
a−1 da a−1(a db− b da)

0 0

)
.

Therefore, the two Maurer–Cartan forms are

α1 =
da

a
, α2 =

a db− b da

a
,

forming the dual basis to the Lie algebra basis {v1,v2} of a(1) found in (2.10) above. The
Maurer–Cartan structure equations (2.30) for the group A(1) are then

dα1 = 0, dα2 =
da ∧ db

a
= α1 ∧ α2,
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reconfirming the Lie algebra commutation relation [v1,v2] = −v2. Similarly, the left-
invariant Maurer–Cartan forms are the matrix entries of

g−1 · dg =

(
a−1 −ba−1

0 1

)(
da db
0 0

)
=

(
a−1 da a−1 db

0 0

)
.

Therefore,

α̂1 =
da

a
, α̂2 =

db

a
,

form the dual basis to the left Lie algebra basis in (2.11). Note that the left Maurer–Cartan
structure equations have the opposite sign: dα̂1 = 0, dα̂2 = − α̂1 ∧ α̂2, in accordance with
the effect of left and right invariance on the structure constants of the Lie algebra.

Exercise 2.83. Find the right and left Lie algebras and the corresponding Maurer–
Cartan forms for the three-dimensional Heisenberg group U(3) consisting of all 3×3 upper
triangular matrices of the form

g =




1 x y
0 1 z
0 0 1


 .

Exercise 2.84. Let ρij = −ρji be the standard basis for the Maurer–Cartan forms
for the orthogonal group SO(n), given as the matrix entries of the skew-symmetric matrix
of one-forms ρ = dR ·R−1, R ∈ SO(n). Prove that the associated structure equations are
dρij =

∑
k ρ

i
k ∧ ρkj , often written in matrix form as dρ = ρ ∧ ρ.

Exercise 2.85. Prove that a one-form α on G is a right-invariant Maurer–Cartan
form if and only if it satisfies v̂(α) = 0 for all left-invariant vector fields v̂ ∈ gL.
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