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1. Introduction.

According to Akivis, [1], the idea of moving frames can be traced back to the method of
moving trihedrons introduced by the Estonian mathematician Martin Bartels (1769–1836),
a teacher of both Gauß and Lobachevsky. The modern method of moving frames or repères
mobiles† was primarily developed by Élie Cartan, [32, 33], who forged earlier contributions
by Cotton, Darboux, Frenet and Serret into a powerful tool for analyzing the geometric
properties of submanifolds and their invariants under the action of transformation groups.

In the 1970’s, several researchers, cf. [40, 58, 59, 77], began the attempt to place
Cartan’s intuitive constructions on a firm theoretical foundation. I’ve been fascinated by
the power of the method since my student days, but, for many years, could not see how to
release it from its rather narrow geometrical confines, e.g. Euclidean or equiaffine actions
on submanifolds of Euclidean space. The crucial conceptual leap is to decouple the moving
frame theory from reliance on any form of frame bundle or connection, and define a moving
frame as an equivariant map from the manifold or jet bundle back to the transformation
group. In other words,

Moving frames 6= Frames !

A careful study of Cartan’s analysis of the case of projective curves, [32], reveals that
Cartan was well aware of this viewpoint; however, this important and instructive example
did not receive the attention it deserved. Once freed from the confining fetters of frames,
Mark Fels and I, [51, 52], were able to formulate a new, powerful, constructive approach
to the equivariant moving frame theory that can be systematically applied to general
transformation groups. All classical moving frames can be reinterpreted in this manner,
but the equivariant approach applies in far broader generality.

Cartan’s construction of the moving frame through the normalization process is inter-
preted with the choice of a cross-section to the group orbits. Building on these two simple
ideas, one may algorithmically construct equivariant moving frames and, as a result, com-
plete systems of invariants for completely general group actions. The existence of a moving
frame requires freeness of the underlying group action. Classically, non-free actions are
made free by prolonging to jet space, leading to differential invariants and the solution to
equivalence and symmetry problems via the differential invariant signature. More recently,
the moving frame method was also applied to Cartesian product actions, leading to classi-
fication of joint invariants and joint differential invariants, [120]. Afterwards, a seamless
amalgamation of jet and Cartesian product actions dubbed multi-space was proposed in
[121] to serve as the basis for the geometric analysis of numerical approximations, and, via
the application of the moving frame method, to the systematic construction of invariant
numerical algorithms, [84].

With the basic moving frame machinery in hand, a plethora of new, unexpected,
and significant applications soon appeared. In [118, 8, 85, 86], the theory was applied
to produce new algorithms for solving the basic symmetry and equivalence problems of
polynomials that form the foundation of classical invariant theory. The moving frame

† In French, the term “repère mobile” refers to a temporary mark made during building or
interior design, and so a more accurate English translation might be “movable landmarks”.
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method provides a direct route to the classification of joint invariants and joint differen-
tial invariants, [52, 120, 16], establishing a geometric counterpart of what Weyl, [154],
in the algebraic framework, calls the first main theorem for the transformation group. In
[29, 15, 4, 7, 139, 114], the characterization of submanifolds via their differential invari-
ant signatures was applied to the problem of object recognition and symmetry detection,
[21, 22, 24, 50, 132]. Applications to the classification of joint invariants and joint differ-
ential invariants appear in [52, 120, 16]. In computer vision, joint differential invariants
have been proposed as noise-resistant alternatives to the standard differential invariant
signatures, [23, 31, 44, 111, 151, 152]. The approximation of higher order differential
invariants by joint differential invariants and, generally, ordinary joint invariants leads to
fully invariant finite difference numerical schemes, [28, 29, 15, 121, 84]. The all-important
recurrence formulae lead to a complete characterization of the differential invariant algebra
of group actions, and lead to new results on minimal generating invariants, even in very
classical geometries, [124, 69, 125, 73, 70]. The general problem from the calculus of vari-
ations of directly constructing the invariant Euler-Lagrange equations from their invariant
Lagrangians was solved in [87]. Applications to the evolution of differential invariants
under invariant submanifold flows, leading to integrable soliton equations and signature
evolution in computer vision, can be found in [126, 79].

Applications of equivariant moving frames that are being developed by other research
groups include the computation of symmetry groups and classification of partial differ-
ential equations [96, 112]; geometry of curves and surfaces in homogeneous spaces, with
applications to integrable systems, [98, 99, 100, 101, 125, 73]; symmetry and equivalence
of polygons and point configurations, [17, 78], recognition of DNA supercoils, [138], recov-
ering structure of three-dimensional objects from motion, [7], classification of projective
curves in visual recognition, [63]; construction of integral invariant signatures for object
recognition in 2D and 3D images, [53]; determination of invariants and covariants of Killing
tensors, with applications to general relativity, separation of variables, and Hamiltonian
systems, [43, 105, 106]; further developments in classical invariant theory, [8, 85, 86];
computation of Casimir invariants of Lie algebras and the classification of subalgebras,
with applications in quantum mechanics, [18, 19]. A rigorous, algebraically-based refor-
mulation of the method, suitable for symbolic computations, has been proposed by Hubert
and Kogan, [71, 72]. Mansfield’s recent text, [97]. gives a good introduction to the basic
ideas and some of the important applications.

Finally, in recent work with Pohjanpelto, [128, 129, 130], the theory and algorithms
have recently been extended to the vastly more complicated case of infinite-dimensional Lie
pseudo-groups. Applications to infinite-dimensional symmetry groups of partial differential
equations can be found in [38, 39, 113, 148], to the classification of Laplace invariants
and factorization of linear partial differential operators in [140], to climate and turbulence
modeling in [9], and to general Cartan equivalence problems in [149].

2. Lie Groups and Lie Algebras.

We will be interested in the action of both finite-dimensional Lie groups and, later,
infinite-dimensional Lie pseudo-groups on an m-dimensional manifold M . All manifolds,
functions, etc., will be assumed to be at least smooth, meaning C∞, or even analytic when
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necessary. Since our considerations are primarily local, the reader will not lose much by
assuming that M is an open subset of the Euclidean space R

m. One can equally well work
in the complex category if desired. We will assume the reader is familiar with the basic
notions of tangent space, vector field, flow, Lie bracket, cotangent space, differential form,
wedge product, pull-back, and the exterior derivative d. See [116; Chapter 1] for a painless
introduction to the main concepts.

A Lie group is, by definition, a group G that also has the structure of a smooth
manifold that makes the group multiplication and inversion smooth maps. We let r denote
the dimension of G. Familiar examples include the general linear group GL(m) of m×m
invertible matrices, the special Euclidean group SE(m) of rigid motions (translations and
rotations) of R

m and the group A(m) consisting of affine transformations z 7→ Az + b of
R
m. In fact, any subgroup of GL(m) which is topologically closed forms a Lie group; most

(but not all) Lie groups arise as such matrix Lie groups.

The Lie algebra g is the space of right-invariant vector fields† on G. Since each such
vector field is uniquely determined by its value at the identity e ∈ G, we can identify
g ≃ TG|e with the r-dimensional tangent space to the group at the identity, and hence
g is an r-dimensional vector space. We fix a basis v̂1, . . . , v̂r of g, which we refer to as
the infinitesimal generators of the Lie group. The nonzero Lie algebra element 0 6= v̂ ∈ g

are in one-to-one correspondence with the connected one-parameter (or one-dimensional)
subgroups of G, identified as its flow exp(t v̂)e through the identity.

The Lie algebra is also equipped with a Lie bracket operation [ v̂, ŵ ], since the Lie
bracket between vector fields preserves right-invariance. The Lie bracket is bilinear, skew
symmetric, and satisfies the Jacobi identity:

[v,w ] = − [ v̂, ŵ ], [ û, [ v̂, ŵ ] ] + [ v̂, [ŵ, û ] ] + [ŵ, [ û, v̂ ] ] = 0, (2.1)

for any û, v̂, ŵ ∈ g.

In particular,

[ v̂i, v̂j ] =
r∑

k=1

Ckij v̂k, (2.2)

where the coefficients Ckij are known as the structure constants of the Lie algebra. Note that
the structure constants depend on the selection of a basis; their behavior under a change
of basis is easily found. Interestingly, a recent application of moving frames, [18], has been
to calculate the structure invariants, meaning combinations of structure constants that do
not depend on the basis, a question of importance in the classification of Lie algebras and
quantum mechanics.

The right-invariant one-forms on a Lie group are known as the Maurer–Cartan forms.
By the same reasoning, they form an r-dimensional vector space dual to the Lie algebra, and
denoted g

∗. The dual basis to the space of Maurer–Cartan forms is denoted by µ1, . . . , µr,

† One can also use left-invariant vector fields here — the only differences are some changes
in signs. The only reason to prefer right-invariant is that they generalize more readily to the
infinite-dimensional case.
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where under the natural pairing between vector fields and one-forms 〈 v̂i ;µj 〉 = δji is the
Kronecker delta, equal to 1 for i = j and 0 otherwise. The structure equations for the Lie
group are dual to the commutation relations (2.2), and take the form

dµk = −
∑

i<j

Ckij µ
i ∧ µj . (2.3)

The r-dimensional Lie group G acts on the m-dimensional manifold M , meaning that
(g, z) 7→ g ·z is a smooth map from G×M to M . We will also allow the possibility that the
action is only local , meaning that g · z may only be defined fro group elements sufficiently
near the identity. An example of a local action is the projective action of G = GL(2) on
M = R:

g · z =
αz + β

γ z + δ
, z ∈ R, g =

(
α β
γ δ

)
∈ GL(2), (2.4)

which is not defined when the denominator vanishes.

Definition 2.1. The orbits of a group action are the minimal invariant subsets. In
other words (assuming the action is global) the orbit through z ∈M is Oz = { g ·z | g ∈ G }.

Definition 2.2. Given z ∈ M , the isotropy subgroup Gz = { g | g · z = z } consists
of all elements that fix it. More generally, the isotropy or symmetry subgroup of a subset
S ⊂M is GS = { g | g · S = S }.

Definition 2.3. A group action is free Gz = {e} for all z ∈ M ; i.e., the only group
element g ∈ G which fixes one point z ∈M is the identity. The action is locally free if Gz
is a discrete subgroup of G.

Lemma 2.4. A group acts locally freely if and only if its orbits all have the same
dimension as G.

The action is semi-regular if all the orbits have the same dimension. A semi-regular
action is regular if the orbits intersect sufficiently small coordinate charts only once, i.e.,
they form a regular foliation. The most familiar example of an irregular action is the
irrational flow on the torus, in which every orbit is dense. The action is effective if the
only group element which fixes every point in M is the identity; in other words, g · z = z
for all z ∈M if and only if g = e. If the group G does not act effectively, one can, without
any loss of generality, replace G by the effectively acting quotient group G/G∗M , where
G∗M = { g ∈ G | g · z = z for all z ∈M } is the global isotropy subgroup.

For each Lie algebra element v̂ ∈ g, let v denote the vector field on M whose flow
exp(tv) coincides with the action of the one-parameter subgroup generated by v̂. We call
the resulting vector fields the infinitesimal generators of the action of G on M ; these form
a Lie algebra of vector fields on M isomorphic to g. If G is a connected Lie group, its
action can be completely reconstructed by exponentiating its infinitesimal generators. In
particular, the vector fields v1, . . . ,vr corresponding to our chosen basis v̂1, . . . , v̂r of g

satisfy the same Lie algebra commutation relations (2.2).

At each point z ∈ M , the space g|z = {v|z | v̂ ∈ g } spanned by the infinitesimal
generators can be identified with the tangent space to the orbit through z. Thus, G acts
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locally freely at z if and only if dim g|z = r = dimG, and so local freeness can be checked
infinitesimally. On the other hand, freeness is a global condition, that requires knowing
the complete group action.

Definition 2.5. An invariant of the action of G in M is a real-valued function
I:M → R such that I(g · z) = I(z) for all g ∈ G and all z ∈M .

Observe that I is an invariant if and only if it is constant on the orbits of G. We allow
the possibility that I is only defined on an open subset of M , in which case the invariance
condition is only imposed when both z and g · z lie in the domain of I. A local invariant

is defined so that the invariance condition only need hold for g sufficiently close to the
identity.

Clearly, if I1, . . . , Ik are invariants, so is any function thereof I = H(I1, . . . , Ik). We
therefore only need to classify invariants up to functional dependence.

Theorem 2.6. If G acts regularly on the m-dimensional manifold M with s-dimen-
sional orbits, then, locally, there exist precisely m− s functionally independent invariants
I1, . . . , Im−s with the property that any other invariant can be written as a function thereof.

If the action is semi-regular, then the same result holds for local invariants.

The infinitesimal criterion for invariance is established by differentiating the invariance
formula

I(exp(tv)z) = I(z) for v ∈ g

with respect to t and setting t = 0.

Theorem 2.7. Let G be connected. A function I:M → R is an invariant if and only
if

vi(I) = 0 for all i = 1, . . . , r. (2.5)

Similarly, invariance of a submanifold N ⊂ M given implicitly by the vanishing of
functions has an associated infinitesimal invariance criterion.

Theorem 2.8. Let G be connected. Let N ⊂M be a submanifold defined implicitly
by the vanishing of one or more functions Fν(z) = 0 where ν = 1, . . . , k. Assume that the
Jacobian matrix

(
∂Fν/∂z

i
)

has rank k for all z ∈ N. Then N is an invariant submanifold
— and so G is a symmetry group of N — if and only if

vi(Fν) = 0 whenever F (z) = 0 (2.6)

for all i = 1, . . . , r and ν = 1, . . . , k.

3. Jets.

In this section, we introduce the so-called “jet spaces” or “jet bundles”, well known
to nineteenth century practitioners, but first formally defined by Ehresmann, [48], in his
seminal paper on the subject of infinite-dimensional Lie pseudo-groups.

Our basic arena is anm-dimensional manifoldM . We let Jn = Jn(M, p) denote the nth

order (extended) jet bundle consisting of equivalence classes of p-dimensional submanifolds
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S ⊂M under the equivalence relation of nth order contact. In particular, J0 = M . We let
jnS ⊂ Jn denote the n–jet of the submanifold S, which forms a p-dimensional submanifold
of the jet space.

When we introduce local coordinates z = (x, u) on M , we consider the first p com-
ponents x = (x1, . . . , xp) as independent variables, and the latter q = m − p components
u = (u1, . . . , uq) as dependent variables. In these coordinates, a (transverse) p-dimensional
submanifold is realized as the graph of a function u = f(x). Two such submanifolds have
nth order contact at a point (x0, u0) = (x0, f(x0)) if and only if they have the same nth

order Taylor polynomials at x0. Thus, the induced coordinates on the jet bundle Jn are
denoted by z(n) = (x, u(n)), consisting of independent variables xi, dependent variables
uα, and their derivatives uαJ , α = 1, . . . , q, of order #J ≤ n. Here J = (j1, . . . , jk), with
1 ≤ jν ≤ p, is a symmetric multi-index of order k = #J . We will also write jnf(x) for the
n–jet or Taylor polynomial of f at the point x. There is an evident projection πkn: J

k → Jn

whenever k > n, given by πkn(x, u
(k)) = (x, u(n)) — In other words, omit all derivative

coordinates of order > n.

A real-valued function F : Jn → R, defined on an open subset of the jet space, is known
as a differential function, written F (x, u(n)). We will can evaluate F on any higher order
jet by composition with the project, so F ◦πkn: J

k → R. The order of a differential function
is the highest order derivative coordinate it explicitly depends on, i.e.,

ordF = max

{
#J

∣∣∣∣
∂F

∂uαJ
6≡ 0 for some α

}
.

A general system of nth order (partial) differential equations in p independent variables
x = (x1, . . . , xp), and q dependent variables u = (u1, . . . , uq) is defined by the vanishing of
one or more differential functions of order ≤ n:

∆ν(x, u
(n)) = 0, ν = 1, . . . , l. (3.1)

The jets (x, u(n)) that satisfy the equations (3.1) define a subvariety S∆ ⊂ Jn. In appli-
cations, we assume that the Jacobian matrix of the system with respect to to all the jet
variables has maximal rank l, and hence, by the implicit function theorem, S∆ is, in fact,
a submanifold. A (classical) solution to the system is a smooth function u = f(x), or,
equivalently, a submanifold, whose n–jet belongs to the subvariety: jnS ⊂ S∆. This is
merely a restatement, in jet language, of the usual criterion for a classical solution to a
system of differential equations.

Given an r-dimensional Lie group G act smoothly on the manifold M , we let G(n)

denote the nth prolongation of G to the jet bundle Jn = Jn(M, p) induced by the action
of G on p-dimensional submanifolds. In practical examples, for n sufficiently large, the
prolonged action G(n) becomes regular and free on a dense open subset Vn ⊂ Jn, the set
of regular jets. It has been rigorously proved that, if G acts (locally) effectively on each
open subset of M , then, for n≫ 0 sufficiently large, its nth prolongation G(n) acts locally
freely on an open subset Vn ⊂ Jn, [119].

4. Symmetries of Differential Equations.

We will begin by reviewing a few relevant points from Lie’s theory of symmetry groups
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of differential equations as presented, for instance, in the textbook [116]. In general, by a
symmetry of the system (3.1) we mean a transformation which takes solutions to solutions.
The most basic type of symmetry is a (locally defined) invertible map on the space of
independent and dependent variables:

(x̄, ū) = g · (x, u) = (Ξ(x, u),Φ(x, u)).

Such transformations act on solutions u = f(x) by pointwise transforming their graphs;
in other words if Γf =

{
(x, f(x))

}
denotes the graph of f , then the transformed function

f̄ = g · f will have graph

Γf̄ =
{

(x̄, f̄(x̄))
}

= g · Γf ≡
{
g · (x, f(x))

}
. (4.1)

Definition 4.1. A local Lie group of transformations G is called a symmetry group

of the system of partial differential equations (3.1) if f̄ = g · f is a solution whenever f is.

We will always assume that the transformation group G is connected, thereby exclud-
ing discrete symmetry groups, which, while also of great interest for differential equations,
are unfortunately not amenable to infinitesimal, constructive techniques. Connectivity
implies that it suffices to work with the associated infinitesimal generators, which form a
Lie algebra of vector fields

v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
, (4.2)

on the space of independent and dependent variables. The group transformations in G are
recovered from the infinitesimal generators by the usual process of exponentiation. Thus,
the one-parameter group G = {gε|ε ∈ R} generated by the vector field (4.2) is the solution
gε · (x0, u0) = (x(ε), u(ε)) to the first order system of ordinary differential equations

dxi

dε
= ξi(x, u),

duα

dε
= ϕα(x, u), (4.3)

with initial conditions (x0, u0) at ε = 0.

For example, the vector field

v = −u ∂x + x ∂u

generates the rotation group

x(ε) = x cos ε− u sin ε, u(ε) = x sin ε+ u cos ε,

which transforms a function u = f(x) by rotating its graph.

Since the transformations in G act on functions u = f(x), they also act on their
derivatives, and so induce “prolonged transformations” (x̄, ū(n)) = pr(n) g · (x, u(n)). The
explicit formula for the prolonged group transformations is rather complicated, and so it
is easier to work with the prolonged infinitesimal generators, which are vector fields

pr(n) v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

#J≤n

ϕαJ (x, u(n))
∂

∂uαJ
, (4.4)
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on the space of independent and dependent variables and their derivatives up to order n,
which are denoted by uαJ = ∂Juα/∂xJ , where J = (j1, . . . , jn), 1 ≤ jν ≤ p. The coefficients
ϕαJ of pr(n) v are given by the explicit formula

ϕαJ = DJQ
α +

p∑

i=1

ξi uαJ,i, (4.5)

in terms of the coefficients ξi, ϕα of the original vector field (4.2). HereDi denotes the total
derivative with respect to xi (treating the u’s as functions of the x’s), andDJ = Dj1 ·. . .·Djn
the corresponding higher order total derivative. Furthermore, the q-tuple Q = (Q1, . . . , Qq)
of functions of x’s, u’s and first order derivatives of the u’s defined by

Qα(x, u(1)) = ϕα(x, u) −
p∑

i=1

ξi(x, u)
∂uα

∂xi
, α = 1, . . . , q, (4.6)

is known as the characteristic of the vector field (4.2), and plays a significant role in our
subsequent discussion. The main point the reader should glean from this paragraph is
not the particular complicated expressions in (4.4, 5, 6) (although, of course, these are

required when performing any particular calculation), but rather that there are known,
explicit formulas which can, in a relatively straightforward manner, be computed. See
[116] for details.

Theorem 4.2. A connected group of transformations G is a symmetry group of the
(nondegenerate) system of differential equations (3.1) if and only if the classical infinitesi-
mal symmetry criterion

pr(n) v(∆ν) = 0, ν = 1, . . . , r, whenever ∆ = 0. (4.7)

holds for every infinitesimal generator v of G.

The equations (4.7) are known as the determining equations of the symmetry group
for the system. They form a large over-determined linear system of partial differential
equations for the coefficients ξi, ϕα of v, and can, in practice, be explicitly solved to
determine the complete (connected) symmetry group of the system (3.1). There are now a
wide variety of computer algebra packages available which will automate most of the routine
steps in the calculation of the symmetry group of a given system of partial differential
equations. See [65] for a survey of the different packages available, and a discussion of
their strengths and weaknesses.

Example 4.3. The classic example illustrating the basic techniques is the linear
heat equation

ut = uxx. (4.8)

An infinitesimal symmetry of the heat equation will be a vector field v = ξ ∂x+τ ∂t+ϕ∂u,
where ξ, τ, ϕ are functions of x, t, u. To determine which coefficient functions ξ, τ, ϕ yield
genuine symmetries, we need to solve the symmetry criterion (4.7), which, in this case, is

ϕt = ϕxx whenever ut = uxx. (4.9)
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Here, utilizing the characteristic Q = ϕ− ξux − τut given by (4.6),

ϕt = DtQ+ ξuxt + τutt, ϕxx = D2
xQ+ ξuxxx + τuxxt, (4.10)

are the coefficients of the terms ∂ut
, ∂uxx

in the second prolongation of v, cf. (4.5). Sub-
stituting the formulas (4.10) into (4.9), and replacing ut by uxx wherever it occurs, we are
left with a polynomial equation involving the various derivatives of u whose coefficients
are certain derivatives of ξ, τ, ϕ. Since ξ, τ, ϕ only depend on x, t, u we can equate the
individual coefficients to zero, leading to the complete set of determining equations:

Coefficient Monomial

0 = −2τu uxuxt
0 = −2τx uxt
0 = −τuu u2

xuxx
−ξu = −2τxu − 3ξu uxuxx

ϕu − τt = −τxx + ϕu − 2ξx uxx
0 = −ξuu u3

x

0 = ϕuu − 2ξxu u2
x

−ξt = 2ϕxu − ξxx ux
ϕt = ϕxx 1

The general solution to these elementary differential equations is readily found:

ξ = c1 + c4x+ 2c5t+ 4c6xt,

τ = c2 + 2c4t+ 4c6t
2,

ϕ = (c3 − c5x− 2c6t− c6x
2)u+ α(x, t),

where ci are arbitrary constants and αt = αxx is an arbitrary solution to the heat equation.
Therefore, the symmetry algebra of the heat equation is spanned by the vector fields

v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u, v6 = 4xt∂x + 4t2∂t − (x2 + 2t)u∂u,

vα = α(x, t)∂u, where αt = αxx.

The corresponding one-parameter groups are, respectively, x and t translations, scaling in
u, the combined scaling (x, t) 7→ (λx, λ2t), Galilean boosts, an “inversional symmetry”,
and the addition of solutions stemming from the linearity of the equation. See [116] for
more details.

Example 4.4. The celebrated Korteweg–deVries (KdV) equation, [47, 116], is

ut + uxxx + uux = 0. (4.11)

A vector field v is an infinitesimal symmetry of the KdV equation if and only if

v(3)(ut+uxxx+uux) = ϕ̂ t+ϕ̂ xxx+u ϕ̂ x+ux ϕ̂ = 0 whenever ut+uxxx+uux = 0.
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Substituting the prolongation formulas, and equating the coefficients of the independent
derivative monomials to zero, leads to the infinitesimal determining equations which to-
gether with their differential consequences reduce to the system

τx = τu = ξu = ϕt = ϕx = 0, ϕ = ξt − 2
3
uτt, ϕu = −2

3
τt = −2 ξx, (4.12)

while all the derivatives of the components of order two or higher vanish. The general
solution

τ = c1 + 3c4t, ξ = c2 + c3t+ c4x, ϕ = c3 − 2c4u,

defines the four-dimensional KdV symmetry algebra with the basis given by

v1 = ∂t, v2 = ∂x, v3 = t ∂x + ∂u, v4 = 3 t ∂t + x ∂x − 2u ∂u. (4.13)

In this example, the classical symmetry group is disappointingly trivial, consisting of easily
guessed translations and scaling symmetries. The action of the KdV symmetry group on
M , which can be obtained by composing the flows of the symmetry algebra basis and is
given by

(T,X, U) = exp(λ4v4) ◦ exp(λ3v3) ◦ exp(λ2v2) ◦ exp(λ1v1)(t, x, u)

=
(
e3λ4(t+ λ1), e

λ4(λ3t+ x+ λ1λ3 + λ2), e
−2λ4(u+ λ3)

)
,

(4.14)

where λ1, λ2, λ3, λ4 are the group parameters.

Theorem 4.2 guarantees that these are the only continuous classical symmetries of
the equation. (There are, however, higher order generalized symmetries, cf. [116], which
account for the infinity of conservation laws of this equation.) Sometimes the compli-
cated calculation of the symmetry group of a system of differential equations yields only
rather trivial symmetries; however, there are numerous examples where this is not the case
and new and physically and/or mathematically important symmetries have arisen from a
complete group analysis.

A wide range of applications of symmetry groups, including the construction of ex-
plicit solutions, integration of ordinary differential equations, determination of conservation
laws, linearization of nonlinear partial differential equations, and so on, can be found in
[12, 30, 74, 116, 117].

5. Equivariant Moving Frames.

We begin by outlining the basic moving frame construction in [52]. Let G be an
r-dimensional Lie group acting smoothly on an m-dimensional manifold M .

Definition 5.1. A moving frame is a smooth, G-equivariant map ρ :M → G.

There are two principal types of equivariance:

ρ(g · z) =

{
g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame
(5.1)

If ρ(z) is any right-equivariant moving frame then ρ̃(z) = ρ(z)−1 is left-equivariant and
conversely. All classical moving frames are left equivariant, but, in many cases, the right
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versions are easier to compute. In many geometrical situations, one can identify our left
moving frames with the usual frame-based versions, but these identifications break down
for more general transformation groups.

Theorem 5.2. A moving frame exists in a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.

Proof : To see the necessity of freeness, suppose z ∈ M , and let g ∈ Gz belong to its
isotropy subgroup. Let ρ :M → G be a left moving frame. Then, by left equivariance of ρ,

ρ(z) = ρ(g · z) = g · ρ(z).
Therefore g = e, and hence Gz = {e} for all z ∈M .

To prove regularity, suppose that z ∈ M and that there exist points zκ = gκ · z
belonging to the orbit of z such that zκ → z as κ→ ∞. Thus, by continuity,

ρ(zκ) = ρ(gκ · z) = gκ · ρ(z) −→ ρ(z) as κ −→ ∞,

which implies that gκ → e in G. This suffices to ensure regularity of the orbit through z.

The sufficiency of these conditions will follow from the direct construction of the
moving frame, which we describe next.

The practical construction of a moving frame is based on Cartan’s method of nor-

malization, [81, 32, 52], which requires the choice of a (local) cross-section to the group
orbits.

Definition 5.3. Suppose G acts semi-regularly on the m-dimensional manifold M
with s-dimensional orbits. A (local) cross-section is an (m − s)-dimensional submanifold
K ⊂M such that K intersects each orbit transversally, meaning that

TK|k ∩ TO|k = TK|k ∩ g|k = {0} for all k ∈ K. (5.2)

The cross-section is regular if K intersects each orbit at most once.

The transversality condition (5.2) can thus be checked infinitesimally. Indeed, the
(non-empty) subset K defined by the s equations

F1(z) = c1, . . . Fs(z) = cs, (5.3)

forms a cross-section if and only if the s× s matrix

v(F ) =
(
vκ(Fi)

)
, (5.4)

obtained by applying the basis infinitesimal generators to the functions, is invertible on
each point of K, i.e., each solution to (5.3). In particular, a coordinate cross-section is
defined by setting s of the coordinates to constants,

zi1(z) = c1, . . . zis(z) = cs, (5.5)

subject to the requirement that

det
(
vκ(ziν )

)
= det

(
ζiνκ (z)

)
6= 0,

12



at all points satisfying (5.5). At any point, one can always choose a local coordinate cross-
section if desired. So let us, for simplicity, concentrate on these from now on, and (by
possibly relabeling the coordinates) assume that the first s coordinates are set equal to
constants.

Theorem 5.4. Let G act freely and regularly on M , and let K ⊂ M be a regular
cross-section. Given z ∈M , let g = ρ(z) be the unique group element that maps z to the
cross-section: g · z = ρ(z) · z ∈ K. Then ρ :M → G is a right moving frame for the group
action.

Proof : Given a point ẑ = h · z, if g · z = k ∈ K, then ĝ = g · h−1 satisfies ĝ · ẑ =
g · h−1 · h · z = k ∈ K also, and hence

ρ(h · z) = ρ(ẑ) = ĝ = g · h−1 = ρ(z) · h−1,

proving right equivariance. Q.E.D.

Given local coordinates z = (z1, . . . , zm) on M , let w(g, z) = g · z be the explicit
formulae for the group transformations. The right† moving frame g = ρ(z) associated with
the coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

is obtained by solving the normalization equations

w1(g, z) = c1, . . . wr(g, z) = cr, (5.6)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).
Substituting the moving frame formulae into the remaining transformation rules leads to
a complete system of invariants for the group action.

Theorem 5.5. If g = ρ(z) is the moving frame solution to the normalization equa-
tions (5.6), then the functions

I1(z) = wr+1(ρ(z), z), . . . Im−r(z) = wm(ρ(z), z), (5.7)

form a complete system of functionally independent invariants.

Definition 5.6. The invariantization of a scalar function F :M → R with respect
to a right moving frame ρ is the invariant function I = ι(F ) defined by I(z) = F (ρ(z) · z).

Invariantization amounts to restricting F to the cross-section, I | K = F | K, and then
requiring that I be constant along the orbits. In particular, if I(z) is an invariant, then
ι(I) = I, so invariantization defines a projection, depending on the moving frame, from
functions to invariants. In general, invariantization maps

F (z1, . . . , zn) 7−→ ι(F ) = F (c1, . . . , cr, I1(z), . . . , Im−r(z)). (5.8)

† The left version can be obtained directly by replacing g by g−1 throughout the construction.
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In particular, if J(z) is any invariant, then we deduce

J(z1, . . . , zn) = J(c1, . . . , cr, I1(z), . . . , Im−r(z)). (5.9)

This result is known as the Replacement Rule, and provides a simple means of immediately
rewriting any invariant in terms of the fundamental invariants.

Example 5.7. Consider the standard action

y = x cosφ− u sinφ, v = x sinφ+ u cosφ, (5.10)

of the rotation group G = SO(2) on M = R
2. The orbits are the circles centered at the

origin and the origin itself. The action is free on the punctured plane M̃ = R
2 \ {0}. Let

us choose the cross-section

K =
{
u = 0, x > 0

}
.

Solving the normalization equation

v = x sinφ+ u cosφ = 0

leads to the right moving frame:

φ = − tan−1 u

x
, (5.11)

which defines a right-equivariant map ρ : M̃ → SO(2). The fundamental invariant is ob-
tained by substituting the moving frame formula (5.11) into the unnormalized coordinate
y = x cosφ− u sinφ, leading to

r = ι(x) =
√
x2 + u2 .

Finally, the invariantization of a function F (x, y) is given by

ι
[
F (x, u)

]
= F (r, 0).

In particular, if J(x, y) = x2 + y2 is an invariant, then the Replacement Rule

ι(J) = r2 + 02 = r2 = J

gives us its formula in terms of the fundamental invariant. Of course, this example is too
elementary on its own, but helps clarify the more complicated calculations seen later on.

Remark : Hubert and Kogan, [71, 72], have formulated a completely algebraic version
of the preceding construction, valid for polynomial and algebraic group actions, and shown
its effectiveness for determining rational and algebraic invariants. In particular, the alge-
braic implementation of the Replacement Theorem leads to a rewrite rule for expressing
other invariants in terms of the generating invariants.
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Of course, most interesting group actions are not free, and therefore do not admit
moving frames in the sense of Definition 5.1. There are two basic methods for converting a
non-free (but effective) action into a free action. The first is to look at the product action
of G on several copies of M , leading to joint invariants. The second is to prolong the group
action to jet space, which is the natural setting for the traditional moving frame theory, and
leads to differential invariants. Combining the two methods of prolongation and product
will lead to joint differential invariants. In applications of symmetry constructions to nu-
merical approximations of derivatives and differential invariants, one requires a unification
of these different actions into a common framework, called multispace, [84, 121].

6. Moving Frames on Jet Space and Differential Invariants.

Traditional moving frames are obtained by prolonging the group action to the nth

order submanifold jet bundle Jn = Jn(M, p). Given the prolonged group action G(n) on
Jn, by an nth order moving frame ρ(n): Jn → G, we mean an equivariant map defined on
an open subset of the jet space.

Theorem 6.1. An nth order moving frame exists in a neighborhood of a point
z(n) ∈ Jn if and only if z(n) ∈ Vn is a regular jet.

Our normalization construction will produce a moving frame and a complete system of
differential invariants in the neighborhood of any regular jet. Local coordinates z = (x, u)
on M — considering the first p components x = (x1, . . . , xp) as independent variables, and
the latter q = m − p components u = (u1, . . . , uq) as dependent variables — induce local
coordinates z(n) = (x, u(n)) on Jn with components uαJ representing the partial derivatives
of the dependent variables with respect to the independent variables, [116, 117]. We
compute the prolonged transformation formulae

w(n)(g, z(n)) = g(n) · z(n), or (y, v(n)) = g(n) · (x, u(n)),

by implicit differentiation of the v’s with respect to the y’s. For simplicity, we restrict
to a coordinate cross-section by choosing r = dimG components of w(n) to normalize to
constants:

w1(g, z
(n)) = c1, . . . wr(g, z

(n)) = cr. (6.1)

Solving the normalization equations (6.1) for the group transformations leads to the explicit
formulae g = ρ(n)(z(n)) for the right moving frame. As in Theorem 5.5, substituting the
moving frame formulae into the unnormalized components of w(n) leads to the fundamental

nth order differential invariants

I(n)(z(n)) = w(n)(ρ(n)(z(n)), z(n)) = ρ(n)(z(n)) · z(n). (6.2)

Once the moving frame is established, the invariantization process will map general dif-
ferential functions F (x, u(n)) to differential invariants I = ι(F ) = F ◦ I(n). As before,
invariantization defines a projection, depending on the moving frame, from the space of
differential functions to the space of differential invariants. The fundamental differential
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invariants I(n) are obtained by invariantization of the coordinate functions

Hi(x, u(n)) = ι(xi) = yi(ρ(n)(x, u(n)), x, u),

IαK(x, u(k)) = ι(uαJ ) = vαK(ρ(n)(x, u(n)), x, u(k)).
(6.3)

In particular, those corresponding to the normalization components (6.1) of w(n) will be
constant, and are known as the phantom differential invariants.

Theorem 6.2. Let ρ(n): Jn → G be a moving frame of order ≤ n. Every nth order
differential invariant can be locally written as a function J = Φ(I(n)) of the fundamental
nth order differential invariants (6.3). The function Φ is unique provided it does not depend
on the phantom invariants.

Example 6.3. The paradigmatic example is the action of the orientation-preserving
Euclidean group SE(2) on plane curves C ⊂M = R

2. The group transformation g ∈ SE(2)
maps the point z = (x, u) to the point w = (y, v) = g · z, given by

y = x cosφ− u sinφ+ a, v = x sinφ+ u cosφ+ b. (6.4)

For simplicity let us assume our curve is given (locally) by the graph of a function u = f(x).
(Extensions to general parametrized curves are straightforward.) The prolonged group
transformations

vy =
sinφ + ux cosφ

cosφ − ux sinφ
, vyy =

uxx
(cosφ − ux sinφ )3

,

vyyy =
(cosφ − ux sinφ )uxxx − 3u2

xx sinφ

(cosφ − ux sinφ )5
, . . .

(6.5)

and so on, are found by successively applying the implicit differentiation operator

d

dy
=

1

cosφ− ux sinφ

d

dx
(6.6)

to v as given in (6.4). Choosing the cross-section normalizations

y = 0, v = 0, vy = 0, (6.7)

we solve for the group parameters

φ = − tan−1 ux, a = − x+ uux√
1 + u2

x

, b =
xux − u√

1 + u2
x

, (6.8)

which defines the right-equivariant moving frame ρ: J1 −→ SE(2). The corresponding
left-equivariant moving frame is obtained by inversion:

a = x, b = u, φ = tan−1 ux (6.9)

This can be identified with the classical left moving frame, [32, 61], as follows: the trans-
lation component (a, b) = (x, u) = z is the point on the curve, while the columns of the
normalized rotation matrix

R =

(
cosφ − sinφ
sinφ cosφ

)
7−→ 1√

1 + u2
x

(
1 −ux
ux 1

)
= (t,n)
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are the unit tangent and unit normal vectors. Substituting the moving frame normaliza-
tions (6.8) into the prolonged transformation formulae (6.5), results in the fundamental
differential invariants

vyy 7−→ κ =
uxx

(1 + u2
x)

3/2
,

vyyy 7−→ dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3
,

vyyyy 7−→ d2κ

ds2
+ 3κ3,

(6.10)

where
d

ds
=

1√
1 + u2

x

d

dx
(6.11)

is the arc length derivative — which is itself found by substituting the moving frame formu-
lae (6.8) into the implicit differentiation operator (6.6). A complete system of differential
invariants for the planar Euclidean group is provided by the curvature and its successive
derivatives with respect to arc length: κ, κs, κss, . . . .

The one caveat is that the first prolongation of SE(2) is only locally free on J1 since
a 180◦ rotation has trivial first prolongation. The even derivatives of κ with respect to s
change sign under a 180◦ rotation, and so only their absolute values are fully invariant.
The ambiguity can be removed by including the second order constraint vyy > 0 in the
derivation of the moving frame. Extending the analysis to the full Euclidean group E(2)
adds in a second sign ambiguity which can only be resolved at third order. See [120] for
complete details.

Example 6.4. Let n 6= 0, 1. In classical invariant theory, the planar actions

y =
αx+ β

γx+ δ
, v = (γx+ δ)−nu, (6.12)

of G = GL(2) play a key role in the equivalence and symmetry properties of binary forms,
when u = q(x) is a polynomial of degree ≤ n, [66, 118, 8]. We identify the graph of the
function u = q(x) as a plane curve. The prolonged action on such graphs is found by
implicit differentiation:

vy =
σux − nγu

∆σn−1
, vyy =

σ2uxx − 2(n− 1)γσux + n(n− 1)γ2u

∆2σn−2
,

vyyy =
σ3uxxx − 3(n− 2)γσ2uxx + 3(n− 1)(n− 2)γ2σux − n(n− 1)(n− 2)γ3u

∆3σn−3
,

and so on, where σ = γp+ δ, ∆ = αδ − βγ 6= 0. On the regular subdomain

V2 = {uH 6= 0} ⊂ J2, where H = uuxx −
n− 1

n
u2
x

is the classical Hessian covariant of u, we can choose the cross-section defined by the
normalizations

y = 0, v = 1, vy = 0, vyy = 1.
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Solving for the group parameters gives the right moving frame formulae†

α = u(1−n)/n
√
H, β = −xu(1−n)/n

√
H,

γ = 1
n u

(1−n)/nux, δ = u1/n − 1
n xu

(1−n)/nux.
(6.13)

Substituting the normalizations (6.13) into the higher order transformation rules gives us
the differential invariants, the first two of which are

vyyy 7−→ J =
T

H3/2
, vyyyy 7−→ K =

V

H2
, (6.14)

where

T = u2uxxx − 3
n− 2

n
uuxuxx + 2

(n− 1)(n− 2)

n2
u3
x,

V = u3uxxxx − 4
n− 3

n
u2uxuxx + 6

(n− 2)(n− 3)

n2
uux

2uxx −

− 3
(n− 1)(n− 2)(n− 3)

n3
u4
x,

and can be identified with classical covariants, which may be constructed using the basic
transvectant process of classical invariant theory, cf. [66, 118]. Using J2 = T 2/H3 as
the fundamental differential invariant will remove the ambiguity caused by the square
root. As in the Euclidean case, higher order differential invariants are found by successive
application of the normalized implicit differentiation operator Ds = uH−1/2Dx to the
fundamental invariant J .

A general cross-section Kn ⊂ Jn is prescribed implicitly by setting r = dimG differ-
ential functions Z = (Z1, . . . , Zr) to constants:

Z1(x, u
(n)) = c1, . . . Zr(x, u

(n)) = cr. (6.15)

Usually — but not always, [96, 125] — the functions are selected from the jet space
coordinates xi, uαJ , resulting in a coordinate cross-section. The corresponding value of the
right moving frame at a jet z(n) ∈ Jn is the unique group element g = ρ(n)(z(n)) ∈ G that
maps it to the cross-section:

ρ(n)(z(n)) · z(n) = g(n) · z(n) ∈ Kn. (6.16)

The moving frame ρ(n) clearly depends on the choice of cross-section, which is usually
designed so as to simplify the required computations as much as possible.

Once the cross-section has been fixed, the induced moving frame engenders an in-
variantization process, that effectively maps functions to invariants, differential forms to
invariant differential forms, and so on, [52, 123]. Geometrically, the invariantization of
any object is defined as the unique invariant object that coincides with its progenitor when
restricted to the cross-section. In particular, invariantization does not affect invariants,

† See [8] for a detailed discussion of how to resolve the square root ambiguities.
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and hence defines a morphism that projects the algebra (or, more correctly, sheaf) of
differential functions onto the algebra of differential invariants.

Computationally, the invariantization of a differential function is constructed by first
writing out how it is transformed by the prolonged group action: F (z(n)) 7→ F (g(n) · z(n)).
One then replaces all the group parameters by their right moving frame formulae g =
ρ(n)(z(n)), resulting in the differential invariant

ι
[
F (z(n))

]
= F

(
ρ(n)(z(n)) · z(n)

)
. (6.17)

Differential forms and differential operators are handled in an analogous fashion — see
[52, 87] for complete details.

In particular, the normalized differential invariants induced by the moving frame are
obtained by invariantization of the basic jet coordinates:

Hi = ι(xi), IαJ = ι(uαJ ), (6.18)

which we collectively denote by (H, I(n)) = ( . . . Hi . . . IαJ . . . ) for #J ≤ n. These
naturally split into two classes: Those corresponding to the cross-section functions Zκ
are constant, and known as the phantom differential invariants. The remainder, known
as the basic differential invariants, form a complete system of functionally independent
differential invariants.

Once the normalized differential invariants are known, the invariantization process
(6.17) is implemented by simply replacing each jet coordinate by the corresponding nor-
malized differential invariant (6.18), so that

ι
[
F (x, u(n))

]
= ι
[
F ( . . . xi . . . uαJ . . . )

]
= F ( . . . Hi . . . IαJ . . . ) = F (H, I(n)). (6.19)

In particular, a differential invariant is not affected by invariantization, leading to the very
useful Replacement Theorem:

J(x, u(n)) = J(H, I(n)) whenever J is a differential invariant. (6.20)

This permits one to straightforwardly rewrite any known differential invariant in terms the
normalized invariants, and thereby establishes their completeness.

In a similar manner, the invariant differential operators D1, . . . ,Dp are obtained by
invariantization of the total derivatives:

Di = ι(Di), i = 1, . . . , p. (6.21)

Equivalently, they can be defined as the dual differential operators arising from the invari-
ant horizontal forms

ωi = ι(dxi), i = 1, . . . , p, (6.22)

obtained by (horizontal, [87]) invariantization of the horizontal one-forms dx1, . . . , dxp.
The horizontal forms ω1, . . . , ωp are only invariant modulo contact forms (as defined below),
and so, in the language of [117], form a contact-invariant coframe.
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The invariant differential operators do not commute in general, but are subject to the
commutation formulae

[Dj,Dk ] =

p∑

i=1

Y ijkDi, (6.23)

where the coefficients Y ijk = −Y ikj are certain differential invariants known as the commuta-

tor invariants. Their explicit formmulas in terms of the fundamental differential invariants
will be found below.

7. Equivalence and Signatures.

The moving frame method was developed by Cartan expressly for the solution to
problems of equivalence and symmetry of submanifolds under group actions. Two sub-
manifolds S, S ⊂M are said to be equivalent if S = g ·S for some g ∈ G. A symmetry of a
submanifold is a group transformation that maps S to itself, and so is an element g ∈ GS .
As emphasized by Cartan, [32], the solution to the equivalence and symmetry problems
for submanifolds is based on the functional interrelationships among the fundamental dif-
ferential invariants restricted to the submanifold.

Suppose we have constructed an nth order moving frame ρ(n): Jn → G defined on
an open subset of jet space. A submanifold S is called regular if its n-jet jnS lies in the
domain of definition of the moving frame. For any k ≥ n, we use J (k) = I(k) |S = I(k) ◦ jkS
to denote the kth order restricted differential invariants. The kth order signature S(k) =
S(k)(S) is the set parametrized by the restricted differential invariants; S is called fully

regular if J (k) has constant rank 0 ≤ tk ≤ p = dimS for all k ≥ n. In this case, S(k) forms
a submanifold of dimension tk — perhaps with self-intersections. In the fully regular case,

tn < tn+1 < tn+2 < · · · < ts = ts+1 = · · · = t ≤ p,

where t is the differential invariant rank and s the differential invariant order of S.

Theorem 7.1. Two fully regular p-dimensional submanifolds S, S ⊂M are (locally)
equivalent, S = g · S, if and only if they have the same differential invariant order s and
their signature manifolds of order s+ 1 are identical: S(s+1)(S) = S(s+1)(S).

Since symmetries are the same as self-equivalences, the signature also determines the
symmetry group of the submanifold.

Theorem 7.2. If S ⊂M is a fully regular p-dimensional submanifold of differential
invariant rank t, then its symmetry group GS is an (r− t)–dimensional subgroup of G that
acts locally freely on S.

A submanifold with maximal differential invariant rank t = p, and hence only a
discrete symmetry group, is called nonsingular . The number of symmetries is determined
by the index of the submanifold, defined as the number of points in S map to a single
generic point of its signature:

indS = min
{

# (J (s+1))−1{ζ}
∣∣∣ ζ ∈ S(s+1)

}
.

Theorem 7.3. If S is a nonsingular submanifold, then its symmetry group is a
discrete subgroup of cardinality #GS = indS.
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At the other extreme, a rank 0 or maximally symmetric submanifold has all constant
differential invariants, and so its signature degenerates to a single point.

Theorem 7.4. A regular p-dimensional submanifold S has differential invariant
rank 0 if and only if its symmetry group is a p-dimensional subgroup H = GS ⊂ G and an
H–orbit: S = H · z0.

Remark : “Totally singular” submanifolds may have even larger, non-free symmetry
groups, but these are not covered by the preceding results. See [119] for details and precise
characterization of such submanifolds.

Example 7.5. The Euclidean signature for a curve in the Euclidean plane is the
planar curve S(C) = {(κ, κs)} parametrized by the curvature invariant κ and its first
derivative with respect to arc length. Two planar curves are equivalent under oriented
rigid motions if and only if they have the same signature curves. The maximally symmet-
ric curves have constant Euclidean curvature, and so their signature curve degenerates to a
single point. These are the circles and straight lines, and, in accordance with Theorem 7.4,
each is the orbit of its one-parameter symmetry subgroup of SE(2). The number of Eu-
clidean symmetries of a curve is equal to its index — the number of times the Euclidean
signature is retraced as we go around the curve.

An example of a Euclidean signature curve is displayed in Figure 1. The first figure
shows the curve, and the second its Euclidean signature; the axes are κ and κs in the
signature plot. Note in particular the approximate three-fold symmetry of the curve is
reflected in the fact that its signature has winding number three. If the symmetries were
exact, the signature would be exactly retraced three times on top of itself. The final figure
gives a discrete approximation to the signature which is based on the invariant numerical
algorithms to be discussed below.

In Figure 3 we display some signature curves computed from an actual medical image
— a 70 × 70, 8-bit gray-scale image of a cross section of a canine heart, obtained from
an MRI scan. We then display an enlargement of the left ventricle. The boundary of the
ventricle has been automatically segmented through use of the conformally Riemannian
moving contour or snake flow that was proposed in [80] and successfully applied to a
wide variety of 2D and 3D medical imagery, including MRI, ultrasound and CT data,
[156]. Underneath these images, we display the ventricle boundary curve along with
two successive smoothed versions obtained application of the standard Euclidean-invariant
curve shortening procedure. Below each curve is the associated spline-interpolated discrete
signature curves for the smoothed boundary, as computed using the invariant numerical
approximations to κ and κs discussed below. As the evolving curves approach circularity
the signature curves exhibit less variation in curvature and appear to be winding more
and more tightly around a single point, which is the signature of a circle of area equal
to the area inside the evolving curve. Despite the rather extensive smoothing involved,
except for an overall shrinking as the contour approaches circularity, the basic qualitative
features of the different signature curves, and particularly their winding behavior, appear
to be remarkably robust.
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Thus, the signature curve method has the potential to be of practical use in the general
problem of object recognition and symmetry classification. It offer several advantages over
more traditional approaches. First, it is purely local, and therefore immediately applicable
to occluded objects. Second, it provides a mechanism for recognizing symmetries and
approximate symmetries of the object. The design of a suitably robust “signature metric”
for practical comparison of signatures is the subject of ongoing research. See the paper
by Shakiban and Lloyd, [139], for recent developments in this direction. In [67, 68], the
Euclidean-invariant signature is applied to design a program that automatically assembles
jigsaw puzzles. An example appears in the following figure.

Figure 5. The Baffler Jigsaw Puzzle.
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Example 7.6. Let us next consider the equivalence and symmetry problems for
binary forms. According to the general moving frame construction in Example 6.4, the
signature curve S = S(q) of a function (polynomial) u = q(x) is parametrized by the
covariants J2 and K, as given in (6.14). The following solution to the equivalence problem
for complex-valued binary forms, [8, 115, 118], is an immediate consequence of the general
equivalence Theorem 7.1.

Theorem 7.7. Two nondegenerate complex-valued forms q(x) and q(x) are equiva-
lent if and only if their signature curves are identical: S(q) = S(q).

All equivalence maps x = ϕ(x) solve the two rational equations

J(x)2 = J(x)2, K(x) = K(x). (7.1)

In particular, the theory guarantees ϕ is necessarily a linear fractional transformation!

Theorem 7.8. A nondegenerate binary form q(x) is maximally symmetric if and
only if it satisfies the following equivalent conditions:

• q is complex-equivalent to a monomial xk, with k 6= 0, n.

• The covariant T 2 is a constant multiple of H3 6≡ 0.

• The signature is just a single point.

• q admits a one-parameter symmetry group.

• The graph of q coincides with the orbit of a one-parameter subgroup of GL(2).

A binary form q(x) is nonsingular if and only if it is not complex-equivalent to a monomial
if and only if it has a finite symmetry group.

The symmetries of a nonsingular form can be explicitly determined by solving the
rational equations (7.1) with J = J , K = K. See [8] for a Maple implementation of this
method for computing discrete symmetries and classification of univariate polynomials. In
particular, we obtain the following useful bounds on the number of symmetries.

Theorem 7.9. If q(x) is a binary form of degree n which is not complex-equivalent
to a monomial, then its projective symmetry group has cardinality

k ≤
{

6n− 12 if V = cH2 for some constant c, or

4n− 8 in all other cases.

In her thesis, Kogan, [85], extends these results to forms in several variables. In
particular, a complete signature for ternary forms, [86], leads to a practical algorithm for
computing discrete symmetries of, among other cases, elliptic curves.

8. Joint Invariants and Joint Differential Invariants.

One practical difficulty with the differential invariant signature is its dependence upon
high order derivatives, which makes it very sensitive to data noise. For this reason, a new
signature paradigm, based on joint invariants, was proposed in [120]. We consider now
the joint action

g · (z0, . . . , zn) = (g · z0, . . . , g · zn), g ∈ G, z0, . . . , zn ∈M. (8.1)
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Figure 6. First and Second Order Joint Euclidean Differential Invariants.

of the group G on the (n+1)-fold Cartesian product M×(n+1) = M×· · ·×M . An invariant
I(z0, . . . , zn) of (8.1) is an (n + 1)-point joint invariant of the original transformation
group. In most cases of interest, although not in general, if G acts effectively on M , then,
for n ≫ 0 sufficiently large, the product action is free and regular on an open subset of
M×(n+1). Consequently, the moving frame method outlined in Section 1 can be applied
to such joint actions, and thereby establish complete classifications of joint invariants and,
via prolongation to Cartesian products of jet spaces, joint differential invariants. We will
discuss two particular examples — planar curves in Euclidean geometry and projective
geometry, referring to [120] for details.

Example 8.1. Euclidean joint differential invariants. Consider the proper Euclidean
group SE(2) acting on oriented curves in the plane M = R

2. We begin with the Cartesian
product action on M×2 ≃ R

4. Taking the simplest cross-section x0 = u0 = x1 = 0, u1 > 0
leads to the normalization equations

y0 = x0 cos θ − u0 sin θ + a = 0, v0 = x0 sin θ + u0 cos θ + b = 0,

y1 = x1 cos θ − u1 sin θ + a = 0.
(8.2)

Solving, we obtain a right moving frame

θ = tan−1

(
x1 − x0

u1 − u0

)
, a = −x0 cos θ + u0 sin θ, b = −x0 sin θ − u0 cos θ, (8.3)

along with the fundamental interpoint distance invariant

v1 = x1 sin θ + u1 cos θ + b 7−→ I = ‖ z1 − z0 ‖. (8.4)

Substituting (8.3) into the prolongation formulae (6.5) leads to the the normalized first
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and second order joint differential invariants

dvk
dy

7−→ Jk = − (z1 − z0) ·
�

zk
(z1 − z0) ∧

�

zk
,

d2vk
dy2

7−→ Kk = − ‖ z1 − z0 ‖3 (
�

zk ∧
��

zk)[
(z1 − z0) ∧

�

z0

]3 ,

(8.5)

for k = 0, 1. Note that
J0 = − cotφ0, J1 = +cotφ1, (8.6)

where φk = <) (z1 − z0,
�

zk) denotes the angle between the chord connecting z0, z1 and the
tangent vector at zk, as illustrated in Figure 6. The modified second order joint differential
invariant

K̂0 = −‖ z1 − z0 ‖−3K0 =

�

z0 ∧
��

z0[
(z1 − z0) ∧

�

z0

]3 (8.7)

equals the ratio of the area of triangle whose sides are the first and second derivative
vectors

�

z0,
��

z0 at the point z0 over the cube of the area of triangle whose sides are the
chord from z0 to z1 and the tangent vector at z0; see Figure 6.

On the other hand, we can construct the joint differential invariants by invariant
differentiation of the basic distance invariant (8.4). The normalized invariant differential
operators are

Dyk
7−→ Dk = − ‖ z1 − z0 ‖

(z1 − z0) ∧
�

zk
Dtk . (8.8)

Proposition 8.2. Every two-point Euclidean joint differential invariant is a function
of the interpoint distance I = ‖ z1 − z0 ‖ and its invariant derivatives with respect to (8.8).

A generic product curve C = C0 ×C1 ⊂M×2 has joint differential invariant rank 2 =
dimC, and its joint signature S(2)(C) will be a two-dimensional submanifold parametrized
by the joint differential invariants I, J0, J1, K0, K1 of order ≤ 2. There will exist a (local)
syzygy Φ(I, J0, J1) = 0 among the three first order joint differential invariants.

Theorem 8.3. A curve C or, more generally, a pair of curves C0, C1 ⊂ R
2, is

uniquely determined up to a Euclidean transformation by its reduced joint signature,
which is parametrized by the first order joint differential invariants I, J0, J1. The curve(s)
have a one-dimensional symmetry group if and only if their signature is a one-dimensional
curve if and only if they are orbits of a common one-parameter subgroup (i.e., concentric
circles or parallel straight lines); otherwise the signature is a two-dimensional surface, and
the curve(s) have only discrete symmetries.

For n > 2 points, we can use the two-point moving frame (8.3) to construct the
additional joint invariants

yk 7−→ Hk = ‖ zk − z0 ‖ cosψk, vk 7−→ Ik = ‖ zk − z0 ‖ sinψk,

where ψk = <) (zk− z0, z1 − z0). Therefore, a complete system of joint invariants for SE(2)
consists of the angles ψk, k ≥ 2, and distances ‖ zk − z0 ‖, k ≥ 1. The other interpoint
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Figure 7. Four-Point Euclidean Curve Invariants.

distances can all be recovered from these angles; vice versa, given the distances, and the
sign of one angle, one can recover all other angles. In this manner, we establish a “First
Main Theorem” for joint Euclidean differential invariants.

Theorem 8.4. If n ≥ 2, then every n-point joint E(2) differential invariant is a
function of the interpoint distances ‖ zi − zj ‖ and their invariant derivatives with respect
to (8.8). For the proper Euclidean group SE(2), one must also include the sign of one of
the angles, say ψ2 = <) (z2 − z0, z1 − z0).

Generic three-pointed Euclidean curves still require first order signature invariants.
To create a Euclidean signature based entirely on joint invariants, we take four points
z0, z1, z2, z3 on our curve C ⊂ R

2. As illustrated in Figure 7, there are six different
interpoint distance invariants

a = ‖ z1 − z0 ‖, b = ‖ z2 − z0 ‖, c = ‖ z3 − z0 ‖,
d = ‖ z2 − z1 ‖, e = ‖ z3 − z1 ‖, f = ‖ z3 − z2 ‖,

(8.9)

which parametrize the joint signature Ŝ = Ŝ(C) that uniquely characterizes the curve C
up to Euclidean motion. This signature has the advantage of requiring no differentiation,
and so is not sensitive to noisy image data. There are two local syzygies

Φ1(a, b, c, d, e, f) = 0, Φ2(a, b, c, d, e, f) = 0, (8.10)

among the the six interpoint distances. One of these is the universal Cayley–Menger syzygy

which is valid for all possible configurations of the four points, and is a consequence of
their coplanarity, cf. [13, 108]. The second syzygy in (8.10) is curve-dependent and serves
to effectively characterize the joint invariant signature. Euclidean symmetries of the curve,
both continuous and discrete, are characterized by this joint signature. For example, the

30



number of discrete symmetries equals the signature index — the number of points in the
original curve that map to a single, generic point in S.

A wide variety of additional cases, including curves and surfaces in two and three-
dimensional space under the Euclidean, equi-affine, affine and projective groups, are inves-
tigated in detail in [120].

9. Multi-Space for Curves.

In modern numerical analysis, the development of numerical schemes that incorporate
additional structure enjoyed by the problem being approximated have become quite popu-
lar in recent years. The first instances of such schemes are the symplectic integrators arising
in Hamiltonian mechanics, and the related energy conserving methods, [37, 92, 150]. The
design of symmetry-based numerical approximation schemes for differential equations has
been studied by various authors, including Shokin, [141], Dorodnitsyn, [45, 46], Axford
and Jaegers, [76], and Budd and Collins, [26]. These methods are closely related to the
active area of geometric integration of differential equations, [27, 62, 103]. In practical
applications of invariant theory to computer vision, group-invariant numerical schemes to
approximate differential invariants have been applied to the problem of symmetry-based
object recognition, [15, 29, 28].

In this section, we outline the basic construction of multi-space that forms the founda-
tion for the study of the geometry of discrete approximations to derivatives and numerical
solutions to differential equations; see [121] for more details. We will only discuss the
case of curves, which correspond to functions of a single independent variable, and hence
satisfy ordinary differential equations. The more difficult case of higher dimensional sub-
manifolds, corresponding to functions of several variables that satisfy partial differential
equations, relies on a new approach to multi-dimensional interpolation theory, [122].

Numerical finite difference approximations to the derivatives of a function u = f(x)
rely on its values u0 = f(x0), . . . , un = f(xn) at several distinct points zi = (xi, ui) =
(xi, f(xi)) on the curve. Thus, discrete approximations to jet coordinates on Jn are
functions F (z0, . . . , zn) defined on the (n + 1)-fold Cartesian product space M×(n+1) =
M × · · · ×M . In order to seamlessly connect the jet coordinates with their discrete ap-
proximations, then, we need to relate the (extended) jet space for curves, Jn = Jn(M, 1),
to the Cartesian product space M×(n+1). Now, as the points z0, . . . , zn coalesce, the ap-
proximation F (z0, . . . , zn) will not be well-defined unless we specify the “direction” of
convergence. Thus, strictly speaking, F is not defined on all of M×(n+1), but, rather, on
the “off-diagonal” part, by which we mean the subset

M⋄(n+1) =
{

(z0, . . . , zn)
∣∣ zi 6= zj for all i 6= j

}
⊂M×(n+1)

consisting of all distinct (n+1)-tuples of points. As two or more points come together, the
limiting value of F (z0, . . . , zn) will be governed by the derivatives (or jet) of the appropriate
order governing the direction of convergence. This observation serves to motivate our
construction of the nth order multi-space M (n), which shall contain both the jet space Jn

and the off-diagonal Cartesian product space M⋄(n+1) in a consistent manner.
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Definition 9.1. An (n + 1)-pointed curve C = (z0, . . . , zn;C) consists of a smooth
curve C and n+ 1 not necessarily distinct points z0, . . . , zn ∈ C thereon. Given C, we let

#i = #{ j | zj = zi }. Two (n+1)-pointed curves C = (z0, . . . , zn;C), C̃ = (z̃0, . . . , z̃n; C̃),
have nth order multi-contact if and only if

zi = z̃i, and j#i−1C|zi
= j#i−1C̃|zi

, for each i = 0, . . . , n.

Definition 9.2. The nth order multi-space, denoted M (n) is the set of equivalence
classes of (n + 1)-pointed curves in M under the equivalence relation of nth order multi-
contact. The equivalence class of an (n + 1)-pointed curves C is called its nth order
multi-jet , and denoted jnC ∈M (n).

In particular, if the points on C = (z0, . . . , zn;C) are all distinct, then jnC = jnC̃ if

and only if zi = z̃i for all i, which means that C and C̃ have all n+ 1 points in common.
Therefore, we can identify the subset of multi-jets of multi-pointed curves having distinct
points with the off-diagonal Cartesian product space M⋄(n+1) ⊂ Jn. On the other hand,
if all n + 1 points coincide, z0 = · · · = zn, then jnC = jnC̃ if and only if C and C̃ have
nth order contact at their common point z0 = z̃0. Therefore, the multi-space equivalence
relation reduces to the ordinary jet space equivalence relation on the set of coincident
multi-pointed curves, and in this way Jn ⊂ M (n). These two extremes do not exhaust
the possibilities, since one can have some but not all points coincide. Intermediate cases
correspond to “off-diagonal” Cartesian products of jet spaces

Jk1 ⋄ · · · ⋄ Jki ≡
{

(z
(k1)
0 , . . . , z

(ki)
i ) ∈ Jk1 × · · · × Jki

∣∣∣ π(z(kν)
ν ) are distinct

}
, (9.1)

where
∑
kν = n and π: Jk → M is the usual jet space projection. These multi-jet spaces

appear in the work of Dhooghe, [44], on the theory of “semi-differential invariants” in
computer vision.

Theorem 9.3. If M is a smooth m-dimensional manifold, then its nth order multi-
space M (n) is a smooth manifold of dimension (n + 1)m, which contains the off-diagonal
part M⋄(n+1) of the Cartesian product space as an open, dense submanifold, and the nth

order jet space Jn as a smooth submanifold.

The proof of Theorem 9.3 requires the introduction of coordinate charts on M (n).
Just as the local coordinates on Jn are provided by the coefficients of Taylor polynomials,
the local coordinates on M (n) are provided by the coefficients of interpolating polynomials,
which are the classical divided differences of numerical interpolation theory, [110, 133].

Definition 9.4. Given an (n + 1)-pointed graph C = (z0, . . . , zn;C), its divided
differences are defined by [ zj ]C = f(xj), and

[ z0z1 . . . zk−1zk ]C = lim
z→zk

[ z0z1z2 . . . zk−2z ]C − [ z0z1z2 . . . zk−2zk−1 ]C
x− xk−1

. (9.2)

When taking the limit, the point z = (x, f(x)) must lie on the curve C, and take limiting
values x→ xk and f(x) → f(xk).
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In the non-confluent case zk 6= zk−1 we can replace z by zk directly in the difference
quotient (9.2) and so ignore the limit. On the other hand, when all k + 1 points coincide,
the kth order confluent divided difference converges to

[ z0 . . . z0 ]C =
f (k)(x0)

k!
. (9.3)

Remark : Classically, one employs the simpler notation [ u0u1 . . . uk ] for the divided
difference [ z0z1 . . . zk ]C . However, the classical notation is ambiguous since it assumes that
the mesh x0, . . . , xn is fixed throughout. Because we are regarding the independent and
dependent variables on the same footing — and, indeed, are allowing changes of variables
that scramble the two — it is important to adopt an unambiguous divided difference
notation here.

Theorem 9.5. Two (n+1)-pointed graphs C, C̃ have nth order multi-contact if and
only if they have the same divided differences:

[ z0z1 . . . zk ]C = [ z0z1 . . . zk ]
C̃
, k = 0, . . . , n.

The required local coordinates on multi-space M (n) consist of the independent vari-
ables along with all the divided differences

x0, . . . , xn,
u(0) = u0 = [ z0 ]C , u(1) = [ z0z1 ]C ,

u(2) = 2 [ z0z1z2 ]C . . . u(n) = n! [ z0z1 . . . zn ]C ,
(9.4)

prescribed by (n+1)-pointed graphs C = (z0, . . . , zn;C). The n! factor is included so that
u(n) agrees with the usual derivative coordinate when restricted to Jn, cf. (9.3).

10. Invariant Numerical Methods.

To implement a numerical solution to a system of differential equations

∆1(x, u
(n)) = · · · = ∆k(x, u

(n)) = 0. (10.1)

by finite difference methods, one relies on suitable discrete approximations to each of its
defining differential functions ∆ν , and this requires extending the differential functions from
the jet space to the associated multi-space, in accordance with the following definition.

Definition 10.1. An (n+1)-point numerical approximation of order k to a differen-
tial function ∆: Jn → R is an function F :M (n) → R that, when restricted to the jet space,
agrees with ∆ to order k.

The simplest illustration of Definition 10.1 is provided by the divided difference co-
ordinates (9.4). Each divided difference u(n) forms an (n + 1)-point numerical approx-
imation to the nth order derivative coordinate on Jn. According to the usual Taylor
expansion, the order of the approximation is k = 1. More generally, any differential
function ∆(x, u, u(1), . . . , u(n)) can immediately be assigned an (n + 1)-point numerical
approximation F = ∆(x0, u

(0), u(1), . . . , u(n)) by replacing each derivative by its divided
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difference coordinate approximation. However, these are by no means the only numerical
approximations possible.

Now let us consider an r-dimensional Lie group G which acts smoothly on M . Since
G evidently maps multi-pointed curves to multi-pointed curves while preserving the multi-
contact equivalence relation, it induces an action on the multi-space M (n) that will be
called the nth multi-prolongation of G and denoted by G(n). On the jet subset Jn ⊂M (n)

the multi-prolonged action reduced to the usual jet space prolongation. On the other
hand, on the off-diagonal part M⋄(n+1) ⊂M (n) the action coincides with the (n+ 1)-fold
Cartesian product action of G on M×(n+1).

We define a multi-invariant to be a function K:M (n) → R on multi-space which is
invariant under the multi-prolonged action of G(n). The restriction of a multi-invariant K
to jet space will be a differential invariant, I = K | Jn, while restriction to M⋄(n+1) will
define a joint invariant J = K |M⋄(n+1). Smoothness of K will imply that the joint in-
variant J is an invariant nth order numerical approximation to the differential invariant I.
Moreover, every invariant finite difference numerical approximation arises in this manner.
Thus, the theory of multi-invariants is the theory of invariant numerical approximations!

Furthermore, the restriction of a multi-invariant to an intermediate multi-jet subspace,
as in (9.1), will define a joint differential invariant, [120] — also known as a semi-differential
invariant in the computer vision literature, [44, 111]. The approximation of differential
invariants by joint differential invariants is, therefore, based on the extension of the dif-
ferential invariant from the jet space to a suitable multi-jet subspace (9.1). The invariant
numerical approximations to joint differential invariants are, in turn, obtained by extend-
ing them from the multi-jet subspace to the entire multi-space. Thus, multi-invariants also
include invariant semi-differential approximations to differential invariants as well as joint
invariant numerical approximations to differential invariants and semi-differential invari-
ants — all in one seamless geometric framework.

Effectiveness of the group action on M implies, typically, freeness and regularity of the
multi-prolonged action on an open subset of M (n). Thus, we can apply the basic moving
frame construction. The resulting multi-frame ρ(n):M (n) → G will lead us immediately
to the required multi-invariants and hence a general, systematic construction for invariant
numerical approximations to differential invariants. Any multi-frame will evidently restrict
to a classical moving frame ρ(n): Jn → G on the jet space along with a suitably compatible
product frame ρ⋄(n+1):M⋄(n+1) → G.

In local coordinates, we use wk = (yk, vk) = g · zk to denote the transformation
formulae for the individual points on a multi-pointed curve. The multi-prolonged action
on the divided difference coordinates gives

y0, . . . , yn,
v(0) = v0 = [w0 ], v(1) = [w0w1 ],

v(2) = [w0w1w2 ], . . . v(n) = n! [w0, . . . , wn ],
(10.2)

where the formulae are most easily computed via the difference quotients

[w0w1 . . . wk−1wk ] =
[w0w1w2 . . . wk−2wk ] − [w0w1w2 . . . wk−2wk−1 ]

yk − yk−1

,

[wj ] = vj ,

(10.3)
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and then taking appropriate limits to cover the case of coalescing points. Inspired by the
constructions in [52], we will refer to (10.2) as the lifted divided difference invariants.

To construct a multi-frame, we need to normalize by choosing a cross-section to the
group orbits in M (n), which amounts to setting r = dimG of the lifted divided difference
invariants (10.2) equal to suitably chosen constants. An important observation is that in
order to obtain the limiting differential invariants, we must require our local cross-section
to pass through the jet space, and define, by intersection, a cross-section for the prolonged
action on Jn. This compatibility constraint implies that we are only allowed to normalize
the first lifted independent variable y0 = c0.

With the aid of the multi-frame, the most direct construction of the requisite multi-
invariants and associated invariant numerical differentiation formulae is through the in-
variantization of the original finite difference quotients (9.2). Substituting the multi-frame
formulae for the group parameters into the lifted coordinates (10.2) provides a complete
system of multi-invariants onM (n); this follows immediately from Theorem 5.5. We denote
the fundamental multi-invariants by

yi 7−→ Hi = ι(xi), v(n) 7−→ K(n) = ι(u(n)), (10.4)

where ι denotes the invariantization map associated with the multi-frame. The funda-
mental differential invariants for the prolonged action of G on Jn can all be obtained by
restriction, so that I(n) = K(n) | Jn. On the jet space, the points are coincident, and so
the multi-invariants Hi will all restrict to the same differential invariant c0 = H = Hi | Jn
— the normalization value of y0. On the other hand, the fundamental joint invariants on
M⋄(n+1) are obtained by restricting the multi-invariants Hi = ι(xi) and Ki = ι(ui). The
multi-invariants can computed by using a multi-invariant divided difference recursion

[ Ij ] = Kj = ι(uj)

[ I0 . . . Ik ] = ι( [ z0z1 . . . zk ] ) =
[ I0 . . . Ik−2Ik ] − [ I0 . . . Ik−2Ik−1 ]

Hk −Hk−1

,
(10.5)

and then relying on continuity to extend the formulae to coincident points. The multi-
invariants

K(n) = n! [ I0 . . . In ] = ι( u(n) ) (10.6)

define the fundamental first order invariant numerical approximations to the differential
invariants I(n). Higher order invariant approximations can be obtained by invariantization
of the higher order divided difference approximations. The moving frame construction has
a significant advantage over the infinitesimal approach used by Dorodnitsyn, [45, 46], in
that it does not require the solution of partial differential equations in order to construct
the multi-invariants.

Given a regular G-invariant differential equation

∆(x, u, u(1), . . . , u(n)) = 0, (10.7)

we can invariantize the left hand side to rewrite the differential equation in terms of the
fundamental differential invariants:

ι
(
∆(x, u, u(1), . . . , u(n))

)
= ∆(H, I(0), I(1), . . . , I(n)) = 0.
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The invariant finite difference approximation to the differential equation is then obtained
by replacing the differential invariants I(k) by their multi-invariant counterparts K(k):

∆(c0, K
(0), . . . , K(n)) = 0. (10.8)

Example 10.2. Consider the elementary action

(x, u) 7−→ (λ−1x+ a, λu+ b)

of the three-parameter similarity group G = R
2

⋉ R on M = R
2. To obtain the multi-

prolonged action, we compute the divided differences (10.2) of the basic lifted invariants

yk = λ−1xk + a, vk = λuk + b.

We find

v(1) = [w0w1 ] =
v1 − v0
y1 − y0

= λ2 u1 − u0

x1 − x0

= λ2 [ z0z1 ] = λ2 u(1).

More generally,

v(n) = λn+1 u(n), n ≥ 1. (10.9)

Note that we may compute the multi-space transformation formulae assuming initially
that the points are distinct, and then extending to coincident cases by continuity. (In fact,
this gives an alternative method for computing the standard jet space prolongations of
group actions!) In particular, when all the points coincide, each u(n) reduces to the nth

order derivative coordinate, and (10.9) reduces to the prolonged action of G on Jn. We
choose the normalization cross-section defined by

y0 = 0, v0 = 0, v(1) = 1,

which, upon solving for the group parameters, leads to the basic moving frame

a = −
√
u(1) x0, b = − u0√

u(1)
, λ =

1√
u(1)

, (10.10)

where, for simplicity, we restrict to the subset where u(1) = [ z0z1 ] > 0. The fundamental
joint similarity invariants are obtained by substituting these formulae into

yk 7−→ Hk = (xk − x0)
√
u(1) = (xk − x0)

√
u1 − u0

x1 − x0

,

vk 7−→ Kk =
uk − u0√
u(1)

= (uk − u0)

√
x1 − x0

u1 − u0

,

both of which reduce to the trivial zero differential invariant on Jn. Higher order multi-
invariants are obtained by substituting (10.10) into the lifted invariants (10.9), leading
to

K(n) =
u(n)

(u(1))(n+1)/2
=

n! [ z0z1 . . . zn ]

[ z0z1z2 ](n+1)/2
.
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In the limit, these reduce to the differential invariants I(n) = (u(1))−(n+1)/2 u(n), and
so K(n) give the desired similarity-invariant, first order numerical approximations. To
construct an invariant numerical scheme for any similarity-invariant ordinary differential
equation

∆(x, u, u(1), u(2), . . . u(n)) = 0,

we merely invariantize the defining differential function, leading to the general similarity–
invariant numerical approximation

∆(0, 0, 1, K(2), . . . , K(n)) = 0.

Example 10.3. For the action (6.4) of the proper Euclidean group of SE(2) on
M = R

2, the multi-prolonged action is free on M (n) for n ≥ 1. We can thereby determine
a first order multi-frame and use it to completely classify Euclidean multi-invariants. The
first order transformation formulae are

y0 = x0 cos θ − u0 sin θ + a, v0 = x0 sin θ + u0 cos θ + b,

y1 = x1 cos θ − u1 sin θ + a, v(1) =
sin θ + u(1) cos θ

cos θ − u(1) sin θ
,

(10.11)

where u(1) = [ z0z1 ]. Normalization based on the cross-section y0 = v0 = v(1) = 0 results
in the right moving frame

a = −x0 cos θ + u0 sin θ = − x0 + u(1) u0√
1 + (u(1))2

,

b = −x0 sin θ − u0 cos θ =
x0 u

(1) − u0√
1 + (u(1))2

,

tan θ = −u(1) . (10.12)

Substituting the moving frame formulae (10.12) into the lifted divided differences results
in a complete system of (oriented) Euclidean multi-invariants. These are easily computed
by beginning with the fundamental joint invariants Ik = (Hk, Kk) = ι(xk, uk), where

yk 7−→ Hk =
(xk − x0) + u(1) (uk − u0)√

1 + (u(1))2
= (xk − x0)

1 + [ z0z1 ] [ z0zk ]√
1 + [ z0z1 ]2

,

vk 7−→ Kk =
(uk − u0) − u(1) (xk − x0)√

1 + (u(1))2
= (xk − x0)

[ z0zk ] − [ z0z1 ]√
1 + [ z0z1 ]2

.

The multi-invariants are obtained by forming divided difference quotients

[ I0Ik ] =
Kk −K0

Hk −H0

=
Kk

Hk

=
(xk − x1)[ z0z1zk ]

1 + [ z0zk ] [ z0z1 ]
,

where, in particular, I(1) = [ I0I1 ] = 0. The second order multi-invariant

I(2) = 2 [ I0I1I2 ] = 2
[ I0I2 ] − [ I0I1 ]

H2 −H1

=
2 [ z0z1z2 ]

√
1 + [ z0z1 ]2(

1 + [ z0z1 ] [ z1z2 ]
)(

1 + [ z0z1 ] [ z0z2 ]
)

=
u(2)

√
1 + (u(1))2[

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x0)
] [

1 + (u(1))2 + 1
2u

(1)u(2)(x2 − x1)
]
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provides a Euclidean–invariant numerical approximation to the Euclidean curvature:

lim
z1,z2→z0

I(2) = κ =
u(2)

(1 + (u(1))2)3/2
.

Similarly, the third order multi-invariant

I(3) = 6 [ I0I1I2I3 ] = 6
[ I0I1I3 ] − [ I0I1I2 ]

H3 −H2

will form a Euclidean–invariant approximation for the normalized differential invariant
κs = ι(uxxx), the derivative of curvature with respect to arc length, [29, 52].

To compare these with the invariant numerical approximations proposed in [28, 29],
we reformulate the divided difference formulae in terms of the geometrical configurations
of the four distinct points z0, z1, z2, z3 on our curve. We find

Hk =
(z1 − z0) · (zk − z0)

‖ z1 − z0 ‖
= rk cosφk,

Kk =
(z1 − z0) ∧ (zk − z0)

‖ z1 − z0 ‖
= rk sinφk,

[ I0Ik ] = tanφk,

where

rk = ‖ zk − z0 ‖, φk = <) (zk − z0, z1 − z0),

denotes the distance and the angle between the indicated vectors. Therefore,

I(2) =
2 tanφ2

r2 cosφ2 − r1
,

I(3) =
6(r2 cosφ2 − r1) tanφ3 − (r3 cosφ3 − r1) tanφ2

(r2 cosφ2 − r1)(r3 cosφ3 − r1)(r3 cosφ3 − r2 cosφ2)
.

(10.13)

Interestingly, I(2) is not the same Euclidean approximation to the curvature that was used
in [29, 28]. The latter was based on the Heron formula for the radius of a circle through
three points:

I⋆ =
4∆

abc
=

2 sinφ2

‖ z1 − z2 ‖
. (10.14)

Here ∆ denotes the area of the triangle connecting z0, z1, z2 and

a = r1 = ‖ z1 − z0 ‖, b = r2 = ‖ z2 − z0 ‖, c = ‖ z2 − z1 ‖,

are its side lengths. The ratio tends to a limit I⋆/I(2) → 1 as the points coalesce. The
geometrical approximation (10.14) has the advantage that it is symmetric under permuta-
tions of the points; one can achieve the same thing by symmetrizing the divided difference
version I(2). Furthermore, I(3) is an invariant approximation for the differential invari-
ant κs, that, like the approximations constructed by Boutin, [15], converges properly for
arbitrary spacings of the points on the curve.
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In his thesis, [82, 84], Pilwon Kim developed the invariantization techniques to a
variety of numerical integrators, e.g., Euler and Runge–Kutta, for ordinary differential
equations with symmetry, with sometimes striking results. Given a symmetry group of
an ordinary differential equation, we can apply the invariantization procedure to standard
numerical integration schemes such as the Euler and the Runge–Kutta methods to derive
invariantized numerical schemes that respect the symmetries. Invariantization under a
well-chosen group has the effect of transforming the points at each step along the orbits of
the symmetry group to the proper place where the numerical scheme works better. Since
it is the symmetry group that acts on the points, the numerical scheme remains valid after
the transformation. In this way we invariantize existing numerical schemes, not necessarily
changing the mesh. The invariantization also can be applied to numerical methods for both
ordinary differential equations and partial differential equations. Moreover this method
works efficiently with symmetry groups that are more complicated than the similarity or
scaling group.

In general, suppose N∆(z1, . . . , zk) defines a numerical integration scheme for a dif-
ferential equation (10.7). Given a group transformation g, we define the g-transformed

numerical scheme as
Ng

∆(z1, . . . , zk) = N∆(g · z1, . . . , g · zn).

If g defines a symmetry of the differential equation, in the sense that it maps solutions
to solutions, [116], then it is not hard to see that Ng

∆ is also a numerical scheme for the
differential equation.

Example 10.4. The elementary Euler method for the first order differential equation

∆(x, u, ux) = ux − f(x, u) = 0

is given by the function

N∆(z0, z1) = u1 − u0 + (x1 − x0)f(x0, u0), (10.15)

which is defined on the joint space (R2)⋄2. Consider the previous one-parameter group

(x̃, ỹ) = ε · (x, y) = (x, y + εex) for all ε ∈ R. (10.16)

The transformed Euler scheme is

Nε
∆(z0, z1) = N∆(ε · z0, ε · z1)) = N∆(x0, u0 + εex0 , x1, u1 + εex1)

= (u1 + εex1) − (u0 + εex0) − (x1 − x0)f(x0, u0).
(10.17)

Suppose G is a symmetry group for a differential equation ∆, and let ρ be a moving
frame for G. The invariantization of the numerical scheme N∆ with respect to the moving
frame ρ is given by

I∆(z1, . . . , zk) ≡ N
ρ(z)
∆ (z1, . . . , zk) = N∆(ρ(z) · z1, . . . , ρ(z) · zk).

This implies that at each step, we apply the numerical scheme after shifting the points
to a fixed cross-section and map the result back to the original location. Note that to
invariantize a k-step method, a moving frame is extended and applied to the joint space
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M⋄(k+1). In particular, the invariantization of (10.17) using the moving frame ε = ρ(z) =
−y0e−x0 is

I∆(z) = u1 − u0e
x1−x0 − (x1 − x0)f(x0, u0).

The key to the success of the invariantized numerical scheme lies in the intelligent
choice of cross-section for the moving frame. We usually set the dependent variables
and/or some of their derivatives to zero. Even though the associated computations can
become complicated, the more the symmetry group is prolonged, the more choices we have
for a cross-section.

Unfortunately, invariantization by elementary symmetry groups has no effect. Every
standard numerical scheme is already invariant with respect to the affine symmetry group
z̃ = Az+ b. However, as we will see below, affine symmetries can be still used to enhance
the numerical scheme when combined with other nontrivial symmetry groups.

In the following examples, we concentrate on the fourth order Runge–Kutta method
(RK) since is the most widely used single-step numerical scheme for ordinary differential
equations. Implementation of the resulting invariantized Runge–Kutta schemes (IRK) is
straightforward, and requires only a small number of lines to be added to existing numerical
codes.

Example 10.5. The logistic equation

ux = u
(

1 − u

100

)

has the one-parameter symmetry group with infinitesimal generator v = e−xu2∂u. The
corresponding prolonged group transformations are

(x̃, ũ, ũ′) =

(
x ,

u

1 − εe−xu
,
ux − εe−xu2

(1 − εe−xu)2

)
.

Setting ũx = 0 gives the moving frame ρ(x, u, ux) = exu−2ux and therefore

ρ(x, u, ux) · (x, u, ux) =

(
x,

u2

u− ux
, 0

)
.

Since the standard RK scheme involves z0 = (x0, u0, ux,0) and z1 = (x1, u1, ux,1), it is

defined on the joint space (J1)⋄2 ≃ (R3)⋄2. The previous moving frame is now extended
and defined on the joint space as ρ(z0, z1) = ρ(z0), i.e., it depends only on the first point.
The invariantized numerical scheme ι[N∆ ] can be obtained by substitution

(x0, u0, ux,0; x1, u1, ux,1) 7−→
(
x0,

u0
2

u0 − ux,0
, 0; x1 ,

u0
2u1

u0
2 − ex0−x1u1ux,0

,
u0

4ux,1 − ex0−x1u0
2u1

2ux,0
(u0

2 − ex0−x1u1ux,0)
2

)
.

As Figure 8 shows, the performance of invariantized RK is considerably better than that
of the standard RK.
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Figure 8. Invariantized Runge–Kutta Schemes for the Logistic Equation.

Example 10.6. Ames’s equation

uxx = −ux
x

− eu

is a stiff equation that arises in a wide range of fields, including kinetics and heat transfer,
vortex motion of incompressible fluids, and the mass distribution of gaseous interstel-
lar material under influence of its own gravitational fields, [2]; it is also known as the
Frank-Kaminetskii equation, the Gel’fand equation, and the Barenblatt equation. The
infinitesimal generators

v1 = −x ∂

∂x
+ 2

∂

∂u
, v2 = −1

2
x lnx

∂

∂x
+ (1 + lnx)

∂

∂u
,

induce the prolonged one-parameter symmetry groups

(x, u, ux) 7−→





(eε1x , u+ 2ε1 , e
ε1ux),(

eln xe
− 1

2
ε2
, u+ 2 lnx(1 − e−

1
2 ε2) + ε2 ,

−2e−
1
2 ε2 + xux + 2

elnxe
− 1

2
ε2− 1

2 ε2

)
.

The first is a scaling transformation group, which does not change the performance of the
original scheme as mentioned above. The difficulty with the second one is that we cannot
set ỹ or ỹ′ zero. However, we can build a better transformation by proper combination
of the two groups. Let ρ1(z0; z1) = lnx0 and ρ2(z0; z1) = −u0. Through the successive
applications of the two moving frames ρ1ρ2, every point (x, y) is projected to the cross-
section ỹ = 0. The corresponding invariantized numerical scheme is written

I∆(z) = (Nρ1
∆ )

ρ2(z) = N∆( ρ2(ρ1(z) · z) · (ρ1(z) · z) ).
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Figure 9. Invariantized Runge–Kutta Schemes for Ames’ Equation.

Figure 9 is the comparison between the RK and the IRK scheme when they start at
x = 5. Even in this domain the performance of IRK exceeds RK, but more dramatic
difference appears when they apply around x = 0. The invariantized Runge–Kutta method
successfully avoids the equation’s stiffness by preserving the equation’s geometric structure.

Extensions to partial differential equations are under development. In [83], Kim de-
velops an invariantized Crank-Nicolson scheme for Burgers’ equation that avoids problems
with numerical oscillations near sharp transition regions. In [155], the authors develop
invariant schemes for nonlinear partial differential equations of use in image processing,
including the Hamilton–Jacobi equation.

11. The Invariant Bicomplex.

Let us return to the case of prolonged group actions on jet space and develop some
further machinery required in the more advanced applications of moving frames to differ-
ential invariants, differential equations, and the calculus of variations. The full power of
the equivariant construction becomes evident once we incorporate the contact structure
and induced variational bicomplex on the infinite order jet bundle J∞ = J∞(M, p), which
we now review, [3, 117].

Separating the local coordinates (x, u) = (x1, . . . , xp, u1, . . . , uq) on M into indepen-
dent and dependent variables naturally splits† the differential one-forms on J∞ into hor-

izontal forms, spanned by dx1, . . . , dxp, and vertical forms, spanned by the basic contact

† The splitting, which depends on the choice of local coordinates, only works at infinite order,
which is the reason we work on J∞.
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one-forms

θαJ = duαJ −
p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, #J ≥ 0. (11.1)

Let πH and πV denote the projections mapping one-forms on J∞ to their horizontal and
vertical (contact) components, respectively. We accordingly decompose the differential
d = πH ◦d + πV ◦d = dH + dV , which results in the variational bicomplex on J∞. If
F (x, u(n)) is any differential function, its horizontal differential is

dH F =

p∑

i=1

(DiF ) dxi, (11.2)

in which Di = Dxi denote the usual total derivatives with respect to the independent
variables. Thus, dH F can be identified with the “total gradient” of F . Similarly, its
vertical differential is

dV F =
∑

α,J

∂F

∂uαJ
θαJ =

∑

α,J

∂F

∂uαJ
DJθ

α = DF (θ), (11.3)

in which the total derivatives act as Lie derivatives on the contact forms θ = (θ1, . . . , θq)T ,
and DF denotes the formal linearization operator or Fréchet derivative of the differential
function F . Thus, the vertical differential dV F can be identified† with the (first) variation,
hence the name “variational bicomplex”.

Let πn: J
∞ → Jn be the natural jet space projections. Choosing a cross-section

Kn ⊂ Vn ⊂ Jn, we extend the induced nth order moving frame ρ(n) to the infinite jet
bundle by setting ρ(x, u(∞)) = ρ(n)(x, u(n)) whenever (x, u(n)) = πn(x, u

(∞)) lies in the
domain of definition of ρ(n). We will employ our moving frame to invariantize the vari-
ational bicomplex. As before, the invariantization of a differential form is the unique
invariant differential form that agrees with its progenitor on the cross-section. In particu-
lar, the invariantization process does not affect invariant differential forms. In practice, one
determines the invariantization by first transforming the differential form by the prolonged
group action and then substituting the moving frame formulae for the group parameters.

As in (6.18), the fundamental differential invariants are obtained by invariantizing the
jet coordinates: Hi = ι(xi), I∗αJ = ι(uαJ ). Let

̟i = ι(dxi) = ωi + ηi, where ωi = πH(̟i), ηi = πV (̟i), (11.4)

denote the invariantized horizontal one-forms. Their horizontal components ω1, . . . , ωp

prescribe, in the language of [117], a contact-invariant coframe for the prolonged group ac-
tion, while the contact forms η1, . . . , ηp are required to make ̟1, . . . , ̟p fully G-invariant.
Finally, the invariantized basis contact forms are denoted by

ϑαJ = ι(θαJ ), α = 1, . . . , q, #J ≥ 0. (11.5)

† This becomes clearer when you rewrite θαJ = δuαJ .
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Invariantization of more general differential forms relies on the fact that it preserves the
exterior algebra structure, and so

ι(Ω + Ψ) = ι(Ω) + ι(Ψ), ι(Ω ∧ Ψ) = ι(Ω) ∧ ι(Ψ), (11.6)

for any differential forms (or functions) Ω,Ψ on J∞.

As in the ordinary bicomplex construction, the decomposition of invariant one-forms
on J∞ into invariant horizontal and invariant contact components induces a decomposition
of the differential. However, now d = dH + dV + dW splits into three constituents, where
dH adds an invariant horizontal form, dV adds a invariant contact form, while dW replaces
an invariant horizontal one-form with a combination of wedge products of two invariant
contact forms. They satisfy the “quasi-tricomplex” identities

d2
H = 0, dH dV + dV dH = 0,

d2
W = 0, dV dW + dW dV = 0,

d2
V + dH dW + dW dH = 0. (11.7)

Interestingly, this same structure also arises in the study of the topology of foliations,
[146]. Fortunately, the third, anomalous component dW plays no role (to date) in the
applications; in particular, dW F = 0 for any differential function F . Even better, if the
group acts projectably, dW ≡ 0. The corresponding dual invariant differential operators
D1, . . . ,Dp are then defined so that

dH F =

p∑

i=1

(DiF )̟i, dH Ω =

p∑

i=1

̟i ∧ Di Ω, (11.8)

for any differential function F and, more generally, differential form Ω, on which the Di act
via Lie differentiation. Keep in mind that, in general, the invariant differential operators
do not commute; see (6.23) below.

The most important fact underlying the moving frame construction is that, while
it does preserve algebraic structure, the invariantization map ι does not respect the dif-
ferential. The recurrence formulae, [52, 87], which we now review, provide the missing
“correction terms”, i.e., dι(Ω)− ι(dΩ). Remarkably, they can be explicitly and algorithmi-
cally constructed using merely linear differential algebra — without knowing the explicit
formulas for either the differential invariants or invariant differential forms, the invariant
differential operators, or even the moving frame!

With this in hand, we can formulate the universal recurrence formula.

Theorem 11.1. If Ω is any differential function or form on J∞, then

d ι(Ω) = ι(dΩ) +

r∑

κ=1

νκ ∧ ι [vκ(Ω)], (11.9)

where ν1, . . . , νr are the invariantized Maurer–Cartan forms dual to the infinitesimal gen-
erators v1, . . . ,vr, while vκ(Ω) denotes the corresponding Lie derivative of Ω.
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In general, the invariantized Maurer–Cartan forms are obtained by pulling back the
dual Maurer–Cartan forms µ1, . . . , µr on G via the moving frame map: νκ = ρ∗µκ. The
full details, [87], are, fortunately, not required thanks to the following marvelous result
that allows us to compute them directly without reference to their underlying definition:

Proposition 11.2. Let K = {Z1(x, u
(n)) = c1, . . . , Zr(x, u

(n)) = cr } be the cross-
section defining our moving frame, so that cλ = ι(Zλ) are the phantom differential invari-
ants. Then the corresponding phantom recurrence formulae

0 = dι(Zλ) = ι(dZλ) +
r∑

κ=1

νκ ∧ ι [vκ(Zλ)], λ = 1, . . . , r, (11.10)

can be uniquely solved for the invariantized Maurer–Cartan forms:

νκ =

p∑

i=1

Rκi ̟
i +

∑

α,J

Sκ,Jα ϑαJ , (11.11)

where Rκi , S
κ,J
α are certain differential invariants.

The Rκi are called the Maurer–Cartan invariants, [70, 124]. In the case of curves,
p = 1, they are the entries of the Frenet–Serret matrix Dρ(n)(x, u(n)) · ρ(n)(x, u(n))−1,
cf. [61].

Substituting (11.11) into the universal formula (11.9) produces a complete system of
explicit recurrence relations for all the differentiated invariants and invariant differential
forms. In particular, taking Ω to be any one of the individual jet coordinate functions xi,
uαJ , results in the recurrence formulae for the fundamental differential invariants (6.18):

DiHj = δji +

r∑

κ=1

Rκi ι(ξ
i
κ), DiIαJ = IαJi +

r∑

κ=1

Rκi ι(ϕ
α
J,κ), (11.12)

where δji is the usual Kronecker delta, and ξiκ, ϕ
α
J,κ are the coefficients of the prolonged

infinitesimal generators (4.4). Owing to the functional independence of the non-phantom
differential invariants, these formulae, in fact, serve to completely prescribe the structure
of the non-commutative differential invariant algebra engendered by G, [52, 69, 124].

Similarly, the recurrence formulae (11.9) for the invariant horizontal forms are

d̟i = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

νκ ∧ ι [vκ(dxi)]

=
r∑

κ=1

p∑

k=1

ι
(
Dkξ

i
κ

)
νκ ∧̟k +

r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
νκ ∧ ϑα.

(11.13)

The terms in (11.13) involving wedge products of two horizontal forms are

dH̟i = −
∑

j<k

Y ijk̟
j ∧̟k,
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where

Y ijk = −Y ikj =

r∑

κ=1

p∑

j=1

[
Rκk ι(Djξ

i
κ) −Rκj ι(Dkξ

i
κ)
]

(11.14)

are called the commutator invariants, since they prescribe the commutators of the invari-
ant differential operators, cf. (6.23) The terms in (11.13) involving wedge products of a
horizontal and a contact form yield

dV ̟
i =

r∑

κ=1

[
q∑

α=1

ι

(
∂ξiκ
∂uα

)
Rκj ̟

i ∧ ϑα −
p∑

k=1

ι(Dkξ
i
κ)S

κ,J
α ̟k ∧ ϑαJ

]
. (11.15)

Finally, the remaining terms, involving wedge products of two contact forms, provide the
formulas for the anomalous third component of the differential:

dW ̟i =
r∑

κ=1

q∑

α=1

ι

(
∂ξiκ
∂uα

)
Sκ,Jα ϑαJ ∧ ϑα. (11.16)

In a similar fashion, we derive the recurrence formulae (11.9) for the differentiated invariant
contact forms: In particular, the horizontal components

DiϑαJ = ϑαJi +
r∑

κ=1

Rκi ι
(
vκ(θ

α
J )
)
. (11.17)

can be inductively solved to express the higher order invariantized contact forms as certain
invariant derivatives of those of order 0:

ϑαJ = EαJ (ϑ) =

q∑

β=1

EαJ,β(ϑβ), (11.18)

in which ϑ = (ϑ1, . . . , ϑq)T denotes the column vector containing the order zero invari-
antized contact forms, while EαJ = (EαJ,1, . . . , EαJ,q) is a row vector of invariant differential

operators, i.e., each EJ,α =
∑

AKJ,αDK for certain differential invariants AKJ,α.

Combining these formulae allows us to express the invariant vertical derivative or
invariant variation of any differential invariant K in the form

dV K = AK(ϑ), (11.19)

in which AK is a row vector of invariant differential operators. Formula (11.19) can be
viewed as the invariant version of the vertical differentiation formula (11.3), and so will
refer to AK as the invariant linearization operator associated with the differential invariant
K. Similarly, we derive the recurrence formulae for the vertical differentials of the invariant
horizontal forms:

dV ̟
i =

p∑

j=1

q∑

α=1

Bijα(ϑα) ∧̟j =

p∑

j=1

Bij(ϑ) ∧̟j (11.20)

in which Bij = (Bij1, . . . ,Bijq) is a family of p2 row-vector-valued invariant differential
operators, known, collectively, as the invariant Hamiltonian operator complex , stemming
from its role in the calculus of variations, cf. [87, 135].
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Example 11.3. Let us return to the Euclidean group acting on plane curves initiated
in Example 6.3. The basic invariant horizontal one-form ̟ = ι(dx) is obtained by first
transforming dx by a general group element:

dx 7−→ dy = (cosφ− ux sinφ) dx+ (sinφ)θ, (11.21)

where
θ = du− ux dx, θx = dux − uxx dx, . . . , (11.22)

are the ordinary basis contact forms. Substituting the moving frame formulae (6.8) for the
group parameters into (11.21) yields the basic invariant horizontal one-form

̟ = ι(dx) =
dx+ ux du√

1 + u2
x

=
√

1 + u2
x dx+

ux√
1 + u2

x

θ. (11.23)

Its (non-invariant) horizontal component is the contact-invariant arc length form

ω = πH(̟) = ds =
√

1 + u2
x dx,

and so the corresponding invariant differential operator is the usual arc length derivative
D = Ds. In the same manner we obtain the basis invariant contact forms

ϑ = ι(θ) =
θ√

1 + u2
x

, ϑ1 = ι(θx) =
(1 + u2

x) θx − uxuxxθ

(1 + u2
x)

2
, . . . . (11.24)

To construct the recurrence formulae for the differentiated functions and forms, we
begin with the prolonged infinitesimal generators of SE(2):

v1 = ∂x, v2 = ∂u,

v3 = −u ∂x + x ∂u + (1 + u2
x) ∂ux

+ 3uxuxx ∂uxx
+ (4uxuxxx + 3u2

xx) ∂uxxx
+ · · · .

The pulled back dual Maurer–Cartan forms ν1, ν2, ν3 are found by applying the universal
recurrence formulae (11.9) to the phantom invariants:

0 = dH = ι(dx) + ι(v1(x)) ν
1 + ι(v2(x)) ν

2 + ι(v3(x)) ν
3 = ̟ + ν1,

0 = dI0 = ι(du) + ι(v1(u)) ν
1 + ι(v2(u)) ν

2 + ι(v3(u)) ν
3 = ϑ+ ν2,

0 = dI1 = ι(dux) + ι(v1(ux)) ν
1 + ι(v2(ux)) ν

2 + ι(v3(ux)) ν
3 = κ̟ + ϑ1 + ν3,

since du = ux dx+ θ, dux = uxx dx+ θx. Therefore,

ν1 = −̟, ν2 = −ϑ, ν3 = −κ̟ − ϑ1. (11.25)

We are now ready to substitute the non-phantom invariants into (11.9):

dκ = dι(uxx) = ι(duxx) + ι(v1(uxx)) ν
1 + ι(v2(uxx)) ν

2 + ι(v3(uxx)) ν
3

= ι(uxxx dx+ θxx) − ι(3uxuxx) (κ̟ + ϑ1) = I3̟ + ϑ2,

dI3 = dι(uxxx) = ι(duxxx) + ι(v1(uxxx)) ν
1 + ι(v2(uxxx)) ν

2 + ι(v3(uxxx)) ν
3

= ι(uxxxx dx+ θxxx) − ι(4uxuxxx + 3u2
xx) (κ̟ + ϑ1) = (I4 − 3κ3)̟ + ϑ3 − 3κ2ϑ1,
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and so on. Breaking these formulas into their horizontal and vertical components yields

I3 = Dκ = κs, dV κ = ϑ2,

I4 = DI3 + 3κ3 = κss + 3κ3, dV I3 = dV κs = ϑ3 − 3κ2ϑ1.
(11.26)

To proceed further, we compute the differentials of the invariant contact forms, again using
(11.9, 25):

dϑ = ι(dθ) + ν1 ∧ ι(v1(θ)) + ν2 ∧ ι(v2(θ)) + ν3 ∧ ι(v3(θ))

= ι(dx ∧ θx) − (κ̟ + ϑ1) ∧ ι(ux θ) = ̟ ∧ ϑ1,

dϑ1 = ι(dθx) + ν1 ∧ ι(v1(θx)) + ν2 ∧ ι(v2(θx)) + ν3 ∧ ι(v3(θx))

= ι(dx ∧ θxx) − (κ̟ + ϑ1) ∧ ι(2uxθx + uxxθ) = ̟ ∧ (ϑ2 − κ2ϑ) − κϑ1 ∧ ϑ,
dϑ2 = ι(dθxx) + ν1 ∧ ι(v1(θxx)) + ν2 ∧ ι(v2(θxx)) + ν3 ∧ ι(v3(θxx))

= ι(dx ∧ θxxx) − (κ̟ + ϑ1) ∧ ι(3uxθxx + 3uxxθx + uxxxθ)

= ̟ ∧ (ϑ3 − 3κ2ϑ1 − κκsϑ) − κsϑ1 ∧ ϑ,
and so on. Concentrating on the terms involving the invariant horizontal form and com-
paring with (11.8), we deduce

ϑ1 = Dϑ, ϑ2 = Dϑ1 + κ2 ϑ = (D2 + κ2)ϑ,

ϑ3 = Dϑ2 + 3κ2ϑ1 + κκsϑ = (D3 + 4κ2D + 3κκs)ϑ.

Substituting back into (11.26), we find

dV κ = (D2 + κ2)ϑ, dV κs = (D3 + κ2D + 3κκs)ϑ.

Thus, the invariant linearization operators for the curvature and its arc length derivative
are

Aκ = D2 + κ2, Aκs
= D3 + κ2D + 3κκs. (11.27)

Finally, applying (11.9) and (11.25) to the invariant arc length form ̟ = ι(dx) yields

d̟ = ι(d2x) + ν1 ∧ ι(v1(dx)) + ν2 ∧ ι(v2(dx)) + ν3 ∧ ι(v3(dx))

= (κ̟ + ϑ1) ∧ ι(ux dx+ θ) = κ̟ ∧ ϑ+ ϑ1 ∧ ϑ.
Therefore,

dV ̟ = −κϑ ∧̟, and so B = −κ (11.28)

is the invariant Hamiltonian operator.

12. Generating Differential Invariants.

Let us now apply the recurrence formulae to study the structure of the differential
invariant algebra associated with the prolonged group action. A set of differential invariants
I = {I1, . . . , Ik} is said to be generating if, locally, every differential invariant can be
expressed as a function of the generators and their iterated invariant derivatives DJIν .
Let

I(n) = {H1, . . . , Hp} ∪
{
I∗αJ

∣∣ α = 1, . . . , q, #J ≤ n
}

(12.1)
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denote the entire set of fundamental differential invariants (6.18) of order ≤ n. In par-
ticular, assuming we choose a cross-section that projects to a cross-section on M , then
I(0) = {H1, . . . , Hp, I1, . . . Iq } are the ordinary invariants for the action of G on M . If, as
in the examples treated here, G acts transitively on M , the normalized order 0 invariants
are all constant, and hence are superfluous in any generating systems.

The first result is a direct consequence of the recurrence formulae (11.12) for the
fundamental differential invariants and the fact that the Maurer–Cartan invariants, being
solutions to the phantom recurrence relations, have order bounded by that of the moving
frame.

Theorem 12.1. If the moving frame has order n, then the set of normalized differ-
ential invariants I(n+1) of order ≤ n+ 1 forms a generating set.

Almost all applications rely on a cross-section Kn ⊂ Jn of minimal order , which
means that its projections Kk = πnk (Kn) ⊂ Jk form cross-sections for all 0 ≤ k < n. In
this case, one can significantly reduce the set of required generators, [69, 124]:

Theorem 12.2. If Kn = {Z1(x, u
(n)) = c1, . . . , Zr(x, u

(n)) = cr } is a minimal order
cross-section, then I(0) ∪ Z(1), where Z(1) = { ι(Di(Zj)) | 1 ≤ i ≤ p, 1 ≤ j ≤ r }, form a
generating set of differential invariants.

The result is false in general if the cross-section is not minimal, [124]. An alternative
interesting generating system was found in [70]; again, the proof is entirely based on the
recurrence formulae.

Theorem 12.3. Let R = {Ria | 1 ≤ i ≤ p, 1 ≤ a ≤ r} be the Maurer–Cartan
invariants. Then I(0) ∪ R form a generating system.

In both cases, the I(0) constituent can be omitted if G acts transitively on M . The
preceding generating sets are rarely minimal. For curves, where p = 1, under mild re-
strictions on the group action (specifically transitivity and no pseudo-stabilization under
prolongation), there are exactly m− 1 independent generating differential invariants, and
any other differential invariant is a function of the generating invariants and their succes-
sive derivatives with respect to the G-invariant arc length element. Thus, for instance, the
differential invariants of a space curve C ⊂ R

3 under the standard action of the Euclidean
group SE(3) = SO(3) ⋉ R

3 are generated by m − 1 = 2 differential invariants, namely its
curvature and torsion.

For higher dimensional submanifolds, the minimal number of generating differential
invariants cannot be fixed a priori, but depends the particularities of the group action and,
in fact, can be arbitrarily large, even for surfaces in three-dimensional space, [124]. Even
in very well-studied, classical situations, there are interesting subtleties that have not been
noted before, [73, 125].

Example 12.4. Consider the standard action of the special Euclidean group SE(3)
on surfaces S ⊂ R

3. The classical moving frame construction, [61; Chapter 10], or its
equivariant reformulation, [87; Example 9.9], relies on the cross-section

x = y = u = ux = uy = uxy = 0, uxx 6= uyy. (12.2)
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The two basic differential invariants are the principal curvatures

κ1 = ι(uxx), κ2 = ι(uyy), (12.3)

or, equivalently, the mean curvature and Gauss curvature

H = 1
2
(κ1 + κ2), K = κ1κ2. (12.4)

The surface admits a classical moving frame provided we are at a non-umbilic point, where
κ1 6= κ2. (At a non-degenerate umbilic, one could, in principle, employ a higher order
moving frame.) The corresponding invariant horizontal coframe ̟1 = ι(dx), ̟2 = ι(dy),
can be identified with the diagonalizing Frenet frame on the surface, [61]. We let D1,D2

denote the dual invariant differential operators.

Let Ijk = ι(ujk) denote the higher order normalized differential invariants, so I20 = κ1,
I11 = 0, I02 = κ2. The third order recurrence relations are readily found:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2. (12.5)

The two fourth order recurrence relations for

I22 = D2I21 +
I30I12 − 2I2

12

κ1 − κ2

+ κ1κ
2
2 = D1I12 −

I21I03 − 2I2
21

κ1 − κ2

+ κ2
1κ2

imply the celebrated Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ2

2,1 − 2κ2
1,2

κ1 − κ2

− κ1κ2(κ1 − κ2) = 0. (12.6)

The well-known fact that the principal curvatures κ1, κ2, or, equivalently, the Gauss and
mean curvatures H,K, form a generating system follows from Theorem 12.1 combined
with (12.5). Remarkably, as we now show, neither is a minimal generating set!

Applying the moving frame machinery, the recurrence relations for the invariant hor-
izontal forms are found to be

dH̟
1 = Y2̟

1 ∧̟2,

dH̟
2 = Y1̟

1 ∧̟2,
where Y1 =

κ2,1

κ1 − κ2

, Y2 =
κ1,2

κ2 − κ1

, (12.7)

are the commutator invariants, which appear in Guggenheimer’s proof of the fundamental
existence theorem for Euclidean surfaces, [61; p. 234]. Note that the denominator in (12.7)
vanishes at umbilic points on the surface, where the principal curvatures coincide κ1 = κ2,
and the moving frame is not valid. The invariant differential operators therefore satisfy
the commutation relation

[
D1,D2

]
= D1 D2 −D2 D1 = Y2 D1 − Y1 D2. (12.8)

An easy computation shows that the Codazzi syzygy (12.6) can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2. (12.9)

which is the key identity employed by Guggenheimer, [61], for a short proof of Gauss’
Theorema Egregium.
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Let us now show how, for suitably nondegenerate surfaces, we can write the Gauss
curvature K as a universal rational combination of the invariant derivatives of the mean
curvature H. In view of the Codazzi formula (12.9), it suffices to write the commutator
invariants Y1, Y2 in terms of the mean curvature. To this end, we note that the commutator
identity (12.8) can be applied to any differential invariant. In particular,

D1D2H −D2D1H = Y2 D1H − Y1 D2H, (12.10)

and, furthermore, for j = 1 or 2,

D1D2DjH −D2D1DjH = Y2 D1DjH − Y1 D2DjH. (12.11)

Provided the nondegeneracy condition

(D1H)(D2DjH) 6= (D2H)(D1DjH), for j = 1 or 2, (12.12)

holds, we can solve (12.10–11) to write the commutator invariants Y1, Y2 as rational func-
tions of invariant derivatives of H. Plugging these expressions into the right hand side
of the Codazzi identity (12.9) produces an explicit formula for the Gauss curvature as a
rational function of the invariant derivatives, of order ≤ 4, of the mean curvature, valid
for all surfaces satisfying the nondegeneracy condition (12.12).

In [125] it was also proved that, for suitably generic surfaces in R
3, the algebra

of equi-affine differential invariants is generated by the third order Pick invariant alone
through invariant differentiation. In [73] it was proved that the algebras of conformal and
projective differential invariants are also both generated by a single differential invariant.

13. Invariant Variational Problems.

As first recognized by Sophus Lie, [94], every invariant variational problem can be
written in terms of the differential invariants of the symmetry group. The associated Euler-
Lagrange equations automatically inherit the symmetry group of the variational problem,
and so can also be written in terms of the differential invariants, [116]. The formula
for directly constructing the differential invariant form of the Euler–Lagrange equations
from that of the variational problem was only known in a handful of particular cases,
[3, 60], until, applying the invariant variational bicomplex machinery, the general version
was established in [87]. Recent applications to the equilibrium configurations of flexible
Möbius bands can be found in [145].

Let us begin by recalling how variational problems L[u ] =
∫
L(x, u(n)) dx appear in

the variational bicomplex, [3]. The integrand or Lagrangian form

λ = L(x, u(n)) dx = L(x, u(n)) dx1 ∧ · · · ∧ dxp, (13.1)

is a differential form on J∞ of type (p, 0), meaning that it involves p horizontal forms and
no contact forms. Classically, to compute the associated Euler–Lagrange equations, one
begins with the first variation, followed by an integration by parts. According to (11.3), we
identify the first variation with the vertical differential dV λ = dV L∧dx of the Lagrangian
form, which is a form of type (p, 1). Integration by parts can be viewed as quotienting
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out by the image of the horizontal differential, so ω ≡ ω̃ whenever ω− ω̃ = dH ψ for some
differential form ψ. The induced equivalence classes are represented by source forms

ω =

q∑

α=1

∆α(x, u(n)) θα ∧ dx, (13.2)

whose vanishing defines a system of differential equations: ∆α(x, u(n)) = 0. In the case of
a variational problem, ∆α = Eα(L) = 0 are the classical Euler–Lagrange equations.

The Lagrangian of a G-invariant variational problem can be written in the invariant
form

λ = L̃(I(n))ω1 ∧ · · · ∧ ωp,

where ω1, . . . , ωp denote the contact invariant coframe induced by the moving frame, (11.4),

while L̃(I(n)) is a function of the generating differential invariants I = (I1, . . . , I l) and their
invariant derivatives DJIκ up to some finite order #J ≤ k. Since they differ by contact
forms (which vanish when evaluated on submanifold jets), we do not affect anything by
replacing the ωi by their fully invariant counterparts ̟i, and so will use the fully invariant

Lagrangian form

λ̃ = L̃(I(n))̟1 ∧ · · · ∧̟p (13.3)

in our subsequent computations. To find the invariant form of the Euler–Lagrange equa-
tions, we first compute the invariant variation dV λ̃, followed by an invariant integration
by parts. Two new complications arise: first, whereas the ordinary vertical derivative does
not affect the basis horizontal forms dxi, formula (11.15) shows that this is not true for
the invariant vertical derivatives of the invariant horizontal forms ̟i. Secondly, invariant
integration by parts, which amounts to working modulo the image of the invariant horizon-
tal differential dH , also introduces new terms owing to (11.14). As a result, the invariant
Euler–Lagrange equation expressions are considerably more complicated.

For simplicity, let’s just work out the case of curves, so we have only p = 1 inde-
pendent variable, and q ≥ 1 dependent variables. (The higher dimensional case has some

extra twists; see [87] for details.) Consider an invariant Lagrangian form λ̃ = L̃(I(n))̟
depending on the generating differential invariants I = (I1, . . . , I l), their invariant deriva-
tives Iα,i = DiIα, and the fully G-invariant arc length form ̟ = ι(dx). Its first variation
is computed as follows:

dV λ̃ = dV (L̟̃) = dV L̃ ∧̟ + L̃ dV ̟ =
∑

i,α

∂L̃

∂Iα,i
dV I

α
,i ∧̟ + L̃ dV ̟. (13.4)

We then invariantly integrate by parts by applying the basic identity

F dV (DH) ∧̟ ≡ −DF dV H ∧̟ − F (DH) dV ̟, (13.5)

where we work modulo the image of dH . We eventually arrive at the formula

dV λ̃ ≡ E(L̃) dV I ∧̟ −H(L̃) dV ̟, (13.6)
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where E(L̃), the invariantized Eulerian of L̃, has components

Eα(L̃) =
∞∑

i=0

(−D)i
∂L̃

∂Iα,i
, α = 1, . . . , l, (13.7)

while

H(L̃) =

m∑

α=1

∑

i>j

Iα,i−j(−D)j
∂L̃

∂Iα,i
− L̃ (13.8)

is known as the invariantized Hamiltonian, being the invariant counterpart of the usual
Hamiltonian associated with a higher order Lagrangian L(x, u(n)), cf. [3, 135].

In the second phase of the computation, we use the recurrence formulae (11.19, 20) to
compute the vertical differentials

dV I = A(ϑ), dV ̟ = B(ϑ) ∧̟, (13.9)

of the differential invariants I = (I1, . . . , I l) and the invariant horizontal (arc length) form
in terms of invariant derivatives of the zeroth order invariant contact forms ϑ = (ϑ1, . . . , ϑq).
Substituting (13.9) into (13.6) and performing one last integration by parts, we arrive at
the key formula

dV λ̃ ≡ E(L̃)A(ϑ) ∧̟ −H(L̃)B(ϑ) ∧̟ ≡
[
A∗E(L̃) − B∗H(L̃)

]
ϑ ∧̟,

where the ∗ denotes the formal invariant adjoint of an invariant differential operator, so if

P =
∑

n

Pk Dk, then P∗ =
∑

k

(−D)k · Pk.

We conclude that the Euler-Lagrange equations for our invariant variational problem are
equivalent to the invariant system of differential equations

A∗E(L̃) − B∗H(L̃) = 0. (13.10)

Example 13.1. Any Euclidean-invariant variational problem corresponds to an
invariant Lagrangian λ̃ = L̃(κ, κs, κss, . . .)̟ depending on the arc length derivatives
of the curvature, and the invariant arc length form (11.23). According to (11.27, 28),
A = D2 + κ2 = A∗, while B = −κ = B∗. The invariant Euler-Lagrange formula (13.10)
reduces to the known formula

(D2 + κ2) E(L̃) + κH(L̃) = 0 (13.11)

for the Euclidean-invariant Euler-Lagrange equation, [3, 60].

Additional, more intricate examples can be found in [87], as well as extensions to
multiple integrals, i.e., higher dimensional submanifolds.
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14. Invariant Curve Flows.

Let us next discuss applications of the invariant variational bicomplex construction to
invariant curve flows. (Extensions to higher dimensional invariant submanifold flows can
be found in [126].) Setting p = 1, let us single out the m = 1 + q invariant one-forms

̟, ϑ1, . . . , ϑq (14.1)

consisting of the invariant arc length form ̟ = ι(dx) and the order 0 invariant contact
forms ϑα = ι(θα). Let C ⊂M be a curve. Evaluating the coefficients of (14.1) on the curve
jet (x, u(n)) = jnC|z produces a G-equivariant coframe, i.e., a basis for the cotangent space
T∗M |z at z = (x, u) ∈ C. Let t,n1, . . . ,nq, denote the corresponding dual G–equivariant
frame on C, with t tangent, while n1, . . . ,nq form a basis for the complementary G–
invariant normal bundle N → C induced by the moving frame.

In general, let

V = VT + VN = I t +

q∑

α=1

Jα nα (14.2)

be a G-equivariant section of TM → C, where VT ,VN denote, respectively, its tangential
and normal components, while I, J1, . . . , Jq are differential invariants. We will, somewhat
imprecisely, refer to V as a vector field , even though it depends on the underlying curve
jet. Any V generates a G-invariant curve flow:

∂C

∂t
= V|C(t). (14.3)

The tangential component VT only affects the curve’s internal parametrization, and hence
can be ignored as far as the external curve geometry goes. For example, if we set VT = 0,
the resulting vector field VN is said to generate a normal flow , since each point on the
curve moves in the G-invariant normal direction.

Example 14.1. The most well-studied are the Euclidean-invariant plane curve flows.
The dual frame vectors to the invariant one-forms (11.23, 24) are the usual Euclidean frame
vectors† — the unit tangent and unit normal:

t =
1√

1 + u2
x

(
∂

∂x
+ ux

∂

∂u

)
, n =

1√
1 + u2

x

(
−ux

∂

∂x
+

∂

∂u

)
. (14.4)

A Euclidean-invariant normal flow is generated by a vector field of the form V = VN = J n,
in which J(κ, κs, . . .) is any differential invariant. Particular cases include:

• V = n: the geometric optics or grassfire flow, [14, 137];

• V = κn: the celebrated curve shortening flow, [55, 57], also used to great effect in
image processing, [131, 137];

† For simplicity, we are assuming the curve is represented as the graph of a function u = u(x);
generalizing the formulas to arbitrarily parametrized curves is straightforward, [126].
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• V = κ1/3 n: the induced flow is equivalent, modulo reparametrization, to the equi-
affine invariant curve shortening flow, also used in image processing, [6, 131, 137];

• V = κs n: this flow induces the modified Korteweg–deVries equation for the curvature
evolution, and is the simplest example of a soliton equation arising in a geometric
curve flow, [41, 56, 102];

• V = κss n: this flow models thermal grooving of metals, [20].

A key question is how the differential invariants evolve under an invariant curve flow.

Theorem 14.2. Let VN =
∑

Jα nα generate an invariant normal curve flow. If K
is any differential invariant, then

∂K

∂t
= V(K) = AK(J), (14.5)

where AK is the corresponding invariant linearization operator .

Example 14.3. For any of the Euclidean invariant normal plane curve flows Ct = J n

listed in Example 14.1, we have, according to (11.27),

∂κ

∂t
= (D2 + κ2) J,

∂κs
∂t

= (D3 + κ2D + 3κκs) J. (14.6)

For instance, for the grassfire flow J = 1, and so

∂κ

∂t
= κ2,

∂κs
∂t

= 3κκs. (14.7)

The first equation immediately implies finite time blow-up at a caustic for a convex initial
curve segment, where κ > 0. For the curve shortening flow, J = κ, and

∂κ

∂t
= κss + κ3,

∂κs
∂t

= κsss + 4κ2κs, (14.8)

thereby recovering formulas used in Gage and Hamilton’s analysis, [55]; see also [109].
Finally, for the modified Korteweg-deVries flow, J = κs,

∂κ

∂t
= κsss + κ2κs,

∂κs
∂t

= κssss + κ2κss + 3κκ2
s . (14.9)

Warning : Normal flows do not preserve arc length, and so the arc length parameter
s will vary in time. Or, to phrase it another way, time differentiation ∂t and arc length
differentiation D = Ds do not commute — as can easily be seen in the preceding exam-
ples. Thus, one must be very careful not to interpret the resulting evolutions (14.7–9) as
partial differential equations in the usual sense. Rather, one should regard the differential
invariants κ, κs, κss, . . . as satisfying an infinite dimensional dynamical system of coupled
ordinary differential equations.
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A second important class are the invariant curve flows that preserve arc length, which
requires

[
V,D

]
= 0, or, equivalently that the Lie derivative V(̟) ≡ 0 is a contact form.

Applying the Cartan formula and (11.20) to the latter characterization, we conclude that
arc length preservation under (14.2) requires

DI = B(J) =

q∑

α=1

Bα(Jα), (14.10)

where D is the arc length derivative, while B = (B1, . . . ,Bq) is the invariant Hamiltonian

operator (11.20).

Theorem 14.4. Under an arc-length preserving flow,

κt = Rκ(J) where Rκ = Aκ − κsD−1B. (14.11)

More generally, the time evolution of κn = Dnκ is given by arc length differentiation:
∂κn/∂t = DnRκ(J).

Here, the arc length and time derivatives commute, and hence the arc-length preserv-
ing flow (14.11) is an ordinary evolution equation — albeit possibly with nonlocal terms.
Moreover, when (14.11) is a local evolution equation, it often turns out to be integrable,
with Rκ the associated recursion operator, [116]. However, as yet, there is no general
explanation for this phenomenon.

Example 14.5. For the Euclidean action on plane curves, the condition (14.10) that
a curve flow generated by the vector field V = I t + J n preserve arc length is that

DI = −κJ. (14.12)

Most of the curve flows listed in Example 14.1 have non-local arc length preserving coun-
terparts owing to the non-invertibility of the arc length derivative operator on κJ . An
exception is the modified Korteweg-deVries flow, where J = κs, and so I = − 1

2 κ
2. For

such flows, the evolution of the curvature is given by (14.11), where

Rκ = Aκ − κsD−1B = D2 + κ2 + κsD−1 · κ = D2
s + κ2 + κsD

−1
s · κ (14.13)

is the modified Korteweg-deVries recursion operator, [116]. In particular, when J = κs,
(14.11) is the modified Korteweg-deVries equation

κt = Rκ(κs) = κsss + 3
2
κ2κs.

Example 14.6. In the case of space curves C ⊂ R
3, under the usual action of the

Euclidean group G = SE(3), the coordinate cross-section

K2 = {x = u = v = ux = vx = vxx = 0}
produces the classical moving frame, [61, 87]. There are two generating differential invari-
ants: the curvature κ = ι(uxx) and the torsion τ = ι(vxxx/uxx). According to [87], the
relevant moving frame formulae are

dV κ = Aκ(ϑ), dV τ = Aτ (ϑ), dV ̟ = B(ϑ) ∧̟,
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where ϑ = (ϑ1, ϑ2)
T are the order 0 invariant contact forms, while

Aκ =
(
D2 + (κ2 − τ2), −2τD − τs

)
,

Aτ =

(
2τ

κ
D2 +

3κτs − 2κsτ

κ2
D +

κτss − κsτs + 2κ3τ

κ2
,

1

κ
D3 − κs

κ2
D2 +

κ2 − τ2

κ
D +

κsτ
2 − 2κτ τs
κ2

)
,

B =
(
−κ, 0

)
.

Thus, under an arc length preserving flow with normal component VN = J n1 +K n2, the
curvature and torsion evolve according to

(
κt
τt

)
= R

(
J
K

)
, where R =

(
Rκ

Rτ

)
=

(
Aκ

Aτ

)
−
(
κsD−1κ 0
τsD−1κ 0

)

is the recursion operator for the integrable vortex filament flow, which corresponds to the
choice J = κs, K = τs. The latter flow can be mapped to the nonlinear Schrödinger
equation via the Hasimoto transformation, [64, 91].

15. Structure of Lie Pseudo–Groups.

With the moving frame constructions for finite-dimensional Lie group actions taking
more or less final form, my attention has shifted to developing a comparably powerful
theory that can be applied to infinite-dimensional Lie pseudo-groups. The subject is clas-
sical: Lie, [93], and Medolaghi, [107], classified all planar pseudo-groups, and gave ap-
plications to Darboux integrable partial differential equations, [5, 143]. Cartan’s famous
classification of transitive simple pseudo-groups, [34], remains a milestone in the subject.
Remarkably, despite numerous investigations, there is still no entirely satisfactory abstract
object that will properly represent a Lie pseudo-group, cf. [90, 142, 144, 134].

Pseudo-groups appear in a broad range of physical and geometrical contexts, including
gauge theories in physics, [11, 75]; canonical and area-preserving transformations in Hamil-
tonian mechanics, [116]; conformal symmetry groups on two-dimensional surfaces, [49];
foliation-preserving groups of transformations, with the associated characteristic classes
defined by certain invariant forms, [54]; symmetry groups of both linear and nonlinear
partial differential equations appearing in fluid and plasma mechanics, such as the Euler,
Navier-Stokes and boundary layer equations, [30, 116], in meteorology and turbulence
modeling, [9, 10, 136], and in integrable (soliton) equations in more than one space di-
mension such as the Kadomtsev–Petviashvili (KP) equation, [42]. Applications of pseudo-
groups to the design of geometric numerical integrators are being emphasized in recent
work of McLachlan and Quispel, [103, 104].

Juha Pohjanpelto and I, [128, 129, 127], have developed a practical moving frame
theory for general Lie pseudo-group actions. Just as in the finite-dimensional theory, the
new methods lead to general computational algorithms for

(i) determining complete systems of differential invariants, invariant differential opera-
tors, and invariant differential forms,
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(ii) complete classifications of syzygies and recurrence formulae relating the differentiated
invariants and invariant forms,

(iii) a general algorithm for computing the Euler–Lagrange equations associated with an
invariant variational problem.

In [38, 39], these algorithms were applied to the symmetry groups of the Korteweg–
deVries and KP equations arising in soliton theory. More substantial examples, arising as
symmetry pseudo-groups of nonlinear partial differential equations in fluid mechanics, me-
teorology, and gauge theories, are in the process of being investigated. Further extensions
— pseudo-group algorithms for joint invariants and joint differential invariants, invariant
numerical approximations, and so on — are also evident.

Let M be a smooth m-dimensional manifold. Let D = D(M) denote the pseudo-group
of all local diffeomorphisms ϕ:M → M . For each 0 ≤ n ≤ ∞, let D(n) = D(n)(M) ⊂
Jn(M,M) denote the nth order diffeomorphism jet groupoid, [95, 153], with source map
σ(n)

(
jnϕ|z

)
= z and target map τ (n)

(
jnϕ|z

)
= ϕ(z) = Z. The groupoid multiplication

is induced by composition of diffeomorphisms. Following Cartan, [35, 36], we will consis-
tently use lower case letters, z, x, u, . . . for the source coordinates and the corresponding
upper case letters Z,X, U, . . . for the target coordinates of our diffeomorphisms ϕ. Given
local coordinates (z, Z) = (z1, . . . , zm, Z1, . . . , Zm) on an open subset of M ×M , the in-
duced local coordinates of g(n) = jnϕ|z ∈ D(n) are denoted (z, Z(n)), where the components
ZaB of Z(n), for a = 1, . . . , m, #B ≤ n, represent the partial derivatives ∂Bϕa/∂zB of ϕ at
the source point z = σ(n)(g(n)).

Since D(∞) ⊂ J∞(M,M), the inherited variational bicomplex structure, [3, 147],
provides a natural splitting of the cotangent bundle T∗D(∞) into horizontal and vertical
(contact) components, [3, 117], and we use d = dM + dG to denote the induced splitting of
the differential. In terms of local coordinates g(∞) = (z, Z(∞)), the horizontal subbundle
of T∗D(∞) is spanned by the one-forms dza = dM za, a = 1, . . . , m, while the vertical
subbundle is spanned by the basic contact forms

Υa
B = dG Z

a
B = dZaB −

m∑

c=1

ZaB,c dz
c, a = 1, . . . , m, #B ≥ 0. (15.1)

Composition of local diffeomorphisms induces an action of ψ ∈ D by right multiplica-
tion on diffeomorphism jets: Rψ(jnϕ|z) = jn(ϕ ◦ψ−1)|ψ(z). A differential form µ on D(n) is

right-invariant if R∗
ψ µ = µ, where defined, for every ψ ∈ D. Since the splitting of forms on

D(∞) is invariant under this action, if µ is any right-invariant differential form, so are dM µ
and dG µ. The target coordinate functions Za:D(0) → R are obviously right-invariant,
and hence their horizontal differentials

σa = dM Za =
m∑

b=1

Zab dz
b, a = 1, . . . , m, (15.2)

form an invariant horizontal coframe, while their vertical differentials

µa = dG Z
a = φ = dZa −

m∑

b=1

Zab dz
b, a = 1, . . . , m, (15.3)
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are the zeroth order invariant contact forms. Let DZ1 , . . . ,DZm be the total derivative
operators dual to the horizontal forms (15.2), so that

dM F =

m∑

a=1

DzaF dza for any F :D(∞) → R. (15.4)

Then the higher-order invariant contact forms are obtained by successively Lie differenti-
ating the invariant contact forms (15.3):

µaB = D
B
Zµ

a = D
B
Zφ, where D

B
Z = DZb1 · · ·DZbk

,
a = 1, . . . , m,

k = #B ≥ 0.
(15.5)

As explained in [128], the right-invariant contact forms µ(∞) = ( . . . µaB . . . ) are to be
viewed as the Maurer–Cartan forms for the diffeomorphism pseudo-group.

The next step in our program is to establish the structure equations for the diffeo-
morphism groupoid D(∞). Let µ[[H ]] denote the column vector whose components are the
invariant contact form-valued formal power series

µa[[H ]] =
∑

#B≥ 0

1

B!
µaBH

B, a = 1, . . . , m, (15.6)

depending on the formal parameters H = (H1, . . . , Hm). Further, let dZ = µ[[ 0 ]] + σ
denote column vectors of one-forms whose entries are dZa = µa + σa for a = 1, . . . , m.

Theorem 15.1. The complete structure equations for the diffeomorphism pseudo-
group are obtained by equating coefficients in the power series identity

dµ[[H ]] = ∇Hµ[[H ]] ∧
(
µ[[H ]] − dZ

)
, dσ = − dµ[[ 0 ]] = ∇Hµ[[ 0 ]] ∧ σ, (15.7)

where ∇Hµ[[H ]] =

(
∂µa

∂Hb
[[H ]]

)
denotes the m×m formal power series Jacobian matrix.

The key to analyzing pseudo-group actions is to work infinitesimally, using the gen-
erating Lie algebra† of vector fields. Let X (M) denote the space of locally defined vector
fields on M , which we write in local coordinates as

v =

m∑

a=1

ζa(z)
∂

∂za
. (15.8)

Let JnTM , for 0 ≤ n ≤ ∞, denote the tangent n-jet bundle. Local coordinates on JnTM
are indicated by (z, ζ(n)) = ( . . . za . . . ζaB . . . ), a = 1, . . . , m,#B ≤ n, where the fiber
coordinate ζaB represents the partial derivative ∂Bζa/∂zB.

The literature contains several variants of the precise technical definition of a Lie
pseudo-group. Ours is:

† Here, we are using the term “Lie algebra” imprecisely, since, technically, the vector fields
may only be locally defined, and so their Lie brackets only make sense on their common domains
of definition.
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Definition 15.2. A sub-pseudo-group G ⊂ D will be called a Lie pseudo-group if
there exists n0 ≥ 1 such that for all finite n ≥ n0:

(a) the corresponding sub-groupoid G(n) ⊂ D(n) forms a smooth, embedded subbundle,

(b) every smooth local solution Z = ϕ(z) to the determining system G(n) belongs to G,

(c) G(n) = pr(n−n0) G(n0) is obtained by prolongation.

The minimal value of n0 is called the order of the pseudo-group.

Thus on account of conditions (a) and (c), for n ≥ n0, the pseudo-group jet sub-

groupoid G(n) ⊂ D(n) is defined in local coordinates by a formally integrable system of nth

order nonlinear partial differential equations

F (n)(z, Z(n)) = 0, (15.9)

known as the determining equations for the pseudo-group. Condition (b) says that the
local solutions Z = ϕ(z) to the determining equations are precisely the pseudo-group
transformations.

Let g ⊂ X denote the Lie algebra of infinitesimal generators of the pseudo-group, i.e.,
the set of locally defined vector fields (15.8) whose flows belong to G. In local coordi-
nates, we can view Jng ⊂ JnTM as defining a formally integrable linear system of partial
differential equations

L(n)(z, ζ(n)) = 0 (15.10)

for the vector field coefficients (15.8), called the linearized or infinitesimal determining

equations for the pseudo-group. They can be obtained by linearizing the nth order de-
termining equations (15.9) at the identity jet. If G is the symmetry group of a system of
differential equations, then the linearized determining equations (15.10) are (the involutive
completion of) the usual determining equations for its infinitesimal generators obtained
via Lie’s algorithm, [116].

As with finite-dimensional Lie groups, the structure of a pseudo-group is described
by its invariant Maurer–Cartan forms. A complete system of right-invariant one-forms
on G(∞) ⊂ D(∞) is obtained by restricting (or pulling back) the Maurer–Cartan forms
(15.2–5). For simplicity, we continue to denote these forms by σa, µaB. The restricted
Maurer–Cartan forms are, of course, no longer linearly independent, but are subject to
certain constraints prescribed by the pseudo-group. Remarkably, these constraints can
be explicitly characterized by an invariant version of the linearized determining equations
(15.10), which is formally obtained by replacing the source coordinates za by the corre-
sponding target coordinates Za and the vector field jet coordinates ζaB by the corresponding
Maurer–Cartan form µaB .

Theorem 15.3. The linear system

L(n)(Z, µ(n)) = 0 (15.11)

serves to define the complete set of dependencies among the right-invariant Maurer–Cartan
forms µ(n) on G(n). Therefore, the structure equations for the pseudo-group G are ob-
tained by restriction of the diffeomorphism structure equations (15.7) to the kernel of the
linearized involutive system (15.11).
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In this way, we effectively and efficiently bypass Cartan’s more complicated prolon-
gation procedure, [25, 36], for accessing the pseudo-group structure equations. Examples
of this procedure can be found in [38, 128]; see also [113] for a comparison with other
approaches.

Example 15.4. Let us consider the pseudo-group

X = f(x), Y = e(x, y) ≡ f ′(x) y + g(x), U = u+
ex(x, y)

f ′(x)
= u+

f ′′(x) y + g′(x)

f ′(x)
,

(15.12)
acting onM = R

3, with local coordaintes (x, y, u). Here f(x) ∈ D(R), while g(x) ∈ C∞(R).
The determining equations are the first order involutive system

Xy = Xu = 0, Yy = Xx 6= 0, Yu = 0, Yx = (U − u)Xx, Uu = 1. (15.13)

The infinitesimal generators of the pseudo-group have the form

v = ξ
∂

∂x
+ η

∂

∂y
+ ϕ

∂

∂u
= φ(x)

∂

∂x
+
[
φ′(x) y + ψ(x)

] ∂
∂y

+
[
φ′′(x) y + ψ′(x)

] ∂
∂u

,

(15.14)
where φ(x), ψ(x) are arbitrary smooth functions. The infinitesimal generators (15.14) form
the general solution to the first order involutive infinitesimal determining system

ξx = ηy , ξy = ξu = ηu = ϕu = 0, ηx = ϕ, (15.15)

obtained by linearizing (15.13) at the identity.

The Maurer–Cartan forms are obtained by repeatedly differentiating µ = dGX , µ̃ =

dG Y and ν = dG U , so that µj,k,l = D
j
XD

k
Y D

l
Uµ, etc. According to Theorem 15.3, they

are subject to the linear relations

µX = µ̃Y , µY = µU = µ̃U = νU = 0, µ̃X = ν, (15.16)

along with their “differential” consequences. Writing out (15.7), we are led to the following
structure equations

dµn = σ ∧ µn+1 −
[ (n+1)/2 ]∑

j=1

n− 2j + 1

n+ 1

(
n+ 1

j

)
µj ∧ µn+1−j ,

dµ̃n = σ ∧ µ̃n+1 + σ̃ ∧ µn+1 −
n−1∑

j=0

n− 2j − 1

n+ 1

(
n+ 1

j + 1

)
µ̃j+1 ∧ µn−j ,

dσ = − dµ = −σ ∧ µX ,
dσ̃ = − dµ̃ = −σ ∧ µ̃X − σ̃ ∧ µX ,
dτ = − dν = − dµ̃X = −σ ∧ µ̃XX − σ̃ ∧ µXX ,

(15.17)

in which σ = dM X, σ̃ = dM Y, τ = dM U , and µn = µn,0,0, µ̃n = µ̃n,0,0, for n = 0, 1, 2, . . . ,
form a basis for the Maurer–Cartan forms of the pseudo-group.
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Example 15.5. Let G denote the symmetry group of the KdV equation (4.11),
calculated in Example 4.4. We begin by completing the determining equations (4.12) to
involution by cross-differentiation:

ξu = 0, 3ξx − τt = 0, ϕ− ξt + 2
3
uτt = 0, τu = 0,

τx = 0, ϕuu = 0, ϕxu = 0, ϕt + uϕx + ϕxxx = 0,

and so on. The corresponding linear relations among the diffeomorphism Maurer–Cartan
forms on M = R

3 are formally obtained by substituting (x, t, u) 7−→ (X, T, U) and
ξ, τ, ϕ) 7−→ (µx, µt, µu), resulting in the linear relations

µxU = 0, 3µxX − µtT = 0, µu − µxT + 2
3Uµ

t
T = 0, µtU = 0,

µtX = 0, µuUU = 0, µuXU = 0, µuT + UµuX + µuXXX = 0,

and so on. Solving this system by, say, Gaussian elimination, we find that there are
precisely 4 independent invariant contact forms:

ω1 := µt, ω2 := µx, ω3 := µu, ω4 := µtT ,

which reflects the fact that the symmetry group of the KdV equation is a four-dimensional
Lie group. The structure equations of the coframe are

dσt = µ4 ∧ σt,
dσx = µ3 ∧ σt + 2

3
Uµ4 ∧ σt + 1

3
µ4 ∧ σx,

dσu = −2
3µ

4 ∧ σu,
dµ1 = −µ4 ∧ σt,
dµ2 = −µ3 ∧ σt − 2

3
Uµ4 ∧ σt − 1

3
µ4 ∧ σx,

dµ3 = 2
3µ

4 ∧ σu,
dµ4 = 0,

where σt, σx, σu are the invariant horizontal forms. The Maurer–Cartan equations for the
Lie symmetry pseudo-group G are obtained by restricting to a target fiber where T,X, U
are fixed, whence

dµ1 = −µ1 ∧ µ4,

dµ2 = −µ1 ∧ µ3 − 2
3Uµ

1 ∧ µ4 − 1
3µ

2 ∧ µ4,

dµ3 = 2
3µ

3 ∧ µ4,

dµ4 = 0.

16. Differential Invariants of Lie Pseudo–groups.

Our primary focus is to study the induced action of pseudo-groups on submanifolds.
For 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the nth order (extended) jet bundle consisting of
equivalence classes of p-dimensional submanifolds S ⊂ M under the equivalence relation
of nth order contact, cf. [117]. We employ the standard local coordinates

z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . ) (16.1)
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on Jn induced by a splitting of the local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq)
on M into p independent and q = m − p dependent variables, [116, 117]. The choice of
independent and dependent variables induces the variational bicomplex structure on J∞,
[3, 147]. The basis horizontal forms are the differentials dx1, . . . , dxp of the independent
variables, while the basis contact forms are denoted by

θαJ = duαJ −
p∑

i=1

uαJ,i dx
i, α = 1, . . . , q, #J ≥ 0. (16.2)

This decomposition splits the differential d = dH + dV on J∞ into horizontal and vertical
(or contact) components, and endows the space of differential forms with the structure of
a variational bicomplex, [3, 87, 147].

Local diffeomorphisms ϕ ∈ D preserve the contact equivalence relation between sub-
manifolds, and thus induce an action on the jet bundle Jn = Jn(M, p), known as the
nth prolonged action, which, by the chain rule, factors through the diffeomorphism jet
groupoid D(n). Let H(n) denote the groupoid obtained by pulling back the pseudo-group
jet groupoid G(n) → M via the projection π̃n0 : Jn → M . Local coordinates on H(n) are
written (x, u(n), g(n)), where (x, u(n)) are the coordinates and Jn(M, p), while the fiber
coordinates g(n) serve to parametrize the pseudo-group jets.

Definition 16.1. A moving frame ρ(n) of order n is a G(n) equivariant local section
of the bundle H(n) → Jn.

Thus, in local coordinates, the moving frame section has the form

ρ(n)(x, u(n)) = (x, u(n), γ(n)(x, u(n))), where g(n) = γ(n)(x, u(n)) (16.3)

defines a right equivariant map to the pseudo-group jets. A moving frame ρ(k): Jk →
H(k) of order k > n is compatible with ρ(n) provided π̂kn ◦ρ(k) = ρ(n) ◦ π̃kn where defined,
π̂kn:H(k) → H(n) and π̃kn: J

k → Jn denoting the evident projections. A complete moving

frame is provided by a mutually compatible collection of moving frames of all orders k ≥ n.

As in the finite-dimensional construction, [52], the (local) existence of a moving frame
requires that the prolonged pseudo-group action be free and regular.

Definition 16.2. The pseudo-group G acts freely at z(n) ∈ Jn if its isotropy subgroup

is trivial, G(n)

z(n) = {g(n) ∈ G(n) | g(n) · z(n) = z(n) } =
{

11(n)
z

}
, and locally freely if G(n)

z(n) is
discrete.

Warning : According to the standard definition, [52], any (locally) free action of a
finite-dimensional Lie group satisfies the (local) freeness condition of Definition 16.2, but
not necessarily conversely.

The pseudo-group acts locally freely at z(n) if and only if the prolonged pseudo-group
orbit through z(n) has dimension rn = dimG(n)|z. Thus, freeness of the pseudo-group at
order n requires, at the very least, that

rn = dimG(n)|z ≤ dimJn = p+ (m− p)

(
p+ n

p

)
. (16.4)
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Freeness thus provides an alternative and simpler means of quantifying the Spencer co-
homological growth conditions imposed on the pseudo-group in [88, 89]. Pseudo-groups
having too large a fiber dimension rn will, typically, act transitively on (a dense open sub-
set of) Jn, and thus possess no non-constant differential invariants. A key result of [130],
generalizing the finite-dimensional case, is the persistence of local freeness.

Theorem 16.3. Let G be a Lie pseudo-group acting on an m-dimensional manifold
M . If G acts locally freely at z(n) ∈ Jn for some n > 0, then it acts locally freely at any
z(k) ∈ Jk with π̃kn(z

(k)) = z(n), for k ≥ n.

As in the finite-dimensional version, [52], moving frames are constructed through a
normalization procedure based on a choice of cross-section to the pseudo-group orbits, i.e.,
a transverse submanifold of the complementary dimension.

Theorem 16.4. Suppose G(n) acts freely on an open subset Vn ⊂ Jn, with its orbits
forming a regular foliation. Let Kn ⊂ Vn be a (local) cross-section to the pseudo-group
orbits. Given z(n) ∈ Vn, define ρ(n)(z(n)) ∈ H(n) to be the unique pseudo-group jet
such that σ̃(n)(ρ(n)(z(n))) = z(n) and τ̃ (n)(ρ(n)(z(n))) ∈ Kn (when such exists). Then
ρ(n): Jn → H(n) is a moving frame for G defined on an open subset of Vn containing Kn.

Usually — and, to simplify the development, from here on — we select a coordi-
nate cross-section of minimal order, defined by fixing the values of rn of the individual
submanifold jet coordinates (x, u(n)). We write out the explicit formulae (X,U (n)) =
F (n)(x, u(n), g(n)) for the prolonged pseudo-group action in terms of a convenient system
of group parameters g(n) = (g1, . . . , grn

). The rn components corresponding to our choice
of cross-section variables serve to define the normalization equations

F1(x, u
(n), g(n)) = c1, . . . Frn

(x, u(n), g(n)) = crn
, (16.5)

which, when solved for the group parameters g(n) = γ(n)(x, u(n)), produces the moving
frame section (16.3).

With the moving frame in place, the general invariantization procedure introduced in
[87] in the finite-dimensional case adapts straightforwardly. To compute the invarianti-
zation of a function, differential form, differential operator, etc., one writes out how it
explicitly transforms under the pseudo-group, and then replaces the pseudo-group param-
eters by their moving frame expressions (16.3). Invariantization defines a morphism that
projects the exterior algebra differential functions and forms onto the algebra of invariant
differential functions and forms. In particular, invariantizing the coordinate functions on
J∞ leads to the normalized differential invariants

Hi = ι(xi), i = 1, . . . , p, IαJ = ι(uαJ ), α = 1, . . . , q, #J ≥ 0, (16.6)

collectively denoted by (H, I(n)) = ι(x, u(n)). The normalized differential invariants nat-
urally split into two subspecies: those appearing in the normalization equations (16.5)
will be constant, and are known as the phantom differential invariants. The remaining
sn = dim Jn − rn components, called the basic differential invariants, form a complete
system of functionally independent differential invariants of order ≤ n for the prolonged
pseudo-group action on submanifolds.
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Secondly, invariantization of the basis horizontal one-forms leads to the invariant one-
forms

̟i = ι(dxi) = ωi + κi, i = 1, . . . , p, (16.7)

where ωi, κi denote, respectively, the horizontal and vertical (contact) components. If
the pseudo-group acts projectably, then the contact components vanish: κi = 0. The
horizontal forms ω1, . . . , ωp provide, in the language of [117], a contact-invariant coframe
on J∞. The dual invariant differential operators D1, . . . ,Dp are uniquely defined by the
formula

dF =

p∑

i=1

DiF ̟i + · · · , (16.8)

valid for any differential function F , where the dots indicate contact components which
are not needed here, but do play an important role in the study of invariant variational
problems, cf. [87]. The invariant differential operators Di map differential invariants to
differential invariants. In general, they do not commute, but are subject to linear commu-
tation relations of the form

[
Di,Dj

]
=

p∑

k=1

Y kij Dk, i, j = 1, . . . , p, (16.9)

where the coefficients Y kij are certain differential invariants. Finally, invariantizing the basis
contact one-forms

ϑαK = ι(θαK), α = 1, . . . , q, #K ≥ 0, (16.10)

provide a complete system of invariant contact one-forms. The invariant coframe serves to
define the invariant variational complex for the pseudo-group, [87].

The Basis Theorem for differential invariants states that, assuming freeness of the
sufficiently high order prolonged pseudo-group action, then locally, there exist a finite
number of generating differential invariants I1, . . . , Iℓ, with the property that every dif-
ferential invariant can be locally expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1Dj2 · · ·DjkIκ.

The differentiated invariants are not necessarily independent, but may be subject to certain
functional relations or differential syzygies of the form

H( . . . DJIκ . . . ) ≡ 0. (16.11)

A consequence of our moving frame methods is a constructive algorithm for producing a
(not necessarily minimal) system of generating differential invariants, as well as a proof that
there are finitely many generating syzygies, meaning that any other syzygy is a differential
consequence thereof.

65



Example 16.5. Consider the action of the pseudo-group (15.12) on surfaces u =
h(x, y). Under the pseudo-group transformations, the basis horizontal forms dx, dy are
mapped to the one-forms

dH X = fx dx, dH Y = ex dx+ fx dy. (16.12)

The prolonged pseudo-group transformations are found by applying the dual implicit dif-
ferentiations

DX =
1

fx
Dx −

ex
f2
x

Dy, DY =
1

fx
Dy,

successively to U = u+ ex/fx, so that

UX =
ux
fx

+
exx − ex uy

f2
x

− 2
fxx ex
f3
x

, UY =
uy
fx

+
fxx
f2
x

,

UXX =
uxx
f2
x

+
exxx − exx uy − 2ex uxy − fxx ux

f3
x

+

+
e2x uyy + 3exfxx uy − 4exx fxx − 3ex fxxx

f4
x

+ 8
ex f

2
xx

f5
x

,

UXY =
uxy
f2
x

+
fxxx − fxx uy − ex uyy

f3
x

− 2
f2
xx

f4
x

, UY Y =
uyy
f2
x

,

(16.13)

and so on. In these formulae, the jet coordinates f, fx, fxx, . . . , e, ex, exx, . . . are to be
regarded as the independent pseudo-group parameters. The pseudo-group cannot act
freely on J1 since r1 = dimG(1)|z = 6 > dimJ1 = 5. On the other hand, r2 = dimG(2)|z =
8 = dim J2, and the action on J2 is, in fact, locally free and transitive on the sets V2

+ =

J2 ∩ {uyy > 0} and V2
− = J2 ∩ {uyy < 0}. Moreover, as predicted by Theorem 16.3, G(n)

acts locally freely on the corresponding open subsets of Jn for any n ≥ 2.

To construct the moving frame, we successively solve the following coordinate cross-
section equations for the pseudo-group parameters:

X = 0, f = 0,

Y = 0, e = 0,

U = 0, ex = −u fx,

UY = 0, fxx = −uy fx,

UX = 0, exx = (uuy − ux) fx,

UY Y = 1, fx =
√
uyy ,

UXY = 0, fxxx = −
√
uyy

(
uxy + uuyy − u2

y

)
,

UXX = 0, exxx = −
√
uyy

(
uxx − uuxy − 2u2uyy − 2uxuy + uu2

y

)
.

At this stage, we can construct the first two fundamental differential invariants:

J1 = ι(uxyy) =
uxyy + uuyyy + 2uyuyy

u
3/2
yy

, J2 = ι(uyyy) =
uyyy

u
3/2
yy

. (16.14)
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Higher order differential invariants are found by continuing this procedure, or by employing
the more powerful Taylor series method developed in [129]. Further, substituting the
pseudo-group normalizations into (16.12) fixes the invariant horizontal coframe

ω1 = ι(dx) =
√
uyy dx, ω2 = ι(dy) =

√
uyy (dy − u dx). (16.15)

The dual invariant total derivative operators are

D1 =
1√
uyy

(Dx + uDy), D2 =
1√
uyy

Dy. (16.16)

The higher-order differential invariants can be generated by successively applying these
differential operators to the pair of basic differential invariants (16.14). The commutation
relation is

[D1,D2 ] = − 1
2 J2D1 + 1

2 J1D2. (16.17)

Finally, there is a single generating syzygy

D1J2 −D2J1 = 2 (16.18)

among the differentiated invariants from which all others can be deduced by invariant
differentiation.

Example 16.6. We determine the differential invariants of the Korteweg–deVries
equation symmetry group, as determined in (4.14). to obtain the explicit formulas, we
begin by using invariant differentiation to prolong the action:

T = e3λ4(t+ λ1),

X = eλ4(λ3t+ x+ λ1λ3 + λ2),

Û = U = e−2λ4(u+ λ3),

ÛT = DT Û = e−5λ4(ut − λ3ux),

ÛX = DX Û = e−3λ4ux,

ÛTT = D2
T Û = e−8λ4(utt − 2λ3utx + λ2

3uxx),

ÛTX = DXDT Û = e−6λ4(utx − λ3uxx),

ÛXX = D2
X Û = e−4λ4uxx,

ÛTTT = D3
T Û = e−11λ4(uttt − 3λ3uttx + 3λ2

3utxx − λ3
3uxxx),

ÛTTX = DXD
2
T Û = e−9λ4(uttx − 2λ3utxx + λ2

3uxxx),

ÛTXX = D2
XDT Û = e−7λ4(utxx − λ3uxxx),

ÛXXX = D3
X Û = e−5λ4uxxx.

(16.19)

Let us choose the coordinate cross-section defined by the four normalization equations

T = e3λ4(t+ λ1) = 0,

X = eλ4(λ3t+ x+ λ1λ3 + λ2) = 0,

Û = e−2λ4(u+ λ3) = 0,

ÛT = e−5λ4(ut − λ3ux) = 1.
(16.20)
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On the subset V = {ut + uux > 0}, the normalization equations can be solved for the
group parameters:

λ1 = −t, λ2 = −x, λ3 = −u, λ4 = 1
5

log(ut + uux), (16.21)

thereby prescribing the moving frame. The existence of a moving frame implies that the
action of G is locally free on the subset Vn = {ut + uux > 0} ⊂ Jn for all n ≥ 1.

The differential invariants are obtained by invariantizing the jet coordinates

t, x, u, ut, ux, utt, utx, . . . ,

which is equivalent to substituting the moving frame expressions (16.21) into the prolonged
action formulas (16.19). The constant phantom differential invariants

H1 = ι(t) = 0, H2 = ι(x) = 0, I0 = ι(u) = 0, I10 = ι(ut) = 1, (16.22)

result from our particular choice of normalization (16.20). Invariantizing the remaining
coordinate functions yields a complete system of functionally independent normalized dif-
ferential invariants:

I01 = ι(ux) =
ux

(ut + uux)
3/5

,

I20 = ι(utt) =
utt + 2uutx + u2uxx

(ut + uux)
8/5

,

I11 = ι(utx) =
utx + uuxx

(ut + uux)
6/5

,

I02 = ι(uxx) =
uxx

(ut + uux)
4/5

,

I30 = ι(uttt) =
uttt + 3uuttx + 3u2utxx + u3uxxx

(ut + uux)
11/5

,

I21 = ι(uttx) =
uttx + 2uutxx + u2uxxx

(ut + uux)
9/5

,

I12 = ι(utxx) =
utxx + uuxxx
(ut + uux)

7/5
,

I03 = ι(uxxx) =
uxxx

ut + uux
, . . . .

(16.23)

The Replacement Rule (5.9) allows us to immediately rewrite the KdV equation in terms
of the differential invariants by applying the invariantization process to it:

0 = ι(ut + uux + uxxx) = 1 + I03 =
ut + uux + uxxx

ut + uux
.

Note the appearance of a nonzero multiplier indicating that the KdV equation is initially
defined by a relative differential invariant. The invariant horizontal coframe

ω1 = (ut + uux)
3/5 dt, ω2 = −u(ut + uux)

1/5 dt+ (ut + uux)
1/5 dx, (16.24)
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is obtained by substituting (16.21) into the lifted horizontal coframe

dH T = (Tt + utTu) dt+ (Tx + uxTu) dx = e3λ4 dt,

dH X = (Xt + utXu) dt+ (Xx + uxXu) dx = λ3e
λ4 dt+ eλ4 dx,

while the corresponding invariant differential operators

D1 = (ut + uux)
−3/5Dt + u(ut + uux)

−3/5Dx, D2 = (ut + uux)
−1/5Dx,

can be found either by invoking duality (16.8). The invariant horizontal one-forms ω1, ω2

satisfy the structure equations

dH ω
1 = −3

5 (I11 + I2
01)ω

1 ∧ ω2, dH ω
2 = 1

5(I20 + 6I01)ω
1 ∧ ω2. (16.25)

These imply the commutation formula

[D1,D2] = 3
5 (I11 + I2

01)D1 − 1
5 (I20 + 6I01)D2. (16.26)

Higher order differential invariants can now be constructed by repeatedly applying
the invariant differential operators to the lower order differential invariants, and hence can
be expressed in terms of the normalized differential invariants. For example,

D1I01 = −3
5
I2
01 + I11 − 3

5
I01I20, D2I01 = −3

5
I3
01 + I02 − 3

5
I01I11,

as can be checked by a somewhat tedious explicit calculation. Similarly, the commutation
formula (16.26) can be used to derive syzygies among the differentiated invariants. In the
next section, we will develop an algorithm for constructing the recurrence formulas and
syzygies in a much simpler, direct fashion.

Since the basic differential invariants arising from invariantization of the jet coor-
dinates form a complete system, any other differential invariant, e.g., those constructed
by application of the invariant differential operators, can be locally written as a function
thereof. The recurrence formulae, cf. [52, 87], connect the differentiated invariants and
forms with their normalized counterparts. These formulae are fundamental, since they
prescribe the structure of the algebra of (local) differential invariants, underly a full clas-
sification of generating differential invariants and their differential syzygies, as well as the
structure of invariant variational problems and, indeed, the entire invariant variational
bicomplex. As in the finite-dimensional version, the recurrence formulae are established,
through just linear algebra and differentiation, using only the formulas for the prolonged
infinitesimal generators and the cross-section. In particular, they do not require the ex-
plicit formulae for either the moving frame, or the Maurer–Cartan forms, or the normalized
differential invariants and invariant forms, or even the invariant differential operators!

Let ν(∞) = (ρ(∞))∗ µ(∞) denote the pulled-back Maurer–Cartan forms via the com-
plete moving frame section ρ(∞), with individual components

νbA = (ρ(∞))∗ (µbA) =

p∑

i=1

SbA,i ω
i +
∑

α,K

T b,KA,αϑ
α
K , b = 1, . . . , m, #A ≥ 0, (16.27)
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where the coefficients SbA,i, T
b,K
A,α will be called the Maurer–Cartan invariants. Their precise

formulas will follow directly from the recurrence relations for the phantom differential
invariants. In view of Theorem 15.3, the pulled-back Maurer–Cartan forms are subject to
the linear relations

L(n)(H, I, ν(n)) = ι
[
L(n)(z, ζ(n))

]
= 0, n ≥ 0, (16.28)

obtained by invariantizing the original linear determining equations (15.10), where we set
ι(ζbA) = νbA, and where (H, I) = ι(x, u) = ι(z) are the zeroth order differential invariants in
(16.6). In particular, if G acts transitively on M , then, since we are using a minimal order
moving frame, (H, I) are constant phantom invariants.

Given a locally defined vector field

v =

m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
∈ X (M), (16.29)

let

v(∞) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

k=#J ≥ 0

ϕ̂ αJ (x, u(k))
∂

∂uαJ
∈ X (J∞(M, p)) (16.30)

denote its infinite prolongation. The coefficients are computed via the usual prolongation
formula,

ϕ̂ αJ = DJ Q
α +

p∑

i=1

uαJ,i ξ
i, where Qα = ϕα −

p∑

i=1

uαi ξ
i, α = 1, . . . , q,

(16.31)
are the components of the characteristic of v; cf. [116, 117]. Consequently, each prolonged
vector field coefficient

ϕ̂ αJ = ΦαJ (u(n), ζ(n)) (16.32)

is a certain universal linear combination of the vector field jet coordinates, whose coeffi-
cients are polynomials in the submanifold jet coordinates uβK for 1 ≤ #K ≤ n. Let

ηi = ι(ξi) = νi, ψ̂αJ = ι(ϕ̂ αJ ) = ΦαJ (I(n), ν(n)), (16.33)

denote their invariantizations, which are certain linear combinations of the pulled-back
Maurer–Cartan forms νbA, whose coefficients are polynomials in the normalized differential

invariants IβK for 1 ≤ #K ≤ #J .

With all these in hand, the desired universal recurrence formula is as follows.

Theorem 16.7. If Ω is any differential form on J∞, then

d ι(Ω) = ι
[
dΩ + v(∞)(Ω)

]
, (16.34)

where v(∞)(Ω) denotes the Lie derivative of Ω with respect to the prolonged vector field
(16.30), and we use (16.33) and its analogs for the partial derivatives of the prolonged
vector field coefficients when invariantizing the result.
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Specializing Ω in (16.34) to be one of the coordinate functions xi, uαJ yields recurrence
formulae for the normalized differential invariants (16.6),

dHi = ι
(
dxi + ξi

)
= ̟i + ηi,

dIαJ = ι
(
duαJ + ϕ̂ αJ

)
= ι

(
p∑

i=1

uαJ,i dx
i + θαJ + ϕ̂ αJ

)
=

p∑

i=1

IαJ,i̟
i + ϑαJ + ψ̂αJ ,

(16.35)

where, as in (16.33), each ψ̂αJ is written in terms of the pulled-back Maurer–Cartan forms
νbA, which are subject to the linear constraints (16.28). Each phantom differential in-
variant is, by definition, normalized to a constant value, and hence has zero differential.
Consequently, the phantom recurrence formulae in (16.35) form a system of linear alge-
braic equations which can, as a result of the transversality of the cross-section, be uniquely
solved for the pulled-back Maurer–Cartan forms.

Theorem 16.8. If the pseudo-group acts locally freely on Vn ⊂ Jn, then the nth

order phantom recurrence formulae can be uniquely solved to express the pulled-back
Maurer–Cartan forms νbA of order #A ≤ n as invariant linear combinations of the invariant
horizontal and contact one-forms ̟i, ϑαJ .

Substituting the resulting expressions (16.27) into the remaining, non-phantom recur-
rence formulae in (16.35) leads to a complete system of recurrence relations, for both the
vertical and horizontal differentials of all the normalized differential invariants. In partic-
ular, equating the coefficients of the forms ωi leads to individual recurrence formulae for
the normalized differential invariants:

DiHj = δji +M j
i , DiIαJ = IαJ,i +Mα

J,i, (16.36)

where δji is the Kronecker delta, and the correction terms M j
i ,M

α
J,i are certain invariant

linear combinations of the Maurer–Cartan invariants SbA,i. One complication, which will
be dealt with in the following section, is that the correction term Mα

J,i can have the same
order as the initial differential invariant IαJ,i.

It is worth pointing out that, since the prolonged vector field coefficients ϕ̂ αJ are poly-

nomials in the jet coordinates uβK of order #K ≥ 1, their invariantizations are polynomial

functions of the differential invariants IβK for #K ≥ 1. Since the correction terms are con-
structed by solving a linear system for the invariantized Maurer–Cartan forms (16.27), the
Maurer–Cartan invariants depend rationally on these differential invariants. Thus, in most
cases (including the majority of applications), the resulting differential invariant algebra
is endowed with an entirely rational algebraic recurrence structure.

Theorem 16.9. If G acts transitively on M , or, more generally, its infinitesimal gen-
erators depend polynomially on the coordinates z = (x, u) ∈M , then the correction terms
M j
i ,M

α
J,i in the recurrence formulas (16.35) are rational functions of the basic differential

invariants.

Let (15.10) be the formally integrable completion of the linearized determining equa-
tions of a pseudo-group G. At each z ∈ M , we let I|z denote the symbol module of the
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determining equations, which, by formal integrability, forms a submodule of T ≃ R[ t ] ⊗R
m

consisting of real polynomials

η(t, T ) =
m∑

a=1

ηa(t)T
a

in t = (t1, . . . , tm) and T = (T 1, . . . , Tm) that are linear in the T ’s.

Analogously, let Ŝ ≃ R[s] ⊗R
q denote the module consisting of polynomials

σ̂(s, S) =

q∑

α=1

σ̂α(s)Sα

in s = (s1, . . . , sp), S = (S1, . . . , Sq), which are linear in the S’s. At each submanifold

1-jet z(1) = (x, u(1)) ∈ J1(M, p), we define a linear map β|z(1) : Rm × R
m → R

m by the
formulas

si = βi(z
(1); t) = ti +

q∑

α=1

uαi tp+α, i = 1, . . . , p,

Sα = Bα(z(1);T ) = T p+α −
p∑

i=1

uαi T
i, α = 1, . . . , q.

(16.37)

Definition 16.10. The prolonged symbol submodule at z(1) ∈ J1|z is the inverse
image of the symbol module under the pull-back map (β|z(1))∗:

J |z(1) = ((β|z(1))∗)−1(I|z) =
{
σ(s, S)

∣∣ (β|z(1))∗(σ) ∈ I|z
}
⊂ Ŝ. (16.38)

It can be proved that, when the pseudo-group admits a moving frame, the module
J |z(1) coincides with the symbol module associated with the prolonged infinitesimal gen-
erators.

To relate this construction to the differential invariant algebra, we invariantize the
modules using a moving frame. In general, the invariantization of a prolonged symbol
polynomial

σ(x, u(1); s, S) =
∑

α,J

hJα(x, u(1)) sJS
α ∈ J |z(1) ,

is given by

σ̃(H, I(1); s, S) = ι
[
σ(x, u(1); s, S)

]
=
∑

α,J

hJα(H, I(1)) sJS
α, (16.39)

which we identify with the differential invariant

Iσ̃ =
∑

α,J

hJα(H, I(1)) IαJ .

Let J̃ |(H,I(1)) = ι(J |z(1)) denote the invariantized prolonged symbol submodule.
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The recurrence formulae for the differential invariants Iσ̃ take the form

Di Iσ̃ = Isi σ̃
+Mσ̃,i, (16.40)

in which, unlike in (16.36), when deg σ̃ ≫ 0, the leading term Isi σ̃
is strictly of higher

order that the correction term. Now iteration of (16.40) leads to the Constructive Basis
Theorem for differential invariants.

Theorem 16.11. Let G be a Lie pseudo-group admitting a moving frame on an open
subset of the submanifold jet bundle at order n⋆. Then a finite generating system for its
algebra of local differential invariants is given by :

(a) the differential invariants Iν = Iσν
, where σ1, . . . , σl form a Gröbner basis for the

invariantized prolonged symbol submodule J̃ , and, possibly,

(b) a finite number of additional differential invariants of order ≤ n⋆.

We are also able to exhibit a finite generating system of differential invariant syzygies.
First, owing to the non-commutative nature of the the invariant differential operators Di,
we have the commutator syzygies

DJ Iσ̃ −D
J̃
Iσ̃ = Mσ̃,J −M

σ̃,J̃
≡ N

J,J̃,σ̃
, whenever J̃ = π(J) (16.41)

for some permutation π. Provided deg σ̃ > n⋆, the right hand side N
J,J̃,σ̃

is of lower order

than the terms on the left hand side.

In addition, any algebraic syzygy satisfied by polynomials in J̃ |(H,I(1)) provides an
additional syzygy amongst the differentiated invariants. In detail, to each invariantly
parametrized polynomial

q(H, I(1); s) =
∑

J

qJ (H, I(1))sJ ∈ R[s]

we associate an invariant differential operator

q(H, I(1);D) =
∑

J

qJ (H, I(1))DJ , (16.42)

where the sum ranges over non-decreasing multi-indices. In view of (16.40), whenever

σ̃(H, I(1); s, S) ∈ J̃ |(H,I(1)), we can write

q(H, I(1);D) Iσ̃(H,I(1);s,S) = Iq(H,I(1);s) σ̃(H,I(1);s,S) +Rq,σ̃, (16.43)

where Rq,σ̃ has order < deg q + deg σ̃. Thus, any algebraic syzygy

l∑

ν=1

qν(H, I
(1), s) σν(H, I

(1); s, S) = 0

of the Gröbner basis polynomials of J̃ |(H,I(1)) induces a syzygy among the generating
differential invariants,

l∑

ν=1

qν(H, I
(1),D) Iσ̃ν

= R, where orderR < max {deg qν + deg σ̃ν}.
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Theorem 16.12. Every differential syzygy among the generating differential invari-
ants is a combination of the following:

(a) the syzygies among the differential invariants of order ≤ n⋆,

(b) the commutator syzygies,

(c) syzygies coming from an algebraic syzygy among the Gröbner basis polynomials.

In this manner, we deduce a finite system of generating differential syzygies for the differ-
ential invariant algebra of our pseudo-group.

Further details and applications of these results can be found in our papers listed in
the references.
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Université de Montreal, 2011, arXiv:1112.1917v1.
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